A uniform semantics for connexive and paraconsistent Nelson logics

Umberto Rivieccio

Departamento de Lógica, Historia y Filosofía de la Ciencia Universidad Nacional de Educación a Distancia Madrid (Spain)

METIS

TbiLLC 2025 Kutaisi, 11 September 2025

Connexive...

• Most non-classical logics are subclassical, that is, every inference they validate is also classically valid.

Connexive...

- Most non-classical logics are subclassical, that is, every inference they validate is also classically valid.
- In contrast, connexive logics validate classical contingencies such as:

Connexive...

- Most non-classical logics are subclassical, that is, every inference they validate is also classically valid.
- In contrast, connexive logics validate classical contingencies such as:
 - ▶ Boethius' thesis $(A \to B) \to \neg (A \to \neg B)$

Connexive...

- Most non-classical logics are subclassical, that is, every inference they validate is also classically valid.
- In contrast, connexive logics validate classical contingencies such as:
 - Boethius' thesis

$$(A \rightarrow B) \rightarrow \neg (A \rightarrow \neg B)$$

► Aristotle's thesis

$$\neg (\neg A \rightarrow A)$$

Connexive...

- Most non-classical logics are subclassical, that is, every inference they validate is also classically valid.
- In contrast, connexive logics validate classical contingencies such as:
 - Boethius' thesis

$$(A \to B) \to \neg (A \to \neg B)$$

► Aristotle's thesis

$$\neg \, (\neg \, A \to A)$$

• Connexive logics are often paraconsistent $(A, \neg A \not\vdash B)$, or even contradictory, i.e. may admit a formula A such that $\vdash A$ and $\vdash \neg A$.

...and Nelson logics

• Nelson logics are subclassical systems motivated by constructive reasoning, in particular the notion of constructible falsity (Nelson 1949).

...and Nelson logics

- Nelson logics are subclassical systems motivated by constructive reasoning, in particular the notion of constructible falsity (Nelson 1949).
- Applied to inexact predicates, Nelson's approach gives rise to paraconsistent Nelson logic (Almukdad & Nelson 1984).

...and Nelson logics

- Nelson logics are subclassical systems motivated by constructive reasoning, in particular the notion of constructible falsity (Nelson 1949).
- Applied to inexact predicates, Nelson's approach gives rise to paraconsistent Nelson logic (Almukdad & Nelson 1984).
- Paraconsistent Nelson logic (pN) appears to be formally related to the connexive logic C introduced by Wansing (2006).

...and Nelson logics

- Nelson logics are subclassical systems motivated by constructive reasoning, in particular the notion of constructible falsity (Nelson 1949).
- Applied to inexact predicates, Nelson's approach gives rise to paraconsistent Nelson logic (Almukdad & Nelson 1984).
- Paraconsistent Nelson logic (pN) appears to be formally related to the connexive logic C introduced by Wansing (2006).
- pN and C essentially differ only regarding negated conditionals:

$$\neg(A \to B) \equiv_{\mathrm{pN}} (A \land \neg B)$$

$$\neg (A \rightarrow B) \equiv_{\mathbf{C}} (A \rightarrow \neg B)$$

...and Nelson logics

- Nelson logics are subclassical systems motivated by constructive reasoning, in particular the notion of constructible falsity (Nelson 1949).
- Applied to inexact predicates, Nelson's approach gives rise to paraconsistent Nelson logic (Almukdad & Nelson 1984).
- Paraconsistent Nelson logic (pN) appears to be formally related to the connexive logic C introduced by Wansing (2006).
- pN and C essentially differ only regarding negated conditionals:

$$\neg(A \to B) \equiv_{\mathrm{pN}} (A \land \neg B)$$

$$\neg (A \rightarrow B) \equiv_{\mathbf{C}} (A \rightarrow \neg B)$$

• Could we draw a more precise formal comparison?

• pN may be viewed as a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:

- pN may be viewed as a conservative expansion of negation-free intuitionistic logic in the language $\{\land, \lor, \rightarrow\}$ with a new negation \neg satisfying:
 - **1** double negation law: $A \leftrightarrow \neg \neg A$
 - 2 De Morgan laws:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$
 and $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$

- pN may be viewed as a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - **1** double negation law: $A \leftrightarrow \neg \neg A$
 - 2 De Morgan laws:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$
 and $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$

- pN may be viewed as a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - **1** double negation law: $A \leftrightarrow \neg \neg A$
 - ② De Morgan laws:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$
 and $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$

- C is also a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:

- pN may be viewed as a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - **1** double negation law: $A \leftrightarrow \neg \neg A$
 - ② De Morgan laws:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$
 and $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$

- C is also a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - 1 double negation and De Morgan laws

- pN may be viewed as a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - **1** double negation law: $A \leftrightarrow \neg \neg A$
 - 2 De Morgan laws:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$
 and $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$

- C is also a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - 1 double negation and De Morgan laws

- pN may be viewed as a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - **1** double negation law: $A \leftrightarrow \neg \neg A$
 - ② De Morgan laws:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$
 and $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$

- C is also a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - 1 double negation and De Morgan laws
- pN ∨ C is inconsistent.

- pN may be viewed as a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - **1** double negation law: $A \leftrightarrow \neg \neg A$
 - ② De Morgan laws:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$
 and $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$

- C is also a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - 1 double negation and De Morgan laws
- pN \vee C is inconsistent. We might ask: is the common weakening pN \cap C just negation-free intuitionistic logic plus double negation and De Morgan?

- pN may be viewed as a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - **1** double negation law: $A \leftrightarrow \neg \neg A$
 - ② De Morgan laws:

$$\neg (A \land B) \leftrightarrow (\neg A \lor \neg B)$$
 and $\neg (A \lor B) \leftrightarrow (\neg A \land \neg B)$

- C is also a conservative expansion of negation-free intuitionistic logic in the language $\{\land,\lor,\to\}$ with a new negation \neg satisfying:
 - 1 double negation and De Morgan laws
- pN ∨ C is inconsistent. We might ask: is the common weakening pN ∩ C
 just negation-free intuitionistic logic plus double negation and De Morgan?
 Our algebraic analysis will suggest that this is not the case.

• Both pN and C are algebraizable in the sense of Blok & Pigozzi (with the same translations).

- Both pN and C are algebraizable in the sense of Blok & Pigozzi (with the same translations).
- Models of pN (N4-lattices) are representable as twist-algebras over implicative lattices (Odintsov 2003).

- Both pN and C are algebraizable in the sense of Blok & Pigozzi (with the same translations).
- Models of pN (N4-lattices) are representable as twist-algebras over implicative lattices (Odintsov 2003).
- Fazio & Odintsov (2024) have recently established a similar representation for the algebraic models of C (C-algebras).

- Both pN and C are algebraizable in the sense of Blok & Pigozzi (with the same translations).
- Models of pN (N4-lattices) are representable as twist-algebras over implicative lattices (Odintsov 2003).
- Fazio & Odintsov (2024) have recently established a similar representation for the algebraic models of C (C-algebras).
- Both twist constructions essentially coincide except for the representation of the implication operator (see below).

The twist-algebra construction

Given an implicative lattice $\mathbf{L} = \langle L; \wedge, \vee, \to 1 \rangle$, the full twist-algebra over \mathbf{L} is the algebra $\mathbf{L}^{\bowtie} = \langle L \times L; \wedge, \vee, \to_{N/C}, \neg \rangle$

with operations given by:

$$\langle a_1, a_2 \rangle \wedge \langle b_1, b_2 \rangle := \langle a_1 \wedge b_1, a_2 \vee b_2 \rangle$$

$$\langle a_1, a_2 \rangle \vee \langle b_1, b_2 \rangle := \langle a_1 \vee b_1, a_2 \wedge b_2 \rangle$$

$$\langle a_1, a_2 \rangle \rightarrow_{\mathrm{pN}} \langle b_1, b_2 \rangle := \langle a_1 \rightarrow b_1, a_1 \wedge b_2 \rangle$$

$$\langle a_1, a_2 \rangle \rightarrow_{\mathrm{C}} \langle b_1, b_2 \rangle := \langle a_1 \rightarrow b_1, a_1 \rightarrow b_2 \rangle$$

$$\neg \langle a_1, a_2 \rangle := \langle a_2, a_1 \rangle.$$

A twist-algebra over **L** is any subalgebra $\mathbf{A} \leq \mathbf{L}^{\bowtie}$ satisfying $\pi_1[A] = L$.

The twist-algebra construction

Given an implicative lattice $\mathbf{L} = \langle L; \wedge, \vee, \to 1 \rangle$, the full twist-algebra over \mathbf{L} is the algebra $\mathbf{L}^{\bowtie} = \langle L \times L; \wedge, \vee, \to_{N/C}, \neg \rangle$

with operations given by:

$$\langle a_1, a_2 \rangle \wedge \langle b_1, b_2 \rangle := \langle a_1 \wedge b_1, a_2 \vee b_2 \rangle$$

$$\langle a_1, a_2 \rangle \vee \langle b_1, b_2 \rangle := \langle a_1 \vee b_1, a_2 \wedge b_2 \rangle$$

$$\langle a_1, a_2 \rangle \rightarrow_{\mathrm{pN}} \langle b_1, b_2 \rangle := \langle a_1 \rightarrow b_1, a_1 \wedge b_2 \rangle$$

$$\langle a_1, a_2 \rangle \rightarrow_{\mathrm{C}} \langle b_1, b_2 \rangle := \langle a_1 \rightarrow b_1, a_1 \rightarrow b_2 \rangle$$

$$\neg \langle a_1, a_2 \rangle := \langle a_2, a_1 \rangle.$$

A twist-algebra over L is any subalgebra $A \leq L^{\bowtie}$ satisfying $\pi_1[A] = L$.

N4-lattices arise as algebras of type $\langle A, \wedge, \vee, \rightarrow_{N}, \neg \rangle$, and C-algebras are those of type $\langle A, \wedge, \vee, \rightarrow_{C}, \neg \rangle$.

Comparing N4-lattices and C-algebras

A closer look at both twist constructions suggests that:

• In general, neither an N4-lattice need have a term-definable C-algebra structure, nor the other way around.

Comparing N4-lattices and C-algebras

A closer look at both twist constructions suggests that:

- In general, neither an N4-lattice need have a term-definable C-algebra structure, nor the other way around.
- In particular, the two classes of algebras (hence the two logics) are not definitionally equivalent.

Comparing N4-lattices and C-algebras

A closer look at both twist constructions suggests that:

- In general, neither an N4-lattice need have a term-definable C-algebra structure, nor the other way around.
- In particular, the two classes of algebras (hence the two logics) are not definitionally equivalent.
- However, it is not hard to view both constructions as two instances of a common one...

Abstracting N4-lattices and C-algebras

The idea

Define twist-algebras similarly as before for the language $\{\wedge, \vee, \neg\}$, but let

$$\langle a_1, a_2 \rangle \rightarrow \langle b_1, b_2 \rangle := \langle a_1 \rightarrow b_1, a_1 \ominus b_2 \rangle$$

where \ominus may behave on ${\bf L}$ as a conjunction or as an implication.

Abstracting N4-lattices and C-algebras

The idea

Define twist-algebras similarly as before for the language $\{\land,\lor,\lnot\}$, but let

$$\langle a_1, a_2 \rangle \rightarrow \langle b_1, b_2 \rangle := \langle a_1 \rightarrow b_1, a_1 \ominus b_2 \rangle$$

where \ominus may behave on \boldsymbol{L} as a conjunction or as an implication.

Abstract properties

- $2 (x \wedge y) \ominus z = x \ominus (y \ominus z).$
- $3 x \le y entails z \ominus x \le z \ominus y.$
- $(x \leftrightarrow y) \ominus x \le (x \leftrightarrow y) \ominus y.$
- $x \leftrightarrow y \le (x \ominus z) \to (y \ominus z).$

• The more general construction gives rise to an equational class of algebras (provisionally dubbed QNC-algebras), and we have a twist representation.

- The more general construction gives rise to an equational class of algebras (provisionally dubbed QNC-algebras), and we have a twist representation.
- N4-lattices and C-algebras may be recovered as subvarieties of QNC-algebras.

- The more general construction gives rise to an equational class of algebras (provisionally dubbed QNC-algebras), and we have a twist representation.
- N4-lattices and C-algebras may be recovered as subvarieties of QNC-algebras.
- These relations are mirrored (via algebraizability) by the corresponding logics.

- The more general construction gives rise to an equational class of algebras (provisionally dubbed QNC-algebras), and we have a twist representation.
- N4-lattices and C-algebras may be recovered as subvarieties of QNC-algebras.
- These relations are mirrored (via algebraizability) by the corresponding logics.
- The construction suggests that the common logic pN \cap C is not just negation-free intuitionistic logic plus double negation and De Morgan. (e.g. the formula $\neg \neg A \rightarrow \neg (A \rightarrow \neg A)$ is valid in pN \cap C).

- The more general construction gives rise to an equational class of algebras (provisionally dubbed QNC-algebras), and we have a twist representation.
- N4-lattices and C-algebras may be recovered as subvarieties of QNC-algebras.
- These relations are mirrored (via algebraizability) by the corresponding logics.
- The construction suggests that the common logic pN \cap C is not just negation-free intuitionistic logic plus double negation and De Morgan. (e.g. the formula $\neg \neg A \rightarrow \neg (A \rightarrow \neg A)$ is valid in pN \cap C).
- A twist construction/representation can also be developed if we drop involutivity (double negation law).

The algebra of ordinary discourse

 Our twist construction can be adapted to represent the algebraic models of W.S. Cooper's three-valued Logic of Ordinary Discourse (OL).

- Our twist construction can be adapted to represent the algebraic models of W.S. Cooper's three-valued Logic of Ordinary Discourse (OL).
- Besides the classical values (1 and 0), OL employs a third one (1/2) for conditionals with a false antecedent ('suffering a truth-value gap').

- Our twist construction can be adapted to represent the algebraic models of W.S. Cooper's three-valued Logic of Ordinary Discourse (OL).
- Besides the classical values (1 and 0), OL employs a third one (1/2) for conditionals with a false antecedent ('suffering a truth-value gap').
- Both 1 and 1/2 are designated.

- Our twist construction can be adapted to represent the algebraic models of W.S. Cooper's three-valued Logic of Ordinary Discourse (OL).
- Besides the classical values (1 and 0), OL employs a third one (1/2) for conditionals with a false antecedent ('suffering a truth-value gap').
- Both 1 and 1/2 are designated.

The algebra of ordinary discourse

- Our twist construction can be adapted to represent the algebraic models of W.S. Cooper's three-valued Logic of Ordinary Discourse (OL).
- Besides the classical values (1 and 0), OL employs a third one (1/2) for conditionals with a false antecedent ('suffering a truth-value gap').
- Both 1 and 1/2 are designated.

	•			$\rightarrow_{\mathrm{OL}}$					
1/2	1/2	1	0	1/2	1/2	1	0	1/2	1/2
1	1	1	0	1	1/2	1	0	1	0
0	0	0	0	1/2 1 0	1/2	1/2	1/2	0	1

[The disjunction is defined by $x \vee_{OL} y := \neg_{OL}(\neg_{OL} x \wedge_{OL} \neg_{OL} y)$].

The algebra of ordinary discourse

• (Structural) OL is algebraizable, and its equivalent semantics is the (quasi)variety generated by the above-introduced three-element algebra.

- (Structural) OL is algebraizable, and its equivalent semantics is the (quasi)variety generated by the above-introduced three-element algebra.
- The members in this variety arise as subalgebras $\mathbf{A} \leq \mathbf{L}^{\bowtie}$, with \mathbf{L} a Boolean algebra, $\mathbf{A} = \langle A, \wedge_{\mathrm{OL}}, \rightarrow_{\mathrm{OL}}, \neg_{\mathrm{OL}} \rangle$, and:

- (Structural) OL is algebraizable, and its equivalent semantics is the (quasi)variety generated by the above-introduced three-element algebra.
- The members in this variety arise as subalgebras $\mathbf{A} \leq \mathbf{L}^{\bowtie}$, with \mathbf{L} a Boolean algebra, $\mathbf{A} = \langle A, \wedge_{\mathrm{OL}}, \rightarrow_{\mathrm{OL}}, \neg_{\mathrm{OL}} \rangle$, and:

- (Structural) OL is algebraizable, and its equivalent semantics is the (quasi)variety generated by the above-introduced three-element algebra.
- The members in this variety arise as subalgebras $\mathbf{A} \leq \mathbf{L}^{\bowtie}$, with \mathbf{L} a Boolean algebra, $\mathbf{A} = \langle A, \wedge_{\mathrm{OL}}, \rightarrow_{\mathrm{OL}}, \neg_{\mathrm{OL}} \rangle$, and:

$$\neg_{\text{OL}} x := \neg x$$

$$x \to_{\text{OL}} y := x \to_{\text{C}} y$$

$$x \land_{\text{OL}} y := \neg (x \to_{\text{N}} \neg y) \lor \neg (y \to_{\text{N}} \neg x)$$

The algebra of ordinary discourse

- (Structural) OL is algebraizable, and its equivalent semantics is the (quasi)variety generated by the above-introduced three-element algebra.
- The members in this variety arise as subalgebras $\mathbf{A} \leq \mathbf{L}^{\bowtie}$, with \mathbf{L} a Boolean algebra, $\mathbf{A} = \langle A, \wedge_{\mathrm{OL}}, \rightarrow_{\mathrm{OL}}, \neg_{\mathrm{OL}} \rangle$, and:

$$\neg_{\text{OL}} x := \neg x$$

$$x \to_{\text{OL}} y := x \to_{\text{C}} y$$

$$x \land_{\text{OL}} y := \neg (x \to_{\text{N}} \neg y) \lor \neg (y \to_{\text{N}} \neg x)$$

which give us:

$$\begin{split} \neg_{\mathrm{OL}}\langle a_1, a_2 \rangle &:= \langle a_2, a_1 \rangle \\ \langle a_1, a_2 \rangle \rightarrow_{\mathrm{OL}} \langle b_1, b_2 \rangle &:= \langle a_1 \rightarrow b_1, \ a_1 \rightarrow b_2 \rangle \\ \langle a_1, a_2 \rangle \wedge_{\mathrm{OL}} \langle b_1, b_2 \rangle &:= \langle a_1 \wedge b_1, (a_1 \rightarrow b_2) \wedge (b_1 \rightarrow a_2) \rangle. \end{split}$$

• Develop the theory of QNC-algebras (associated logic, filters, congruences, full representation).

- Develop the theory of QNC-algebras (associated logic, filters, congruences, full representation).
- Determine (/investigate) the subvariety of QNC-algebras generated by N4-lattices ∪ C-algebras.

- Develop the theory of QNC-algebras (associated logic, filters, congruences, full representation).
- Determine (/investigate) the subvariety of QNC-algebras generated by N4-lattices ∪ C-algebras.
- Study the variety of implicative lattices extended with a ⊖ operation (structure theory, duality).

- Develop the theory of QNC-algebras (associated logic, filters, congruences, full representation).
- Determine (/investigate) the subvariety of QNC-algebras generated by N4-lattices ∪ C-algebras.
- Study the variety of implicative lattices extended with a ⊖ operation (structure theory, duality).
- Extend this approach to other connexive logics?

- Develop the theory of QNC-algebras (associated logic, filters, congruences, full representation).
- Determine (/investigate) the subvariety of QNC-algebras generated by N4-lattices ∪ C-algebras.
- Study the variety of implicative lattices extended with a ⊖ operation (structure theory, duality).
- Extend this approach to other connexive logics?
- Investigate the relationship between the present framework and Logic(s) of Ordinary Discourse.

References

- D. Nelson (1949)
 Constructible falsity.
 The Journal of Symbolic Logic, 14:16–26.
- W.S. Cooper (1968)
 The Propositional Logic of Ordinary Discourse.
 Inquiry, 11:1–4, 295–320.
- A. Almukdad & D. Nelson (1984)
 Constructible falsity and inexact predicates.
 The Journal of Symbolic Logic, 49:231–233.
- S.P. Odintsov (2003)
 Algebraic semantics for paraconsistent Nelson's logic.
 Journal of Logic and Computation, 13 (4):453–468.
- H. Wansing (2005)
 Connexive modal logic.
 Advances in Modal Logic: 367–383.
- D. Fazio & S.P. Odintsov (2024)
 An algebraic investigation of the connexive logic C.
 Studia Logica, 112: 37–67.