NØthing is Logical

Maria Aloni
ILLC & Philosophy
University of Amsterdam
M.D.Aloni@uva.nl

15th Tbilisi Symposium on Logic, Language and Computation (TbiLLC 2025)

Tskaltubo, 9 September 2025

NØthing is logical (Nihil)

- Goal of the project: a formal account of a class of natural language inferences which deviate from classical logic
- Common assumption: these deviations are not logical mistakes, but consequence of pragmatic enrichments (Grice)
- Strategy: develop logics of conversation which model next to literal meanings also pragmatic factors and the additional inferences which arise from their interaction
- Novel hypothesis: neglect-zero tendency (a cognitive bias rather than a conversational principle) as crucial factor
- Main conclusion: deviations from classical logic consequence of enrichments albeit not (always) of the canonical Gricean kind

Non-classical inferences

Free choice (FC)

- (1)FC: $\Diamond(\alpha \vee \beta) \rightsquigarrow \Diamond\alpha \wedge \Diamond\beta$
- (2) Deontic FC inference [Kamp 1973]
 - You may go to the beach or to the cinema.
 - → You may go to the beach and you may go to the cinema.
- (3) Epistemic FC inference [Zimmermann 2000]
 - Mr. X might be in Victoria or in Brixton.
 - → Mr. X might be in Victoria and he might be in Brixton.

Ignorance

- (4) The prize is either in the garden or in the attic \rightarrow speaker doesn't know where
- [Grice 1989, p.45] (5) ? I have two or three children.
 - In the standard approach, ignorance inferences are conversational implicatures
 - Less consensus on FC inferences analysed as conversational implicatures; grammatical (scalar) implicatures; semantic entailments; . . .

Note: Adding FC to classical modal logic implies the equivalence of any two possibility claims:

$$\Diamond a \Rightarrow_{CML} \Diamond (a \lor b) \Rightarrow_{FC} \Diamond b$$

Neglect-zero

FC and ignorance inferences are

- [≠ semantic entailments] [≠ conversational implicatures]
- Not the result of Gricean reasoning
- Not the effect of applications of covert grammatical operators
- [≠ grammatical (scalar) implicatures]
- But rather a consequence of something else speakers do in conversation, namely,

NEGLECT-ZERO

when interpreting a sentence speakers construct models depicting reality¹ and in this process tend to neglect models that verify the sentence by virtue of an empty configuration (zero-models)

 Tendency to neglect zero-models follows from the difficulty of the cognitive operation of evaluating truths with respect to empty witness sets [Nieder 2016; Bott et al, 2019²]

¹ Johnson-Laird (1983) Mental Models. Cambridge University Press.

²Bott, O., Schlotterbeck, F. & Klein U. 2019. Empty-set effects in quantifier interpretation. Journal of Semantics, 36, 99-163.

Novel hypothesis: neglect-zero

Illustration

- (6) Every square is black.
 - a. Verifier: [■, ■, ■]
 - b. Falsifier: $[\blacksquare, \square, \blacksquare]$
 - c. Zero-models: $[\triangle, \triangle, \triangle]$; $[\blacktriangle, \blacktriangle, \blacktriangle]$; . . .

Zero-models in (6-c) verify the sentence by virtue of an empty set of squares

- (7) Less than three squares are black.
 - a. Verifier: [■, □, ■]
 - b. Falsifier: $[\blacksquare, \blacksquare, \blacksquare]$
 - c. Zero-models: $[\Box, \overline{\Box}, \Box]$; $[\blacksquare, \blacksquare, \blacksquare]$; $[\triangle, \triangle, \triangle]$; $[\blacktriangle, \blacktriangle, \blacktriangle]$; ...

Zero-models in (7-c) verify the sentence by virtue of an empty set of black squares

- Cognitive difficulty of zero-models confirmed by experimental findings and connected to / can be argued to explain:
 - the special status of 0 among the natural numbers [Nieder, 2016]
 - why downward-monotonic quantifiers are more costly to process than upward-monotonic ones (*less* vs *more*) [Bott, Schlotterbeck *et al*, 2019]
 - Existential Import (every A is B ⇒ some A is B) & Aristotle's Thesis (NEVER: if not A, then A)
- Core idea: FC, ignorance and other enriched interpretations prominently explained by neo-Gricean or grammatical tools, are instead a consequence of a neglect-zero tendency

Neglect-zero BSML Disjunction Quantifiers Conclusions Appendix Comparison via translations in IML

Novel hypothesis: neglect-zero effects on disjunction

Illustrations

- (8) It is raining.
 - a. Verifier: [/////////] b. Falsifier: [禁禁]
 - c. Zero-models: none
- (9) It is snowing.
- a. Verifier: [****]
 - b. Falsifier: [🌣 🌣]; [///////]; ...
- (10) It is raining or snowing.
 - a. Verifier: [//////// | ****]
 - b. Falsifier: [英英文]
 - c. **Zero-models**: [////////]; [***]
 - Two zero-models in (10-c): verify the sentence by virtue of an empty witness for one of the disjuncts;
 - Neglect-zero hypothesis: ignorance and FC effects arise because such zero-models, where only one of the disjuncts is depicted, are cognitively taxing and therefore kept out of consideration;
 - Split state in (10-a): simultaneously entertains different (possibly conflicting) alternatives.

← "split" state

A closer look at the disjunctive case

(11) It is raining or snowing.

a. Verifier: [///////// | ****]

b. Falsifier: [🌣 🌣 🔭]

c. **Zero-models**: [///////]; [****]

Split states: multiple alternatives processed in a parallel fashion
 → also a cognitively taxing operation (increased working memory load)

NO-SPLIT CONJECTURE [Klochowicz, Sbardolini & MA, SuB 2025] the ability to split states (entertain multiple alternatives) is developed late

- Combination of neglect-zero + no-split can explain non-classical inferences observed in pre-school children [Singh et al 2016; Cochard 2023; Bleotu et al 2024]
 - (12) The boy is holding an apple or a banana = The boy is holding an apple and a banana $(\alpha \vee \beta) \equiv (\alpha \wedge \beta)$
 - (13) The boy is not holding an apple or a banana = The boy is neither holding an apple nor a banana $\neg(\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta$
 - (14) Liz can buy a croissant or a donut = Liz can buy a croissant and a donut $\Diamond(\alpha \lor \beta) \equiv \Diamond(\alpha \land \beta)$

Cognitive bias approach

Common assumption: Reasoning and understanding of natural language involve the creation of mental models

- Understanding a sentence means being able to mentally construct a model picturing the world which verifies the sentence, and possibly also a model which falsifies it
- Reasoning depends on two main processes: first we construct verifying models for the premises and then the validity of the conclusion is checked on these models

Novel hypothesis: biases can constrain the construction of these models and therefore impact both reasoning and interpretations:

- Neglect-zero prevents the constructions of zero-models;
- No-split expresses a dispreference for split-states.

Comparison with competing accounts³

	Ignorance	FC interence	Scalar implicature	Conjunctive or
Neo-Gricean	reasoning	reasoning	reasoning	_
Grammatical view	debated	grammatical	grammatical	grammatical
Cognitive bias	neglect-zero	neglect-zero	_	negl-z + no-split

Recent experiments

- Degano, Romoli et al, NLS, 2025: Neo-Gricean on ignorance inference
- Klochowicz, Schlotterbeck et al (SuB 24, CogSci 2025, SuB 2025, XPrag 2025):
 Nihil vs competitors on disjunction & quantifiers
- Bleotu et al: on conjunctive or

³Neo-Gricean: Horn, Soames, Sauerland, ... Grammatical view: Chierchia, Fox, Singh et al, ...

Modelling cognitive biases in a team semantics

 Natural language sentences translated into formulas of a classical logic interpreted in a team semantics where also biases can be modeled

Team semantics

- Formulas interpreted wrt a set of points of evaluation (a team) rather than single ones
 [Hodges 1997; Väänänen 2007]
 - Classical modal logic:

$$[M = \langle W, R, V \rangle]$$

$$M, w \models \phi$$
, where $w \in W$

Team-based modal logic:

$$M, t \models \phi$$
, where $t \subseteq W$

- Two crucial features
 - The empty set is among the possible teams: $\emptyset \subseteq W$
 - Multi-membered teams can model split states

Neglect-zero & no-split tendencies

 Neglect-zero modelled via non-emptiness atom NE which disallows empty teams as possible verifiers

$$M, t \models \text{NE iff } t \neq \emptyset$$

 No-split modelled via flattening operator F which induces pointwise evaluations and therefore avoids simultaneous processing of alternatives

$$M, t \models F\phi$$
 iff for all $w \in t : M, \{w\} \models \phi$

BSML: Classical Modal Logic + NE

Language

Neglect-zero

$$\phi := p \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \Diamond \phi \mid \text{NE}$$

Bilateral team semantics

Given a Kripke model $M = \langle W, R, V \rangle$ & states $s, t, t' \subseteq W$

$$M, s \models p$$
 iff for all $w \in s : V(w, p) = 1$

$$M, s = p$$
 iff for all $w \in s : V(w, p) = 0$

$$M, s \models \neg \phi$$
 iff $M, s \models \phi$

$$M, s = \neg \phi$$
 iff $M, s \models \phi$

$$M, s \models \phi \lor \psi$$
 iff there are $t, t' : t \cup t' = s \& M, t \models \phi \& M, t' \models \psi$

$$M, s = \phi \lor \psi$$
 iff $M, s = \phi \& M, s = \psi$

$$M, s \models \phi \land \psi$$
 iff $M, s \models \phi \& M, s \models \psi$

$$\mathit{M}, s = \phi \land \psi$$
 iff there are $t, t' : t \cup t' = s \& \mathit{M}, t = \phi \& \mathit{M}, t' = \psi$

$$M, s \models \Diamond \phi$$
 iff for all $w \in s : \exists t \subseteq R[w] : t \neq \emptyset \& M, t \models \phi$

$$M, s \Rightarrow \Diamond \phi$$
 iff for all $w \in s : M, R[w] \Rightarrow \phi$ [where $R[w] = \{v \in W \mid wRv\}$]

$$M, s \models \text{NE} \quad \text{iff} \quad s \neq \emptyset$$

$$M, s =$$
 NE iff $s = \emptyset$

Entailment:
$$\phi_1, \ldots, \phi_n \models \psi$$
 iff for all M, s : $M, s \models \phi_1, \ldots, M, s \models \phi_n \Rightarrow M, s \models \psi$

Proof Theory: Anttila et al (2024); Expressive completeness: Anttila & Knudstorp (2025);

Neglect-zero effects in BSML: split disjunction

 A state s supports a disjunction (α ∨ β) iff s is the union of two substates, each supporting one of the disjuncts

Figure: Models for $(a \lor b)$.

- $\{w_a\}$ verifies $(a \lor b)$ by virtue of an empty witness for the second disjunct, $\{w_a\} = \{w_a\} \cup \emptyset \& M, \emptyset \models b$ $[\mapsto zero-model]$
- Main idea: define neglect-zero enrichments, []⁺, whose core effect is to rule out such zero-models
- Implementation: []⁺ defined using NE ($s \models \text{NE} \text{ iff } s \neq \emptyset$), which models neglect-zero in the logic

BSML: neglect-zero enrichment

Non-emptiness

 $\ensuremath{\mathrm{NE}}$ is supported in a state if and only if the state is not empty

$$M, s \models \text{NE}$$
 iff $s \neq \emptyset$
 $M, s \models \text{NE}$ iff $s = \emptyset$

Neglect-zero enrichment

For NE-free α , $[\alpha]^+$ defined as follows:

$$[p]^{+} = p \wedge NE$$

$$[\neg \alpha]^{+} = \neg[\alpha]^{+} \wedge NE$$

$$[\alpha \vee \beta]^{+} = ([\alpha]^{+} \vee [\beta]^{+}) \wedge NE$$

$$[\alpha \wedge \beta]^{+} = ([\alpha]^{+} \wedge [\beta]^{+}) \wedge NE$$

$$[\lozenge \alpha]^{+} = \lozenge[\alpha]^{+} \wedge NE$$

 $[\]^+$ enriches formulas with the requirement to satisfy ${\rm NE}$ distributed along each of their subformulas

Neglect-zero effects in BSML: enriched disjunction

s supports an **enriched disjunction** $[\alpha \vee \beta]^+$ iff s is the union of two non-empty substates, each supporting one of the disjuncts

$$[\alpha \vee \beta]^+ = (\alpha \wedge NE) \vee (\beta \wedge NE) \wedge NE$$

- An enriched disjunction requires both disjuncts to be live possibilities
 - (15)It is raining or snowing \rightsquigarrow_{nz} It might be raining and it might be snowing $[\alpha \vee \beta]^+ \models \Diamond_e \alpha \wedge \Diamond_e \beta$ (where R is state-based)

Formal characterization of neglect-zero effects

 $\alpha \leadsto_{nz} \beta$ (β is a neglect-zero effect of α) iff $\alpha \not\models \beta$ but $[\alpha]^+ \models \beta$

Neglect-zero effects in BSML: main results

 In BSML []⁺-enrichment has non-trivial effect only when applied to positive disjunctions⁴

→ we derive FC and related effects (for enriched formulas);

→ []⁺-enrichment vacuous under single negation.

After enrichment

- We derive both wide and narrow scope FC inferences:
 - Narrow scope FC: $[\lozenge(\alpha \lor \beta)]^+ \models \lozenge \alpha \land \lozenge \beta$
 - Double negation FC: $[\neg\neg\Diamond(\alpha\vee\beta)]^+\models\Diamond\alpha\wedge\Diamond\beta$
 - Wide scope FC: $[\lozenge \alpha \lor \lozenge \beta]^+ \models \lozenge \alpha \land \lozenge \beta$ (if R is indisputable) • Modal disjunction: $[\alpha \lor \beta]^+ \models \lozenge_e \alpha \land \lozenge_e \beta$ (if R is state-based)
- while no undesirable side effects obtain with other configurations:
 - Dual prohibition: $[\neg \diamondsuit (\alpha \lor \beta)]^+ \models \neg \diamondsuit \alpha \land \neg \diamondsuit \beta$

Before enrichment

• The NE-free fragment of BSML is equivalent to classical modal logic (ML):

$$\alpha \models_{BSML} \beta \text{ iff } \alpha \models_{ML} \beta \text{ [if } \alpha, \beta \text{ are NE-free]}$$

[if
$$\alpha$$
 is NE-free: $M, s \models \alpha$ iff for all $w \in s : M, \{w\} \models \alpha$]

- But we can capture the infelicity of epistemic contradictions [Yalcin, 2007] by putting team-based constraints on the accessibility relation:
 - **1** Epistemic contradiction: $\Diamond_e \alpha \land \neg \alpha \models \bot$ (if R is state-based)
- 2 Non-factivity: $\diamondsuit_e \alpha \not\models \alpha$

Neglect-zero BSML Disjunction Quantifiers Conclusions Appendix Comparison via translations in IML

Formal characterization zero and no-zero models

(M, s) is a zero-model for α iff $M, s \models \alpha$, but $M, s \not\models [\alpha]^+$ (M, s) is a no-zero verifier for α iff $M, s \models [\alpha]^+$

Many no-zero verifiers for enriched disjunction

Figure: Models for enriched $[a \lor b]^+$.

- Neglect-zero enrichment does not derive scalar implicatures;
- ② Neglect-zero enrichment does not derives uncertain inferences → in contrast to standard neo-Gricean approach to ignorance
- No-split verifiers compatible with neglect-zero enrichments
 - No-split conjecture: only no-split verifiers accessible to 'conjunctive' pre-school children. [Klochowicz, Sbardolini, MA. SuB, 2025]

Neglect-zero effects in BSML: possibility vs uncertainty

More no-zero verifiers for $a \lor b$:

- Two components of full ignorance ('speaker doesn't know which'):5
 - It is raining or it is snowing $(\alpha \vee \beta) \rightsquigarrow$ (16)
 - Uncertainty: $\neg \Box_e \alpha \wedge \neg \Box_e \beta$
 - Possibility: $\Diamond_{\alpha} \alpha \wedge \Diamond_{\alpha} \beta$

(equiv $\neg \Box_e \neg \alpha \land \neg \Box_e \neg \beta$)

- Fact: Only possibility derived as neglect-zero effect:
 - $[a \lor b]^+ \models \Diamond_e a \land \Diamond_e b$, but $[a \lor b]^+ \not\models \neg \Box_e a \land \neg \Box_e b$ (*R* is state-based)
 - $\{w_{ab}, w_a\} \models [a \lor b]^+$, but $\not\models \neg \Box_e a$
 - $\{w_{ab}\} \models [a \lor b]^+$, but $\not\models \neg \Box_e a$; $\not\models \neg \Box_e b$

⁵Degano, Marty, Ramotowska, MA, Breheny, Romoli, Sudo. Nat Lang Sem, 2025.

Standard neo-Gricean derivation

Two derivations of full ignorance

(i) Uncertainty derived through quantity reasoning

[Sauerland 2004]

- (17) $\alpha \vee \beta$ ASSERTION
- $(18) \qquad \neg \Box_e \alpha \wedge \neg \Box_e \beta$ UNCERTAINTY (from QUANTITY)
- (ii) Possibility derived from uncertainty and quality about assertion
- (19) $\Box_e(\alpha \vee \beta)$ QUALITY ABOUT ASSERTION
- $(20) \Rightarrow \Diamond_e \alpha \wedge \Diamond_e \beta$ POSSIBILITY
- Neglect-zero derivation
 - (i) Possibility derived as neglect-zero effect
 - (21) $\alpha \vee \beta$ ASSERTION
 - (22) $\Diamond_e \alpha \wedge \Diamond_e \beta$ POSSIBILITY (from NEGLECT-ZERO)
 - (ii) Uncertainty derived from possibility and scalar reasoning
 - (23) $\neg(\alpha \land \beta)$ SCALAR IMPLICATURE
 - $(24) \Rightarrow \neg \Box_e \alpha \wedge \neg \Box_e \beta$

Neo-Gricean vs neglect-zero explanation

Contrasting predictions of competing accounts of ignorance

- Neo-Gricean: No possibility without uncertainty
- Neglect-zero: Possibility derived independently from uncertainty

Experimental findings

[Degano, Romoli et al 2025]

- Using adapted mystery box paradigm, compared conditions in which
 - both uncertainty and possibility are false [zero-model]
 - uncertainty false but possibility true [no-zero, no-uncertain model]
- Less acceptance when possibility is false (95% vs 44%)
- ⇒ Evidence that possibility can arise without uncertainty
 - A challenge for the traditional neo-Gricean approach

Figure: Models for $(a \lor b)$

Neglect-zero effects on quantifiers

- So far focus on disjunction (propositional BSML)
- Next: neglect-zero effects on quantifiers (first order qBSML[→])⁶
- Same methodology (summarized below) but now we work with a first order language and teams are defined as sets of world-assignment pairs
 - $M, s \models \varphi \rightarrow \psi$ iff there is $t \subseteq s : M, t \models \varphi$ & for all $t \subseteq s : M, t \models \phi \Rightarrow M, t \models \psi$ [Priest 1999] • $M, s \models \phi \rightarrow \psi$ iff for all $w \in s : M, \{w\} \models \phi \& M, \{w\} \not\models \psi$

Summary neglect-zero effects in team semantics

- ullet Natural language sentences translated into classical logic formulas lpha
- Logical language interpreted in a team semantics where we can model neglect-zero (via NE)

 α : literal meaning $[\alpha]^+$: neglect-zero enriched meaning

- Formal characterisation of zero-models and neglect-zero effects:
 - A zero-model for α is one which verifies α but does not verify $[\alpha]^+$

$$(M, t)$$
 zero-model for α iff $M, t \models \alpha$ but $M, t \not\models [\alpha]^+$

• β is a neglect-zero effect of α iff β follows only if we rule out possible zero-models of α :

$$\alpha \leadsto_{nz} \beta \text{ iff } \alpha \not\models \beta \text{ but } [\alpha]^+ \models \beta$$

 $^{^6} MA \ \& \ vOrmondt, \ Modified \ numerals \ and \ split \ disjunction. \ \textit{J of Log Lang and Inf} \ (2023)$

Predictions of qBSML[→]

- (25) Less than three squares are black $\mapsto \forall xyz((Sx \land Bx \land ...) \rightarrow (x = y \lor ...))$
 - a. Verifier: $[\blacksquare, \square, \blacksquare]$
 - b. Falsifier: $[\blacksquare, \blacksquare, \blacksquare]$
 - c. Zero-models: $[\Box, \Box, \Box]$; $[\blacktriangle, \blacktriangle, \blacktriangle]$; ... \leadsto_{nz} there are black squares
- (26) Every square is black. $\mapsto \forall x(Sx \to Bx)$
 - a. Verifier: [■, ■, ■]
 - b. Falsifier: $[\blacksquare, \square, \blacksquare]$
 - c. Zero-models: $[\triangle, \triangle, \triangle]$; $[\blacktriangle, \blacktriangle, \blacktriangle]$; ... \leadsto_{nz} there are squares
- (27) No squares are black. \mapsto (i) $\forall x(Sx \rightarrow \neg Bx)$; (ii) $\neg \exists x(Sx \land Bx)$
 - a. Verifier: $[\Box, \Box, \Box]$
 - b. Falsifier: $[\blacksquare, \square, \square]$
 - c. Zero-models for (i): $[\triangle, \triangle, \triangle]$; $[\blacktriangle, \blacktriangle, \blacktriangle]$; ... \leadsto_{nz} there are squares d. Zero-models for (ii): none no neglect-zero effect
- (28) Every square is red or white. $\mapsto \forall x (Sx \to (Rx \lor Wx))$
 - Every square is red or white
 - a. Verifier: [■, □, ■] b. Falsifier: [■, □, ■]
 - c. Zero-models: $[\blacksquare, \blacksquare, \blacksquare]$; $[\Box, \Box, \Box]$; ... \leadsto_{nz} there are white & red squares

These predictions tested in Bott, Klochowicz, Schlotterbeck et al (2024, 2025)

Experimenting with quantifiers and disjunction

Four non-classical interpretations

- (29) a. Some of the squares are black \Rightarrow not all of the squares are black [UB]
 - b. Each square is red or white ⇒ there are white squares and red squares [DIST]
 - c. Less than 3 squares are black \Rightarrow there are some black squares [ES-scope]
 - d. Less than 3/every/no squares are black ⇒ there are some squares [ES-restrictor]

Three competing accounts

	l or	DIST	ES-scope	ES-restrictor
Alternative-based	implicature	implicature	implicature	implicature
Bott et al, 2019	_	_	neglect-zero	presupposition
Nihil	_	neglect-zero	neglect-zero	neglect-zero

Two experiments

- Exp 1: Answering questions about the emptyset (O. Bott et al, SuB 2024)
- Exp 2: Priming with zero-models (Klochowicz, Schlotterbeck et al, CogSci 2025, SuB 2025)

Three main conclusions

- 1 Evidence that ES-restrictor is a presupposition (Exp 1)
- 2 Evidence that UB differs from both ES-scope and DIST (Exp1 and Exp2)
- Some evidence that ES-scope and DIST involve the same cognitive process (Exp 2)

Conclusions

• FC, possibility, ES, DIST: a mismatch between logic and language

- Grice's insight:
 - stronger meanings can be derived paying more "attention to the nature and importance to the conditions governing conversation"
- Nihil proposal: some non-classical inferences due to cognitive bias rather than Gricean reasonings
 - FC, possibility, ES, DIST and related inferences as neglect-zero effects

Literal meanings (classical fragment) + cognitive factor (NE) \Rightarrow FC, possibility, ES-scope, DIST, etc

Conjunctive or as no-zero + no-split effect

Literal meanings (classical fragment) + cognitive factors (NE, F) \Rightarrow conjunctive or

- Implementation in (extensions of) BSML, a team-based modal logic
- Recent experiments provide some evidence in agreement with the neglect-zero hypothesis, but much more needed

Collaborators & related (future) research

Logic

Proof theory (<u>Anttila, Yang</u>); expressive completeness (<u>Anttila, Knudstorp</u>); bimodal perspective (<u>Knudstorp, Baltag, van Benthem, Bezhanishvili</u>); qBSML (<u>van Ormondt</u>); BiUS & qBiUS (<u>MA</u>); typed BSML (<u>Muskens</u>); connexive logic (<u>Knudstorp, Ziegler & MA</u>); belief revision (<u>Klochowicz</u>) . . .

Language

FC cancellations (Pinton, Hui); modified numerals (vOrmondt); attitude verbs (Yan); conditionals (Flachs, Ziegler); questions (Klochowicz); quantifiers (Klochowicz, Bott, Schlotterbeck); indefinites (Degano); homogeneity (Sbardolini); acquisition (Klochowicz, Sbardolini); experiments (Degano, Klochowicz, Ramotowska, Bott, Schlotterbeck, Marty, Breheny, Romoli, Sudo, Szymanik, Visser); . . .

THANK YOU!7

 $^{^7 \}text{This}$ work was supported by NWO OC project *Nothing is Logical* (grant no 406.21.CTW.023).

BSML & related systems: information states vs possible worlds

Failure of bivalence in BSML

$$M, s \not\models p \& M, s \not\models \neg p$$
, for some info state s

- Info states: less determinate than possible worlds
 - just like truthmakers, situations, possibilities, . . .
- Technically:
 - Truthmakers/possibilities: points in a partially ordered set
 - Info states: sets of possible worlds, also elements of a partially ordered set, the Boolean lattice Pow(W)
- Thus systems using these structures are closely connected, although might diverge in motivation:
 - Truthmaker & possibility semantics: description of ontological structures in the world
 - BSML & inquisitive semantics: explaining patterns in inferential & communicative human activities
- Next:
 - Comparison via translations in Modal Information Logic [vBenthem19]

Neglect-zero

Comparison via translations in IML

- Modal Information Logic (MIL) (van Benthem, 1989, 2019):⁸
 common ground where related systems can be interpreted and their connections and differences can be explored
- Goal: translations into MIL of the following systems:
 - BSML
 - Truthmaker semantics (Fine)
 - Possibility semantics (Humberstone, Holliday)
 - Inquisitive semantics (Ciardelli, Groenendijk & Roelofsen)

(cf. Gödel's (1933) translation of intuitionistic logic into modal logic)

- Here focus on propositional fragments
 - disjunction
 - negation
- (Based on work in progress with Søren B. Knudstorp, Nick Bezhanishvili, Johan van Benthem and Alexandru Baltag)

 $^{^8}$ Johan van Benthem (2019) Implicit and Explicit Stances in Logic, *Journal of Philosophical Logic*.

Modal Information Logic (MIL)

Language

$$\phi ::= p \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \langle sup \rangle \phi \psi$$

where $p \in A$.

Models and interpretation

Formulas are interpreted on triples $M = (X, \leq, V)$ where \leq is a partial order

Modal Information Logic (MIL)

Examples

Neglect-zero

Comparison via translations in IML

Possibility semantics (Humberstone, Holliday)⁹

$$\begin{array}{rcl} & \vdots \\ tr(\neg\phi) & = & [\leq]\neg tr(\phi) \\ tr(\phi \land \psi) & = & tr(\phi) \land tr(\psi) \\ tr(\phi \lor \psi) & = & [\leq] \langle \leq \rangle (tr(\phi) \lor tr(\psi)) \\ \vdots & \vdots & \end{array}$$

Inquisitive semantics (Groenendijk, Roelofsen and Ciardelli)

$$tr(\neg \phi) = [\leq] \neg tr(\phi)$$

$$tr(\phi \land \psi) = tr(\phi) \land tr(\psi)$$

$$tr(\phi \lor \psi) = tr(\phi) \lor tr(\psi)$$

$$\vdots$$

⁹ Johan van Benthem, Nick Bezhanishvili, Wesley H. Holliday, A bimodal perspective on possibility semantics, *Journal of Logic and Computation*, Volume 27, Issue 5, July 2017, Pages 1353–1389.

Translations into Modal Information Logic

Neglect-zero

• Truthmaker semantics (Fine): \leq is "part of" relation 10

$$\begin{array}{rcl} (\neg \phi)^{+} & = & (\phi)^{-} \\ (\neg \phi)^{-} & = & (\phi)^{+} \\ (\phi \lor \psi)^{+} & = & (\phi)^{+} \lor (\psi)^{+} \\ (\phi \lor \psi)^{-} & = & \langle \sup \rangle (\phi)^{-} (\psi)^{-} \\ (\phi \land \psi)^{+} & = & \langle \sup \rangle (\phi)^{+} (\psi)^{+} \\ (\phi \land \psi)^{-} & = & (\phi)^{-} \lor (\psi)^{-} \end{array}$$

• BSML: \leq is subset relation \subseteq , ...

$$(\neg \phi)^{+} = (\phi)^{-}$$

$$(\neg \phi)^{-} = (\phi)^{+}$$

$$(\phi \lor \psi)^{+} = \langle \sup \rangle (\phi)^{+} (\psi)^{+}$$

$$(\phi \lor \psi)^{-} = (\phi)^{-} \land (\psi)^{-}$$

$$(\phi \land \psi)^{+} = (\phi)^{+} \land (\psi)^{+}$$

$$(\phi \land \psi)^{-} = \langle \sup \rangle (\phi)^{-} (\psi)^{-}$$

Goal: with 0 (classical modal logic);¹¹ without 0 (BSML*).

. . .

¹⁰van Benthem, Implicit and Explicit Stances in Logic, *Journal of Philosophical Logic* (2019).

¹¹Humberstone, Operational Semantics for Positive R. *Notre Dame J of Form Log* (1988).

Disjunction and Negation

- Three notions of disjunction expressible in MIL:
 - Boolean disjunction: $\phi \lor \psi$ [classical logic, intuitionistic logic, inquisitive logic]
 - Lifted/tensor/split disjunction: $\langle sup \rangle \phi \psi$ [BSML, dependence logic, team semantics, operational semantics for Positive R]
 - Cofinal disjunction: $[co](\phi \lor \psi)$ (where $[co]\phi =: \le\phi$) [possibility semantics, dynamic semantics]
- Three notions of negation:
 - Boolean negation: ¬φ
 [classical logic, . . .]
 - Bilateral negation: $(\neg \phi)^+ = (\phi)^- \& (\neg \phi)^- = (\phi)^+$ [truthmaker semantics, BSML, . . .]
 - Intuitionistic-like negation: $[\leq] \neg \phi$ [possibility semantics, inquisitive semantics, intuitionistic logic]
- Some combinations:
 - Boolean disjunction + boolean negation → classical logic
 - Boolean notions in other combinations can generate non-classicality:
 - Boolean disjunction + intuitionistic negation → intuitionistic logic
 - Classicality also generated by non-boolean combinations:
 - Split disjunction + bilateral negation (classical fragm. BSML)

Neglect-zero BSML Disjunction Quantifiers Conclusions Appendix Comparison via translations in IML

Experimenting with quantifiers and disjunction

Non-classical interpretations

- (30) a. Some of the squares are black ⇒ not all of the squares are black [UB]
 b. Each square is red or white ⇒ there are white squares and red squares [DIST]
 c. Less than 3 squares are black ⇒ there are some black squares [ES-scope]
 - c. Less than 3 squares are black ⇒ there are some black squares
 d. Less than 3/every/no squares are black ⇒ there are some squares
 [ES-restrictor]

Exp1: Bott et al, SuB 2024

- Question-answer task:
 - (31) Ist jedes Dreieck entweder rot oder blau? Ja/Nein/Komische Frage (Is every triangle either red or blue?) Yes/No/Odd question

- Main results:
 - 1 Evidence that ES-restrictor is a presupposition: questions in empty restrictor models uniformly perceived as odd
 - ES-scope (37%) and DIST (23%) unaffected by question environment; UB much less available (10%, while 40% when unembedded)
 - 3 Inconclusive evidence on whether ES-scope and DIST had the same source

Experimenting with quantifiers and disjunction

Non-classical interpretations

(32)	a.	Some of the squares are black \Rightarrow not all of the squares are black	[UB]
	b.	Each square is red or white \Rightarrow there are white and red squares	[DIST]
	c.	At most 2 squares are black \Rightarrow there are some black squares	[ES-scope, sup]
	٨	Less than 3 squares are black - there are some black squares	IES scope comp

Three competing accounts

	UB	ו פוט	E5-scope	E5-restrictor
Alternative-based	implicature	implicature	implicature	implicature
Bott et al 2019	_	_	neglect-zero	presupposition
Nihil	_	neglect-zero	neglect-zero	neglect-zero

Exp2: Klochowicz, Schlotterbeck et al, CogSci 2025, SuB 2025

- Tested whether frequency of strengthening in (32-d) changed after participants were primed to suspend other strengthenings in (32-a-c).
- Results:
 - 1 Semantic priming between DIST and ES-scope
 - No priming between UB and ES-scope
 - No trial-to-trial priming from ES-scope (sup) to ES-scope (com) but spill-over and adaptation effects

qBSML: Quantified Modal Logic + NE

Language:

t := c | v

$$\phi ::= \overset{\cdot}{P}{}^{n}(\vec{t}) \mid \neg \phi \mid \phi \lor \psi \mid \phi \land \psi \mid \exists v \phi \mid \forall v \phi \mid \Box \phi \mid \text{NE}$$

Model:

$$\mathcal{M} = \langle W, D, R, I \rangle$$

Information State:

A state is set of indices $i = \langle w_i, g_i \rangle$, where $w_i \in W$ and g_i is a variable assignment function

Example of an information state

Empty assignment

A state with an empty assignment

What happens when a variable is added to such information state?

Operations on States

x-extension of an assignment:

$$g[x/d] := (g \setminus \{\langle x, g(x) \rangle\}) \cup \{\langle x, d \rangle\}$$

Individual x-extension of an index:

$$i[x/d] := \langle w_i, g_i[x/d] \rangle$$

Individual x-extension of a state:

$$s[x/d] := \{i[x/d]|i \in s\}$$

Individual x-extension

Operations on States

Universal x-extension:

$$s[x] := \{i[x/d] | i \in s \& d \in D\}$$

Universal x-extension

Assume $D = \{a, b\}$

Operations on States

Functional *x*-extension:

$$s[x/h] := \{i[x/d] | i \in s \& d \in h(i)\}$$
$$h : s \mapsto \wp(D) \setminus \varnothing$$

Functional x-extension

Semantic Clauses

Neglect-zero

```
\mathcal{M}, s \models P^n t_1 \dots t_n iff \forall i \in s : \langle [t_1]_{\mathcal{M}, i}, \dots, [t_n]_{\mathcal{M}, i} \rangle \in I(w_i)(P^n)
\mathcal{M}, s = P^n t_1 \dots t_n iff \forall i \in s : \langle [t_1]_{\mathcal{M}, i}, \dots, [t_n]_{\mathcal{M}, i} \rangle \notin I(w_i)(P^n)
\mathcal{M}, s \models \neg \varphi
                           iff \mathcal{M}, s = \varphi
\mathcal{M}, s = \neg \varphi iff \mathcal{M}, s \models \varphi
\mathcal{M}, s \models \varphi \lor \psi iff \exists t, t' : t \cup t' = s and \mathcal{M}, t \models \varphi and \mathcal{M}, t' \models \psi
\mathcal{M}, s = \varphi \vee \psi iff \mathcal{M}, s = \varphi and \mathcal{M}, s = \psi
\mathcal{M}, s \models \varphi \land \psi iff \mathcal{M}, s \models \varphi and \mathcal{M}, s \models \psi
                                       iff \exists t, t' : t \cup t' = s and \mathcal{M}, t = \varphi and \mathcal{M}, t' = \psi
\mathcal{M}, s = \varphi \wedge \psi
\mathcal{M}, s \models \Box \varphi
                                       iff \forall i \in s : \mathcal{M}, R(w_i)[g_i] \models \varphi
\mathcal{M}, s \equiv \Box \varphi
                                       iff \forall i \in s : \exists X \subseteq R(w_i) \text{ and } X \neq \emptyset \text{ and } \mathcal{M}, X[g_i] = \varphi
\mathcal{M}, s \models \mathbb{NE}
                                       iff s \neq \emptyset
                                                                                        [X[g_i] = \{\langle w, g_i \rangle \mid w \in X\}]
\mathcal{M}, s = \mathbb{NE}
                                       iff s = \emptyset  [R(w_i) = \{v \in W \mid w_i R v\}]
\mathcal{M}, s \models \forall x \varphi
                                       iff \mathcal{M}, s[x] \models \varphi
                                       iff \mathcal{M}, s[x/h] = \varphi, for some h: s \to \wp(D) \setminus \varnothing
\mathcal{M}, s = \forall x \varphi
\mathcal{M}, s \models \exists x \varphi
                                       iff \mathcal{M}, s[x/h] \models \varphi, for some h: s \to \wp(D) \setminus \varnothing
\mathcal{M}, s = \exists x \varphi
                                       iff \mathcal{M}, s[x] = \varphi
```