A Coalgebraic Semantics for Fischer Servi Logic

Rodrigo N. Almeida and Sarah Dukic*

ILLC University of Amsterdam

September 9, 2025

Summary

- Coalgebras and coalgebraic semantics for (intuitionistic) modal logics;
- Representations for Fischer-Servi logic;
- Some consequences and applications of these results.

Coalgebras

Definition (Coalgebra)

Let \mathbb{C} be a category and $F:\mathbb{C}\to\mathbb{C}$ an endofunctor on \mathbb{C} .

A coalgebra for F is a pair $(C, \alpha : C \to FC)$

Definition (Coalgebra morphism)

Let (C, α) and (C', β) be coalgebras on the functor F. A **coalgebra** morphism is an arrow $f: C \to C'$ in $\mathbb C$ such that $\beta \circ f = Ff \circ \alpha$.

Coalgebras for classical modal logic

- Consider a Kripke frame (W,R), with $R\subseteq W\times W$. Then $R[-]:W\to \mathcal{P}(W)$ is the function mapping a point to its set of successors.
- So any frame can be given as a coalgebra $(W,R:W\to\mathcal{P}W)$ (and vice-versa)
- For $f:W\to W'$, $\mathcal{P}f$ maps a set to its direct image under f. The coalgebra morphisms on \mathcal{P} correspond exactly to p-morphisms.

Another way of saying this: the categories **KFr** of Kripke frames and p-morphisms, and $\mathbf{CoAlg}(\mathcal{P})$ of coalgebras of the (covariant) powerset functor, are *equivalent*.

Coalgebras for classical modal logic

- Consider a Kripke frame (W,R), with $R\subseteq W\times W$. Then $R[-]:W\to \mathcal{P}(W)$ is the function mapping a point to its set of successors.
- So any frame can be given as a coalgebra $(W,R:W\to\mathcal{P}W)$ (and vice-versa)
- For $f:W\to W'$, $\mathcal{P}f$ maps a set to its direct image under f. The coalgebra morphisms on \mathcal{P} correspond exactly to p-morphisms.

Another way of saying this: the categories \mathbf{KFr} of Kripke frames and p-morphisms, and $\mathbf{CoAlg}(\mathcal{P})$ of coalgebras of the (covariant) powerset functor, are *equivalent*.

Descriptive frames

A descriptive general frame is a Kripke frame with additional structure:

Definition

A **descriptive general frame** is a triple (X, R, A) where X is a Stone space, $A = \mathsf{Clop}(X)$, and $R \subseteq X \times X$ such that:

- 1. R[x] is closed for every $x \in X$
- 2. If $U \in Clop(X)$, then $R^{-1}[U] \in Clop(X)$

 \mathbf{DG} is the category of descriptive general frames with continuous p-morphisms.

Vietoris spaces

Definition

Let X be a Stone space. V(X), consisting of the set of non-empty closed sets of X, is the Vietoris hyperspace of X, given by a topology with subbasis:

$$[U] = \{C \in V(X) : C \subseteq U\} \text{ and } \langle V \rangle = \{C \in V(X) : C \cap V \neq \emptyset\},$$

where U, V are clopen subsets of X.

V is an endofunctor on **Stone**. We have:

Theorem

The categories \mathbf{DG} and $\mathbf{CoAlg}(V)$ are equivalent.

Coalgebraic semantics

Such a result gives us a general coalgebraic semantics. Advantages:

- Ease in finding notions such as bisimulations;
- 2 Ease in constructing universal objects like (duals) of free algebras.

Hence it would be desirable to have similar results in other settings. Where can one find them?

Coalgebraic semantics

Such a result gives us a general coalgebraic semantics. Advantages:

- Ease in finding notions such as bisimulations;
- 2 Ease in constructing universal objects like (duals) of free algebras.

Hence it would be desirable to have similar results in other settings. Where can one find them?

Intuitionistic Modal Logic

We can look at intuitionistic modal logics; look at the language:

$$\mathcal{L} = \wedge \mid \vee \mid \square \mid \top \mid \bot.$$

The most basic such logic is axiomatized over IPC with

$$\Box(a \wedge b) = \Box a \wedge \Box b \text{ and } \Box \top = \top.$$

This can be interpreted over positive Kripke frames: triples (P, \leq, R) where:

- (P, \leq) is a poset;
- (P,R) is a Kripke frame;
- $R = \langle \circ R \circ \langle \cdot \rangle$

Intuitionistic Modal Logic

We can look at intuitionistic modal logics; look at the language:

$$\mathcal{L} = \wedge \mid \vee \mid \square \mid \top \mid \bot$$
.

The most basic such logic is axiomatized over IPC with

$$\Box(a \wedge b) = \Box a \wedge \Box b \text{ and } \Box \top = \top.$$

This can be interpreted over positive Kripke frames: triples (P, \leq, R) where:

- \bullet (P, \leq) is a poset;
- (P,R) is a Kripke frame;
- $R = < \circ R \circ <.$

Descriptive general frames for IML_□

Definition

A \Box -Esakia space is a triple (X,\leq,R) where (X,\leq) is an Esakia space and $R\subseteq X\times X$ such that:

- (i) Whenever U is a clopen upset, then $\square_R U$ is a clopen upset, where $\square_R U = \{x \in X : R[x] \subset U\}$
- (ii) For each $x \in X$, R[x] is a closed upset.

$$R = < \circ R \circ <$$

Finding the right functor

Definition

Let $V^{\uparrow}(X):=\{C\subseteq X|C \text{ is a closed upset }\}$ with a topology given by $[U],\langle X-V\rangle$ and the order given by reverse inclusion, resulting in $(V^{\uparrow}(X),\supseteq)$

Then V^{\uparrow} is an endofunctor on **Pries**.

and \square -Esakia spaces are in 1-1 correspondence with Priestley morphisms $R:X\to V^\uparrow(X)$ defined by $x\mapsto R[x]$

 V^{\uparrow} works for positive modal logic over \Box , where we work in **Pries** and the morphisms are continuous monotone maps.

However, for IML $_{\square}$ we have the problem that not all Priestley morphisms will be p-morphisms – there are coalgebra morphisms that are not morphisms between \square Esakia spaces.

The problem is implication

- By Esakia duality, a DL homomorphism $f:D\to D'$ between Heyting algebras is a HA homomorphism iff $f^{-1}:X_{D'}\to X_D$ is a p-morphism.
- Given X an Esakia space and a coalgebra $(X, f: X \to V^{\uparrow}(X))$, we can transform this coalgebra into a coalgebra for another functor that forces the resulting map to be a p-morphism.

We do this through g-openness

Definition

Let $f:X \to Y$ and $g:Y \to Z$ be Priestley morphisms. We say f is $g\text{-}\mathbf{open}$ if f^{-1} preserves relative pseudocomplments of the form $g^{-1}[U] \to g^{-1}[V]$ for U,V clopen. i.e. $f^{-1}(g^{-1}[U] \to g^{-1}[V]) = f^{-1}(g^{-1}[U]) \to f^{-1}(g^{-1}[V])$ We say $S \subseteq X$ is g-open if the inclusion is g-open.

Definition

Let $g:X\to Y$ be a map between Priestley spaces. Then $V_g(X)=\{C\subseteq X|C\text{ is closed, rooted, and g-open }\}$

With the topology given as before.

The functor V_G

Definition 3.5 Let $g: X \to Y$ be a Priestley morphism. The *g-Vietoris* complex $(V^g_{\bullet}(X), \leq_{\bullet})$ over X, is a sequence

$$(V_0(X), V_1(X), ..., V_n(X), ...)$$

connected by morphisms $r_i: V_{i+1}(X) \to V_i(X)$ such that:

- (i) $V_0(X) = Y$ and $V_1(X) = X$;
- (ii) $r_0 = g$;
- (iii) For i > 1, $V_{i+1}(X) := V_{r_i}(V_i(X))$;
- (iv) For i > 0 $r_{i+1} = r_{r_i} : V_{i+1}(X) \to V_i(X)$ is the root map.
- ullet V_G then denotes the projective limit of this family.

Coalgebras for IML □

The following was the main result from Almeida & Bezhanishvili (2024):

Theorem

The category **CoAlg** $(V_G(V^{\uparrow}(-)))$ is equivalent to the category of \Box -Esakia spaces with modal p-morphisms.

There, several generalizations and extensions were proposed. But crucially, the methods there do not apply, without modification to Fischer-Servi logic.

Coalgebras for IML □

The following was the main result from Almeida & Bezhanishvili (2024):

Theorem

The category **CoAlg** $(V_G(V^{\uparrow}(-)))$ is equivalent to the category of \Box -Esakia spaces with modal p-morphisms.

There, several generalizations and extensions were proposed. But crucially, the methods there do not apply, without modification to Fischer-Servi logic.

Fischer-Servi Logic

Definition (Axiomatisation of IK)

An algebra $(H, \wedge, \vee, \rightarrow, \square, \Diamond, \top, \bot)$ is called an **IK**-algebra if $(H, \wedge, \vee, \rightarrow, \top, \bot)$ is a Heyting algebra, and it satisfies the following modal axioms:

1. □T = T	2. ♦⊥ = ⊥
3. $\Box(a \land b) = \Box a \land \Box b$	$4. \ \Diamond(a \lor b) = \Diamond a \lor \Diamond b$
A. $\Diamond(a \to b) \leq \Box a \to \Diamond b$	$\mathbf{B}.\ \Diamond a \to \Box b \leq \Box (a \to b)$

Definition (Kripke frames)

A K_{FS} -frame is a Kripke frame (X, \leq, R) such that

- $(R \circ <) \subset (< \circ R)$
- $(\geq \circ R) \subseteq (R \circ \geq)$

Descriptive Frames for Fischer-Servi Logic

Definition (IK-space)

A \emph{IK} -space is a modal Esakia space (X,R) such that the following conditions hold:

- (T1) R[x] is closed;
- (T2) $R[\uparrow x]$ is a closed upset;
- (T3) If U is a clopen upset, then $\Diamond_R U$ and $\Box_{(< \circ R)} U$ are clopen upsets;
- (T4) $R[x] = R[\uparrow x] \cap \downarrow R[x]$.

We can also look at R as the intersection of R_{\square} and R_{\lozenge} defined by

$$R_{\Diamond}[x] = \downarrow R[x]$$
 and $R_{\Box}[x] = R[\uparrow x].$

Finding the right functors

The problem: one of the fundamental axioms involves implications between the added elements!

B.
$$\Diamond a \to \Box b \leq \Box (a \to b)$$

Our solution: a step-by-step approach

We can start by dealing with axioms 1-4, which do not involve implications. This logic corresponds to the following frames:

Definition

A $\Box \Diamond$ -frame is a triple $(X, R_{\Box}, R_{\Diamond})$ such that X is an Esakia space, and the following conditions hold:

- $R_{\square}[x]$ is a closed upset
- $R_{\Diamond}[x]$ is a closed downset
- If U is a clopen upset, then $\lozenge_{R \wedge} U$ and $\square_{R \cap} U$ are clopen upsets

An **IK**-space is a $\Box \Diamond$ -frame where $R:=R_{\Box} \cap R_{\Diamond}$ and

- (1) $R_{\Diamond} = \downarrow (R_{\square} \cap R_{\Diamond}),$
- (II) $R_{\square} = \leq \circ (R_{\square} \cap R_{\Diamond}).$

Coalgebras for $\Box \Diamond$ -frames

Definition

The functors $\mathcal{V}^{\uparrow}(X)$ and $\mathcal{V}^{\downarrow}(X)$ (called the *upper Vietoris space* and *lower Vietoris space* of X) are defined as follows:

- $\mathcal{V}^{\uparrow}(X) = (\{C \subseteq X | C \text{ is a closed upset}\}, \supseteq)$, with the topology given by sets of the form [U] and $\langle X V \rangle$ for U, V clopen *upsets* of X;
- ② $\mathcal{V}^{\downarrow}(X) = (\{C \subseteq X | C \text{ is a closed downset } \}, \subseteq)$, with the topology given by sets of the form [U] and $\langle X V \rangle$ for U, V clopen downsets of X.

Where $[U] = \{C \in \mathcal{V}(X) | C \subseteq U\}$ and $\langle V \rangle = \{C \subseteq \mathcal{V}(X) | C \cap V \neq \emptyset\}$

Coalgebras for $\Box \Diamond$ -frames

Theorem

 $\Box \Diamond$ -frames $(X, R_{\Box}, R_{\Diamond})$ are in 1-1 correspondence with Priestley coalgebras $(X, \alpha : X \to \mathcal{V}^{\uparrow}(X) \times \mathcal{V}^{\downarrow}(X))$.

Then we have that the categories of $\Box \Diamond$ -frames and $\mathbf{Coalg}(\mathcal{V}_G(\mathcal{V}^{\uparrow} \times \mathcal{V}^{\downarrow}))$ are equivalent.

Algebraic correspondence: Let D_X be the dual distributive lattice to X. Then \mathcal{V}^{\uparrow} dually corresponds to generating the free distributive lattice over $\{\Box a|a\in D_X\}$ and quotienting over the normality axioms for \Box . Similarly, \mathcal{V}^{\downarrow} does so over $\{\Diamond a|a\in D_X\}$.

The functors FS_1 and FS_2

Now let's deal with the remaining axioms.

Definition

Let
$$FS_1(X) = \{(D, C) \in \mathcal{V}^{\uparrow}(X) \times \mathcal{V}^{\downarrow}(X) : C = \downarrow (D \cap C)\}.$$

Definition

Let $FS_2(X)=\{C\in V_r(FS_1(X))|\forall (D,E)\in C,\ y\in D\ \text{and}\ y\leq z,\ \text{there}\ \text{exists}\ (D',E')\geq (D,E)\ \text{in}\ C\ \text{such that}\ z\in D'\cap E'\}$

Example: $FS_1(2F)$

The functors FS_1 and FS_2

Proposition

 $FS_1(X)$ is the Priestley subspace of $\mathcal{V}^{\uparrow}(X) \times \mathcal{V}^{\downarrow}(X)$ such that axiom **A** dually holds.

i.e.

$$FS_1(X) = \{ (D, C) \in \mathcal{V}^{\uparrow}(X) \times \mathcal{V}^{\downarrow}(X) \mid \forall U, V \in ClopUp(X). \ (D, C) \in (\mathcal{V}^{\uparrow}(X) \times \langle U \to V \rangle) \cap ([U] \times \mathcal{V}^{\downarrow}(X)) \implies (D, C) \in \mathcal{V}^{\uparrow}(X) \times \langle V \rangle \}.$$

Proposition

 FS_2 is the Priestley subspace of $V_r(FS_1)$ for which axiom ${\bf B}$ dually holds.

i.e.
$$FS_2(X) = \{C \in \mathcal{V}_r(FS_1(X)) \mid \forall U, V \in ClopUp(X) : C \in [-(\mathcal{V}^{\uparrow}(X) \times \langle U \rangle) \cup ([V] \times \mathcal{V}^{\downarrow}(X))] \implies C \in [[U \to V] \times \mathcal{V}^{\downarrow}(X)].$$

Coalgebraic representation of Fischer-Servi logic

Theorem

The following are in 1-1 correspondence:

- **IK**-spaces (X, R),
- ② r-open Priestley maps $\alpha: X \to FS_2(X)$, and
- **3** Coalgebras for the Esakia endofunctor $\mathcal{V}^r_G(FS_2(X))$

Theorem

The category $\textbf{CoAlg}(\mathcal{V}^r_G(FS_2(-)))$ is equivalent to the category IKS of IK-spaces with p-morphisms.

Lifting the p-morphisms

Commuting diagram for $\mathcal{V}^r_G(FS_2(-))$ -coalgebras

Consequences: Bisimulation and free IK-algebras

• We obtain bisimulation for **IK** spaces directly from coalgebra bisimulations for $\mathcal{V}_G^r(FS_2(-))$.

Definition (Bisimulation for IK spaces)

Let (X,R) and (Y,S) be two **IK**-spaces. We say that a relation \sim $\subseteq X \times Y$ is a bisimulation provided

Forth:

- ① Whenever $x \le x'$ and $x \sim y$, there is some $y' \ge y$ such that $x' \sim y'$;
- ② Whenever xRx' and $x\sim y$, there is some $y'\in S[y]$ such that $x'\sim y'$.

Back:

- Whenever $y \leq y'$ and $x \sim y$, there is some $x' \geq x$ such that $x' \sim y'$;
- ② Whenever ySy' and $x \sim y$, there is some $x' \in R[x]$ such that $x' \sim y'$.
 - We derive a uniform construction of the free IK-algebra on any number of generators.

Image-Finite Posets

We derive analogous results for Kripke frames over image-finite posets using the functor P_G :

Definition

Let $g: X \to Y$ be a monotone map between image-finite posets. The g-discrete complex $(P_{\bullet}^g(X), \leq_{\bullet})$ over X is a sequence $(P_0(X), P_1(X), ..., P_n(X), ...)$

connected by morphisms $r_{i+1}: P_{i+1(X)\to P_i(X)}$ such that

- $P_0(X) = X$;
- $r_0 = g$;
- $P_{i+1}(X) := P_{r_i}(P_i(X))$
- $r_{i+1} := r_{r_i} : P_{i+1}(X) \to P_i(X)$ is the root map.

We denote the *image-finite part* of the projective limit of this family by $P_G(X)$.

Conclusions and Further Work

In this work we showed that the methods from Almeida and Bezhanishvili (2024) can be pushed to include Fischer-Servi logic.

One disadvantage of this method is that as seen, the functor V_G becomes infinite even if one only works with finite algebras. It would be interesting to work in the natural setting of intermediate logics where V_G preserves finiteness – like I G

It would also be interesting to know what happens when one adds axioms with more complex modal depth.

Conclusions and Further Work

In this work we showed that the methods from Almeida and Bezhanishvili (2024) can be pushed to include Fischer-Servi logic.

One disadvantage of this method is that as seen, the functor V_G becomes infinite even if one only works with finite algebras. It would be interesting to work in the natural setting of intermediate logics where V_G preserves finiteness – like LC.

It would also be interesting to know what happens when one adds axioms with more complex modal depth.

Conclusions and Further Work

In this work we showed that the methods from Almeida and Bezhanishvili (2024) can be pushed to include Fischer-Servi logic.

One disadvantage of this method is that as seen, the functor V_G becomes infinite even if one only works with finite algebras. It would be interesting to work in the natural setting of intermediate logics where V_G preserves finiteness – like LC.

It would also be interesting to know what happens when one adds axioms with more complex modal depth.

Thank you!

Definition

Let X be an Esakia space. Define the following sequence:

$$(M_0(X), M_1(X), ..., M_n(X), ...)$$

and a sequence of morphisms $\pi_k: M_k(X) \to M_{k-1}(X)$ for k>0 and

 $\pi_0: M_0(X) \to M_0(X)$ defined as follows:

- $M_0(X) = X;$
- \bullet $\pi_0 = id_{M_0}$ and $\pi_1(x, C) = x$;

We denote the inverse limit (in **Pris**) of this system by $M_{\infty}(X)$.

Theorem

Let X be a set of generators, and let $\mathbb{X}_{F_D(X)}$ denote the Priestley dual of the free distributive lattice $F_D(X)$ over X. Then $M_\infty(\mathbb{X}_{F_D(X)})$ is the dual to the free **FS**-algebra on X many generators.