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Overview

- Goal: develop a sequent calculus for a team-based logic that is as simple as possible—departing
minimally from a standard Gentzen-style system—and has nice proof-theoretic properties

- The challenge: team-based logics are not closed under uniform substitution, meaning that
standard proof-theoretic techniques are not available

- Some approaches in the literature: labelled calculi and multi-level calculi

- Our approach: extend a standard Gentzen-style calculus (for the classical fragment of the logic
we work with) with deep-inference rules (rules which apply to connectives at any depth within a
formula) for nonclassical connectives.

- The resulting system is very simple, and standard proof-theoretic results can be shown as
corollaries or extensions of the corresponding results for the classical Gentzen-style subsystem



Overview

- Goal: develop a sequent calculus for a team-based logic that is as simple as possible—departing
minimally from a standard Gentzen-style system—and has nice proof-theoretic properties

- The challenge: team-based logics are not closed under uniform substitution, meaning that
standard proof-theoretic techniques are not available

- Some approaches in the literature: labelled calculi and multi-level calculi

- Our approach: extend a standard Gentzen-style calculus (for the classical fragment of the logic
we work with) with deep-inference rules (rules which apply to connectives at any depth within a
formula) for nonclassical connectives.

- The resulting system is very simple, and standard proof-theoretic results can be shown as
corollaries or extensions of the corresponding results for the classical Gentzen-style subsystem



Overview

- Goal: develop a sequent calculus for a team-based logic that is as simple as possible—departing
minimally from a standard Gentzen-style system—and has nice proof-theoretic properties

- The challenge: team-based logics are not closed under uniform substitution, meaning that
standard proof-theoretic techniques are not available

- Some approaches in the literature: labelled calculi and multi-level calculi

- Our approach: extend a standard Gentzen-style calculus (for the classical fragment of the logic
we work with) with deep-inference rules (rules which apply to connectives at any depth within a
formula) for nonclassical connectives.

- The resulting system is very simple, and standard proof-theoretic results can be shown as
corollaries or extensions of the corresponding results for the classical Gentzen-style subsystem



Overview

- Goal: develop a sequent calculus for a team-based logic that is as simple as possible—departing
minimally from a standard Gentzen-style system—and has nice proof-theoretic properties

- The challenge: team-based logics are not closed under uniform substitution, meaning that
standard proof-theoretic techniques are not available

- Some approaches in the literature: labelled calculi and multi-level calculi

- Our approach: extend a standard Gentzen-style calculus (for the classical fragment of the logic
we work with) with deep-inference rules (rules which apply to connectives at any depth within a
formula) for nonclassical connectives.

- The resulting system is very simple, and standard proof-theoretic results can be shown as
corollaries or extensions of the corresponding results for the classical Gentzen-style subsystem



Overview

- Goal: develop a sequent calculus for a team-based logic that is as simple as possible—departing
minimally from a standard Gentzen-style system—and has nice proof-theoretic properties

- The challenge: team-based logics are not closed under uniform substitution, meaning that
standard proof-theoretic techniques are not available

- Some approaches in the literature: labelled calculi and multi-level calculi

- Our approach: extend a standard Gentzen-style calculus (for the classical fragment of the logic
we work with) with deep-inference rules (rules which apply to connectives at any depth within a
formula) for nonclassical connectives.

- The resulting system is very simple, and standard proof-theoretic results can be shown as
corollaries or extensions of the corresponding results for the classical Gentzen-style subsystem



The logic PL(///) [YV16]

Syntax of classical propositional logic PL:

α ∶∶= p ∣ � ∣ ¬α ∣ α ∧ α ∣ α ∨ α

Syntax of propositional logic with the global/inquisitive disjunction /// PL(///)

ϕ ∶∶= p ∣ � ∣ ¬α ∣ ϕ ∧ ϕ ∣ ϕ ∨ ϕ ∣ ϕ /// ϕ where α ∈ PL

Relations to other team logics:

Propositional dependence logic [YV16] is PL(///) without /// , and with dependence atoms
(dependence atoms are definable in PL(///), so one may view PL(///) as an extension of
propositional dependence logic).

Propositional inquisitive logic [CR11] is PL(///) without ∨ and ¬, and with the so-called
intuitionistic implication →.

All of these three logics are equivalent in expressive power.
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Semantics

s ( p ⇐⇒ ∀v ∈ s ∶ v(p) = 1

s ( � ⇐⇒ s = ∅

s ( ¬α ⇐⇒ ∀v ∈ s ∶ {v} * α

s ( ϕ ∨ ψ ⇐⇒ ∃t, t ′ ∶ t ∪ t ′ = s &
t ( ϕ & t ′ ( ψ

s ( ϕ ∧ ψ ⇐⇒ s ( ϕ and s ( ψ

s ( ϕ /// ψ ⇐⇒ s ( ϕ or s ( ψ

vp vpq

vq v

(a) s ( p s ( ¬r

vp vpq

vq v

(b) s ( p ∨ q

vp vpq

vq v

(c) s ( p ∨ q

vp vpq

vq v

(d) {vp} ( p /// ¬p
{vq} ( p /// ¬p

{vp , vq} * p /// ¬p
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Closure properties

ϕ is downward closed: [s ( ϕ and t ⊆ s] Ô⇒ t ( ϕ

ϕ is union closed: [s ( ϕ for all s ∈ S ≠ ∅] Ô⇒ ⋃S ( ϕ

ϕ has the empty team property ∶ ∅ ( ϕ

ϕ is flat ∶ s ( ϕ ⇐⇒ {v} ( ϕ for all v ∈ s

Formulas in classical propositional logic PL (no /// ) are flat, and their team semantics coincide with
their standard semantics on singletons:

s ( α ⇐⇒ ∀w ∈ s ∶ {w} ( α ⇐⇒ ∀w ∈ s ∶ w ( α

Therefore PL(///) is a conservative extension of classical propositional logic:

for Ξ ∪ {α} ⊆ PL: Ξ ( α (in team semantics) ⇐⇒ Ξ ( α (in standard semantics)
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The global/inquisitive disjunction ///

All formulas in PL(///) are downward closed and
have the empty team property, but formulas with
/// might not be union closed.

vp vpq

vq v

{vp} ( p /// ¬p
{vq} ( p /// ¬p
{vp, vq} * p /// ¬p

{vp, v¬p} ( (p /// ¬p) ∨ (p /// ¬p)

PL(///) is not closed under uniform substitution.
E.g., p ∨ p ( p but (p /// ¬p) ∨ (p /// ¬p) * p /// ¬p.

∧, ∨, and /// distribute over /// :

ϕ ∧ (ψ /// χ) ” (ϕ ∧ ψ) /// (ϕ ∧ χ)
ϕ ∨ (ψ /// χ) ” (ϕ ∨ ψ) /// (ϕ ∨ χ)
ϕ /// (ψ /// χ) ” (ϕ /// ψ) /// (ϕ /// χ)

Therefore, each ϕ ∈ PL(///) is equivalent to a /// -
disjunction of classical formulas called the resolu-
tions of ϕ: ϕ ” ///R(ϕ) (R(ϕ) ⊆ PL).

Split property

For Ξ ⊆ PL:

Ξ ( ϕ1 /// ϕ2 iff Ξ ( ϕ1 or Ξ ( ϕ2.
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A natural deduction system

α must be classical.

ϕ ψ
∧I

ϕ ∧ ψ
ϕ ∧ ψ

∧E
ϕ

ϕ ∧ ψ
∧E

ψ

[α]
⋮
� ¬I¬α

α ¬α ¬E
ϕ

[¬α]
⋮
�

RAAα

�
EF

ϕ

ϕ
///I

ϕ /// ψ

ϕ
///I

ψ /// ϕ
ϕ /// ψ

[ϕ]

⋮
χ

[ψ]

⋮
χ

///Eχ

ϕ
∨I

ϕ ∨ ψ ϕ ∨ ψ

[ϕ]
⋮
α

[ψ]
⋮
α

∨Eα

ϕ ∨ ψ
∨Com

ψ ∨ ϕ
ϕ ∨ ψ

[ϕ]

⋮
χ

∨Mon
χ ∨ ψ

ϕ ∨ (ψ /// χ)
Dstr∨///(ϕ ∨ ψ) /// (ϕ ∨ χ)
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A naive sequent calculus translation of the ND-system

Γ,p⇒ p,∆ At Γ,� ⇒∆ L�

Γ⇒ α,∆
L¬

Γ,¬α⇒∆

Γ, α⇒∆
R¬

Γ⇒ ¬α,∆

Γ, ϕ,ψ⇒∆
L∧

Γ, ϕ ∧ ψ⇒∆

Γ⇒ ϕ,Ξ Γ⇒ ψ,Ξ
R∧

Γ⇒ ϕ ∧ ψ,Ξ,∆

Γ, ϕ⇒ Ξ Γ, ψ⇒ Ξ
L∨

Γ, ϕ ∨ ψ⇒ Ξ,∆

Γ⇒ ϕ,ψ,∆
R∨

Γ⇒ ϕ ∨ ψ,∆

Γ, ϕ1 ⇒∆ Γ, ϕ2 ⇒∆
L ///

Γ, ϕ1 /// ϕ2 ⇒∆

Γ⇒ ϕi ,∆
R ///

Γ⇒ ϕ1 /// ϕ2,∆

Γ, ϕ ∨ ψ1 ⇒∆ Γ, ϕ ∨ ψ2 ⇒∆
LDstr

Γ, ϕ ∨ (ψ1 /// ψ2) ⇒∆

Γ⇒ ϕ ∨ (ψ1 /// ψ2),∆
RDstr

Γ⇒ (ϕ ∨ ψ1) /// (ϕ ∨ ψ2),∆

α and Ξ must be classical. The interpretation of Γ⇒∆ is ⋀Γ⇒⋁∆ (not ⋀Γ⇒ ///∆).



Problem 1
The distributivity rules are not strong enough if we do not have Cut—how would one give a cutfree proof of the
following sequent in this system?

(((p ∧ x) /// (q ∧ x)) ∨ (y ∧ x)) ∨ (r ∧ x) ⇒ (((p ∨ y) ∨ r) ∧ x) /// (((q ∨ y) ∨ r) ∧ x)

Problem 2
Problem 2: How does the cut elimination procedure work with the restricted rules?
If there are restrictions on the rules, we cannot, for instance, commute the cuts freely:

D′
1

Γ, η⇒ ϕ,Ξ

D′
1

Γ, ξ⇒ ϕ,Ξ
L∨

Γ, η ∨ ξ⇒ ϕ,Ξ,∆

D′
2

Π, ϕ⇒ Σ
Cut

Π,Γ, η ∨ ξ⇒ Ξ,∆,Σ

would be transformed into

D′
1

Γ, η⇒ ϕ,Ξ

D′
2

Π, ϕ⇒ Σ
Cut

Π,Γ, η⇒ Ξ,Σ

D′
1

Γ, ξ⇒ ϕ,Ξ

D′
2

Π, ϕ⇒ Σ
Cut

Π,Γ, ξ⇒ Ξ,Σ
#L∨

Π,Γ, η ∨ ξ⇒ Ξ,Σ,∆

which contains an illegitimate application of L∨ if Σ is not classical.
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Possible approaches

Labelled systems

E.g., [San09; CM17; Mul22; LS25; BGYM24].

- The semantics of the logic are incorpo-
rated into the proof system in the form
of labels.

- Formulas are replaced with expressions of
the form π ∶ ϕ, where π is a label and ϕ
is a formula.

- The interpretation of each label is a team.
The intuitive interpretation of π ∶ ϕ is ”ϕ
is true in π”.

Example rule from [BGYM24]:

w ∶ p,w ⊆ π,π ∶ p,Γ⇒∆
pL

w ⊆ π,π ∶ p,Γ⇒∆

Multi-level system [FGPY16]

- A new language for inquisitive logic, with
two types of formulas: Flat and General.

- Closure under arbitrary substitution holds
within each type.

- A sequent calculus with two levels: a cal-
culus for Flat formulas and one for Gen-
eral formulas, together with rules which
govern the interaction of the types.

Example of a General rule:

Z ⊢ A;B

Z ⊢ A /// B

Example of a Flat rule:

α,β ⊢ Γ

α ⊓ β ⊢ Γ
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Our approach: deep inference

A formula context is a formula ϕ{⋅} containing an occurrence of a distinguished atom ⋅. We write
ϕ{ψ} for the result of replacing ⋅ in ϕ with ψ.

Example: if χ{⋅} = q ∨ (⋅ ∧ r), then χ{p /// s} = q ∨ ((p /// s) ∧ r).

We obtain our calculus by generalizing and combining the /// - and distributivity rules to allow for the
introduction of /// in any non-negated context:

Γ, χ{ϕ1} ⇒∆ Γ, χ{ϕ2} ⇒∆
L ///

Γ, χ{ϕ1 /// ϕ2} ⇒∆

Γ⇒ χ{ϕi},∆
R ///

Γ⇒ χ{ϕ1 /// ϕ2},∆

(Where ⋅ does not occur within the scope of a negation. Soundness follows from distributivity.)

Example:

p ∧ r ⇒ p ∧ r
R ///

p ∧ r ⇒ p ∧ (r /// q)

The result is a (limited) deep-inference system E.g., [Sch77; Gug99; Br9; Pog09] in that the rules of the calculus
may introduce a connective which is not the main connective of the resulting formula.



Our approach: deep inference

A formula context is a formula ϕ{⋅} containing an occurrence of a distinguished atom ⋅. We write
ϕ{ψ} for the result of replacing ⋅ in ϕ with ψ.

Example: if χ{⋅} = q ∨ (⋅ ∧ r), then χ{p /// s} = q ∨ ((p /// s) ∧ r).

We obtain our calculus by generalizing and combining the /// - and distributivity rules to allow for the
introduction of /// in any non-negated context:

Γ, χ{ϕ1} ⇒∆ Γ, χ{ϕ2} ⇒∆
L ///

Γ, χ{ϕ1 /// ϕ2} ⇒∆

Γ⇒ χ{ϕi},∆
R ///

Γ⇒ χ{ϕ1 /// ϕ2},∆

(Where ⋅ does not occur within the scope of a negation. Soundness follows from distributivity.)

Example:

p ∧ r ⇒ p ∧ r
R ///

p ∧ r ⇒ p ∧ (r /// q)

The result is a (limited) deep-inference system E.g., [Sch77; Gug99; Br9; Pog09] in that the rules of the calculus
may introduce a connective which is not the main connective of the resulting formula.



Our approach: deep inference

A formula context is a formula ϕ{⋅} containing an occurrence of a distinguished atom ⋅. We write
ϕ{ψ} for the result of replacing ⋅ in ϕ with ψ.

Example: if χ{⋅} = q ∨ (⋅ ∧ r), then χ{p /// s} = q ∨ ((p /// s) ∧ r).

We obtain our calculus by generalizing and combining the /// - and distributivity rules to allow for the
introduction of /// in any non-negated context:

Γ, χ{ϕ1} ⇒∆ Γ, χ{ϕ2} ⇒∆
L ///

Γ, χ{ϕ1 /// ϕ2} ⇒∆

Γ⇒ χ{ϕi},∆
R ///

Γ⇒ χ{ϕ1 /// ϕ2},∆

(Where ⋅ does not occur within the scope of a negation. Soundness follows from distributivity.)

Example:

p ∧ r ⇒ p ∧ r
R ///

p ∧ r ⇒ p ∧ (r /// q)

The result is a (limited) deep-inference system E.g., [Sch77; Gug99; Br9; Pog09] in that the rules of the calculus
may introduce a connective which is not the main connective of the resulting formula.



Our approach: deep inference

A formula context is a formula ϕ{⋅} containing an occurrence of a distinguished atom ⋅. We write
ϕ{ψ} for the result of replacing ⋅ in ϕ with ψ.

Example: if χ{⋅} = q ∨ (⋅ ∧ r), then χ{p /// s} = q ∨ ((p /// s) ∧ r).

We obtain our calculus by generalizing and combining the /// - and distributivity rules to allow for the
introduction of /// in any non-negated context:

Γ, χ{ϕ1} ⇒∆ Γ, χ{ϕ2} ⇒∆
L ///

Γ, χ{ϕ1 /// ϕ2} ⇒∆

Γ⇒ χ{ϕi},∆
R ///

Γ⇒ χ{ϕ1 /// ϕ2},∆

(Where ⋅ does not occur within the scope of a negation. Soundness follows from distributivity.)

Example:

p ∧ r ⇒ p ∧ r
R ///

p ∧ r ⇒ p ∧ (r /// q)

The result is a (limited) deep-inference system E.g., [Sch77; Gug99; Br9; Pog09] in that the rules of the calculus
may introduce a connective which is not the main connective of the resulting formula.



The system GT for PL(///)
The system GT extends the system G3cp for PL with deep-inference rules for /// :

Axioms

Γ,p⇒ p,∆ At Γ,� ⇒∆ L�

Logical rules

Γ⇒ α,∆
L¬

Γ,¬α⇒∆

Γ, α⇒∆
R¬

Γ⇒ ¬α,∆

Γ, ϕ,ψ⇒∆
L∧

Γ, ϕ ∧ ψ⇒∆

Γ⇒ ϕ,Ξ Γ⇒ ψ,Ξ
R∧

Γ⇒ ϕ ∧ ψ,Ξ,∆

Γ, ϕ⇒ Ξ Γ, ψ⇒ Ξ
L∨

Γ, ϕ ∨ ψ⇒ Ξ,∆

Γ⇒ ϕ,ψ,∆
R∨

Γ⇒ ϕ ∨ ψ,∆

Γ, χ{ϕ1} ⇒∆ Γ, χ{ϕ2} ⇒∆
L ///

Γ, χ{ϕ1 /// ϕ2} ⇒∆

Γ⇒ χ{ϕi},∆
R ///

Γ⇒ χ{ϕ1 /// ϕ2},∆

The intended interpre-
tation of Γ ⇒ ∆ is

⋀Γ ( ⋁∆.

α and Ξ must be classical.

⋅ must not occur within
the scope of a negation.

The full system GT also
includes a standard Cut-
rule. We call the cutfree
system GT−.



Example derivation

p⇒ p,q ∧ ¬r

q,¬r ⇒ p,q

q, r ⇒ r ,p
L¬q,¬r , r ⇒ p
R¬q,¬r ⇒ p,¬r
R∧q,¬r ⇒ p,q ∧ ¬r

L∧q ∧ ¬r ⇒ p,q ∧ ¬r
L∨

p ∨ (q ∧ ¬r) ⇒ p,q ∧ ¬r
R∨

p ∨ (q ∧ ¬r) ⇒ p ∨ (q ∧ ¬r)
R ///

p ∨ (q ∧ ¬r) ⇒ (p ∨ (q ∧ ¬r)) /// (p ∨ (q ∧ s))

p⇒ p,q ∧ s

q, s ⇒ p,q q, s ⇒ p, s
R∧q, s ⇒ p,q ∧ s

L∧q ∧ s ⇒ p,q ∧ s
L∨

p ∨ (q ∧ s) ⇒ p,q ∧ s
R∨

p ∨ (q ∧ s) ⇒ p ∨ (q ∧ s)
R ///

p ∨ (q ∧ s) ⇒ (p ∨ (q ∧ ¬r)) /// (p ∨ (q ∧ s))
L ///

p ∨ (q ∧ (¬r /// s)) ⇒ (p ∨ (q ∧ ¬r)) /// (p ∨ (q ∧ s))



Alternative formulation

In our system, the structural rules (contraction, weakening) are absorbed into the logical rules. If we
choose not to absorb the structural rules, we get the following rules for ∧ and ∨:

Structural rules

Γ, ϕ,ψ⇒ ∆
L∧

Γ, ϕ ∧ψ⇒ ∆

Γ1 ⇒ ϕ,∆1 Γ2 ⇒ ψ,∆2
R∧

Γ1,Γ2 ⇒ ϕ ∧ψ,∆1,∆2

Γ⇒ ∆
LW

Γ, ϕ⇒ ∆

Γ⇒ ∆
RW

Γ⇒ ϕ,∆

Γ1, ϕ⇒ ∆1 Γ2,ψ⇒ ∆2
L∨

Γ1,Γ2, ϕ ∨ψ⇒ ∆1,∆2

Γ⇒ ϕ,ψ,∆
R∨

Γ⇒ ϕ ∨ψ,∆
Γ, ϕ,ϕ⇒ ∆

LC
Γ, ϕ⇒ ∆

Γ⇒ α,α,∆
RC

Γ⇒ α,∆

Observations:

- These are the multiplicative rules for the conjunction and disjunction (as in linear logic)—the
rules for ∧ are those for the multiplicative conjunction (tensor) ⊗, and the rules for ∨ are those
for the multiplicative disjunction (par) (cf. [AV09]).

- Right weakening corresponds to the empty team property of ϕ.

Right contraction corresponds to the union closure of α.
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Properties of the calculus

The following properties/results follow for GT as natural extensions of the corresponding results for
G3cp:

- Proof/countermodel search procedure

- Contraction, weakening and inversion lemmas

- Sequent interpolation theorem

- Cut elimination



Cutfree completeness & countermodel search

There is a simple proof/countermodel search procedure that for G3cp that can be extended to GT .

The inverse direction of each G3cp-rule is sound.
E.g., for L∨, ⋀Γ ∧ (ϕ ∨ ψ) ( ⋁∆ implies ⋀Γ ∧ ϕ ( ⋁∆ and ⋀Γ ∧ ψ ( ⋁∆.
Using ⩕ as a metalanguage ’and’, we may write: (Γ, ϕ⇒∆⩕ Γ, ψ⇒∆) )⊢L∨ Γ, ϕ ∨ ψ⇒∆.

This implies that there is, for each PL-sequent Ξ⇒ Λ, a collection of atomic sequents Ξi ⇒ Λi such
that ⩕i∈I (Ξi ⇒ Λi) )⊢G3cp− Ξ⇒ Λ.

Similarly for L /// . As for R /// , we have by the split property that if ⋀Ξ ( χ{ϕ1 /// ϕ2} ∨ ⋁∆, then
either ⋀Ξ ( χ{ϕ1} ∨ ⋁∆ or ⋀Ξ ( χ{ϕ2} ∨ ⋁∆.
Using ⩔ to denote metalanguage ’or’: (Ξ⇒ χ{ϕ1},∆⩔Ξ⇒ χ{ϕ2},∆) )⊢R /// Ξ⇒ χ{ϕ1 /// ϕ2},∆

Applying these facts, there is, for each PL(///)-sequent Γ⇒∆, a collection of atomic sequents
Ξijk ⇒ Λijk such that ⩕i∈I ⩔j∈J⩕k∈K(Ξijk ⇒ Λijk) )⊢GT− Γ⇒∆.

Countermodel search/cutfree completeness

There is a procedure that constructs a countermodel to Γ⇒∆ from countermodels to sequents only
involving atomic formulas if there is such a countermodel. If there is no such countermodel, the
procedure yields a cutfree proof of Γ⇒∆.
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procedure yields a cutfree proof of Γ⇒∆.
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A visual example, with countermodels written above the sequent arrows (blue sequents hold; red
sequents do not):

p⇒ p

p,p
{vp}⇒

R¬
p
{vp}⇒ ¬p

R ///

p⇒ p /// ¬p

p⇒ p

{vp}⇒ p,p
L¬

¬p
{vp}⇒ p

L∨
p ∨ ¬p

{vp}⇒ p

p,p
{vp}⇒

R¬
p
{vp}⇒ ¬p

p⇒ p
L¬¬p,p⇒
R¬¬p⇒ ¬p
L∨

p ∨ ¬p
{vp}⇒ ¬p

R ///

p ∨ ¬p
{vp ,vp}⇒ p /// ¬p

L ///

p /// (p ∨ ¬p)
{vp ,vp}⇒ p /// ¬p

Here
Ξ⇒ χ{ϕ1},∆ Ξ⇒ χ{ϕ2},∆

R ///

Ξ⇒ χ{ϕ1 /// ϕ2]},∆
denotes that Ξ⇒ χ{ϕ1 /// ϕ2},∆ holds iff either Ξ⇒ χ{ϕ1},∆ or Ξ⇒ χ{ϕ2},∆ holds (cf. the split
property).



Depth-preserving weakening, contraction and inversion; Interpolation

⊢n S : S has a derivation of depth at most n. (Depth: the maximum length of branches in the
derivation tree).

Weakening and contraction lemma

If ⊢n Γ⇒∆ then ⊢n Γ, ϕ⇒∆

If ⊢n Γ⇒∆ then ⊢n Γ⇒ ϕ,∆

If ⊢n Γ, ϕ, ϕ⇒∆ then ⊢n Γ, ϕ⇒∆

If ⊢n Γ⇒ α,α,∆ then ⊢n Γ⇒ α,∆

Right contraction is not sound with respect to all formulas since, e.g., (p /// ¬p) ∨ (p /// ¬p) * p /// ¬p.

Inversion lemma
All rules except R /// are depth-preserving invertible.

E.g., (inverted R∧) ⊢n Γ⇒ ϕ ∧ ψ,∆ implies
⊢n Γ⇒ ϕ,∆ and ⊢n Γ⇒ ψ,∆.



Depth-preserving weakening, contraction and inversion; Interpolation

⊢n S : S has a derivation of depth at most n. (Depth: the maximum length of branches in the
derivation tree).

Weakening and contraction lemma

If ⊢n Γ⇒∆ then ⊢n Γ, ϕ⇒∆

If ⊢n Γ⇒∆ then ⊢n Γ⇒ ϕ,∆

If ⊢n Γ, ϕ, ϕ⇒∆ then ⊢n Γ, ϕ⇒∆

If ⊢n Γ⇒ α,α,∆ then ⊢n Γ⇒ α,∆

Right contraction is not sound with respect to all formulas since, e.g., (p /// ¬p) ∨ (p /// ¬p) * p /// ¬p.

Inversion lemma
All rules except R /// are depth-preserving invertible.

E.g., (inverted R∧) ⊢n Γ⇒ ϕ ∧ ψ,∆ implies
⊢n Γ⇒ ϕ,∆ and ⊢n Γ⇒ ψ,∆.



Interpolation

We write P+(ϕ)/P−(ϕ) for the set of propositional variables occurring positively/negatively in ϕ, and
we let P i(Γ) ∶= ⋃ϕ∈Γ P i(ϕ), for i ∈ {+,−}.

Let Γ1; Γ2 be a partition of Γ and ∆1;∆2 be a partition of ∆. I is a sequent interpolant of
Γ1; Γ2 ⇒∆1;∆2 if there are cutfree derivations of Γ1 ⇒ I ,∆1 and Γ2, I ⇒∆2, and
P(ϕ)i ⊆ (P i(Γ1) ∪ P j(∆1)) ∩ (P j(Γ2) ∪ P i(∆2)), for i ∈ {+,−} and j ∈ {+,−} ∖ {i}.

Maehara’s interpolation for G3cp

Given a cutfree G3cp-derivation of Ξ⇒ Λ, and a pair of partitions Ξ1; Ξ2,Λ1; Λ2 for Ξ⇒ Λ, there is an
effective procedure for constructing a sequent interpolant I of Ξ1; Ξ2 ⇒ Λ1; 2.

The procedure for GT extends that for G3cp.

Maehara’s interpolation for GT

Given a cutfree GT -derivation of Γ⇒∆, and a pair of partitions Γ1; Γ2,Λ1;∆2 for Γ⇒∆ (where Λ1 is
classical), there is an effective procedure for constructing a sequent interpolant I of Γ1; Γ2 ⇒ Λ1;∆2,
and if ∆2 is classical, then I is classical.
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Normal form for cutfree derivations

A resolution Ξ for a multiset Γ (Ξ ∈ R(Γ)) is a multiset consisting of one resolution for each formula in
Γ.

Theorem (Derivation normal form)

There is an effective procedure transforming any derivation witnessing ⊢GT− Γ⇒∆ into a derivation
witnessing

⊢G3cp− ⩕
Ξ∈R(Γ)

(Ξ⇒ f [Ξ]) ⊢R /// ⩕
Ξ∈R(Γ)

(Ξ⇒∆) ⊢L /// Γ⇒∆,

where f ∶ R(Γ) → R(∆). We say that a derivation of Γ⇒∆ of the form above is in normal form.



Cut elimination procedure

Given a cut
D1

Γ⇒ ϕ,∆

D2

Π, ϕ⇒ Σ
Cut

Π,Γ⇒∆,Σ

where D1 and D2 are cutfree,

1. Apply the normal form theorem to D1 and D2 to obtain cutfree derivations in G3cp involving the
resolutions of Γ; ϕ,∆; Π, ϕ; and Σ.

2. Apply cut on the resolutions of ϕ to get derivations in G3cp whose endsequents involve only
resolutions of Γ; ∆; Π; and Σ.

3, Apply cut elimination for the classical subsystem, we get cutfree derivations of these endsequents.

4. Combine these derivations using the deep-inference rules to get a cutfree derivation of Γ⇒∆.
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Going deeper: a Calculus of Structures-system for PL(///)
System SKS [Br6] for PL:

η{⊺}
i ↓

η[α,α]
η(ϕ,ϕ)

i ↑
η{�}

η([ϕ,ψ], χ)
s

η[(ϕ,χ), ψ]

η{�}
w ↓

η{ϕ}
η{ϕ}

w ↑
η{⊺}

η[α,α]
c ↓

η{α}
η{ϕ}

c ↑
η(ϕ,ϕ)

[⋅]-structures are disjunctions ∨ and (⋅)-structures are conjunctions ∧.

We can extend this with /// -structures J⋅K and associated rules to get a system for PL(///):

ηJϕ,ϕK
c ↓ ///

η{ϕ}
η(Jϕ,ψK, χ)

s ///
ηJ(ϕ,χ), ψK

η[ϕ, Jψ,χK]
Dstr

ηJ[ϕ,ψ], [ϕ,χ]K
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Conclusion

The system GT extends G3cp in a minimal way to allow for a cutfree complete system for PL(///).

Many proof-theoretic properties of GT and results concerning the calculus follow as natural extensions
or corollaries of the corresponding proerties/results for G3cp.

Further work:

- A similar system for inquisitive logic

- Change the base logic from classical to intuitionistic

- Extend GT with rules for modalities/quantifiers

- Investigate whether this approach works for other team logics; in particular those with different
closure properties
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