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Substructural Logics
Substructural Logics are logics often characterized by removing structural rules

from the sequent calculus style proof systems for classical or intuitionsitic logic.

A sequent is a pair I' = ¢ I':=¢ | (I'T)

2/22



Substructural Logics

Substructural Logics are logics often characterized by removing structural rules

from the sequent calculus style proof systems for classical or intuitionsitic logic.

A sequent is a pair I' = ¢ I':=¢ | (I'T)

Structural rules tell us how we can manipulate structures/premise-combinations

without effecting their consequences.

(a) W[F§ (A§ E)} =@ (w) W[F] =@
WT;A) %] = ¢ WA T] = ¢
() WIT; Al = ¢ (©) WL T = ¢
WIA;T] = ¢ W= ¢

Removing structural rules captures the idea that different organizations of the
same information may lead to different consequences.
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Additive Rules

p=p|L|T|lonp|loVe|loep|p\v| e/t
Additive Rules:

I'= oAt I'= oAy
W =% W=y
I'=op I'=2qy
(v) I'=sepVy (v) F'=soeVvy
iy L=e =9 i Tle]=x  TY]=x
(A-in) TS ond (V-out) oVl = x

= Yp| =1
Y[[] =4

(Cut)
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Multiplicative Rules

p=p|L|T|lono|loVe|loep|p\v| e/t

Multiplicative Rules:

) INA=1B I'= B/A Y= A
-in) ———— -out
(i) 57 (/-out) Y
v AT'=2B I'=A\B A=A
-in) —————- -out
(vin) =g (\-out) N
. =4 A=1B = AeB A[A; Bl = ¢
(e-in) INA=AeB (e-out) [ }

Al =¢
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Substructural Logics 3

A Logic is a set of sequents.
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Substructural Logics 3

A Logic is a set of sequents.

The logic NFL is the least set of sequents containing all instances of the
following sequents:

Y= =T Tl =
tep = pet= p=>tep p=pet

and that is closed under the rules on the previous slides.
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Substructural Logics 3

A Logic is a set of sequents.

The logic NFL is the least set of sequents containing all instances of the
following sequents:

Y= =T Tl =
tep = pet= p=>tep p=pet

and that is closed under the rules on the previous slides.

An extension L of NFL is a set of sequents containing NFL and closed under
the rules of NFL and under substitutions.

Familiar Examples: Classical, Intuitionistic, Relevance, and Linear Logics.
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Algebraic Semantics

The most extensively studied semantics for substructural logics is algebraic.
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Algebraic Semantics

The most extensively studied semantics for substructural logics is algebraic.

r{-groupoids

A (bounded) r¢-groupoid G = (G, A,V, T, L,-/\,/,e) is an algebra where
(G,A,V, T, 1) is a lattice, (G,-,e,<) is a ordered groupoid with an identity
element ¢, and -, \, and / satisfy the residual law:

a-b<c<=b<a\c< a<c/b
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The most extensively studied semantics for substructural logics is algebraic.

r{-groupoids

A (bounded) r¢-groupoid G = (G, A,V, T, L,-/\,/,e) is an algebra where
(G,A,V, T, 1) is a lattice, (G,-,e,<) is a ordered groupoid with an identity
element ¢, and -, \, and / satisfy the residual law:

a-b<c<=b<a\c< a<c/b

G is a residuated lattice when multiplication is associative.
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Algebraic Semantics

The most extensively studied semantics for substructural logics is algebraic.

r{-groupoids

A (bounded) rf-groupoid G = (G, A,V, T, L,-/\,/,e) is an algebra where
(G,A,V, T, L) is a lattice, (G, -, e,<) is a ordered groupoid with an identity
element e, and -, \, and / satisfy the residual law:

a-b<c<=b<a\c< a<c/b

A model (G, o) consists of an r¢-groupid and a valuation o : Prop — G.

We write G E T' = ¢ when for each o : Prop — G, o(T') < o(¢p).

Completeness of NFL w.r.t r¢-groupoids

If G ET = ¢ for all rl-groupoids G, then I' = ¢ € NFL.
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OKHD-Semantics

Less well known is the operational /Kripke semantics pioneered by Ono and
Komori [1985], Humberstone [1987], and Dosen [1989].

Their key insight is the treatment of disjunction!

Allows for completeness of non-distributive logics.
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OKHD-Semantics

Less well known is the operational /Kripke semantics pioneered by Ono and
Komori [1985], Humberstone [1987], and Dosen [1989].

Their key insight is the treatment of disjunction!

Allows for completeness of non-distributive logics.

OKHD-frames

An OKHD-frame is a structure (X, A,1,®,¢) where (X, A,1) is a meet
semi-lattice, ® is a binary operation on X, ¢ is an identity element for ®, and
the following identities hold.

r®l=1=1Q«x

zR@YAz)=(Ry) A (zQ 2) (yr2z)@z=(yRz) A (2 Q)
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OKHD-Semantics

A model M = (X, V) is a frame X with a valuation V : Prop — Fi(X).
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OKHD-Semantics

A model M = (X, V) is a frame X with a valuation V : Prop — Fi(X).

We then define a satisfaction relation:
z - piff x € V(p)

zlFpAYiffxlk@and -y

x Ik o V1 iff there are y, z such that y A z < x and y IF p and y IF ¢
x Ik p e iff there are y, z such that y® 2z <z and y I p and y IF ¥
x IF \y iff forall y, if y IF ¢, then y @ z IF 1)

x Ik /piff for all y, if y I ¢, then z @y Ik ¢

zlFtiffe<z zIFTiffreX - Liffz=1.
x IFT; A iff there are ¢,z such that y® 2 < z and y IF T" and z IF A.
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OKHD-Semantics

A model M = (X, V) is a frame X with a valuation V : Prop — Fi(X).

We then define a satisfaction relation:
z - piff x € V(p)

zlFpAYiffxlk@and -y

x Ik o V1 iff there are y, z such that y A z < x and y IF p and y IF ¢
x Ik p e iff there are y, z such that y® 2z <z and y I p and y IF ¥
x IF \y iff forall y, if y IF ¢, then y @ z IF 1)

x Ik /piff for all y, if y I ¢, then z @y Ik ¢

zlFtiffe<z zIFTiffreX - Liffz=1.
x IFT; A iff there are ¢,z such that y® 2 < z and y IF T" and z IF A.

Given a model M, we write [¢] for the set of points in M satisfying ¢.

Persistence
For all ¢ and all models M = (X, V), [¢] is a filter of X.

= =
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OKHD-Semantics

We write X E T' = ¢ iff for all V' : Prop — Fi(X), [I'] C [«].

Completeness of NFL w.r.t OKHD-frames

If X ET = ¢ for all OKHD-frames X, then I' = ¢ € NFL.

Originally proved for NFL via a canonical model style proof Dosen [1989].

Also obtained completeness for a number of extensions and recovered the
completeness proofs of Ono and Komori [1985] and Humberstone [1987].
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Connecting Algebraic Semantics to the OKHD-semantics

The algebraic semantics and OKHD-semantics are connected in so far as
Log(OKHD) is the same as Log(RLG).

How is this connection characterized without directly appealing to their common
logic?
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Connecting Algebraic Semantics to the OKHD-semantics

The algebraic semantics and OKHD-semantics are connected in so far as
Log(OKHD) is the same as Log(RLG).

How is this connection characterized without directly appealing to their common
logic?

Ono and Komori: for the algebras of logics without L

contraction. J \
L — Fi(L) X — Fi(X)

Fi(L) —— Fi(Fi(L))
Yields embedding theorem.

Does not yield a isomorphism in general.

Loss of information: some classes of algebras not closed under the composition of
the operations.

11/22



Topological Duality in Logic

Dualities between categories of algebras and categories of topological spaces are
powerful and well studied tools in logic.
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Topological Duality in Logic

Dualities between categories of algebras and categories of topological spaces are
powerful and well studied tools in logic.

BA ~ Stone MA ~ MSp

Provide us with both methodological and conceptual insight.

Methodological:

o Topological Semantics MA®P MSp
o All normal modal logics are topologically
complete via duality,

o Straight forward connection to Kripke
semantics. KR

Philosophical:

o propositions as primitive entities and worlds as sets of propositions vs.
o worlds as primitive entities and propositions as sets of worlds,
In light of duality, neither perspective is prior to the other.

12 /22
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Modal Logic, Duality, and Canonicity
of L.

A modal logic L is canonical if all of L’s theorem are valid in the canonical frame
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Modal Logic, Duality, and Canonicity
A modal logic L is canonical if all of L’s theorem are valid in the canonical frame
of L.

Duality and topological completeness via duality offers a route to canonicity:
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Modal Logic, Duality, and Canonicity

A modal logic L is canonical if all of L's theorem are valid in the canonical frame
of L.

Duality and topological completeness via duality offers a route to canonicity:
d-persistence: if ¢ is topologically valid of (X, R, 7), then ¢ is valid on (X, R).
Topology free reduct of X, is isomorphic to the canonical frame Xy, of L.
Canonicity via d-persistence

|_L<P—>AL':<,0

}:L':(P%XAL':(P

Sahlqvist: every formula of the right shape is d-persistent and thus canonical.
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Duality for r¢-Groupoids

Is there a topological duality a for r¢-groupoids that maintains a connection to the
OKHD-semantics.

Is there a notion of persistence that can allow us to obtain general
canonicity/completeness proofs with respect to OKHD-frames?
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Duality for r¢-Groupoids

Is there a topological duality a for r¢-groupoids that maintains a connection to the
OKHD-semantics.

Is there a notion of persistence that can allow us to obtain general
canonicity/completeness proofs with respect to OKHD-frames?

Yesl!

Strategy:

o Modify a recent duality for not-necessarily-distributive lattices introduced by
Bezhanishvili et al. [2024].
o Bezhanishvili et al. [2024] restrict HMS-Duality for semilattices.

o Use their analogue of d-persistence, called I1;-persistence, to our setting.
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NRL-Spaces

NRL-Spaces

An NRL-space X = (X, A,1,®,¢,7) is a compact topological semilattice

(X, A, 1,7) with a basis of clopens equipped with a binary operation ® and an

identity element ¢ for ® satisfying (1)-(4):

1) If z £ y, then there is a clopen filter U such that z € U and y € U,

2) If U,V are clopen filters, then so are
UvV={xzAry|zeU&yecV}
UsV={z@y|lzeclU&ycV}
U\V=A{y|Ve(zeU—-zycV)}
VIU={z|VylyeU -2y ecV)}

3) 2 ® y < z iff for all clopen filters U, V: if z € U and y € V, then z € Uo V,

4) ¢ and {1} are clopen.

L-Spaces are compact topological semilattices with a basis of clopens satisfying
(1) and that the clopen filters contain {1} and are closed under v.
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Duality for r¢-Groupoids and NRL-Spaces

There are also well defined morphisms between NRL-spaces.

Theorem

The category of rf-groupoids is dually equivalent to the category of NRL-spaces.

Proof-
There are functors:
G — Xg = (Fi(G),n,G,®,e,7) X Gx = (Fiap(X),N,V,X,1,0,\,/,€).

fe grrgt

Here x @ y ={a-b|a € x & b €y} and 7 is generated by the subbase
{#(a) | a € L} U{¢p(a)° | a € L} where ¢(a) = {z € Fi(L) | a € z}.

$: G — Gxg and n: X — Xy defined by ¢(a) = {x € Fi(G) | a € z} and
n(x) ={U € Fiup(X) | x € U} are both isomorphisms.
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Restrictions

We can can explicitly characterize the dual spaces of residuated lattices,
FL-spaces, and involutive residuated lattices.

NRLSp «+—— RLSp «—— FLSp «+—— InFLSp

RLG?” +—— RL?” +—— FL?” +—— InRL%

FL-algebras are RLs with an additional distinguished element, f. We can define
two negations ~a := a\ f and —a := f/a. We say that an FL-algebra is an
involutive RL if ~—a = a and —~a = a.
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(Structured) Topological Completeness

A topological model is a pair (X, V) where X is an NRL-space and
V i Prop — Fiqp(X) is a clopen valuation.

Satisfaction is defined the same as for OKHD-semantics.

Theorem: Topological Completeness

Every extension L of NFL is sound and complete with respect to a class of
NRL-spaces.
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Getting back to OKHD-frames

If X is an NRL-space, then the following identities hold.

r®l=1=1Q«x
zRYAz)=(zQy) A (z® 2)
So X is an OKHD-frame.

(yrz)®@z=(y®z) A (2®7)
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Getting back to OKHD-frames

Theorem: NRL to OKHD
If X is an NRL-space, then the following identities hold.

r®l=1=1Q«x
TQ®(Yrz)=(z0y) A (z®2) (yLz)®@z=(y®z) A (2®17)
So X is an OKHD-frame.
A special case:

Canonical Model and Lindenbaum Algebra

For each extension L of NFL let Ay, be the Lindenbaum algebra of L, then:
The topology free reduct of Xy, is isomorphic to the canonical frame of L.

Canonical frame defined a la Dosen [1989].
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I1;-persistence and OKHD-Canonicity

II;-persistence: If (X,7) ET = ¢, then X F T = .

Every sequent I' = ¢ in the signature T, L, ¢, A, V, e is II;-persistent. I
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I1;-persistence and OKHD-Canonicity

II;-persistence: If (X,7) ET = ¢, then X F T = .

Theorem: II;-Persistence

Every sequent I' = ¢ in the signature T, L, ¢, A, V, e is II;-persistent. ‘

OKHD-Canonicity: Whenever I' = ¢ € L, then X1, E T = ¢.

Corollary: OKHD-Canonicity PF=pel — s ALED =0
Every extension of NFL axiomatized by

sequents in the signature T, L t, A,V e is

OKHD-canonical.

XLEl=p«+— XpA,FI'=9o
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Conclusion

o Developed a duality connecting the algebraic semantics of NFL to the
OKHD-semantics.

o Showed how this duality can be used to generalize existing completeness
theorems and canonicity results.
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Conclusion

o Developed a duality connecting the algebraic semantics of NFL to the
OKHD-semantics.

o Showed how this duality can be used to generalize existing completeness
theorems and canonicity results.

Thank You :)
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