Team Logics with Function Atoms A Unified Approach

Marius Tritschler

TU Darmstadt

TbiLLC 2025

Basic team semantics

Relational signature σ . Basic syntax of FO in NNF:

$$\psi ::= \alpha \mid (\psi \land \psi) \mid (\psi \lor \psi) \mid \exists x \psi \mid \forall x \psi$$

Semantics: teams are sets of assignments.

Basic team semantics

Relational signature σ . Basic syntax of FO in NNF:

$$\psi ::= \alpha \mid (\psi \land \psi) \mid (\psi \lor \psi) \mid \exists x \psi \mid \forall x \psi$$

Semantics: teams are **sets of assignments**.

For
$$FO_{\sigma}$$
-literals α : $\mathfrak{A}, T \models \alpha \iff f.a. t \in T: \mathfrak{A}, t \models \alpha$

$$\mathfrak{A}, T \models \alpha$$

fa
$$t \in \mathcal{T}$$

$$t \in T$$
: $\mathfrak{A}, t \models$

$$T = egin{array}{|c|c|c|c|} \hline x & y \\ \hline t_1 & \blacksquare & \bullet \\ \hline t_2 & \blacksquare & \vartriangle \\ \hline t_3 & \blacksquare & \bullet \\ \hline t_4 & \blacktriangle & \blacktriangle \\ \hline \end{array}$$

$$T \models \operatorname{red}(x)$$

Basic team semantics

Relational signature σ . Basic syntax of FO in NNF:

$$\psi ::= \alpha \mid (\psi \wedge \psi) \mid (\psi \vee \psi) \mid \exists x \psi \mid \forall x \psi$$

Semantics: teams are **sets** of assignments.

$$\mathfrak{A}, T \models \varphi_1 \vee \varphi_2 \quad \Leftarrow$$

Disjunction:
$$\mathfrak{A}, T \models \varphi_1 \vee \varphi_2 \iff \text{ex. } T_1 \cup T_2 = T \text{ s.t. } \mathfrak{A}, T_i \models \varphi_i$$

$$T \models \mathsf{square}(x) \lor \mathsf{blue}(y)$$

Basic team semantics

Relational signature σ . Basic syntax of FO in NNF:

$$\psi ::= \alpha \mid (\psi \land \psi) \mid (\psi \lor \psi) \mid \exists x \psi \mid \forall x \psi$$

Semantics: teams are **sets** of assignments.

∃-quantification:

$$\mathfrak{A}, T \models \exists x \varphi$$

 $\mathfrak{A}, T \models \exists x \varphi \iff \text{ex. set of extension(s)} T' \text{ s.t. } \mathfrak{A}, T' \models \varphi$

$$\begin{array}{c|cccc} & & & & & & \\ \hline t_1' & & & & & & \\ \hline t_2' & & & & & & \\ \hline t_2'' & & & & & & \\ \hline t_3' & & & & & & \\ \hline t_4' & & & & & & \\ \hline \end{array}$$

$$T \models \exists z (\mathsf{green}(z))$$

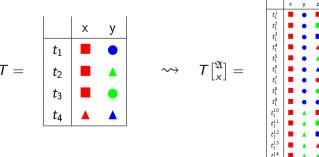
Basic team semantics

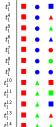
Relational signature σ . Basic syntax of FO in NNF:

$$\psi ::= \alpha \mid (\psi \land \psi) \mid (\psi \lor \psi) \mid \exists x \psi \mid \forall x \psi$$

Semantics: teams are **sets of assignments**.

 \forall -quantification: $\mathfrak{A}, T \models \forall x \varphi \iff \mathfrak{A}, T \begin{bmatrix} \mathfrak{A} \\ \mathbf{x} \end{bmatrix} \models \varphi \text{ (set of all extensions)}$





Basic team semantics

Relational signature σ . Basic syntax of FO in NNF:

$$\psi ::= \alpha \mid (\psi \land \psi) \mid (\psi \lor \psi) \mid \exists x \psi \mid \forall x \psi$$

Semantics: teams are **sets of assignments**.

Flatness

For all $\varphi \in \mathsf{FO}_\sigma$, σ -structures $\mathfrak A$ and teams T of $\mathfrak A$:

$$\mathfrak{A}, T \models \varphi \iff \mathsf{f.a.}\ t \in T : \mathfrak{A}, t \models \varphi$$

Team semantics

Team atoms

Add atoms representing team concepts:

Dependence:
$$\mathfrak{A}, T \models \mathsf{dep}(\overline{x}; \overline{y})$$
 iff f.a. $t, t' \in T$: $t(\overline{x}) = t'(\overline{x}) \Rightarrow t(\overline{y}) = t'(\overline{y})$.

Independence:
$$\mathfrak{A}, T \models (\overline{x} \perp_{\overline{z}} \overline{y})$$
 iff f.a. $\overline{a} \in \mathfrak{A}: T_{\overline{z} \mapsto \overline{a}}(\overline{x}, \overline{y}) = T_{\overline{z} \mapsto \overline{a}}(\overline{x}) \times T_{\overline{z} \mapsto \overline{a}}(\overline{y})$ with $T_{\overline{z} \mapsto \overline{a}} = \{t \in T \mid t(\overline{z}) = \overline{a}\}.$

Inclusion:
$$\mathfrak{A}, T \models (\overline{x} \subseteq \overline{y})$$
 iff $T(\overline{x}) \subseteq T(\overline{y})$.

Exclusion:
$$\mathfrak{A}, T \models (\overline{x}|\overline{y})$$
 iff $T(\overline{x}) \cap T(\overline{y}) = \emptyset$.

Corresponding team properties:

• FO(dep) is **downward closed**:
$$\mathfrak{A}, T \models \varphi$$
 and $T' \subseteq T \implies \mathfrak{A}, T' \models \varphi$

• FO(inc) is *union closed*:
$$\mathfrak{A}$$
, $T_1 \models \varphi$ and \mathfrak{A} , $T_2 \models \varphi \implies \mathfrak{A}$, $T_1 \cup T_2 \models \varphi$

ullet Empty team property ${\mathfrak A},\emptyset \models \varphi$

Typical classification results

Existential second-order logic (ESO): FO with ∃-quant. over relations and functions

Typical classification results

Existential second-order logic (ESO):

FO with ∃-quant. over relations and functions

All prominent team logics are fragments of ESO.

Goal: find team logic L that corresponds to a property P:

A typical classification result

For all $\varphi(R) \in \mathsf{ESO}$ with property P there is a $\varphi^\#(\overline{y}) \in L$ (and vice versa) such that

$$\mathfrak{A}\begin{bmatrix} T(\overline{y}) \\ R \end{bmatrix} \models \varphi \qquad \iff \qquad \mathfrak{A}, T \models \varphi^{\#}$$

for all structures $\mathfrak A$ and teams T.

Team logics

Expressiveness and hierarchy

Established classification results:

Downward closure (Väänänen 2007, Kontinen, Väänänen 2009)

 $FO(dep) \equiv downward closed ESO.$

 $\mathsf{FO}(\mathsf{dep}) \equiv \mathsf{ESO}$ on sentences.

Full ESO (Galliani 2011)

 $FO(indep) \equiv ESO.$

Union closure (Hoelzel, Wilke 2021)

 $FO(\cup - game) \equiv union closed ESO.$

Main ingredients I: skolemisation

How to translate ESO-formulae into team logics?

Main ingredients I: skolemisation

How to translate ESO-formulae into team logics?

Skolemisation (as applied in Väänänen, 2007)

For every formula $\varphi \in \mathsf{ESO}$ there is a $\varphi^{\mathsf{s}} \equiv \varphi$ of the form

$$\varphi^{s} = \exists f_1 \dots f_n \forall \overline{x}_1 \dots \overline{x}_n \psi$$

where $\psi \in FO(f_1, \ldots, f_n)$ such that f_i only appears in the form $f_i(\overline{x}_i)$ and all $\overline{x}_i, \overline{x}_j$ are pairwise disjoint.

How does this help with the translation?

- FO kernel is unproblematic due to flatness
- SO features are confined to functions

Main ingredients I: skolemisation

How to translate ESO-formulae into team logics?

Skolemisation (as applied in Väänänen, 2007)

For every formula $\varphi \in \mathsf{ESO}$ there is a $\varphi^s \equiv \varphi$ of the form

$$\varphi^{s} = \exists f_{1} \dots f_{n} \forall \overline{x}_{1} \dots \overline{x}_{n} \psi$$

where $\psi \in FO(f_1, \ldots, f_n)$ such that f_i only appears in the form $f_i(\overline{x}_i)$ and all $\overline{x}_i, \overline{x}_j$ are pairwise disjoint.

How does this help with the translation?

- FO kernel is unproblematic due to flatness
- SO features are confined to (neat) functions

Main ingredients II: simulating functions

Simulate functions with teams:

Swapping between functions and teams

Let $\psi \in \mathsf{FO}(f_1,\ldots,f_n)$ such that f_i only appears in the form $f_i(\overline{x}_i)$ and all $\overline{x}_i,\overline{x}_j$ are pairwise disjoint. Construct ψ^* from ψ by replacing all instances of $f_i(\overline{x}_i)$ by fresh variables z_i . Then the following are equivalent:

$$\mathfrak{A}\left[\begin{smallmatrix}f_1^{\mathfrak{A}}\\f_1\end{smallmatrix}\right]\cdots\left[\begin{smallmatrix}f_n^{\mathfrak{A}}\\f_n\end{smallmatrix}\right]\models\forall\overline{x}_1\ldots\overline{x}_n\psi.$$

$$\mathfrak{A}, \mathfrak{f}_1^{\mathfrak{A}} \times \ldots \times \mathfrak{f}_n^{\mathfrak{A}} \models \psi^*(\overline{x}_1, z_1, \ldots, \overline{x}_n, z_n).$$

 $f_1^{\mathfrak{A}} \times \ldots \times f_n^{\mathfrak{A}}$ is the product of graphs of $f_1^{\mathfrak{A}}, \ldots, f_n^{\mathfrak{A}}$

Main ingredients II: simulating functions

Simulate functions with teams:

Swapping between functions and teams

Let $\psi \in \mathsf{FO}(f_1,\ldots,f_n)$ such that f_i only appears in the form $f_i(\overline{x}_i)$ and all $\overline{x}_i,\overline{x}_j$ are pairwise disjoint. Construct ψ^* from ψ by replacing all instances of $f_i(\overline{x}_i)$ by fresh variables z_i . Then the following are equivalent:

- $\mathfrak{A}\begin{bmatrix} f_1^{\mathfrak{A}} \\ f_1 \end{bmatrix} \cdots \begin{bmatrix} f_n^{\mathfrak{A}} \\ f_n \end{bmatrix} \models \forall \overline{x}_1 \dots \overline{x}_n \psi.$
- $\mathfrak{A}, \mathfrak{f}_1^{\mathfrak{A}} \times \ldots \times \mathfrak{f}_n^{\mathfrak{A}} \models \psi^*(\overline{x}_1, z_1, \ldots, \overline{x}_n, z_n).$

 $\mathfrak{f}_1^{\mathfrak{A}} \times \ldots \times \mathfrak{f}_n^{\mathfrak{A}}$ is the product of graphs of $f_1^{\mathfrak{A}}, \ldots, f_n^{\mathfrak{A}}$

We have $\mathfrak{A} \models \exists f_1 \dots f_n \forall \overline{x}_1 \dots \overline{x}_n \psi \Longrightarrow \mathfrak{A} \models \forall \overline{x}_1 \dots \overline{x}_n \exists z_1 \dots z_n \psi^*$

Function atoms

Dependence atoms are downward closed function atoms:

$$\mathfrak{A},\,T \models \bigwedge_{i=1}^n \mathsf{dep}(\overline{x}_i;z_i) \iff \mathsf{ex.}\,\,f_1^{\mathfrak{A}}\dots f_n^{\mathfrak{A}}\,\,\mathsf{s.t.}\,\,T(\overline{x}_1z_1,\dots,\overline{x}_nz_n) \subseteq \mathfrak{f}_1^{\mathfrak{A}}\times \dots \times \mathfrak{f}_n^{\mathfrak{A}}.$$

Function atoms

Dependence atoms are downward closed *function atoms*:

$$\mathfrak{A}, T \models \bigwedge_{i=1}^n \operatorname{dep}(\overline{x}_i; z_i) \iff \operatorname{ex.} f_1^{\mathfrak{A}} \dots f_n^{\mathfrak{A}} \operatorname{s.t.} T(\overline{x}_1 z_1, \dots, \overline{x}_n z_n) \subseteq f_1^{\mathfrak{A}} \times \dots \times f_n^{\mathfrak{A}}.$$

Introducing function atoms for other properties:

Upward closure: lax function atom

$$\mathfrak{A}, T \models \mathrm{F}(\overline{x}_1, z_1 | \dots | \overline{x}_n, z_n) \iff \mathrm{ex.} \ f_1^{\mathfrak{A}} \dots f_n^{\mathfrak{A}} \mathrm{s.t.}$$

$$f_1^{\mathfrak{A}} \times \dots \times f_n^{\mathfrak{A}} \subseteq T(\overline{x}_1 z_1, \dots, \overline{x}_n z_n).$$

Union closure: strict function atom

$$\mathfrak{A}, T \models \mathbb{F}(\overline{x}_1, z_1 | \dots | \overline{x}_n, z_n) \iff \operatorname{ex.} (f_{i,1}^{\mathfrak{A}} \dots f_{i,n}^{\mathfrak{A}})_{i \in I} \text{ s.t.}$$

$$T(\overline{x}_1 z_1, \dots, \overline{x}_n z_n) = \bigcup_{i \in I} \mathfrak{f}_{i,1}^{\mathfrak{A}} \times \dots \times \mathfrak{f}_{i,n}^{\mathfrak{A}}.$$

Logics with function atoms

Let
$$\gamma_P := \begin{cases} \bigwedge_{i=1}^n \operatorname{dep}(\overline{x}_i; z_i) & P = \text{``downward-closure''} \\ F(\overline{x}_1, z_1 | \dots | \overline{x}_n, z_n) & P = \text{``upwards-closure''} \\ \mathbb{F}(\overline{x}_1, z_1 | \dots | \overline{x}_n, z_n) & P = \text{``union-closure''} \end{cases}$$

$$\mathfrak{A}, T \models \gamma_P \text{ if and only if } T \text{ is } \text{function-like } \text{relative to } P.$$

Logics with function atoms

$$\mathsf{Let} \ \, \frac{\gamma_P}{} \coloneqq \begin{cases} \bigwedge_{i=1}^n \mathsf{dep}(\overline{x}_i; z_i) & P = \text{``downward-closure''} \\ F(\overline{x}_1, z_1 | \dots | \overline{x}_n, z_n) & P = \text{``upwards-closure''} \end{cases} . \\ \mathbb{F}(\overline{x}_1, z_1 | \dots | \overline{x}_n, z_n) & P = \text{``union-closure''} \end{cases} .$$

 $\mathfrak{A}, T \models \gamma_P$ if and only if T is **function-like** relative to P.

Classifications for sentences

For sentences, ESO $\equiv \mathsf{FO}(\mathsf{dep}) \equiv \mathsf{FO}(F) \equiv \mathsf{FO}(\mathbb{F})$ via

$$\mathfrak{A} \models \exists f_1 \dots f_n \forall \overline{x}_1 \dots \overline{x}_n \psi \quad \iff \quad \mathfrak{A} \models \forall \overline{x}_1 \dots \overline{x}_n \exists z_1 \dots z_n (\gamma_P \wedge \psi^*).$$

Logics with function atoms

$$\mathsf{Let} \ \gamma_{P} \coloneqq \begin{cases} \bigwedge_{i=1}^{n} \mathsf{dep}(\overline{x}_{i}; z_{i}) & P = \text{``downward-closure''} \\ F(\overline{x}_{1}, z_{1} | \ldots | \overline{x}_{n}, z_{n}) & P = \text{``upwards-closure''} \end{cases} .$$

$$\mathbb{F}(\overline{x}_{1}, z_{1} | \ldots | \overline{x}_{n}, z_{n}) & P = \text{``union-closure''} \end{cases}$$

 $\mathfrak{A}, T \models \gamma_P$ if and only if T is **function-like** relative to P.

Classifications for sentences

For sentences, ESO $\equiv \mathsf{FO}(\mathsf{dep}) \equiv \mathsf{FO}(F) \equiv \mathsf{FO}(\mathbb{F})$ via

$$\mathfrak{A} \models \exists f_1 \dots f_n \forall \overline{x}_1 \dots \overline{x}_n \psi \quad \iff \quad \mathfrak{A} \models \forall \overline{x}_1 \dots \overline{x}_n \exists z_1 \dots z_n (\underline{\gamma_P} \wedge \psi^*).$$

Recall general classification: $\mathfrak{A} \begin{bmatrix} T(\overline{y}) \\ R \end{bmatrix} \models \varphi \iff \mathfrak{A}, T \models \varphi^{\#}$

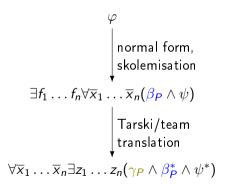
How to get rid of R?

Dealing with team predicate R

Normal forms & auxiliary formulae

Use *normal forms* corresponding to property $P \Leftrightarrow Confines R$ to *auxiliary* β_P :

- Downward closed: $\mathfrak{A} \models \exists X (\forall \overline{w} (R\overline{w} \to X\overline{w}) \land \psi(X))$
- Upward closed: $\mathfrak{A} \models \exists X (\forall \overline{w}(X\overline{w} \to R\overline{w}) \land \psi(X))$
- Union closed: f.a. $\overline{a} \in R^{\mathfrak{A}}$, $\mathfrak{A}, \overline{a} \models \exists X (\forall \overline{w}(X\overline{w} \to R\overline{w}) \land \psi(X))$

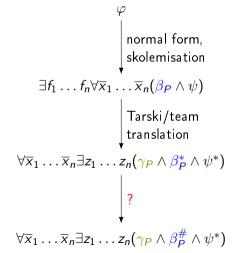


Dealing with team predicate R

Normal forms & auxiliary formulae

Use **normal forms** corresponding to property $P \rightsquigarrow Confines R$ to **auxiliary** β_P :

- Downward closed: $\mathfrak{A} \models \exists X (\forall \overline{w} (R\overline{w} \to X\overline{w}) \land \psi(X))$
- Upward closed: $\mathfrak{A} \models \exists X (\forall \overline{w}(X\overline{w} \to R\overline{w}) \land \psi(X))$
- Union closed: f.a. $\overline{a} \in R^{\mathfrak{A}}$, $\mathfrak{A}, \overline{a} \models \exists X (\forall \overline{w}(X\overline{w} \to R\overline{w}) \land \psi(X))$



Classification results

Classifications for sentences

For sentences, ESO \equiv FO(F) \equiv FO(F).

Union closure

Every union closed $\varphi(R) \in \mathsf{ESO}$ is equivalent to a formula in $\mathsf{FO}(\mathbb{F})$, and vice versa.

Upward closure

Every upward closed $\varphi(R) \in \mathsf{ESO}$ is equivalent to a formula in $\mathsf{FO}(F)$.*

(*Note that FO is not upward closed)

Convexity

Convexity

 $\varphi(R)\in\mathsf{ESO}$ is convex if for all structures $\mathfrak A$ and $R^\mathfrak A_I\subseteq R^\mathfrak A\subseteq R^\mathfrak A_I$,

$$\mathfrak{A}{\left[\begin{smallmatrix}R^{\mathfrak{A}}\\R\end{smallmatrix}\right]} \models \varphi \text{ and } \mathfrak{A}{\left[\begin{smallmatrix}R^{\mathfrak{A}}\\u\end{smallmatrix}\right]} \models \varphi \quad \Longrightarrow \quad \mathfrak{A}{\left[\begin{smallmatrix}R^{\mathfrak{A}}\\R\end{smallmatrix}\right]} \models \varphi.$$

Quasi-convexity

Quasi-convexity

 $\varphi(R) \in \mathsf{ESO}$ is quasi-convex if for all structures $\mathfrak A$ and $\emptyset \neq R^{\mathfrak A}_I \subseteq R^{\mathfrak A} \subseteq R^{\mathfrak A}_I$,

$$\mathfrak{A}ig[^{R^{\mathfrak{A}}}_Rig]\modelsarphi$$
 and $\mathfrak{A}ig[^{R^{\mathfrak{A}}}_Rig]\modelsarphi$ \implies $\mathfrak{A}ig[^{R^{\mathfrak{A}}}_Rig]\modelsarphi$.

Quasi-convexity

Quasi-convexity

 $\varphi(R)\in\mathsf{ESO}$ is quasi-convex if for all structures $\mathfrak A$ and $\emptyset
eq R^{\mathfrak A}_I\subseteq R^{\mathfrak A}\subseteq R^{\mathfrak A}_I$

$$\mathfrak{A} \begin{bmatrix} R_{p}^{\mathfrak{A}} \\ R \end{bmatrix} \models \varphi \text{ and } \mathfrak{A} \begin{bmatrix} R_{p}^{\mathfrak{A}} \\ R \end{bmatrix} \models \varphi \quad \Longrightarrow \quad \mathfrak{A} \begin{bmatrix} R^{\mathfrak{A}} \\ R \end{bmatrix} \models \varphi.$$

Refines downward and upward closure:

- Upward and downward closed formulae are quasi-convex
- F.a. quasi-convex φ , ex. \uparrow/\downarrow closed $\varphi^\uparrow, \varphi^\downarrow \in \mathsf{ESO}$ s.t. $\varphi \equiv \varphi^\uparrow \wedge \varphi^\downarrow$.

Convex FO

- FO is quasi-convex
- dep and F atoms are quasi-convex
- FO(dep, F) is not!

Neither \vee nor \exists preserve quasi-convexity

Convex FO

- FO is quasi-convex
- dep and F atoms are quasi-convex
- FO(dep, F) is not!

Neither \vee nor \exists preserve quasi-convexity

Convex FO

$$T \models \varphi_1 \, \forall \, \varphi_2 \\ T \models \exists x \varphi$$
 iff ex. $\emptyset \neq T_I \subseteq T \subseteq T_u \text{ s.t. } \begin{cases} T_I, T_u \models \varphi_1 \vee \varphi_2 \\ T_I, T_u \models \exists x \varphi \end{cases}$.

 $cvx(\varphi)$ is constructed from φ by replacing \vee/\exists with \forall/\exists .

$$\mathsf{FO}^\mathsf{cvx} \coloneqq \{\mathsf{cvx}(\varphi) \mid \varphi \in \mathsf{FO}\}.$$

Convex FO

Sanity check: $\varphi \equiv \text{cvx}(\varphi)$ for all $\varphi \in \text{FO}$

 \exists and \forall preserve quasi-convexity \rightsquigarrow FO^{cvx}(dep, F) is quasi-convex

Combine translations for upward and downward closed ESO-formulae:

Quasi-convexity

Every quasi-convex $\varphi(R) \in \mathsf{ESO}$ is equivalent to a formula in $\mathsf{FO}^\mathsf{cvx}(\mathsf{dep}, F)$.

$$\varphi(R) \equiv \begin{pmatrix} \forall \overline{x}^Z \overline{x}_1 \dots \overline{x}_n \exists z_1^Z z_2^Z z_1 \dots z_n \begin{pmatrix} \operatorname{dep}(\overline{x}^Z; z_1^Z) \wedge \operatorname{dep}(; z_2^Z) \\ \wedge \operatorname{dep}(\overline{x}_1; z_1) \wedge \dots \wedge \operatorname{dep}(\overline{x}_n; z_n) \\ \wedge (\overline{y} = \overline{x}^Z \to z_1^Z = z_2^Z) \wedge (\varphi(X))^* \end{pmatrix} \\ \wedge \overset{\subseteq}{=} \overline{x}^Y z_1^Y z_2^Y \forall \overline{x}_1 \dots \overline{x}_n \overset{\subseteq}{=} z_1 \dots z_n \overline{z}^{\exists} \begin{pmatrix} F(\overline{x}^Y, z_1^Y; \underline{z}_1, z_1^Y; \underline{z}_1, z_1^Y; \underline{z}_1, z_1^Y; \underline{z}_1, z_1^Y; \underline{z}_1^Z; \underline{z}_1^Z;$$

Summary

- There is a unified approach to the classification of ESO-fragments via team logics with function atoms.
- Quasi-convexity is a refinement of upward and downward closure, and there is a conservative convexification FO^{cvx} of FO.
- ullet The function atoms F and F can be used in a characterisation of the quasi-convex fragment and a novel characterisation of the union closed fragment, respectively.