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Summary

Result:

Linear logic (Lambek calculus) analogue of the Greibach Normal Form
of context-free grammar.

Merit:

Direct translation between logical inference & string generation rules.
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Structure of the talk

1 Motivations

- Complexity of linear logic

- Structure of formal language

2 Sketch of proof

3 Ideas for extension/applications

- Non-Chomsky hierarchy languages

- Exponentials

- Geometric group theory
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Linear logic
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Linear logic [Girard and Lafont, 1987]

Linear logic is a logic with restricted contraction and weakening.

X ,X → A
Contraction

X → A
X → A Weakening

X ,Y → A

Intuitively, linear logic prohibits freely

‘throwing away’ an existing formula

‘introducing’ a new formula

thus more resource conscious.
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Linear logic (intuitionistic multiplicative exponential)

Axiom

Ax
A → A

Structural rules

Γ → A ∆,A,Θ → B
Cut

∆, Γ,Θ → B

Γ,A,B,∆ → C
Exchange

Γ,B,A,∆ → C
Γ, !A, !A,∆ → B

Ctr
Γ, !A,∆ → B

Γ,∆ → B
Weak

Γ, !A,∆ → B

Γ,A,∆ → B
Der

Γ, !A,∆ → B
!Γ → A

Prom
!Γ →!A

Inference rules

Γ → A ∆,B,Θ → C
L⊸

∆, Γ,A ⊸ B,∆ → C

Γ,A,B,∆ → C
L⊗

Γ,A⊗ B,∆ → C
A, Γ → B

R⊸
Γ → A ⊸ B

Γ → A ∆ → B
R⊗

Γ,∆ → A⊗ B
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Computational power of linear logic

Known decidability and complexity results

Full (propositional) linear logic is undecidable. [Lincoln et al., 1992]

Multiplicative-additive linear logic is PSPACE-complete. [Lincoln et al., 1992]

Multiplicative linear logic (MLL) is NP-complete. [Kanovich, 1991]

No complexity difference between full and intuitionistic fragments for the above.
[Lincoln, 1995]1

Open problem:
Decidability/complexity of multiplicative exponential linear logic (MELL) is unknown.

1First-Order Linear logic is also undecidable. [Girard and Lafont, 1987].
First-Order MALL is NEXPTIME-hard. [Lincoln and Scedrov, 1994]
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Research motivation #1

Given that...

(Propositional) Linear logic is undecidable.[Lincoln et al., 1992]

Multiplicative-Additive Linear logic is PSPACE-complete. [Lincoln et al., 1992]

Multiplicative Linear logic (MLL) is NP-complete. [Kanovich, 1991]

What linear logic fragments correspond to lower complexity classes?
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Weaker logics for ‘simpler’ computation?

The Chomsky Hierarchy

Formal Language Automaton
Recursively enumerable Turing machine
Context-sensitive Linear bounded automaton (PSPACE-complete)
Context-free Nondeterministic pushdown automaton
Linear One-turn pushdown automaton
Regular (semi-linear) Finite automaton (deterministic/nondeterministic)

→ non-commutative fragments

in which
Γ,A,B,∆ → C

Exchange
Γ,B,A,∆ → C

does not hold.
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Rules in the Lambek calculus: intuitionistic non-commutative
linear logic

The Lambek calculus L [Lambek, 1958] consists of

Axiom
A → A

Γ,X ,Θ → B; ∆ → X
Cut

Γ,∆,Θ → B

A, Γ → B
(→ \)

Γ → A\B
Γ → A; ∆,B,Θ → C

(\ →)
∆, Γ,A\B,Θ → C

Γ,A → B
(→ /)

Γ → B/A

Γ → A; ∆,B,Θ → C
(/ →)

∆,B/A, Γ,Θ → C

for any A,B,C ∈ Tp, Γ,∆,Θ ∈ Tp∗ (finite sequences of types).

Lambek, 1958 The mathematics of sentence structure.
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Type-logical grammar
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Type-logical grammar

A type-logical grammar G consists of

1 Tp: set of types, recursively generated from primitive types and connectives

2 L: a sequent calculus and Axioms

3 f : Σ → P(Tp): an assignment function, extendable to strings
For w = a1 · · · an, f ∗(w) = {Γ = T1, ...,Tn|Tk ∈ f (ak) for all k ∈ [1, n]} ⊆ Tp∗

4 SG ∈ Tp: a distinguished type

To ‘recognise’ language L ⊆ Σ∗;

w ∈ L iff ∃Γ ∈ f ∗(w) s.t. Γ → SG is derivable in L.

where w is some string and f ∗(w) is the set of sequences of type assigned to w which

includes Γ.
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Lambek calculus / grammar complexity

1958: Lambek calculus [Lambek, 1958]

63: Chomsky conjectures: Lambek grammar = CFG [Chomsky, 1963]

87: Linear logic [Girard and Lafont, 1987]

90: Lambek calculus as fragment of LL [Abrusci, 1990]

93/97: Lambek grammar = CFG, proved [Pentus, 1993, Pentus, 1997]

2006: Lambek calculus is NP-complete [Pentus, 2006]
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Formal language
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Review: formal languages

Let
Σ be a finite set of symbols
Σ∗ the set of all finite-length strings of symbols from Σ
(i.e. the free monoid generated by Σ).

A formal language on Σ is any subset L ⊆ Σ∗.

A formal grammar is an effective procedure for the formal language
membership decision.
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Examples of formal languages

Let Σ = {a, b, c}

{ab∗c}: strings in which an ‘a’ is followed by a finite number of ‘b’s, then by a
‘c’.

{anbn : n ≥ 1}: strings in which n ‘a’s are followed by n ‘b’s.

Let Σ = {(, )}
Dyck language: strings of ‘balanced’ parentheses. e.g. (()(()))
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Formal grammar

A formal grammar G consists of

1 N: non-terminal symbols

2 SG ∈ N: the start symbol

3 Σ: terminal symbols (N ∩ Σ = ∅)
4 P: production rules, to rewrite a non-terminal symbol to some string of

terminal and non-terminal symbols i.e. P ⊆ (Σ ∪ N)+ → (Σ ∪ N)∗

Language L ⊆ Σ∗ is defined by;

w ∈ L iff w is producible from SG

where w is some string.
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Example (regular grammar & nondeterministic finite automaton)

L = (ab ∪ b)∗ba ⊆ {a, b}∗

Grammar
G = (Σ,N,P, SG)

Σ = {a, b}
N = {SG,A,B,C}
P contains;

SG → aA|bB
A → bSG
B → bB|aC |a
C → bSG

Automaton

Figure modified and adapted from [Berry and Sethi, 1986].
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Examples of formal languages revisited

Let Σ = {a, b, c}

{ab∗c} is regular.

{anbn : n ≥ 1} is linear but non-regular.

Let Σ = {(, )}
Dyck language: strings of ‘balanced’ parentheses. e.g. (()(()))
is context-free but non-linear.

‘Varied sophisticatedness’ in the ability to count
required to parse the language.
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Research motivation #2

To study structural properties of formal languages
via translation to logic.

→ a step towards exploiting rich literature on semantics of linear logic for
applications in formal language & complexity.
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Main Result
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Let Tpn(♡) be the set of types with at most n connectives in ♡.

Theorem

Lambek grammar with Cut and ... assigning... is equivalent to...

(/ →) Tp1(/) Regular

(/ →) and (\ →) Tp1(/, \) Linear

(/ →) Tpn(/) Context-free

... languages without
the empty string.

∴ A single introduction rule sufficient to parse any CFLs.
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Lambek grammar with Cut and ... assigning... is equivalent to...

(/ →) Tp1(/) Regular

(/ →) and (\ →) Tp1(/, \) Linear

(/ →) Tpn(/) Context-free
... languages.

Steps
1 Cut-elimination
2 Structural induction on the length of Cut-free proof

The (/ →) rule.
Γ → A; ∆,B,Θ → C

(/ →)
∆, (B/A), Γ,Θ → C
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Cut-elimination [Lambek, 1958]

Γ, α,Θ → β; ∆ → α
CutΓ,∆,Θ → β

⇓

Γ, α,Θ → β; ∆′ → α
Cut’

Γ,∆′,Θ → β; Ξ → α′
(/ →)

Γ,∆,Θ → β

∆′ contains one less ‘/’ than ∆.
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Recalling formal grammar

G is ... if every p ∈ P is in the form(s)

Regular (semi-linear) A → aB
Linear A → aB or A → Ba
Context-free A → β β ∈ (N ∪ Σ)∗

Theorem ([Greibach, 1965])

Every ϵ-free CFL can be generated by a CFG in Greibach normal form:

A → aB1B2 · · ·Bn

For ref:
Context-sensitive if αAβ → αγβ with A ∈ N, α, β ∈ (N ∪Σ \ {S})∗ and γ ∈ (N ∪Σ \ {S})+
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Structural lemma to show language equivalence (for CFG)

Lemma

Let Γ be a non-empty sequence of types in Tp(/).

(/ →) ⊢ Γ → T
iff

Γ = (· · · ((T/βn)/βn−1)/ · · · )/β1,∆1, ...,∆n

and
L(/ →) ⊢ ∆k → βk for all 1 ≤ k ≤ n

For all T ∈ Tp.

Illustration

∆1 → α1; (· · · ((SG/αn)/αn−1)/ · · · )/α2,∆2, ...,∆n → SG
(/ →)

(· · · ((SG/αn)/αn−1)/ · · · )/α1,∆1, ...,∆n → SG
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Sketch of proof (main results, CFG)

Finite length Cut-free proofs (only (/ →)) exist

⇓
Construct corresponding production rule;

α → aβ1β2 · · · βn ∈ P if (· · · ((α/βn)/βn−1)/ · · · )/β1 ∈ f (a)

α → a ∈ P if α ∈ f (a)

... recursively and vice versa following the structural lemma.

Likewise for linear & regular languages;
1. A/B ∈ f (a) iff A → aB ∈ P
2. B\A ∈ f (a) iff A → Ba ∈ P, and
3. A ∈ f (a) iff A → a ∈ P.
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Innovation/contribution

A (more) direct translation: formal grammar ↔ inference rule

⇓
Analog of the Greibach normal form of CFG
in Lambek calculus/linear logic

Characterisation of propositional formula-size’s effect on
complexity
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Future
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Topic 1

Lambek grammar of non-Chomsky hierarchy languages
&

Generalisation of (/ →) rules
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LL-parser

Definition

Let k ∈ N.
A language generated by a CFG G = (Σ,N,P,SG) is LL(k) iff for any A ∈ N;
w , x , y ∈ Σ∗; β, β′, γ ∈ (Σ ∪ N)∗; and any two derivations;

S ⇒∗ wAγ ⇒ wβγ ⇒∗ wx

S ⇒∗ wAγ ⇒ wβ′γ ⇒∗ wy

if x and y share the first k symbols, we necessarily have β = β′.

Intuition: rewriting of A ‘becomes’ deterministic if given k symbols look-ahead
(from after w).
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‘n-skip’ (/ →) rule [Taniguchi, 2024]

Recall the left /-introduction ‘(/ →)’ rule;

Γ → A; ∆,B,Θ → C
(/ →)

∆,B/A, Γ,Θ → C

Generalised ‘n-skip (/ →)’ rule

Γ → A; ∆,B ,D1, ...,Dn,Θ → C
(/ →)n n ∈ N

∆,B/A,D1, ...,Dn,Γ,Θ → C

Idea: long-range-dependency inspired by natural language syntax.

Conjecture: CFG ⊊ (/ →)n-grammar ⊊ CSG2

More generally: Which linear logic fragment corerspond to...
star-free language
indexed language

... ?
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Topic 2

Formal language theoretic analysis of (sub)exponentials & proof differentiation
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Subexponentials

Recall structural rules in LL

Γ, !A, !A,∆ → B
Ctr

Γ, !A,∆ → B

Γ,∆ → B
Weak

Γ, !A,∆ → B

Subexponential: separating linear into affine and relevant

relevant: at least once (no cont)

affine: at most once (no weak)

Complexity results [Kanovich et al., 2019]:

Relevant-subexponential Lambek calculus with...

multiplicative & additive: PSPACE
multiplicative: NP

Affine-subexponential Lambek calculus: undecidable.

→ Relevant Lambek grammar’s expressivity?
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‘Differential’ linear logic: an extension of linear logic
with

costructural rules

Applications

Logic for (functional) analysis

Program synthesis
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Rules of (intuitionistic) differential linear logic (DILL)

Γ,A,∆ → B
der

Γ, !A,∆ → B

Γ, !A,∆ → B
coder

Γ,A,∆ → B
Γ, !A, !A,∆ → B

ctr
Γ, !A,∆ → B

Γ, !A,∆ → B
coctr

Γ, !A, !A,∆ → B
Γ,∆ → B

weak
Γ, !A,∆ → B

Γ, !A,∆ → B
coweak

Γ,∆ → B
Γ,A,B,∆ → C

Exchange
Γ,B,A,∆ → C

Ax
A → A

Γ → A ∆,A,Θ → B
cut

∆, Γ,Θ → B
!Γ → A prom
!Γ →!A

Γ → A ∆,B,Θ → C
L⊸

∆, Γ,A ⊸ B,∆ → C

Γ,A,B,∆ → C
L⊗

Γ,A⊗ B,∆ → C
A, Γ → B

R⊸
Γ → A ⊸ B

Γ → A ∆ → B
R⊗

Γ,∆ → A⊗ B

DILL = IMELL + coder + coctr + coweak
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‘Differentiation’ of proof

A procedure to convert a non-linear proof to linear proof. [Clift, 2017]

Let π be a proof of !A → B . The derivative of π is defined as the following
proof.

π
...

!A → B coctr
!A, !A → B

coder
!A,A → B

coweak
A → B
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Question:
- Is there a formal language-theoretic phenomenon/construction
analogous to proof differentiation (in non-commutative DILL)?

* ‘provability’ not interesting for DILL as

Ax
A → A

weakn
!Γ,A → A

codern
Γ,A → A

der
Γ, !A → A

coweak
Γ → A

... any sequent is provable (n: length of Γ).

Yusaku Nishimiya (UIS / RIKEN-AIP) Sub-context-free linear logic 38 / 52



Topic 3

Interaction with geometric group theory
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Group presentation & word problem

Let X = {x1, x2, ...xn} be a set.
Define the formal inverses as X−1 = {x−1

1 , x−1
2 , ..., x−1

n }, X ∩ X−1 = ∅.
Take Σ = X ∪ X−1 and its free monoid Σ∗ (i.e. free group of X ).
Consider a finite R ⊂ Σ∗ called relators3, which induces an equivalence relation;

u ∼R v

if v can be obtained from u by a finite sequence of insertions or deletions of r ∈ R.
Let G be the group formed by the set of such equivalence classes.

Definition

The word problem W (G ), a formal language (over Σ = X ∪ X−1), of a finitely
presented group G = ⟨X |R⟩ is the set;

W (G ) = {w ∈ Σ∗|w ∼R 1} ⊆ Σ∗

where 1 is the group identity (empty string).

3∀x ∈ X , {xx−1, x−1x} ⊂ R, ‘trivial relators’
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EDT0L ⊊ ET0L languages

Extended alphabet (Deterministic) Table 0-interaction Lindenmayer

Definition

[Rozenberg, 1973, Bishop et al., 2025]
Let V (variables) and Σ (terminals) be finite sets s.t. Σ ⊆ V .
Fix S ∈ V , an start symbol.
The grammar G = (V ,P, S ,Σ) is

an EDT0L-system if p ∈ End(V ∗) s.t. σ · p = σ for all σ ∈ Σ
an ET0L-system if p ∈ P(V × V ∗)

... for all p ∈ P
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Relation with the Chomsky Hierarchy

‘→’ known set containement

Figure adapted from [Bishop et al., 2025].
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Open problems [Ciobanu et al., 2018] (and related result)

Let πWP(X ) : class of groups with word problems in the family of language X .

πWP(EDT0L)
?
= πWP(regular)

(πWP(regular)= finite groups [Anisimov, 1971])

πWP(ET0L)
?
= πWP(context-free)

(πWP(context-free) = virtually free groups [Muller and Schupp, 1983])

Structural similarity between sequential & parallel rewriting?
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Proof theoretic methods for group classifications?

Sequents/formulae/proof in logic
?↔ group structure/actions

Figure: Bridson’s universe of finitely presented groups, figure adapted from [Bridson, 2006]

Yusaku Nishimiya (UIS / RIKEN-AIP) Sub-context-free linear logic 44 / 52



Conclusion

A direct & straightforward translation between logic and formal language
established.

Potential applications:

More fine-grained logical characterisations of various formal languages

Better understanding of exponential connective’s ‘!’ computational
behaviour

Proof theoretic & logical methods to study groups
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Thank you :)

* I’m looking for an internship: Jan-Aug 2026 *
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