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The research presented in this talk combines two lines of research:

§ Program extraction, i.e. the extraction of programs from
formal proofs in a constructive logic such as intuitionistic logic
extended by inductive and coinductive definitions.

Such programs are correct by construction. The central tool is
a realizability interpretation of the logic.

§ Exact real number computation.

Instead of calculating with floating-point numbers and dealing
with rounding and truncation problems, a representation of
the real numbers by streams of finite data is used.

The machine reads the data stream entry by entry, depending
on how much information is needed to calculate the result
with a certain level of accuracy.

So the entire calculation is in principle infinite, but for any
given accuracy of the result the calculation is finite.



Example (Signed digit representation)

For an infinite sequence p “ ppi qiăω of signed digits pi P t´1, 0, 1u

set
rrpss

Def
“

ÿ

iăω

pi2
´i P r´1, 1s.

If x “ rrpss, then p is called a signed digit representation of
x P r´1, 1s.

In the program extraction approach a predicate S is defined
coinductively expressing the property that

x P r´1, 1s ñ
ł

dPt´1,0,1u

ł

yPr´1,1s
x “ py ` dq{2.

Classically, S “ r´1, 1s, but in the approach it replaces the interval
r´1, 1s when working inside the logical calculus.



Realisers can be thought of a being (idealised, but executable)
functional programs. Formally, they are elements of an
appropriately constructed Scott domain.

In the following conditions a rA means that a is a realiser of A:

a rA “ a “ Nil ^ A pA disjunction-freeq

a r pA _ Bq “ pDbq pa “ Leftpbq ^ b rAq_

pDcq pa “ Rightpcq ^ c rBq

a r pA ^ Bq “ pr0paq rA ^ pr1paq rB
a r pDxqApxq “ pDxqa rApxq.

There are similar conditions for implication and the universal
quantifier. Note that quantifiers are treated uniformly in this
version of realisability. Realisers of (co-)inductively defined
predicates are defined (co-)inductively again. Thus,

a r Spxq Ñ pDdqpDyq x “ py ` dq{2^

pr0paq r ppd “ ´1 _ d “ 1q _ d “ 0q ^ pr1paq r Spyq.



Definition (Berger, S (2016))

A digit space is a bounded complete nonempty metric space X
enriched with a finite set D of contractions d : X Ñ X , called
digits, that cover the space, i.e.,

X “
ď

t drX s | d P D u,

where drX s “ t dpxq | x P X u.

Example (contd.)

X “ r´1, 1s, D “ t avi | i “ ´1, 0, 1 u, avi pxq “ px ` iq{2.

A central aim of the research in (Berger, S (2016)) was to lay the
foundation for computing with nonempty compact sets and for
extracting algorithms for such computations from mathematical
proofs.



Theorem
If X is a bounded complete metric space, then the set KpX q of its
nonempty compact subsets is a bounded and complete space again
with respect to the Hausdorff metric.

Theorem (Berger, S (2016))

In general, there is no finite set of contractions h : KpX q Ñ KpX q

that covers KpX q.

It follows that KpX q is not a digit space. However:

Let pX ,Dq be a digit space and for d P D and K P KpX q set

KpdqpK q “ drK s “ t dpxq | x P K u.

Then KpdqpK q P KpX q. So, we have lifted

d : X Ñ X to a map Kpdq : KpX q Ñ KpX q.



For d1, . . . , dn P D define

rd1, . . . , dns “
ďn

ν“1
Kpdνq.

Then rd1, . . . , dns : KpX qn Ñ KpX q. Set

KpDq “ t rd1, . . . , dns | d1, . . . , dn P D pairwise distinct u.

Theorem (S (2021))

Let pX ,Dq be a digit space. Then pKpX q,KpDqq is an extended
digit space, i.e.,

§ KpX q is a bounded complete metric space,

§ KpDq is a finite set of contractions d⃗ : KpX qarpd⃗q Ñ KpX q,

§ KpDq covers KpX q.

Moreover, for d⃗ P KpDq, arpd⃗q ď }D}.



We would like to iterate this procedure to deal with the higher
order compact sets such as compact sets of compact sets. Consider

f : KpX q2 Ñ KpX q.

Then
Kpf q : KpKpX q2q Ñ KpKpX qq.

§ Kpf q is not a self-map of K2pX q.

§ pK2pX q,K2pDqq is no longer an extended digit space.



For an extended digit space pY ,E q let CY be a coinductively
defined predicate so that

CY pyq Ñ pDeq e P E ^ pDz⃗qCarpeq

Y pz⃗q ^ y “ epz⃗q,

which we use to represent the space Y in the logical calculus.
Unfold this definition:

KpX q
KpDq

ÐÝÝÝ KpX q}D} KpDq}D}

ÐÝÝÝÝÝ pKpX q}D}q}D} ÐÝ ¨ ¨ ¨

Notation For spaces X , Y and finite sets F of maps f : X Ñ Y
we write

X
F
ÝÑ Y

to mean that for every y P Y there are f P F and x P X with
y “ f pxq.

By introducing redundant arguments we let all maps in F have
have the same arity.



By unfolding the coinductive definition we obtained the co-chain

KpX q
KpDq

ÐÝÝÝ KpX q}D} KpDq}D}

ÐÝÝÝÝÝ pKpX q}D}q}D} ÐÝ ¨ ¨ ¨

One more application of K leads to the following co-chain

K2pX q
KpKpDqq

ÐÝÝÝÝÝ KpKpX q}D}q}KpDq}

KpKpDq}D}q}KpDq}

ÐÝÝÝÝÝÝÝÝÝÝÝ KpKpX qp}D}2qqp}KpDq}2q ÐÝ ¨ ¨ ¨

This can now be iterated.

The picture opens up a promising way to deal with the general
situation.



For each co-chain pYi`1
Fi
ÝÑ Yi qiPN of bounded complete metric

spaces and finite sets of contractions let

§ Y “
ř

iPN Yi be the topological sum of the Yi and

§ F “
Ť

iPNtiu ˆ Fi be the disjoint union of the Fi .

Then pY,Fq is an infinite extended iterated function system (IFS).
The maps in F operate only locally on the components, i.e., for
pi , f q P F and pjκ, yκq P Y.

pi , f qppj1, y1q, . . . , pjarpf q, yarpf qqq “

$

’

&

’

%

pi , f py1, . . . , yarpf qqq

if jκ “ i ` 1, (1 ď κ ď arpf q),

undefined otherwise.

Note that Y carries a canonical 8-metric coinciding with the given
metrics on the components, i.e., the distance between points in
different components is 8, and the distance between points in the
same component remains unchanged.



Let CY be a coinductively defined predicate such that

pi , yq P CY Ñ pDf q f P Fi ^ pDz1, . . . , zarpf qq

ľarpf q

κ“1
pi`1, zκq P CY^pi , yq “ pi , f qppi`1, z1q, . . . , pi`1, zarpf qqq.

Then (classically) Y “ CY. CY is used to represent Y in the
logical calculus.

Observe that we are only interested in the elements of

Cx0y

Y “ t y | p0, yq P CY u.

The elements in the other components of Y appear only as part of
the approximation.

Note further that though F is infinite, the local sets Fi are finite.



The typical morphisms between bounded complete metric spaces
are uniformly continuous functions.

§ Berger (2011) presents a nested coinductive inductive
characterization of the uniformly continuous functions
f : r´1, 1s Ñ r´1, 1s.

§ S (2021) lifts the characterization to the case of uniformly
continuous functions between extended digit spaces.



Let pXi`1
Di
ÝÑ Xi qiPN, pYi`1

Ei
ÝÑ Yi qiPN be cochains and pX,Dq,

pY,Eq the associated infinite IFS.
Moreover, for m ą 0, j P N, and j1 ď ¨ ¨ ¨ ď jm P N let

FpX,Yq
pjq
j1,...,jm

“ t f : Xm á Y |

dompf q “
ąm

ν“1
ptjνu ˆ Xjν q ^ rangepf q Ď tju ˆ Yj u,

FpX,Yqj1,...,jm “
ď

tFpX,Yq
pjq
j1,...,jm

| j P N u,

FpX,Yqpjq “
ď

tFpX,Yq
pjq
j1,...,jm

| j1 ď ¨ ¨ ¨ ď jm P N u,

FpX,Yq “
ď

mą0,jPN

ď

j1ď¨¨¨ďjm

FpX,Yq
pjq
j1,...,jm

.



The following is a generalisation of U. Berger’s coinductive-
inductive characterisation of the uniformly continuous functions on
the unit interval.

For F ,G Ď FpX,Yq define

ΦpF qpG q “t f P FpX,Yq |

rpDpi , eq P EqpDh1, . . . , harpeq P F X FpX,Yqpi`1qq

f “ pi , eq ˝ ph1 ˆ ¨ ¨ ¨ ˆ harpeqqs _

rpDj1 ď ¨ ¨ ¨ ď jarpf q P Nq f P FpX,Yqj1,...,jarpf q
^

pD1 ď ν ď arpf qqp@d P Djν q f ˝ pjν , d
pν,arpf qqq P G s u

where

d pν,mqppj1, x1q, . . . , pjm, xmqq “

ppj1, x1q, . . . , pjν´1, xν´1q, pjν , dpxνqq, pjν`1, xν`1q, . . . , pjm, xmqq,

for xκ P Xjκ (κ P tj1, . . . , jmuztjνu) and xν P Xjν`1.



Set
J pF q “ µΦpF q.

Then J pF q is the set inductively defined by the following rules:

(W) If pi , eq P E and h1, . . . , harpeq P F X FpX,Yqpi`1q then

pi , eq ˝ ph1 ˆ ¨ ¨ ¨ ˆ harpeqq P J pF q.

(R) If f P FpX,Yq and ν, j1, . . . , jarpf q P N so that

§ j1 ď ¨ ¨ ¨ ď jarpf q and f P FpX,Yqνj1,...,jarpf q

§ 1 ď ν ď arpf q and for all d P Djν , f ˝ d pν,arpf qq P J pF q,

then f P J pF q.

Set

CFpX,Yq “ νJ and CFpXx0y,Yx0yq “ CFpX,Yq X
ď

mą0
FpX,Yq

p0q

0pmq

where x pmq “ px , . . . , xq (m times).



Realizers of the elements of Cx0y

X are finitely branching infinite
trees such that each node of level i is labelled with a digit d P Di .

A realizer of a map h P Cx0y

FpXx0y,Yx0y is a finitely branching infinite

tree such that each node a level i is either a

§ writing node labelled with a digit e P Ei and arpeq immediate
subtrees, or a

§ reading node labelled with R i
ν and }Di} subtrees.

Writing nodes correspond to (inverted) Rule (W) and reading
nodes to (inverted) Rule (R).

The condition that every path contains infinitely many writing
nodes is reflected by the coinductive nature of the definition of

Cx0y

X (greatest fixed point w.r.t. F ).

The inductive part of the definition (least fixed point w.r.t. G )
reflects the fact that between two writing nodes on a path there
should only be finitely many reading nodes.



Such trees can easily be interpreted as tree transducers: Given
arphq trees T1, . . . ,Tarphq as inputs, run through the tree and
output a tree in as follows:

1. At a writing node re; S1, . . . ,Sarpeqs output e and continue
with the subtrees S1, . . . ,Sarpeq.

2. At a reading node rR i
ν ; pS 1

dqdPDi
s continue with S 1

d , where d is
the root of Tν , and replace Tν by its arpdq immediate
subtrees.

——————————————————

(W) If pi , eq P E and h1, . . . , harpeq P F X FpX,Yqpi`1q then

pi , eq ˝ ph1 ˆ ¨ ¨ ¨ ˆ harpeqq P J pF q.

(R) If f P FpX,Yq and ν, j1, . . . , jarpf q P N so that

§ j1 ď ¨ ¨ ¨ ď jarpf q and f P FpX,Yqνj1,...,jarpf q

§ 1 ď ν ď arpf q and for all d P Djν , f ˝ d pν,arpf qq P J pF q,

then f P J pF q.



Theorem (Berger (2011), S (2021))

Let f P FpX,Yq. Then

f P CFpX,Yq ô f uniformly continuous (constructively).



Theorem
For all f P Cp1q

FpXx0y,Yx0yq
and K P Cx0y

KpXq
,

1. f rK s P Cx0y

KpYq
,

2. Kpf q P Cp1q

FpKpXqx0y,KpYqx0yq
.

Here, pKpXq,KpDqq is the infinite extended IFS associated with the

co-chain that are obtained by applying K to pXi`1
Di
ÝÑ Xi qiPN.

Classically, the functions in Cp1q

FpXx0y,Yx0yq
are uniformly continuous

and the sets in Cx0y

KpXq
are compact. Then the results are well

known: Compact images of compact sets are compact and the
functor K maps uniformly continuous functions to uniformly
continuous functions.



Theorem
The following assertions hold:

1. t
Ť

K | K P Cx0y

K2pXq
u Ď Cx0y

KpXq
.

2.
Ť

P Cx0y

FpK2pXqx0y,KpXqx0yq
.

Classically, the first statement is a famous result by E. Micheal
(1951): The compact union of a nonempty compact set of
nonempty compact sets is compact again.

The proofs of both theorems use a more geometrical kind of
reasoning as usual in topology.

Now, both theorems are formally derived with the help of
coinduction, respectively nested induction/coinduction, from which
algorithms can be extracted.


