Craig Interpolation for Logics of Negative Modality via Cut-Free Sequent Calculus

Masanobu Toyooka & Katsuhiko Sano masanobu.toyo@gmail.com 9th September 2025 @TbiLLC 2025

Our Contribution

- proposes cut-free sequent calculi for three expansions of positive intuitionistic propositional logic by negative modalities.
- investigates the Craig interpolation properties of these three logics.

Craig Interpolation

For all formulas φ and ψ , if $\varphi \to \psi$ is a theorem of L then there is a formula χ s.t. both $\varphi \to \chi$ and $\chi \to \psi$ are theorems of L and $\text{Prop}(\chi) \subseteq \text{Prop}(\varphi) \cap \text{Prop}(\psi)$.

- holds in both CPC and IPC.
- derives: Beth definability theorem (1953) and Robinson joint consistency (1956).
- can be proved via proof theory (Maehara's method), model theory, and algebra.

- Proof theory
- Semantics

Negative Modality

Došen (1986 & 1999)'s investigation:

how can a negation weaker than minimal negation be added to positive IPC?

Adding new binary relation C on a Kripke model for positive IPC.

```
M, w \models \sim \varphi iff for any v \in W : wCv implies M, v \not\models \varphi.
```

negative modality

Syntax of This Talk

Form
$$\ni \varphi := p \mid \sim \varphi \mid \varphi \land \varphi \mid$$

 $\varphi \lor \varphi \mid \varphi \rightarrow \varphi, \quad (p \in \mathsf{Prop}).$

 The absurdity constant ⊥ and the tautology constant ⊤ are not included.

Kripke Model

$$M = (W, \leq, C, V)$$
 where

- W is a non-empty set of states,
- •≤ is a partial-order,
- C is a binary relation on W s.t.

$$\leq \circ C \subseteq C \circ \leq^{-1}$$

 $\leq \circ C \subseteq C \circ \leq^{-1}$ For a logic to be closed under a uniform substitution

• V: Prop $\rightarrow \mathcal{P}(W)$ s.t.

$$w \in V(p)$$
 and $w \le v$ imply $v \in V(p)$.

Kripke Semantics

```
\begin{array}{cccc} M,w\models p & \text{iff }w\in V(p),\\ M,w\models \varphi\wedge\psi & \text{iff }M,w\models \varphi \text{ and }M,w\models \psi,\\ M,w\models \varphi\vee\psi & \text{iff }M,w\models \varphi \text{ or }M,w\models \psi,\\ M,w\models \varphi\rightarrow\psi & \text{iff for any }v\in W\\ & w\leq v \text{ and }M,v\models \varphi \text{ imply }M,v\models \psi, \end{array}
```

• φ is valid in a Kripke model $M = (W, \leq, C, V)$ \Leftrightarrow for all $w \in W$: M, $w \models \varphi$.

 $M, w \models \sim \varphi$ iff for any $v \in W : wCv$ implies $M, v \not\models \varphi$.

Logics N and ND

- N: the set of valid formulas in all Kripke models,
- •ND: the set of valid formulas in all serial Kripke models, i.e., Kripke models $M = (W, \leq, C, V)$ s.t.

for any $w \in W$, there is $v \in W$ satisfying wCv.

• The absurdity constant \bot is definable in ND by $\sim (p \rightarrow p)$ but is not definable in N.

C may be Ø.

Star Model

Kripke model with *C* being a function *.

$$M = (W, \leq, *, V)$$
 where

- W, \leq , and V are as before,
- •* is a function from W to W s.t.

$$w \leq v \text{ implies } v^* \leq w^*$$

For a logic to be closed under a uniform substitution

$$M, w \models \sim \varphi \quad \text{iff } M, w^* \not\models \varphi.$$

Logic N*

• N*: the set of valid formulas in all star models.

Model Classes

- M_N: the class of all Kripke models,
- M_{ND}: the class of all serial Kripke models,
- M_N*: the class of all star models.

Proof Theory

- Hilbert systems H(N) & H(ND) (cf. Došen 1986).
- Hilbert system H(N*)
 (cf. Drobyshevich & Odintsov 2013).
- Sequent calculus for a logic with negative modality (Lahav, Marcos, & Zohar 2017).
- ✓ Two negative modalities (``all" &``some"),
- ✓ No implication.

H(N): Positive part of H(IPC) +

$$(\sim \varphi \land \sim \psi) \rightarrow \sim (\varphi \lor \psi),$$
 From $\varphi \rightarrow \psi$, we may infer $\sim \psi \rightarrow \sim \varphi$.

G(N): Positive part of Maehara (1954)'s mLJp +

$$\frac{\varphi \Rightarrow \Delta}{\sim \Delta \Rightarrow \sim \varphi},$$
 where $\sim \Delta = \{\sim \chi \mid \chi \in \Delta\}.$

• φ must exist in this rule.

H(N): Positive part of H(IPC) +

$$(\sim \varphi \land \sim \psi) \rightarrow \sim (\varphi \lor \psi),$$

From $\varphi \rightarrow \psi$, we may infer $\sim \psi \rightarrow \sim \varphi$.

G(N): Positive part of Maehara (1954)'s mLJp +

$$\varphi \Rightarrow \Delta$$

$$\sim \Delta \Rightarrow \sim \varphi$$
where $\sim \Delta = \{ \sim \chi \mid \chi \in \Delta \}.$

• φ must exist in this rule.

H(N): Positive part of H(IPC) +

$$(\sim \varphi \land \sim \psi) \rightarrow \sim (\varphi \lor \psi),$$

From $\varphi \rightarrow \psi$, we may infer $\sim \psi \rightarrow \sim \varphi$.

G(N): Positive part of Maehara (1954)'s mLJp +

$$\varphi \lor \psi \Rightarrow \varphi, \psi$$

$$\sim \varphi, \sim \psi \Rightarrow \sim (\varphi \lor \psi)$$

• φ must exist in this rule.

H(ND): Positive part of H(IPC) +

$$(\sim \varphi \land \sim \psi) \rightarrow \sim (\varphi \lor \psi),$$

From $\varphi \rightarrow \psi$, we may infer $\sim \psi \rightarrow \sim \varphi$.
 $\sim (\varphi \rightarrow \varphi) \rightarrow \psi$.

•G(ND): Positive part of Maehara (1954)'s mLJp +

$$\frac{\Phi \Rightarrow \Delta}{\sim \Delta \Rightarrow \sim \Phi}$$

where Φ is either a singleton or \emptyset .

H(ND): Positive part of H(IPC) +

$$(\sim \varphi \land \sim \psi) \rightarrow \sim (\varphi \lor \psi),$$

From $\varphi \rightarrow \psi$, we may infer $\sim \psi \rightarrow \sim \varphi$.
 $\sim (\varphi \rightarrow \varphi) \rightarrow \psi$.

•G(ND): Positive part of Maehara (1954)'s mLJp +

$$\frac{\Rightarrow \varphi \rightarrow \varphi}{\sim (\varphi \rightarrow \varphi) \Rightarrow}$$

H(N*): Positive part of H(IPC) +

$$(\sim \varphi \land \sim \psi) \rightarrow \sim (\varphi \lor \psi),$$
From $\varphi \rightarrow \psi$, we may infer $\sim \psi \rightarrow \sim \varphi$.
$$\sim (\varphi \rightarrow \varphi) \rightarrow \psi.$$

$$\sim (\varphi \land \psi) \rightarrow (\sim \varphi \lor \sim \psi),$$

$$\sim ((\varphi \rightarrow \varphi) \rightarrow \psi).$$

G(N*): Positive part of Maehara (1954)'s mLJp +

No restriction.

$$\sim \Delta \Rightarrow \sim \Phi$$

H(N*): Positive part of H(IPC) +

$$(\sim \varphi \land \sim \psi) \rightarrow \sim (\varphi \lor \psi),$$
From $\varphi \rightarrow \psi$, we may infer $\sim \psi \rightarrow \sim \varphi$.
$$\sim (\varphi \rightarrow \varphi) \rightarrow \psi.$$

$$\sim (\varphi \land \psi) \rightarrow (\sim \varphi \lor \sim \psi),$$

$$\sim ((\varphi \rightarrow \varphi) \rightarrow \psi).$$

•G(N*): Positive part of Maehara (1954)'s mLJp +

$$\varphi, \psi \Rightarrow \varphi \wedge \psi$$

$$\sim (\varphi \wedge \psi) \Rightarrow \sim \varphi, \sim \psi$$

Fact (Došen 1986, Drobyshevich & Odintsov 2013)

Let
$$\Lambda \in \{N, ND, N^*\}$$
. $\mathbb{M}_{\Lambda} \models \varphi \quad \text{iff} \quad \mathsf{H}(\Lambda) \vdash \varphi$.

Euipollentness of Two Systems (New!)

Let
$$\Lambda \in \{\mathbf{N}, \mathbf{ND}, \mathbf{N}^*\}$$
. Cut is necessary for \Rightarrow . $\mathsf{H}(\Lambda) \vdash \varphi$ iff $\mathsf{G}(\Lambda) \vdash \Rightarrow \varphi$.

Cut Elimination (New!) By "extended cut rule" (Kashima 2009).

Let $\Lambda \in \{N, ND, N^*\}$. If $\Gamma \Rightarrow \Delta$ is derivable in $G(\Lambda)$, then there is a derivation in $G(\Lambda)$ whose root is $\Gamma \Rightarrow \Delta$ with no application of (Cut).

Two Points

- 1. Treatment to intuitionistic multi-succedent sequent calculus.
- 2. Reformulation of Craig interpolation.

Two Points

- 1. Treatment to intuitionistic multi-succedent sequent calculus.
- 2. Reformulation of Craig interpolation.

For all formulas φ and ψ , if $\varphi \to \psi$ is a theorem of L then there is a formula χ s.t. both $\varphi \to \chi$ and $\chi \to \psi$ are theorems of L and $\text{Prop}(\chi) \subseteq \text{Prop}(\varphi) \cap \text{Prop}(\psi)$.

 Usually, the cut elimination establishes the Craig interpolation property via Maehara (1961)'s method.

If $\Gamma \Rightarrow \Delta$ is derivable in LK, then for any partition $\langle (\Gamma_1 : \Delta_1); (\Gamma_2 : \Delta_2) \rangle$ of $\Gamma \Rightarrow \Delta$, there is a formula χ s.t.

- both $\Gamma_1 \Rightarrow \Delta_1, \chi$ and $\chi, \Gamma_2 \Rightarrow \Delta_2$ are derivable in LK and
- $\mathsf{Prop}(\chi) \subseteq \mathsf{Prop}(\Gamma_1, \Delta_1) \cap \mathsf{Prop}(\Gamma_2, \Delta_2)$.

- Maehara method is not applied straightforwardly to intuitionistic multi-succedent sequent calculus.
- Two Solutions:
- 1. Restricting the form of a partition (normal partition) (cf. Kowalski & Ono 2017)
- ✓ Bi-intuitionistic logic (Kowalski & Ono 2017)
- 2. Extending the notion of an interpolant (Mints' interpolant) (cf. Mints 2001)
- ✓ Bi-intuitionistic tense logic (BiSKt) (Ono & S. 2022)
- Recall that our calculi are based on mLJp.

Two Points

- 1. Treatment to intuitionistic multi-succedent sequent calculus.
- 2. Reformulation of Craig interpolation.

If $G \vdash \Rightarrow \varphi \rightarrow \psi$, then there is a formula χ s.t. both $G \vdash \Rightarrow \varphi \rightarrow \chi$ and $G \vdash \Rightarrow \chi \rightarrow \psi$ and $\mathsf{Prop}(\chi) \subseteq \mathsf{Prop}(\varphi) \cap \mathsf{Prop}(\psi)$.

 If neither T nor ⊥ exists in the syntax, this claim does not hold even in CPC.

Consider the case where $Prop(\varphi) \cap Prop(\psi) = \emptyset$.

If $G \vdash \Rightarrow \varphi \rightarrow \psi$, then there is a formula χ s.t. both $G \vdash \Rightarrow \varphi \rightarrow \chi$ and $G \vdash \Rightarrow \chi \rightarrow \psi$ and $\mathsf{Prop}(\chi) \subseteq \mathsf{Prop}(\varphi) \cap \mathsf{Prop}(\psi)$.

- If neither T nor ⊥ exists in the syntax, this claim does not hold even in CPC.
- Craig interpolation is sensitive to the syntax.
- Recall that our syntax does not contain T or ⊥.

Reformulation

If $G \vdash \Rightarrow \varphi \rightarrow \psi$, then one of the following holds:

- if $\operatorname{\mathsf{Prop}}(\varphi) \cap \operatorname{\mathsf{Prop}}(\psi) \neq \emptyset$, then there is a formula χ s.t. both $\mathsf{G} \vdash \Rightarrow \varphi \to \chi$ and $\mathsf{G} \vdash \Rightarrow \chi \to \psi$ and $\operatorname{\mathsf{Prop}}(\chi) \subseteq \operatorname{\mathsf{Prop}}(\varphi) \cap \operatorname{\mathsf{Prop}}(\psi)$,
- if $\mathsf{Prop}(\varphi) \cap \mathsf{Prop}(\psi) = \emptyset$, then either $\mathsf{G} \vdash \varphi \Rightarrow \mathsf{or} \mathsf{G} \vdash \Rightarrow \psi$.
 - If T and ⊥ exist, the two formulations are equivalent.
 - Seki's method: Craig interpolation for CPC, IPC, and substructural logics with this formulation.

Craig Interpolation for ND and N* (New!)

Let $\Lambda \in \{\mathbf{ND}, \mathbf{N}^*\}$. If $\mathsf{G}(\Lambda) \vdash \Rightarrow \varphi \to \psi$, then one of the following holds:

- if $\mathsf{Prop}(\varphi) \cap \mathsf{Prop}(\psi) \neq \emptyset$, then there is a formula χ s.t. both $\mathsf{G}(\Lambda) \vdash \Rightarrow \varphi \to \chi$ and $\mathsf{G}(\Lambda) \vdash \Rightarrow \chi \to \psi$ and $\mathsf{Prop}(\chi) \subseteq \mathsf{Prop}(\varphi) \cap \mathsf{Prop}(\psi)$,
- if $\mathsf{Prop}(\varphi) \cap \mathsf{Prop}(\psi) = \emptyset$, then either $\mathsf{G}(\Lambda) \vdash \varphi \Rightarrow \mathsf{or} \; \mathsf{G}(\Lambda) \vdash \Rightarrow \psi$.
- For ND: normal partition with Seki's method.
- For N*: Mints' interpolant with Seki's method.

⊥ is not definable in N.

Failure of Craig interpolation for N (New!)

All the following items hold:

•
$$G(\mathbf{N}) \vdash \Rightarrow \sim (q \rightarrow q) \rightarrow \sim p$$
,

- $\mathsf{Prop}(\sim(q \to q)) \cap \mathsf{Prop}(\sim p) = \emptyset$,
- $G(\mathbf{N}) \not\vdash \sim (q \to q) \Rightarrow$ and $G(\mathbf{N}) \not\vdash \Rightarrow \sim p$.

• Cut elimination ensures that it is impossible to derive a sequent of the form $\Gamma \Rightarrow$ in general.

- In the following, we expand the syntax by ⊥.
- •Let $G(\Lambda_{\perp})$ be the calculus obtained by adding to $G(\Lambda)$ the following rule:

Craig Interpolation for the expansions by ⊥ (New!)

```
Let \Lambda \in \{\mathbf{N}_{\perp}, \mathbf{N}\mathbf{D}_{\perp}, \mathbf{N}_{\perp}^*\}. If \mathsf{G}(\Lambda) \vdash \varphi \to \psi, then there is a formula \chi s.t. both \mathsf{G}(\Lambda) \vdash \varphi \to \chi and \mathsf{G}(\Lambda) \vdash \chi \to \psi and \mathsf{Prop}(\chi) \subseteq \mathsf{Prop}(\varphi) \cap \mathsf{Prop}(\psi).
```

- For N⊥ and ND⊥: employing normal partition.
- For N*⊥: employing Mints' interpolant.

No need of Seki's method.

G(N), G(ND), $G(N^*)$

Our Contribution

- proposes cut-free sequent calculi for three expansions of positive intuitionistic propositional logic by negative modalities.
- investigates the Craig interpolation properties of these three logics.
 - N does not satisfy the property,
 - ND and N* satisfy the property,
 - N⊥, ND⊥, and N*⊥ satisfy the property.

Thank You!