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About this lecture

Computational complexity
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About this lecture

Parameterized complexity
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Computationally hard problems

IcE CREAM SHOP PROBLEM
Every street should be covered by an ice cream shop.
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Computationally hard problems

ICE CREAM SHOP PROBLEM
Every street should be covered by an ice cream shop

Trying all possible subsets (of size 0,1,2,...,n) of n vertices:

2" possibilities.
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(Too) many possibilities

n \ 2" running time (10° ops./s) ‘
2 4 0,004 s

10 | 1024 1 s

50 | ~ 101® ~ 11,5 days

70 | ~ 1071 ~ 37.500 years

100 | ~ 103 ~ 3103 years
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Computationally hard problems

ICE CREAM SHOP PROBLEM
Every street should be covered by an ice cream shop

is

VERTEX COVER
Every edge of the given graph should be covered by a vertex

NP-hard problem

Only algorithms with exponential running time known to solve it
exactly.
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Computational complexity of a problem
Running time T(n) of an algorithm A: maximal number of
computational steps performed by A on any input of length n,
e.g. 2n, n3, n(n+1),2" nl,...

Problem tractable (“easy”) Problem intractable ( “hard")

T(n) is a polynomial of n strong evidence that there is no A
that solves it in polynomial time

Complexity class P NP-hard problems
(class NP: given solution can be
checked in polynomial time)

@
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Running times (10° ops/s)

n—=
n=10
n=>50
n =100

|

polynomial n?

|

’ n? ‘ time ‘
4| 0,004 us
100 0,1 us
2 500 2,5 us
10 000 | 0,01 ms

Running times

|

exponential 2"

’ 2" ‘ time
4 0,004 us
1024 1 us
10%° ~ 11,5 days
1030 | ~ 3-10"3 years
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Computationally hard problems

Computational intractability

Strong evidence that NP-hard problems are not solvable in
polynomial time.

Essential strategy: brute force — try all possibilities.
Often:

O(2") (try all subsets of the set of size n)
O(n!) (try all possible orders of the n elements)
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Computationally hard problems

P vs. NP problem

L 4
L &
@S &S &

Millennium Prize Problem, US$1 million prize for proving P # NP

and US$7 million for proving P = NP (suffices to find a polynomial algorithm for one NP-hard problem)
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Computational complexity in COMSOC

Setting: group of agents has to make a common decision, e.g.

® determine a winning alternative

® find a fair allocation

w

® build coalitions, match persons with tasks, ...

How to solve these problems?
— social choice
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Computational complexity in COMSOC

How hard is it to solve these problems?
— computational complexity

e “easy”: find efficient algorithms to solve them (P)

greedy algorithm; flow network; compare with known “easy” problem;

® “hard”: understand that it is hard to solve them, no hope for
fast solution in general (NP-hardness)

polynomial time reduction to show that the problem is at least as hard as known “hard” problem

SAT, Exact COVER WITH 3-SETS, CLIQUE, ...

Many examples: List of theses in COMSOC
A gentle introduction:

@ Piotr Faliszewski, Lane A. Hemaspaandra, Edith Hemaspaandra How Hard Is Bribery in Elections?, Journal
of Al Research, 35, 485-532 (2009).
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https://research.illc.uva.nl/COMSOC/theses.html

- Hard problems in COMSOC
Hard problems
Examples:
® Winner determination for certain voting systems is NP-hard

® Determining whether a fair allocation exists can be NP-hard
(let alone finding it)

® Dishonest behavior can be NP-hard

Given: Set of votes, preferred outcome p

Question: How to change votes in order to obtain p?

(Strategic voting, bribery, controlling an election)
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Hard problems in COMSOC

® Complexity shield!

® Arrow'’s theorem: Basically no fair voting rules.
Gibbard-Satterthwaite theorem: basically every voting rule is
manipulable.
— Measure the quality of a voting rule in terms of how hard
it is to manipulate/bribe/control it!
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[I. Parameterized complexity
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How to deal with NP-hard problems?

identify easy special cases
approximation algorithms
randomization

parallel computing

exact exponential algorithms
heuristics

parameterized algorithms
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Motivation

NP-hard problems: combinatorial explosion of the running time.
BUT in some cases: explosion can be confined to a certain part of
the input (parameter, k)

g

Value of parameter small in certain settings: fast solution possible!
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Fixed-parameter tractability

Example: The ICE CREAM SHOP PROBLEM is in FPT
for k =+# shops
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Fixed-parameter tractability

Definition
A problem is called fixed-parameter tractable with respect to
parameter k, if instances of size n can be solved in

f(k) - poly(n) time (f — computable function).
complexity class: FPT
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QUIZ

Which of the following running times are FPT running times with
respect to k?

® O(2%- n?9) yes
@ O(?) yes

® O(2¢-2") no

O O(1.5% - n') yes
® O(1.5%.1.5") no
® O(n*) no

@ O(2") no

® O(2%- n¥) no

(0] O(n3222k) yes
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Fixed-parameter tractability

Parameter: part of the input

Parameters
® often: size of the solution set
® graph problems: degree, treewidth

® nice parameter: distance from tractable instance
(with desirable property)
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Why is this interesting for COMSOC?

1. Many natural parameters

® 4 candidates

® - votes

® # candidates with a special property
# objects
budget, costs, ...

® variety in voting profile/group

® nice parameter: distance from instance with desirable property
(single-peakedness of voting profile; stability of matching;
envy-freeness of allocation)
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Why is this interesting for COMSOC?

2. Complexity shield for dishonest behavior:

If hardness is a desirable property:
Make sure the problem really is hard!

(justify shield provided by NP-hardness or show it is only an
artificial barrier)

— Parameterized intractability theory
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lce cream, again

VERTEX COVER
Input: G = (V, E) undirected graph, k € N

Question: Is there a subset C C V of vertices, |C| < k,
such that every edge in E
has at least one endpoint in C?
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Data reduction and problem kernels
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Data reduction and problem kernels

Idea
Cut off easy parts of the problem in a polynomial time
preprocessing step — hard “kernel”
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Goal

End up with a problem kernel whose size depends only on
parameter (e.g., size k?), then brute force on this kernel
— FPT running time!
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Data reduction for VERTEX COVER
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Data reduction and problem kernels

Example: VERTEX COVER
Rule 1

Throw away isolated vertices.

Rule 2
Degree-1-vertex: Neighbour is at least as good = Put neighbour in
the vertex cover set and delete corresponding vertices and edges.

(OK as long as we are just interested in finding one vertex cover set, not all of them)
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Data reduction and problem kernels

Example: VERTEX COVER

Rule 3 (Buss)

Vertices of degree > k:
If a vertex v has more than k incident edges, it has to be part of

the vertex cover set

otherwise, we would have to take all its neighbours, and they are more than k!
® put vin VC
e delete v and all its incident edges from G

o set k) =k—1
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Problem kernel for VERTEX COVER

Theorem (Buss)

After applying Rules 1,2,3 exhaustively, the remaining graph either
consists of < k? + k vertices and k2 edges, or a vertex cover of
size k cannot exist for the original graph.
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Example from COMSOC: Kemeny ranking

Given: individual rankings over set of candidates:
vi:a>b>c>d
w:b>a>c>d
vi:b>c>a>d

Wanted: consensus ranking (minimizing Kendall-Tau-distance)

Count inversions (dirty pairs):
vi1 and vy: inversion a <> b, distance is 1
vi1 and v3: inversions a <+ b, a <> ¢, distance is 2

CONSENSUS RANKING
Given rankings and k € N, is there a ranking with total distance
< k from all rankings?

(Here: yes for k = 2: ranking b > a > ¢ > d)
NP-hard problem
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Example from COMSOC: Kemeny ranking

Given: individual rankings:
vi:a>b>c>d
wi:b>a>c>d
vii:b>c>a>d

Is there a consensus ranking with total distance < k from all
rankings?

Rule 1

Delete all candidates that are in no dirty pair.

here: candidate d.

After Rule 1: If there is a such a consensus, there must be < 2k
candidates.

Only dirty candidates remaining in reduced instance. More than 2k candidates = more than k dirty pairs.
For each pair, two possibilities to position candidate in consensus ranking, adding one inversion for each possibility,

but consensus has < k inversions.
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Example from COMSOC: Kemeny ranking

Is there a consensus ranking with distance < k from all rankings?

Rule 2

If there are more than k rankings identical (ranking r):

Choose r as consensus and check whether it has a total of < k
inversions with all other rankings.

If we do not choose r, then there is at least one inversion with each of the k identical rankings, distance > k
After Rule 1 and 2: At most 2k votes in a yes-instance.

Between two distinct rankings: distance > 1. At most k copies of each ranking = not more than 2k votes if

consensus has total distance < k.
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Example from COMSOC: Kemeny ranking

Result
After applying Rules 1 and 2 exhaustively, the remaining instance

either consists of < 2k candidates and < 2k votes, or a consensus
of distance < k cannot exist.

@ Nadja Betzler, Michael R. Fellows, Jiong Guo, Rolf Niedermeier, Frances A. Rosamond, Fixed-parameter
algorithms for Kemeny rankings, Theoretical Computer Science 410:45, 4554—-4570, 2009.
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More techniques to prove fixed-parameter
tractability

Depth-bounded search trees

Iterative compression
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Parameterized intractability

® FPT reduction

® Parameterized complexity classes
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Advanced techniques

® Approximation and parameterized algorithms

® Parameterized complexity for problems beyond NP
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Six years later

A Discrete and Bounded Envy-Free Cake Cutting Protocol
for Four Agents

Haris Aziz

Simon Mackenzwe

Data61 and UNSW

Sydney,

Australia

{haris.aziz, simon.mackenzie}@dataé1.csiro.au

ABSTRACT

We consider the well-studied eake cutting problem in which
the goal is to identify an envy-free allocation based on a min-
imal mumber of queries from the agents. The problem has
attracted considerable attention within various branches of
computer science, mathematics, and economics. Although
the elegant Selfridge-Conway envy-free protocol for three
agents has been known since 1960, it has been a major open
prablem to obtain a bounded envy-fiee protocol for more
than thres age problem has been termed the cen-
tral open problem in cake eutting. We solve this problem
by proposing a diserete and bounded envy-free protocol for
four agents.

problem of fairly dividing the cake is a fundamental one
within the area of fair division and multiagent resource al-
location [6, 17, 26, 29, 33, 35, 36

Formally speaking,

a cake is represented by an interval
[0,1] and each of th ts has a value function over
pieces of the cake < how much that agent val-
ues a particular subinterval. The main aim is to duuh the
cake fairly. In particular, an allocation should be envy-
so that no agent prefers to take another agent’s alloc: .uLmu
instead of his own allocation. Although an envy-free alloca-
tion is guaranteed to exist even with 1 — | cuts [35]', finding
an e free allocation is a challenging problem which has
been termed “one of the most .mpmuul o
20th century mathematics™ by G

en problems in
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Thank you!
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