Difference-restriction algebras with operators

Célia Borlido¹ Ganna Kudryavtseva² <u>Brett McLean</u>³

¹Universidade de Coimbra, Departamento de Matemática cborlido@mat.uc.pt

²University of Ljubljana, Faculty of Mathematics and Physics / Institute of Mathematics,
Physics and Mechanics
ganna.kudryavtseva@fmf.uni-lj.si

³Department of Mathematics: Analysis, Logic and Discrete Mathematics, Ghent University brett.mclean@ugent.be

Algebraic study of partial functions

(Partial) functions important throughout formal sciences!

Algebraic study of partial functions

(Partial) functions important throughout formal sciences!

Boole: Use algebra to study propositions

- Choose some operations: $\bigcap, \cup, {}^c$
- Any collection of subsets closed under operations an algebra
- 3 Algebras validate laws: $A \cap B = B \cap A$
- Class of isomorphs of algebras:
 BA

Algebraic study of partial functions

(Partial) functions important throughout formal sciences!

Boole: Use algebra to study propositions

- Choose some operations: $\cap, \cup, {}^{c}$
- Any collection of subsets closed under operations an algebra
- **3** Algebras validate laws: $A \cap B = B \cap A$
- Class of isomorphs of algebras:
 BA

Use algebra to study partial functions

- Choose some operations
- Any collection of partial functions closed under operations an algebra
- Algebras validate laws
- Olass of isomorphs of algebras:
 DRA

The project

Stone duality:

 $BA \leftrightarrows Stone^{op}$

Jónsson and Tarski: Boolean algebras with operators

 $BAO \leftrightarrows DescriptiveGeneralFrame^{op}$

The project

Stone duality:

$$BA \leftrightarrows Stone^{op}$$

Jónsson and Tarski: Boolean algebras with operators

 $BAO \leftrightarrows DescriptiveGeneralFrame^{op}$

Same for algebras of partial functions:

'base':

DRA
$$\leftrightarrows$$
 ? op

Difference-restriction algebras with operators

DRAO \leftrightarrows ?op

I: The algebras

Definition

Partial function $f: X \rightharpoonup Y$ $f \subseteq X \times Y$ s.t.

$$(x,y_1),(x,y_2)\in f\Rightarrow y_1=y_2$$

Definition

Partial function $f: X \rightharpoonup Y$ $f \subseteq X \times Y$ s.t.

$$(x,y_1),(x,y_2)\in f\Rightarrow y_1=y_2$$

$$dom(f) = \{x \in X \mid \exists y \ (x, y) \in f\}$$

Definition

Partial function $f: X \rightharpoonup Y$ $f \subseteq X \times Y$ s.t.

$$(x,y_1),(x,y_2)\in f\Rightarrow y_1=y_2$$

$$dom(f) = \{x \in X \mid \exists y \ (x, y) \in f\}$$

- Set difference: f g
- Domain restriction:

$$f \triangleright g = \{(x,y) \in g \mid x \in \text{dom}(f)\}$$

Definition

Partial function $f: X \rightharpoonup Y$ $f \subseteq X \times Y$ s.t.

$$(x,y_1),(x,y_2)\in f\Rightarrow y_1=y_2$$

$$dom(f) = \{x \in X \mid \exists y \ (x, y) \in f\}$$

- Set difference: f g
- Domain restriction:

$$f \triangleright g = \{(x, y) \in g \mid x \in \text{dom}(f)\}$$

• Intersection:

$$f \cap g = f - (f - g)$$

Algebras

Definition

Let $A = (A, -, \triangleright)$. Call A an algebra of partial functions if:

$$\exists X, Y \quad A \subseteq (X \rightharpoonup Y)$$

and operations - and \triangleright are interpreted as:

- -: set difference
- **○** b: domain restriction

Algebras

Definition

Let $A = (A, -, \triangleright)$. Call A an algebra of partial functions if:

$$\exists X, Y \quad A \subseteq (X \rightharpoonup Y)$$

and operations - and \triangleright are interpreted as:

- -: set difference

Definition

 $\mathcal{A}=(A,-,\triangleright)$ a **difference–restriction algebra** if isomorphic to an algebra of partial functions

Algebras

Definition

Let $\mathcal{A} = (A, -, \triangleright)$. Call \mathcal{A} an algebra of partial functions if:

$$\exists X, Y \quad A \subseteq (X \rightharpoonup Y)$$

and operations - and \triangleright are interpreted as:

- –: set difference
- b: domain restriction

Definition

 $\mathcal{A} = (A, -, \triangleright)$ a **difference-restriction algebra** if isomorphic to an algebra of partial functions

Properties:

$$a \le b \iff a \rhd b = a$$
 $a \le b \iff a \cdot b = a \quad \text{(same)}$
meet semilattice

Class of difference-restriction algebras

Axioms

$$a - (b - a) = a \tag{1}$$

$$a \cdot b = b \cdot a \tag{2}$$

$$(a-b)-c = (a-c)-b$$
 (3)

$$(a \triangleright c) \cdot (b \triangleright c) = (a \triangleright b) \triangleright c \tag{4}$$

$$(a \cdot b) \triangleright a = a \cdot b \tag{5}$$

Class of difference-restriction algebras

Axioms

$$a - (b - a) = a \tag{1}$$

$$a \cdot b = b \cdot a \tag{2}$$

$$(a-b)-c = (a-c)-b$$
 (3)

$$(a \triangleright c) \cdot (b \triangleright c) = (a \triangleright b) \triangleright c \tag{4}$$

$$(a \cdot b) \triangleright a = a \cdot b \tag{5}$$

Category **DRA**

objects: difference-restriction algebras

morphisms: homomorphisms of $\{-, \triangleright\}$ -algebras

Difference-restriction algebras: Properties

$$"dom(a) \subseteq dom(b)"$$
$$b \triangleright a = a$$

Difference-restriction algebras: Properties

1

$$"dom(a) \subseteq dom(b)"$$
$$b \triangleright a = a$$

2

$$a^{\downarrow} = \{x \mid x \leq a\} \quad \mathsf{BA}$$
 $b, c \in a^{\downarrow} \mod b \cdot c \ / \ b \rhd c$ $\overline{b} = a - b$

Difference-restriction algebras: Properties

"dom
$$(a) \subseteq dom(b)$$
"
$$b \triangleright a = a$$

$$a^{\downarrow}=\{x\mid x\leq a\}\quad \mathsf{BA}$$
 $b,c\in a^{\downarrow}\mod b\cdot c\ /\ b\rhd c$ $\overline{b}=a-b$

Definition

compatible: $a \triangleright b = b \triangleright a$

... but join does not have to exist!

Example difference–restriction algebras

Example difference-restriction algebras

Example (1)

Identity functions on X

· and ▷ coincide

(BA)

Example (2)

Identity functions on X with finite domain

(Generalised BA)

Example difference–restriction algebras

Example (1)

Identity functions on X

· and ▷ coincide

(BA)

Example (2)

Identity functions on X with finite domain

(Generalised BA)

Example (3)

Identity functions on X with $|dom| \le 10$

II: From algebras to spaces

Adjunction

F : **DRA** ⊢ ?^{op} (topological)

Prime filters

Definition

 $\mu \subseteq \mathcal{A}$ a **filter** if:

- upward closed
- non-empty
- $a, b \in \mu \Rightarrow a \cdot b \in \mu$

Prime filters

Definition

 $\mu \subseteq \mathcal{A}$ a **filter** if:

- upward closed
- non-empty
- $a, b \in \mu \Rightarrow a \cdot b \in \mu$

 μ is **prime** if proper and

$$a \lor b \in \mu \implies a \in \mu \text{ or } b \in \mu$$

 $a \lor b$ doesn't necessarily exist!

Prime filters

Definition

 $\mu \subseteq \mathcal{A}$ a **filter** if:

- upward closed
- non-empty
- $a, b \in \mu \Rightarrow a \cdot b \in \mu$

 μ is **prime** if proper and

$$a \lor b \in \mu \implies a \in \mu \text{ or } b \in \mu$$

 $a \lor b$ doesn't necessarily exist!

 μ, ν prime

•
$$\mu \approx \nu \iff (a \in \mu, b \in \nu \implies a \rhd b \in \nu)$$

 μ, ν prime

- $\mu \approx \nu \iff (a \in \mu, b \in \nu \implies a \rhd b \in \nu)$
- $\pi_{\mathcal{A}}$: Prime(\mathcal{A}) \rightarrow Prime(\mathcal{A})/ \approx $\mu \mapsto \mu/\approx$

 μ, ν prime

- $\mu \approx \nu \iff (a \in \mu, b \in \nu \implies a \rhd b \in \nu)$
- $\pi_{\mathcal{A}}$: Prime(\mathcal{A}) \rightarrow Prime(\mathcal{A})/ \approx $\mu \mapsto \mu/\approx$
- Topology τ_A on Prime(A):

$$\widehat{a} = \{ \mu \in \mathsf{Prime}(\mathcal{A}) \mid a \in \mu \}$$

 μ, ν prime

•
$$\mu \approx \nu \iff (a \in \mu, b \in \nu \implies a \rhd b \in \nu)$$

•
$$\pi_{\mathcal{A}}$$
: Prime(\mathcal{A}) \rightarrow Prime(\mathcal{A})/ \approx
 $\mu \mapsto \mu/\approx$

• Topology τ_A on Prime(A):

$$\widehat{a} = \{ \mu \in \mathsf{Prime}(\mathcal{A}) \mid a \in \mu \}$$

•
$$F(A) = \pi_A : (\text{Prime}(A), \tau_A) \rightarrow (\text{Prime}(A)/\approx, \tau_A/\approx)$$

Example: functor F on objects

Example

- X, Y finite |X| = |Y| = n
- $|X \rightharpoonup Y| = (n+1)^n = 2^{n \log(n+1)}$
- μ prime: $\mu = \{f \mid (x, y) \in f\}$ some $(x, y) \in X \times Y$
- $\bullet \ \pi: X \times Y \twoheadrightarrow X$ $(x, y) \mapsto x$
- $|Prime| = n^2$

III: The spaces

Hausdorff étale spaces

spaces X, X_0

Definition

Local homeomorphism: $\pi: X \to X_0$

 $\forall x \in X \exists \text{ open neighbourhood } U \ni x$

- $\pi(U)$ open
- $\pi: U \to \pi(U)$ homeomorphism

Étale space: $\pi: X \rightarrow X_0$ surjective local homeomorphism

Hausdorff étale space: X (thus X_0) Hausdorff

Category of Hausdorff étale spaces

Category HausEt object: Hausdorff étale space morphism: $X \longrightarrow Y$ o preserves equivalence fibrewise injective $X_0 \longrightarrow Y_0$ o fibrewise surjective

IV: From spaces to algebras

Functor *G* on objects

$$F$$
 (Prime): **DRA** \leftrightarrows **HausEt**^{op} : **G**

Functor G on objects

$$F \text{ (Prime)} : \mathbf{DRA} \leftrightarrows \mathbf{HausEt^{op}} : \mathbf{G}$$

$$\pi\colon X \twoheadrightarrow X_0$$

partial section
$$f \subseteq X$$

$$x, x' \in f$$

 $\pi(x) = \pi(x') \implies x = x'$

Functor G on objects

$$F \text{ (Prime)} : \mathbf{DRA} \leftrightarrows \mathbf{HausEt^{op}} : \mathbf{G}$$

$$\pi\colon X \twoheadrightarrow X_0$$

partial section
$$f \subseteq X$$

 $x, x' \in f$

$$\pi(x) = \pi(x') \implies x = x'$$

G: compact open partial sections

Main result: Adjunction

$$F: \mathbf{DRA} \leftrightarrows \mathbf{HausEt}^{\mathrm{op}} : G$$

F and G on morphisms: "inverse image"

Theorem (Borlido, Kudryavtseva, McLean)

The functors $F \colon \mathbf{DRA} \to \mathbf{HausEt^{op}}$ and $G \colon \mathbf{HausEt^{op}} \to \mathbf{DRA}$ form an adjunction.

That is

$$F \dashv G$$

Finite compatible completions

Definition

 $S \subseteq \mathcal{A}$ pairwise compatible:

$$\forall a, b \in S \quad a \rhd b = b \rhd a$$

Finite compatible completions

Definition

 $S \subseteq \mathcal{A}$ pairwise compatible:

$$\forall a, b \in S \quad a \rhd b = b \rhd a$$

① G(F(A)) has joins for each finite pairwise compatible subset

Finite compatible completions

Definition

 $S \subseteq \mathcal{A}$ pairwise compatible:

$$\forall a, b \in S \quad a \rhd b = b \rhd a$$

- G(F(A)) has joins for each finite pairwise compatible subset finitarily compatibly complete
- ② $\mathcal{A} \hookrightarrow G(F(\mathcal{A}))$ every element of $G(F(\mathcal{A}))$ join of a finite compatible subset of (image) of \mathcal{A} finite join dense
- 1+2: G(F(A)) is finitary compatible completion of A

Restriction to a duality

 $F: C_{fin}DRA \leftrightarrows Stone^+Et^{op}: G$

 $C_{\mathrm{fin}}DRA$: finitarily compatibly complete

Stone⁺**Et**: locally compact + 0-dimensional

Theorem (Borlido, Kudryavtseva, McLean)

There is a duality between C_{fin}DRA and Stone⁺Et

V: "with operators"

Additional operators

n-ary
$$\Omega$$
 on $\{-, \triangleright\}$ -algebra

- Operator:
 - ► Normal:

$$\forall i \quad \Omega(a_1,\ldots,a_{i-1},0,a_{i+1},\ldots,a_n)=0$$

Additive:

$$\forall i \quad \Omega(\ldots, b \vee c, \ldots) = \Omega(\ldots, b, \ldots) \vee \Omega(\ldots, c, \ldots)$$

Additional operators

n-ary
$$\Omega$$
 on $\{-, \triangleright\}$ -algebra

- Operator:
 - ► Normal:

$$\forall i \quad \Omega(a_1,\ldots,a_{i-1},0,a_{i+1},\ldots,a_n)=0$$

Additive:

$$\forall i \quad \Omega(\ldots, b \vee c, \ldots) = \Omega(\ldots, b, \ldots) \vee \Omega(\ldots, c, \ldots)$$

Compatibility preserving:

 $\forall i \ a_i, a_i' \ \text{compatible} \implies \Omega(\overline{a}), \ \Omega(\overline{a}') \ \text{compatible}$

Additional operators

n-ary
$$\Omega$$
 on $\{-, \triangleright\}$ -algebra

- Operator:
 - ► Normal:

$$\forall i \quad \Omega(a_1,\ldots,a_{i-1},0,a_{i+1},\ldots,a_n)=0$$

Additive:

$$\forall i \quad \Omega(\ldots, b \vee c, \ldots) = \Omega(\ldots, b, \ldots) \vee \Omega(\ldots, c, \ldots)$$

Compatibility preserving:

$$\forall i \ a_i, a_i' \ \text{compatible} \implies \Omega(\overline{a}), \ \Omega(\overline{a}') \ \text{compatible}$$

Many natural examples: composition, domain, range, ...

Results for algebras with extra operators

 $\sigma = \{\Omega, \dots\}$ symbols (for additional operations)

Category **DRA**(σ)

- ullet Object: DRA equipped with compatibility preserving operators Ω,\dots
- Morphism: homomorphism (preserves $\{-, \triangleright\} \cup \sigma$)

Results for algebras with extra operators

```
\sigma = \{\Omega, \dots\} symbols (for additional operations)
```

Category **DRA**(σ)

- ullet Object: DRA equipped with compatibility preserving operators Ω,\dots
- Morphism: homomorphism (preserves $\{-, \triangleright\} \cup \sigma$)

Category **HausEt**(σ)

• Object: Hausdorff étale space

```
+ (n+1)-ary relations R_{\Omega}, \ldots tight, spectral, with compatibility property
```

• Morphisms: extra forth/back conditions for extra relations

Results for algebras with extra operators

 $\sigma = \{\Omega, \dots\}$ symbols (for additional operations)

Category **DRA**(σ)

- ullet Object: DRA equipped with compatibility preserving operators Ω,\dots
- Morphism: homomorphism (preserves $\{-, \triangleright\} \cup \sigma$)

Category **HausEt**(σ)

• Object: Hausdorff étale space

$$+$$

(n+1)-ary relations R_{Ω}, \ldots tight, spectral, with compatibility property

Morphisms: extra forth/back conditions for extra relations

$$F: \mathbf{DRA}(\sigma) \dashv \mathbf{HausEt}(\sigma)^{\mathrm{op}} : G$$

$$F : \mathbf{C}_{\mathrm{fin}} \mathbf{DRA}(\sigma) \leftrightarrows \mathbf{Stone}^+ \mathbf{Et}(\sigma)^{\mathrm{op}} : G$$

finitary compatible completion