Behavioral Social choice

Minicourse outline

- Class 1: A crash course in Behavioral Economics
- Class 2: Applying behavioral insights to social choice theory
- Class 3: Experiments in social choice

Disclaimer

Goal

- To know behavioral economics
- To know how human voters behave
- To know how to run experiments

Goal

- Toknow behavioraleconomies
- A glimpse to the immense literature on behavioral economics
- To know how humamvoters behave
- Understand how some behaviors can be modelled
-Toknow how to run experiments
- Understand some of the challenges and benefits of experiments

Class 1: A crash course in Behavioral Economics

The economic reasoning template

preference order

$$
L_{1}: c>b>a
$$

$$
L_{2}: b>c>a
$$

A voting rule is a game form:

g	a	b	c
a	a	a	a
b	a	b	b
c	a	b	c

$\langle g, \boldsymbol{L}\rangle$	\boldsymbol{a}	\boldsymbol{b}	c
\boldsymbol{a}	3,1	$\boxed{\mathbf{3}, \mathbf{1}}$	$\boxed{3,1}$
b	3,1	2,3	2,3
c	3,1	2,3	1,2

- Second book you should read if interested in strategic voting
- The Handbook is the first
- Links economic and computational approaches
- 80\% "rational behavior"
- We will touch some the other 20% in class 2

Strategic Voting

The economic reasoning template

Think fast:

Each hospital rings the bell every day there are $>60 \%$ girls among newborns

Our intuition

~10 births per day

~100 births per day

Reality

${ }^{\sim} 100$ births per day

~10 births per day

Availability heuristics

Much more available

Yak Like

X2 more frequent

Anchoring

- In the lack of valid cues, people use invalid cues

Problem!

- We can't even answer a simple question correctly
- How can we solve a complicated game?

The economic reasoning template

Bounded rationality

Limitations:

- Limited available information
- Limited representation
- Limited computation time
- Apply both for people and machines

Cognitive biases:

- Risk aversion
- Loss aversion
- Present-bias
- Altruism/spite
- Apply only to people ?

Background

1950's: Herbert Simon

"a kind of rational behavior that is compatible with the access to information and the computational capacities that are actually possessed ... in environments"
Agents use heuristics instead of optimal decision rules, Satisficing

1970's-1990's: Kahnemann and Tversky
A series of experiments show a wide range of behaviors that contradict rational decisions
List a number of "biases", suggest models to reconcile them

Other important figures:

- A. Rubinstein
- G. Gigerenzer
- M. Rabin
- D. Luce
- C. Camerer
- R. Thaler

Approaches to bounded rationality

Modifying the representation

- Simplified representation
- Biased/simplified utility function
- Suitable for capturing a wide range of biases
- Can still apply standard game theoretic tools like Nash equilibrium

Modifying the solution

- Relax assumptions on optimizing the utility
- Heuristic strategies
- Different types of equilibria
- Alternatives to equilibria

Utility modifications

Monetary payoffs

	v_{1}, v_{2}	C
C	8,16	
C	10,0	
D		0,20

- Observation: People often cooperate rather than defect
- $u_{i}(a)=v_{i}(a)+0.5 \cdot v_{-i}(a)$
- Result: Hadi?

Utility modifications

- The Dictator game
- Always better (for black) to go left
- Most people go right!
- Why?

Utility modifications

- The Dictator game
- Always better (for black) to go left
- Most people go right!
- Why?
- One explanation: "Social" utility
$u_{i}(a)=v_{i}(a)+\alpha_{i} \cdot v_{-i}(a)$

Utility modifications

- The Dictator game
- Always better (for black) to go left
- Most people go right!
- Why?
- One explanation: "Social" utility
$u_{i}(a)=v_{i}(a)+\alpha_{i} \cdot v_{-i}(a)$
700-250

- Another explanation: avoid inequality 200, 700
$u_{i}(a)=v_{i}(a)-\beta_{i} \cdot\left|v_{i}(a)-v_{-i}(a)\right|$

600, 600
$? \Omega$

Utility modifications

- What about now?

Utility modifications

- What about now?
- And now?
about a third go right

Utility modifications

- What about now?
- And now?
- And now?
(trust game)

Utility modifications

- What about now?
- And now?
- And now?
(trust game)
- And now?
(centipede game)

What affects people's utility?

- Self interest

$$
\begin{aligned}
& v_{i} \\
& +\sum_{j} v_{j} \\
& +\min _{j} v_{j} \\
& -\left|\max _{j} v_{j}-\min _{j} v_{j}\right|
\end{aligned}
$$

- Social welfare?
- Egalitarian welfare?
- Inequality?
- Competition?
$-\max _{j \neq i} v_{j}$
- Reciprocity?
$+v_{j}$ if j played in my favor

How to distinguish?

Experiments

- Behavioral psychologists design careful experiments trying to isolate effects

Two-person dictator games			Left		Right		
Berk29 (26)	B chooses (400,400) vs. $(750,4$. 31		. 69		
Barc2 (48)	B chooses (400,400) vs. (750,3		. 52		. 48		
Berk17 (32)	B chooses (400,400) vs. $(750,3$. 50		. 50		
Berk23 (36)	B chooses (800,200) vs. (0,0)		1.00		. 00		
Barc8 (36)	B chooses (300,600) vs. (700,5		. 67		. 33	00,600	00,500
Berk 15 (22)	B chooses (200,700) vs. (600,6		. 27		. 73	? Ω	T Ω
Berk26 (32)	B chooses (0,800) vs. (400,400		. 78		. 22		
Two-person response games-							
Barc7 (36)	A chooses $(750,0)$ or lets B choose $(400,400)$ vs. $(750,400)$. 47	. 53	. 06	. 94	O	9
Barc5 (36)	A chooses $(550,550)$ or lets B choose $(400,400)$ vs. $(750,400)$. 39	. 61	. 33	. 67		
Berk28 (32)	A chooses $(100,1000)$ or lets B choose $(75,125)$ vs. $(125,125)$. 50	. 50	. 34	. 66	Ω	
Berk32 (26)	A chooses $(450,900)$ or lets B choose $(200,400)$ vs. $(400,400)$. 85	. 15	. 35	. 65	?	T Ω

Experiments (cont.)

- Some factors provide a perfect explanation to some games...
- But fail to explain others $)^{(}$
- On the >2000 observations in [Charness\&Rabin'02], social welfare explains $93 \%-94 \%$ of the data!
- Other models not so successful
- Is that good?
- Danger: overfitting ("lack of predictive power")
- In the paper: they do some more sophisticated analysis

Explanation and prediction

- For a single decision maker:
- Is there a parameter that explains all/most of the decisions of a person?
- Is there a reasonable distribution of parameters that explains decisions of the population?
- For a game:
- Are there individual parameters that explain the observed outcome as equilibrium?
- Same for distribution of parameters in the population
- What about overfitting?
- In modern work: cross-validation
- Fit parameters on one dataset, predict on another

Utility modifications

Monetary payoffs

v_{1}, v_{2}	C	D
C	4,4	
D	$10,-10 \downarrow$	$\longrightarrow-10,10$

- Example: Altruism
- $u_{i}(a)=v_{i}(a)+0.5 \cdot v_{-i}(a)$

u_{1}, u_{2}	C	D
C	$4+2=6,4+2=6$	$-10+5=-5,10-5=5$
D	$10-5=5,-10+5=-5$	$-6-3=-9,-6-3=-9$

- Result: Hadi?

Matt Rabin’s "recipe"

- Pick a Greek letter (say, "Deppa" p)
- Modify the utility function $u^{\prime}{ }_{i}(a)=u\left(a, \mathrm{P}_{i}\right)$
- For some value of p_{i} (typically 0,1 or ∞) we get the original unbiased utility
- Analyze the game with the modified utilities
- Consider empirical and experimental data:
- Are results better explained by the modified model?
- For what values of p_{i} ?
- What is the distribution of p_{i} in the population?

Another example: Present bias

- People buy gym subscription, and then rarely use it
- Set alarm clock for 6:00am, then go back to sleep

Another example: Present bias

- People buy gym subscription, and then rarely use it
- Set alarm clock for 6:00am, then go back to sleep

The long term-benefit of being fit is higher than the inconvenience of training

- Even with moderate exponential discounting

Another example: Present bias

- People buy gym subscription, and then rarely use it
- Set alarm clock for 6:00am, then go back to sleep

The long term-benefit of being fit is higher than the inconvenience of training

- Even with moderate exponential discounting

But going to the gym is now, and benefit is later

Another example: Present bias

- People buy gym subscription, and then rarely use it
- Set alarm clock for 6:00am, then go back to sleep

Pay for subscription?
Effort $=-10 \quad$ High fitness $=+2$ every day for 100 days

$$
u_{i}(a, t)=v_{i}\left(a^{t}\right)+\beta_{i} \cdot \sum_{k=1 \ldots} \lambda^{k} \cdot v_{i}\left(a^{t+k}\right)
$$

$\Rightarrow u_{i}\left(\right.$ buy,$\left.t^{0}\right)=\beta_{i}(-10+20)>0 \quad$ (both effort and gain are in the future)
$\Rightarrow u_{i}\left(g o, t^{1}\right)=-10+\beta_{i}(20)<0 \quad$ (effort is now)

Problems with modified utility

- Contradictory observations
- Still assumes "rational" or "optimal" decision making
- Parameters depend on context

Some common alternative models

- Cognitive hierarchy
- Prospect theory
- Learning from experience
- Choice heuristics
- Quantal Response

Cognitive Hierarchy

```
    The "Beauty contest" game:
    Pick the number in [1...100] closest to 70% of the average
```

- Each player assumes others are simple

```
A "level 0" strategy
```

- "everyone picks [1...100] uniformly at random"
- Then best strategy is $0.7 \cdot 50=35$
- Assume that everyone plays 35 ?

- Assume everyone else is too
- Mixture model: assume a distribution over lower levels
- E.g.: 60% level 0 and 40% level 1 (best response is $0.7 \cdot(0.4 \cdot 35+0.6 \cdot 50) \cong 31$)

Cognitive Hierarchy Equilibrium?

```
    The "Beauty contest" game:
Pick the number in [1...100] closest to 70% of the average
```

- Can often explain empirical observations
- E.g. strategy profile in the Beauty contest game can be explained by players' beliefs
- Not in equilibrium!
- If we play again, "sophistication" increases
- In Beauty contest, average goes down towards 0

CH and the Swedish Lottery

Lowest Unique Positive Integer game:

- Pick the number in [1...10000]
- Lowest unique number wins

Prospect Theory

Problem 11: In addition to whatever you own, you have been given 1,000 . You are now asked to choose between

Prospect Theory

Problem 11: In addition to whatever you own, you have been given 1,000 . You are now asked to choose between

Problem 12: In addition to whatever you own, you have been given 2,000. You are now asked to choose between
(66\%)

Utility is 1000 or 2000 with equal probability

Utility is 1500
Risk seeking

It gets worse

s1: Win $\$ 240$ for sure
R1: Win \$1000 w.p. 0.25 (0 otherwise) 84\% participants choose s1 (88\%)
s2: Lose $\$ 750$ for sure
R2: . Lose $\$ 1000$ with probability 0.75 (0 otherwise) 87% participants choose R2 (35\%)

It gets worse

```
S1:
```

R1:

S2:
R2:

$A+D=(25 \%$ for $240,75 \%$ for -760$)$
\wedge
\wedge
$B+C=(25 \%$ for $250,75 \%$ for -750$)$

Tversky, Amos, and Daniel Kahneman. "Rational choice and the framing of decisions.", 1989.

Prospect theory

Prospect theory

Prospect theory

Kahneman, Daniel, and Amos Tversky. "Prospect Theory: An Analysis of Decision under Risk." Econometrica 47.2 (1979): 263-292.

Overweighting rare events

s1: Win 1 for sure
R1: Win 20 with probability .05 (0 otherwise) Most participants choose R1
s2: Lose 1 for sure
R2: Lose 20 with probability 05 (0 otherwise) Most participants chooseS2
\square

Feedback reverses weighting of rare events

Choose between
s2: Lose 1 for sure
R2: Lose 20 with probability .05

Erev et al., 2017
Slides: curtesy of Ori plonsky

What about a strategic interaction?

Slides: curtesy of Ori plonsky

What about a strategic interaction?

Slides: curtesy of Ori plonsky

Slides: curtesy of Ori plonsky

Results

Slides: curtesy of Ori plonsky

Reaction to rare loss

Observed payoff of IN			
at $\boldsymbol{t} \mathbf{- 3}$	at $\boldsymbol{t} \mathbf{- 2}$	at $\boldsymbol{t} \mathbf{- 1}$	\% IN choice at round $\boldsymbol{t}(\mathbf{n})$
5	5	-100	$91.8 \%(49)$
5	-100	5	$93.2 \%(44)$
-100	5	5	$97.6 \%(41)$
5	5	5	$96.6 \%(551)$

Slides: curtesy of Ori plonsky

What about a strategic interaction?

What about a strategic interaction?

Results

Reliance on small samples

Sample size 5

Which city has larger population?

	Bonn	Wiesbaden
National capital	-	-
Soccer team in major league		-
Intercity train	+	+
State capital	-	+
University	+	
License plate	-	-
..		

	Munich	Berlin
National capital	-	+
Soccer team in major league	+	-
Intercity train	+	+
State capital	+	+
University	+	+
License plate	+	+
..		

Which city has larger population?

Gigerenzer, Gerd, and Daniel G. Goldstein. "Reasoning the fast and frugal way: models of bounded rationality." Psychological review 103.4 (1996): 650.

Are heuristics really suboptimal?

- Common view of behavioral economics:
- Bounded rationality is a descriptive theory
- Maintains the normative/prescriptive view of "rational reasoning"
- Gigerenzer makes a stronger claim:
- applying heuristics often leads to better judgement
- What experiment can show that?
- Simulations! No need for real people
- Explanation: Much of the data we get from the environment is redundant
- Evolutionary justification

What about decisions?

What about decisions?

Huber, J., Payne, J. W., \& Puto, C. (1982). Adding asymmetrically dominated alternatives: Violations of regularity and the similarity hypothesis. Journal of consumer research, 9(1), 90-98.
Luce, R. Duncan, and Howard Raiffa. Games and decisions: Introduction and critical survey. Courier Corporation, 1989.

Quantal Response

- People make mistakes

Full rationality: Always choose B

Quantal Response

- People make mistakes
- The chance for a "large" mistake is smaller
- Parameter $\lambda>0$

Full rationality: Always choose B
Quantal response: Choose w.p. $\propto \quad e^{\lambda \cdot 8} \quad e^{\lambda \cdot 10} \quad e^{\lambda \cdot 3}$

$$
e^{\lambda \cdot 8} \quad e^{\lambda \cdot 10} \quad e^{\lambda \cdot 3}
$$

Quantal Response Equilibrium (QRE)

Quantal Response Equilibrium (QRE)

Suppose $\lambda_{1}=\lambda_{2}=0.5$

Quantal Response Equilibrium (QRE)

Suppose $\lambda_{1}=\lambda_{2}=0.5$

Everyone assumes other playing the same QRE

Parameters (or their distribution) must be commonly known

Recap

- Take-the-Best (and other decision heuristics) explain how people make similar decisions among options that are difficult to compare
- Quantal response explains how people make different decisions among options that are easy to compare

In general, behavioral economics theories try to reconcile existing (decision/game) theory with empirical findings
Experiments continue to show new deviations from theory

So what is a good behavioral theory?

- Is ecologically reasonable: May result from many different processes
- Limitations, heuristics, lack of information...
- Can explain many behavioral phenomena
- Individual choice, games
- Including (seemingly) contradicting phenomena
- Can predict behavior

