Class 2: Applying behavioral insights to social choice theory

(all non-behavioral SC in one slide)

- Nash equilibrium is essentially worthless
- The Paradox of Voting
- Uncertainty must play a role
- Many "economic" models of strategic voting
- Calculus of voting [Riker and Ordeshook'75]
- Large games [Myerson and Weber'95]
- Poisson Games [Myerson'00]
- See [M. 2018, Section 6] for an overview
- The key: calculate probability of each tie

Strategic Voting

Implicit assumptions

- Some of our assumptions already taking bounded rationality into account
- Ordinal preferences
- (computational) Hardness of manipulation

- "Obvious manipulations"* and "Obvious strategyproofness"**
- Communication complexity***

Recall: Approaches to bounded rationality

Modifying the representation

- Simplified representation
- Biased/simplified utility function
- Suitable for capturing a wide range of biases
- Can still apply standard game theoretic tools like Nash equilibrium

Modifying the solution

- Relax assumptions on optimizing the utility
- Heuristic strategies
- Different types of equilibria
- Alternatives to equilibria

Class 2: outline

- Some biases
- Some alternatives to Nash equilibrium
- Some voting heuristics
- What is a good behavioral (voting) theory?
- Cognitively grounded heuristics
- Preferences

Biases in voting

- Under voting rule f, and action profile $a=\left(a_{i}, a_{-i}\right)$, candidate $f(a)$ wins
- Voter i gets utility of $v_{i}(f(a))$
- Recall Rabin's recipe (for an additive bias):

$$
u_{i}^{\prime}(a)=v_{i}(f(a))+p_{i} \cdot h(a)
$$

What can this h be?

Biases in voting (1)

- Truth bias [M. et al. AAAI'10, Dutta\&Laslier SCW'10]
- Ceteris paribus, the voter prefers to be truthful
- Some "cost" for manipulating $\quad h(a)=\epsilon$ if $a_{i}=\operatorname{top}\left(L_{i}\right)$
- Implications: removes many unreasonable Nash equilibria
- Sometimes all equilibria
- Lazy bias [Desmedt and Elkind EC'10]
- Ceteris paribus, the voter prefers to abstain
- Some "cost" for voting

$$
h(a)=\epsilon \text { if } a_{i}=\perp
$$

- Implications: equilibria with few or just one active voter
- This is what created the Paradox of Voting in the first place!

Biases in voting (2)

$$
\text { O } \mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}
$$

Biases in voting (2)

$\mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}$

- Some voters compromise for C , other don't
- More people compromise when C is popular!
- Contradicts rational voting
- Will return to this in Class 3

- Leader bias
- Voter gets some extra utility for voting "to the winner"

$$
h(a)=\epsilon \text { if } a_{i}=f(a)
$$

L. M. Bartels. Presidential Primaries and the Dynamics of Public Choice, Princeton University Press, 1988

Biases in voting (3)

- Pro-social bias
- Voter's utility from the winner "multiplied" by size of society $\quad h(a)=(n-1) v_{i}(f(a))$
- An alternative solution for paradox of voting
- More realistic: voter gets some utility from "voting like her friends"
- The MBD model*:
- ONLY social utility and truth-bias (no utility from outcome!)
- Doodle study**:
- Voter gets some utility from "appearing" cooperative to others
*Li, J., and Lee, L.-f. Binary choice under social interactions: an empirical study with and without subjective data on expectations. Journal of Applied Econometrics 24, 2 (2009), 257-281.
**Zou, James, Reshef Meir, and David Parkes. "Strategic voting behavior in doodle polls." CSCW 2015.

Behavioral voting models

- Mattei
- QRE
- Learning from sample (Rubinstein)
- Heuristic voting
- Meir: Local dominance, social utility (Doodle),
- Comparing few pairs - reduce cognitive load

Alternatives to (Nash) equilibrium (1)

- Recall Quantal Response Equilibrium
- Players play suboptimal actions with some probability
- Can be applied to voting
- Was done e.g. for Plurality*
- Every manipulation played with some probability
- Show an equilibrium still exists
- Still requires tie probabilities!

Alternatives to (Nash) equilibrium (2)

- "Trembling Hand" Equilibrium*
- Similar to QRE, but error probability goes to 0
- Formal definition somewhat contrived

Sounds more like
"super-rational" than
bounded rational!
[Aumann, GEB’97]

- Applied also to Plurality Voting **
- Implication: any tie can occur with nonzero probability
- Removes many unreasonable equilibria
* Selten, R. 1975. Reexamination of the perfectness concept for equilibrium points in extensive games. IJGT 4(1):25-55.
** See Section 6.5 in the book under "Robust Equilibrium"

Alternatives to (Nash) equilibrium (3)

- Recall "Cognitive Hierarchy":
- Level 0 behavior is very simple
- Level k is play optimal response to level $k-1$
- Now consider voting
- Level 0 voters are truthful
- Level 1 voters are "G-S manipulators"
- Level 2 voters are "counter manipulators"
- Challenge: no cardinal utilities
- Partial characterization of optimal level-2 responses and outcomes

Voting heuristics

- Being truthful is easy but not always best
- Difficult to know what is best
- Requires many assumptions, much information, and complex behavior
- Solution: heuristics
- We will consider several examples
- See also Chapter 8 in the book

Voting heuristics (1)

- Why voting for C?
- Most preferred among "viable candidates" $\{\mathrm{A}, \mathrm{C}\}$
- Most common and simple example: K-pragmatist *
- "Vote for your favorite candidate among the K candidates with highest scores"
- Can be applied to any scoring rule
- What is the right K?

Voting heuristics (2)

- Laslier's Leader Rule
- Defined only for Approval
"Approve all alternatives that are strictly preferred to the leader; Then approve the leader if it is preferred to the runnerup"

J.-F. Laslier. Laboratory experiments on approval voting. Handbook on Approval Voting, pages 339-356

Voting heuristics (3)

- Consider multiple referenda with interdependent binary issues
- Votes are binary vectors $a \in\{0,1\}^{k}$
- Utility of vote a_{i} strongly depends on which issues are accepted How to vote?
- Assign a "heuristic value" to every vote, composed on 3 factors:
- The naïve value $v_{i}\left(a_{i}\right)$
- The "attainability" $\operatorname{Att}\left(a_{i}\right)=\prod_{j=1}^{k} A\left(\operatorname{score}\left(a_{i j}\right)\right)$
- The empirical value of a_{i} in previous rounds $E\left(a_{i}\right)$
- Vote for a_{i} maximizing $v_{i}(a) \operatorname{Att}\left(a_{i}\right) E\left(a_{i}\right)$

Voting heuristics (3)

- Vote for a_{i} maximizing $v_{i}\left(a_{i}\right) \operatorname{Att}\left(a_{i}\right) E\left(a_{i}\right)$

Voting heuristics (3)

- Vote for a_{i} maximizing $v_{i}(a) \operatorname{Att}\left(a_{i}\right) E\left(a_{i}\right)$
- Adapted to Plurality* and to Approval**

Voting heuristics (recap)

- We saw three examples of heuristics
- There are many more
- Are those good heuristics?
- What is a good heuristics?
- Prescriptive vs. descriptive
- What is a good equilibrium model?

Figurf 1. Flowchart of the new model

So what is a good behavioral theory?

- Is ecologically reasonable: May result from many different processes
- Cognitive limitations, heuristics, lack of information...
- Can explain many behavioral phenomena
- Individual choice, games
- Including (seemingly) contradicting phenomena
- Can predict behavior

So what is a good behavioral voting theory?
 See Section 6.1 in book

- Theoretic criteria
- Considers self interest/ equilibrium. Discriminative power. Broad scope.
- Behavioral criteria
- Behavior fits reasonable voters' knowledge and capabilities
- Scientific criteria
- Prediction, robustness

What's in a voting theory?

Existence/Frequency of manipulation, Equilibrium analysis, Turnout, Convergence, welfare, Fairness...

How do voters act based on their information and own preferences?

How do voters get and represent information on preferences and actions of others?

What's in a voting theory?

Example I: Calculus of voting

Existence/Frequency of manipulation, Equilibrium

 analysis, Turnout, Convergence, welfare, Fairness..Voters play Bayes-Nash equilibrium

Voters know the correct distribution over preference profiles

What's in a voting theory?

Example II: Leader Rule

(arguable) Desiderata for voting models
 See Section 6.1 in book

- Theoretic criteria
(voters follow best interest)
- Behavioral criteria
(voters' beliefs and capabilities)

Ad-hoc heuristics

Bounded rationality

Expected utility (e.g. Cal. of Voting)

- Scientific criteria:
(Robustness, Simplicity, consistent with data, Discriminative power)

Let's build a simple theory!

Epistemic model
Voters know others' votes (or only vote counts)

Let's build a simple theory!

Epistemic model
Voters know others' votes
(or only vote counts)

Let's build a simple theory!

Voters pick best action

Voters know others' votes
(or only vote counts)

Let's build a simple theory!

Let's build a simple theory!

Let's build a (less) simple theory

Voters pick best action

Voters know something about others' votes

$$
\mathcal{C}= \begin{cases}\square & \square \\ \square\end{cases}
$$

Epistemic model

Some options:


```
3X A}>\textrm{B}>\textrm{C}>\textrm{D
2X B}>C>A>
2X C}>\textrm{A}>\textrm{D}>\textrm{B
```

(Borda)

A $>C>B>D$
Aggregate rank

A B C D
$15 \quad 12 \quad 13 \quad 2$
Aggregate scores

Pairwise relations
A. Reijngoud and U. Endriss. Voter response to iterated poll information. In AAMAS'12, pages 635-644.
U. Endriss, S. Obraztsova, M. Polukarov, and J. S. Rosenschein. Strategic voting with incomplete information,

Some options:

"...the state of information may as well be regarded as a characteristic of the decisionmaker as a characteristic of his environment" [Simon '57]

Any profile consistent with A leading is possible Only leader

Aggregate rank
A B C D
$\begin{array}{llll}15 & 12 & 13 & 2\end{array}$
Aggregate scores
Pairwise relations

All voting profiles

How should a (boundedly) rational voter vote?

> Only leader

(e) $C>A>B>D$

All voting profiles

Recall: Dominating and dominated strategies

Definition: Action a_{i} dominates action a_{i}^{\prime} if for any profile \boldsymbol{a}_{-i} of the other players, i weakly prefers to play a_{i} over a_{-i} (and strictly prefers in some profiles).

All voting profiles

Recall: Dominating and dominated strategies

possible

Definition: Action a_{i} dominates action a_{i}^{\prime} if for any profile \boldsymbol{a}_{-i} of the other players, i weakly prefers to play a_{i} over a_{-i} (and strictly prefers in some profiles).

A wins

All voting profiles

How should a (boundedly) rational voter vote?

Avoid votes that are dominated within the set of possible states

No vote dominates truth
under Borda (in this example!)

Only leader

(i) $C>A>B>D$
contains e.g. profile a_{-i} with scores ($5,5,1,5$) Any change will make B or D win

All voting profiles

How should a (boundedly) rational voter vote?

Avoid votes that are dominated within the set of possible states

Truth dominated by
$a_{i}^{\prime}=\mathrm{C}>\mathrm{B}>\mathrm{D}>\mathrm{A}$
Under Borda
(Manipulation exists)

- contains e.g. profile a_{-i} with scores (5,3,5,2) where a_{i}^{\prime} makes C win
- $f\left(a_{i}^{\prime}, a_{-i}\right)$ is always A or C

All voting profiles

Are those beliefs reasonable?

contains profile with scores (5,3,5,2)
also (10,1,3,1)

Local Dominance

- We keep the same Behavioral model
- Epistemic model based on distance between profiles (or scores)

Epistemic model

Prospective scores \boldsymbol{S}

- E.g. from a poll
- "world state"

Uncertainty level $r_{i} \geq 0$

Voter i considers as "possible" all states close enough to $\boldsymbol{s} . \quad S\left(\boldsymbol{s}, r_{i}\right)=\left\{\boldsymbol{s}^{\prime}:\left\|\boldsymbol{s}^{\prime}-\boldsymbol{s}\right\| \leq r_{i}\right\}$

- Example I: "additive uncertainty"

Epistemic model

Voter i considers as "possible" all states close enough to \boldsymbol{s}. $S\left(\boldsymbol{s}, r_{i}\right)=\left\{\boldsymbol{s}^{\prime}:\left\|\boldsymbol{s}^{\prime}-\boldsymbol{s}\right\| \leq r_{i}\right\}$

- Example I: "additive uncertainty"
- Example II: "multiplicative uncertainty"

Lemma: All dominance relations in state \boldsymbol{s} are characterized by a single threshold $T\left(s, r_{i}\right)$: (depends on winner's score)
c is dominated iff below the threshold or least preferred.*

Justified heuristics

- The K-pragmatist heuristic is easy to justify based on partial information and local dominance
- What about the Leader rule?
- Cannot be justified as a dominance move under any set of possible states $)^{\circ}$
- Laslier provides justification using a statistical model and probabilities
- Is there something in between?
- Multiple certainty levels*
*Lev, Omer, et al. "Heuristic voting as ordinal dominance strategies." AAAI 2019.

Recall: Laslier's Leader Rule

- Another voting heuristic
- Defined only for Approval
"Approve all alternatives that are strictly preferred to the leader; Then approve the leader if it is preferred to the runnerup"

Relying on small samples - in voting

Epistemic model

A voter is asking $k=2$ random friends.

Behavioral model

(i) $c>b>a$

Votes as if the sample is the entire profile

Relying on small samples - in voting

Epistemic model

A voter is asking $k=2$ random friends.

Behavioral model

$$
c>b>a
$$

Votes as if the sample is the entire profile

- We want to know the full profile
- Only have access to some comparisons or vote counts
- Need to make structural assumptions
- E.g. single-peak, single-crossing
- Those are often too strong in practice (never hold)
- Instead, make probabilistic assumptions
"any 'reconstruction' of majority preferences from ballot or survey data can be sensitive to the underlying implicit or explicit model of decision making"

When does society have transitive preferences?

- Sen's sufficient condition for no cycles:
- There is a candidate c that is either:
- Never first $(P(c a b)=0 \& P(c b a)=0)$; or
- Never last; or
- Never middle
- Obviously does not hold
- Still no Majority cycles

German National Election Survey 1972

- We can consider Net preference probabilities
- $\Gamma(\pi):=P(\pi)-P(-\pi)$
- e.g.Г(SFC) $:=P(S F C)-P(C F S)=0.33-0.14=0.19$
- c is "Net never-first" if $\Gamma(\mathrm{cab}) \leq 0 \& \Gamma(\mathrm{cba}) \leq 0$
- Similarly for never-last and never-middle
- Can you see if this applies to any candidate?
- Provide a full characterization of cyclic profiles using Net preferences on triplets

German National Election Survey 1972

