Downward Closed Guarded Team Logics

Marius Tritschler

TU Darmstadt

TbiLLC 2025

Recap: team logics

Teams are sets of assignments (think: databases).

FO with team semantics is *flat*. Expressiveness increases with the addition of *team* atoms for dependence (dep), inclusion (inc), exclusion (exc), ...

Downward closure: $\mathfrak{A}, T \models \varphi$ and $T' \subseteq T \implies \mathfrak{A}, T' \models \varphi$

Team logics L correspond to (fragments of) existential second order logic ESO: for all $\varphi(\overline{y}) \in L$, there is a $\varphi'(R) \in \text{ESO}$ s.t.

$$\mathfrak{A}, T \models \varphi \iff \mathfrak{A} \begin{bmatrix} T(\overline{y}) \\ R \end{bmatrix} \models \varphi'.$$

Hybrid team logic

Hierarchy of expressiveness

Expressiveness and tractability

Often, logics are studied with respect to

Expressiveness

E.g.

- Specification of structural properties (separation)
- Axiomatisability of structure classes (definability)

Expressiveness and tractability

Often, logics are studied with respect to

Expressiveness

&

Tractability

E.g.

- Specification of structural properties (separation)
- Axiomatisability of structure classes (definability)

E.g.

- Algorithmic model checking (satisfaction)
- Decidability (satisfiability)

The guarded fragment of FO

Generalization of modal logic.

	<i>Modal logic</i> ML	Guarded fragment GF	
	Wiodai logic WL	(Andréka, van Benthem, Németi 98)	
Structures:	Kripke structures	relational structures	
Structures:	(unary "colours" + binary edges)	(arbitrary hyperedges)	
Quantification:	along edges	guarded by relations	
	finite and tree model properties		
Properties:	decida bility		
	bisimulation invariance		

Guarded semantics

Defining feature: assignments are restricted (\models_g)

 \rightsquigarrow have to be "guarded", i.e. lie within a relation.

Guarded semantics

Defining feature: assignments are restricted (\models_g)

$$U^{\mathfrak{A}} = \{1, 2, 3, 4, 5, 6\}$$

$$R^{\mathfrak{A}} = \{1,3\}, \quad B^{\mathfrak{A}} = \{2,4,6\}, \quad G^{\mathfrak{A}} = \{5\}$$

$$E_1^{\mathfrak{A}} = \{21, 13, 43, 53, 54, 56\}, \quad E_2^{\mathfrak{A}} = \{345\}$$

Guarded semantics

Defining feature: assignments are restricted (\models_g)

Guarded semantics

Defining feature: assignments are restricted (\models_g)

Guarded semantics

Defining feature: assignments are restricted (\models_g)

$$\models_{g} \exists xyz(x \neq y \land y \neq z \land x \neq z)$$

$$\not\models_{\mathsf{g}} \exists xy(x \neq y \land Bx \land By)$$

$$2 \not\models_{g} \exists y (y \neq x \land Gy)$$

$$2 \models_{g} \neg Gx \land \exists y(Gy)$$

Guarded semantics

Defining feature: assignments are restricted (\models_g)

$$\models_{g} \exists xyz(x \neq y \land y \neq z \land x \neq z)$$

$$\not\models_{g} \exists xy(x \neq y \land Bx \land By)$$

$$2 \not\models_{g} \exists y (y \neq x \land Gy)$$

$$2 \models_{g} \neg Gx \land \exists y(Gy)$$

Guarded team logics

Goal: lift concept (and properties!) of guarded logics to the team setting.

Each assignment is guarded individually.

Can extend *basic guarded team logic* GTL with team atoms to get guarded inclusion, exclusion, dependence logics GTL(inc), GTL(exc), GTL(dep) etc.

Guarded team logics

Goal: lift concept (and properties!) of guarded logics to the team setting.

Each assignment is guarded individually.

Can extend *basic guarded team logic* GTL with team atoms to get guarded inclusion, exclusion, dependence logics GTL(inc), GTL(exc), GTL(dep) etc.

Guarded existential second order logic GESO has guarded SO-variables SO-quantification does not change guards

Team logics in ESO-terms

Recall that all team logics are fragments of ESO

Prenexed GESO (pre-GESO): formulae of the form $\exists X_1 \dots \exists X_n \psi$ with $\psi \in \mathsf{GF}$

Guarded team formulae in pre-GESO

For all $\varphi(\overline{y}) \in \mathsf{GTL}(\mathsf{inc},\mathsf{exc})$, there is a $\varphi^\#(R) \in \mathsf{pre}\text{-}\mathsf{GESO}$ such that

$$\mathfrak{A}\begin{bmatrix} T(\overline{y}) \\ R \end{bmatrix} \models_{\mathcal{G}} \varphi^{\#} \qquad \iff \qquad \mathfrak{A}, T \models_{\mathcal{G}} \varphi$$

for all structures $\mathfrak A$ and teams T.

Proof

View Teams as sets of tuples, i.e. *relations*.

Every clause in the evaluation of a formula can be encoded with a GF-sentence.

Literals	$\mathfrak{A}, T \models \alpha$	$\forall \overline{x} (R\overline{x} \to \alpha(\overline{x}))$	
Exclusion atoms	$\mathfrak{A}, T \models (\overline{x} \overline{y})$	$\forall \overline{x} \overline{y} (R \overline{x} \overline{y} o \forall \overline{x}' (\neg R \overline{x}' \overline{x}))$	
	(ψ_1, T_1)		
	$(\psi_1 ee \psi_2, T)$ $T = T_1 \cup T_2$		
Disjunction	(ψ_2, \mathcal{T}_2)	$\forall \overline{x} (R\overline{x} \leftrightarrow (R_1\overline{x} \vee R_2\overline{x}))$	
Ex. quantification	$(\exists x \psi, T) \longrightarrow (\psi, T')$	$\forall \overline{x} (R\overline{x} \leftrightarrow \exists \overline{y} (R'\overline{x}\overline{y}))$	

Proof

by example

Let
$$\varphi = Exy \vee \exists z(xy|yz)$$
.

$$\mathfrak{A}, T \models_{\mathcal{G}} \varphi$$
 $(T_2, \exists z(xy|yz)) \longrightarrow (T_3, (xy|yz))$ "Verification" (T_1, Exy)

$$\mathfrak{A}\begin{bmatrix} T(xy) \\ R \end{bmatrix} \models_{g} \exists R_{1}R_{2}R_{3} \begin{pmatrix} \forall xy(Rxy \leftrightarrow (R_{1}xy \lor R_{2}xy)) \\ \land \forall xy(R_{2}xy \leftrightarrow \exists z(R_{3}xyz)) \\ \land \forall xyz(R_{3}xyz \rightarrow \forall x'(\neg R_{3}x'xy)) \\ \land \forall xy(R_{1}\overline{x} \rightarrow Exy) \end{pmatrix}.$$

Immediate consequences

SAT of GTL(inc, exc) reduces to SAT of GF

GTL(inc, exc) has finite model property, tree model property, decidability

GTL(dep) and GESO have "infinity axioms" \rightsquigarrow GTL(dep) $\not\equiv$ GTL(exc) and GESO $\not\equiv$ pre-GESO

Immediate consequences

SAT of GTL(inc, exc) reduces to SAT of GF

¬¬ GTL(inc, exc) has finite model property, tree model property, decidability

GTL(dep) and GESO have "infinity axioms" \rightsquigarrow GTL(dep) $\not\equiv$ GTL(exc) and GESO $\not\equiv$ pre-GESO

Questions:

- Guarded notions of dependence?
- GTL(exc)
 ≡ pre-GESO on sentences?

Guarded dependence (Gdep)

Introducing *guarded dependence* Gdep Detects violations of dependence only if they are guarded.

Team over <i>xy</i>	dep(x; y)	Gdep(x; y)
$\left\{\begin{array}{c} 34 \\ 34 \end{array}\right\}$./	.(
34 ∫	•	V
∫ 35 \		~
{ 34 }	×	×
31		
34	×	V

Guarded dependence (Gdep)

Introducing guarded dependence Gdep Detects violations of dependence only if they are guarded.

Team Logics

Team over <i>xy</i>	dep(x; y)	Gdep(x; y)
<u></u>	./	./
{ 34 }	•	•
∫ 35 \	×	V
34	^	×
31		(
34	×	~

Theorem

 $GTL(Gdep) \equiv GTL(exc)$ and $GTL(Gdep) \subseteq GTL(dep)$.

$\mathsf{GTL}(\mathsf{exc}) \not\equiv \mathsf{pre}\mathsf{-}\mathsf{GESO}$

Subsentence decomposition

Guarded logics are restricted by locality.

- Quantification corresponds to moves in the structure.
- Moves only retain information (i.e. partial assignments) if they are local.
- Subsentences correspond to global moves.
- A formula is local if there are no subsentences.

$\mathsf{GTL}(\mathsf{exc}) \not\equiv \mathsf{pre}\text{-}\mathsf{GESO}$

Subsentence decomposition

Guarded logics are restricted by locality.

- Quantification corresponds to moves in the structure.
- Moves only retain information (i.e. partial assignments) if they are local.
- Subsentences correspond to global moves.
- A formula is local if there are no subsentences.

Theorem

Every $\varphi \in \mathsf{GTL}(\mathsf{exc},\mathsf{Gdep},\mathsf{dep})$ is equivalent to a positive boolean combination of local formulae and sentences.

$$\mathsf{GTL}(\mathsf{exc}) \not\equiv \mathsf{pre}\text{-}\mathsf{GESO}$$

Isolated points

Isolated points: elements without neighbours.

Every guarded assignment containing an isolated point is constant.

In naked sets (empty signature), every point is isolated.

$$\mathsf{GTL}(\mathsf{exc}) \not\equiv \mathsf{pre}\text{-}\mathsf{GESO}$$

Isolated points

Isolated points: elements without neighbours.

Every guarded assignment containing an isolated point is constant.

In naked sets (empty signature), every point is isolated.

Theorem

Over naked sets, every sentence in GTL(inc, dep, Gdep, exc) is either equivalent to \top , \bot or a positive boolean combination of sentences of the form $\forall x \bigvee_{i=1}^{n} dep(;x)$.

$$\mathfrak{A} \models_{g} \forall x \bigvee_{j=1}^{n} \operatorname{dep}(;x) \iff$$
 "There are at most n elements in \mathfrak{A} ".

$$\mathsf{GTL}(\mathsf{exc}) \not\equiv \mathsf{pre}\text{-}\mathsf{GESO}$$

Power of pre-GESO

pre-GESO can overcome locality in some sense:

"Colorings" allow distinguishing of non-local elements, e.g.

$$\exists X (\exists x X x \land \exists y \neg X y)$$

means "there are at least two elements."

Theorem

There are sentences in pre-GESO that cannot be expressed in GTL(exc, Gdep, dep).

Hybrid team logic нть

Introducing **binders** for relational variables X:

$$\mathfrak{A}, T \models \downarrow_{\overline{X}} X \varphi(X) \iff \mathfrak{A} \begin{bmatrix} T(\overline{X}) \\ X \end{bmatrix}, T \models \varphi(X)$$

Hybrid team logic нть

Introducing **binders** for relational variables X:

$$\mathfrak{A}, T \models \downarrow_{\overline{X}} X \varphi(X) \iff \mathfrak{A} \begin{bmatrix} T(\overline{X}) \\ X \end{bmatrix}, T \models \varphi(X)$$

Can express team atoms:

$$(\overline{x} \subseteq \overline{y}) \equiv \downarrow_{\overline{y}} X(X\overline{x}), \qquad (\overline{x}|\overline{y}) \equiv \downarrow_{\overline{y}} X(\neg X\overline{x}).$$

Hybrid team logic нть

Introducing **binders** for relational variables X:

$$\mathfrak{A}, T \models \downarrow_{\overline{X}} X \varphi(X) \iff \mathfrak{A} \begin{bmatrix} T(\overline{X}) \\ X \end{bmatrix}, T \models \varphi(X)$$

Can express team atoms:

$$(\overline{x} \subseteq \overline{y}) \equiv \downarrow_{\overline{y}} X(X\overline{x}), \qquad (\overline{x}|\overline{y}) \equiv \downarrow_{\overline{y}} X(\neg X\overline{x}).$$

HTL⁺/HTL⁻: Bound relations may only appear positively/negatively

<u>Theorem</u>

$$\mathsf{HTL}^+ = \mathsf{FO}(\mathsf{inc}), \qquad \mathsf{HTL}^- = \mathsf{FO}(\mathsf{exc}), \qquad \mathsf{HTL} = \mathsf{FO}(\mathsf{inc},\mathsf{exc})$$

Hybrid vs. atom-based team logics

$GHTL^- \equiv pre-GESO$ for sentences

GHTL: guarded variant of HTL

Theorem

 $\mathsf{GHTL} \subseteq \mathsf{pre}\text{-}\mathsf{GESO}$ and GHTL inherits the nice properties of GF .

Proof: binders inherently encode teams as relations. \rightsquigarrow us the same strategy as for GTL(exc) \subseteq pre-GESO

Theorem

 $GHTL^- \equiv pre-GESO$ for sentences.

Results

Theorem

 $\mathsf{GHTL} \equiv \mathsf{pre}\text{-}\mathsf{GESO}$

Proof.

For all $\varphi \in \text{pre-GESO}$, there is a $\varphi' \in \text{GHTL}^-$ such that

$$\mathfrak{A}\begin{bmatrix} T(\overline{x}) \\ R \end{bmatrix} \models_{\mathcal{G}} \varphi \quad \iff \quad \mathfrak{A}\begin{bmatrix} T(\overline{x}) \\ R \end{bmatrix} \models_{\mathcal{G}} \varphi' \quad \iff \quad \mathfrak{A}, T \models_{\mathcal{G}} \downarrow_{\overline{x}} R(\varphi').$$

Theorem

GHTL⁻ is the downward-closed fragment of pre-GESO.

Proof.

Similar as before, with modifications to φ' so that R occurs only negatively.

Conclusion

- Guarded logics have restricted expressive power, but nice model-theoretic properties. This transfers to guarded team logics like GTL(exc).
- Hybrid logics overcome some of the restrictions while keeping the properties.
- The expressive hierarchy is significantly more varied than in the non-guarded case.

