
DIAMONDS AND DOMINOES.
IMPOSSIBILITY RESULTS FOR ASSOCIATIVE MODAL LOGICS

Søren Brinck Knudstorp
ILLC and Philosophy, University of Amsterdam
September 11, 2025

TbiLLC 2025



We’ll begin with something well known
(and then something that, I think, deserves to

be better known)

2



Appetizer

Something well known:

Classical Propositional Logic is decidable.

Let’s add another connective ◦.

What axioms and rules should govern ◦? Let’s say:

• φ ◦ ⊥ → ⊥, ⊥ ◦ φ→ ⊥,
• φ ◦ (ψ ∨ χ) ↔ (φ ◦ ψ) ∨ (φ ◦ χ), (ψ ∨ χ) ◦ φ = (ψ ◦ φ) ∨ (χ ◦ φ),
• (φ ◦ ψ) ◦ χ↔ φ ◦ (ψ ◦ χ),
•

φ↔ φ′

φ ◦ ψ ↔ φ′ ◦ ψ
,

φ↔ φ′

ψ ◦ φ↔ ψ ◦ φ′ .

Question: Is the resulting system decidable?
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Answer: It is not!

(cf. Kurucz et al. 1995)
And in fact, it is the modal logic

K2 ⊕ (p ◦ q) ◦ r ↔ p ◦ (q ◦ r)
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Plan for the rest of the talk

– Setting
– Results and technique
– Related results

Preprint available on arXiv.
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Setting

Logically, we are interested in normal extensions of

AK2 := K2 ⊕ (p ◦ q) ◦ r ↔ p ◦ (q ◦ r).

Algebraic semantics for AK2 is given by associative BAOs (A,∨,∧,¬,⊥,⊤, ◦):

• (A,∨,∧,¬,⊥,⊤) is a BA
• x ◦ (y ∨ z) = (x ◦ y) ∨ (x ◦ z) and (x ∨ y) ◦ z = (x ◦ z) ∨ (y ◦ z)
• x ◦ ⊥ = ⊥ = ⊥ ◦ x
• (x ◦ y) ◦ z = x ◦ (y ◦ z).

Relational semantics for AK2 is given by associative frames F = (X, ·):
· : X2 → P(X) is a function s.t.

(x · y) · z = x · (y · z),

and

M, x ⊩ φ ◦ ψ iff there exist y, z ∈ X such thatM, y ⊩ φ;

M, z ⊩ ψ; and x ∈ y · z.

· is lifted to sets Y, Z ⊆ X by Y · Z := {x ∈ X | ∃y ∈ Y, z ∈ Z : x ∈ y · z}.
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Two central systems

1. Take frames (X, ·) to be semilattices: · is functional, associative,
commutative, and idempotent.

• We obtain the modal logic of semilattices (decidability problem
raised by SBK (2023a)).

• Algebraically, this is Var(SL+) (raised by Bergman (2018) and Jipsen
et al. (2021)).

2. Take frames (X, ·) to be Boolean algebras (raised by Goranko
and Vakarelov (1999)).1

1Goranko and Vakarelov (1999) call their logic ‘hyperboolean modal logic’ and include
modalities for all the Boolean operations, not just the join.
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The Domino Problem

• A Wang domino (tile) is a square with colors on each side.
• The domino (tiling) problem: Given a finite set of Wang tilesW , is it
possible to tile the first quadrant N× N so that adjacent tiles match
along their shared edges

• Introduced by Wang (1963) and proven undecidable by Berger (1966).

Figure 1: Wang tiles Figure 2: A tiling of the plane
Figures taken from: https://en.wikipedia.org/wiki/Wang_tile 8
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Main theorem

GivenW , construct a formula ϕW such that:

ϕW refuted by
an associative frame
(or associative BAO)

ϕW refuted by (P(N),∪)
(or its complex algebra)

W tiles
N × N

⇐=

=⇒
=⇒

Theorem
Let V be a variety of associative
BAOs.
IfV contains (P(N),∪)+, thenV
is undecidable.

Let L be an associative normal
modal logic.
If L ⊆ Log(P(N),∪), then L is
undecidable.
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Associativity and Tiling 1

a

d c

⇒

a b

cd

Ry

xR

xR

RyRy

xR

From (Rady and Rdxc) infer ∃b ∈ X (Raxb and Rbcy).

a b

c

⇒

a b

cd

xR

Ry

xR

RyRy

xR

From (Raxb and Rbcy) infer ∃d ∈ X (Rady and Rdxc). 2

2
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Figure 3: Generating N2 from the staircase: p1,1, p2,1, p2,2, p3,2, p3,3, . . ..
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Consequences

Theorem
Let V be a variety of associative
BAOs.
If V contains (P(N),∪)+, then V
is undecidable.

Let L be an associative normal
modal logic.
If L ⊆ Log(P(N),∪), then L is
undecidable.

Recall the above. From this, we get:

Theorem

Var(BA+) is undecidable. Hyperboolean modal logic is
undecidable.

Theorem

Var(SL+) is undecidable. Themodal (information) logic of
semilattices is undecidable.

Proof. Semilattices are associative and (P(N),∪) is, in particular, a
semilattice.
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Other Consequences

Undecidability for:

• The variety of Boolean semilattices (Bergman 2018 and Jipsen et al. 2021).
• Modal logics over (modular/distributive) lattices (Wang and Wang (2025)).
• Conservative extension of Skvortsov’s modal logic.

New undecidability proofs for:

• AK2 = K2 ⊕ (p ◦ q) ◦ r ↔ p ◦ (q ◦ r) [Kurucz et al. 1993, 1995]
• The classes of algebras isomorphic to (commutative) algebras of binary
relations closed under composition, intersection (∩), union (∪), and
complementation (c) [Hirsch et al. 2021, Cor. 11.3]

• Boolean Bunched Implication logic (BBI) [Brotherston and Kanovich 2010;
Kurucz et al. 1995; Larchey-Wendling and Galmiche 2010]

Lastly: There is no translation from modal information logic into truthmaker
semantics (question raised by Benthem 2017, 2024)
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Team semantics as relational semantics

For X := {v | v : Prop → {0, 1}} and s ∈ P(X), we had
s ⊨ p iff ∀v ∈ s : v(p) = 1,

s ⊨ φ ∧ ψ iff s ⊨ φ and s ⊨ ψ,
s ⊨ φ ∨∨ψ iff s ⊨ φ or s ⊨ ψ,
s ⊨ ∼φ iff s ⊭ φ,
s ⊨ φ ∨ ψ iff there exist s′, s′′ ∈ P(X) such that s′ ⊨ φ;

s′′ ⊨ ψ; and s = s′ ∪ s′′.
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referring to the ternary ∪-relation: s = s′ ∪ s′′; and a model
M = (P(X),∪, V ) with a ‘principal valuation’, i.e.,

V (p) := {s ∈ P(X) | ∀v ∈ s : v(p) = 1} = ↓{v ∈ X | v(p) = 1}.

In fact, if we take all powerset frames (P(X),∪), redefine the base clause
(P(X),∪, V ), s ⊩ p iff s ∈ V (p),

and only allow principal valuations V : Prop → {↓s | s ∈ P(X)}, we get
sound and complete relational semantics for team logics.
Proof. A simple p-morphism argument.
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