Computing Desirable Collective Decisions III Approval-based Committee Elections

Dominik Peters

2023-07-20

## Committee Elections

- A set $C$ of candidates, $k$ of which have to be elected
- Outcome: committee $W \subseteq C,|W|=k$.
- A set $N$ of $n$ voters

SpringerBriefs in Intelligent Systems
Artificial Intelligence, Multiagent Sys
Cognitive Robotics

Multi-Winner Voting with Approval Preferences

## Thiele's methods

- Given a sequence $w_{1}, w_{2}, \ldots$, select a committee $W$ that maximizes

$$
\sum_{i \in N} w_{1}+w_{2}+\cdots+w_{u_{i(W)}}
$$



- Examples:
- Approval Voting (AV):

1, 1, 1, ...

- Chamberlin-Courant (CC):

1, 0, 0, ...

- Proportional Approval Voting (PAV):
$1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots$



## Why harmonic numbers?

## Why harmonic numbers?

| +6 | +4 | +10 | +2 |
| :---: | :---: | :---: | :---: | :---: |
| +3 | +2 | +5 | +1 |
| +2 | +1.33 | +3.33 | +0.66 |
| +1.5 | +1 | +2.5 | +0.5 |
| +1.2 | +0.8 | +2 | +0.4 |
| +1 | +0.66 | +1.66 | +0.33 |

Why harmonic numbers?
6 voters 4 voters 10 voters

| +6 | +4 | +10 | +2 |
| :---: | :---: | :---: | :---: | :---: |
| +3 | +2 | +5 | +1 |
| +2 | +1.33 | +3.33 | +0.66 |
| +1.5 | +1 | +2.5 | +0.5 |
| +1.2 | +0.8 | +2 | +0.4 |
| +1 | +0.66 | +1.66 | +0.33 |

## Why harmonic numbers?

| 6 voters | 4 voters | 10 voters | 2 voters |
| :---: | :---: | :---: | :---: |
| +6 | +4 | +10 | +2 |
| +3 | +2 | +5 | +1 |
| +2 | +1.33 | +3.33 | +0.66 |
| +1.5 | +1 | +2.5 | +0.5 |
| +1.2 | +0.8 | +2 | +0.4 |
| +1 | +0.66 | +1.66 | +0.33 |

## Why harmonic numbers?

6 voters 4 voters 10 voters

| +6 | +4 | +10 | +2 |
| :---: | :---: | :---: | :---: |
| +3 | +2 | +5 | +1 |
| +2 | +1.33 | +3.33 | +0.66 |
| +1.5 | +1 | +2.5 | +0.5 |
| +1.2 | +0.8 | +2 | +0.4 |
| +1 | +0.66 | +1.66 | +0.33 |

## Why harmonic numbers?

6 voters 4 voters 10 voters

| +6 | +4 | +10 | +2 |
| :---: | :---: | :---: | :---: |
| +3 | +2 | +5 | +1 |
| +2 | +1.33 | +3.33 | +0.66 |
| +1.5 | +1 | +2.5 | +0.5 |
| +1.2 | +0.8 | +2 | +0.4 |
| +1 | +0.66 | +1.66 | +0.33 |

## Why harmonic numbers?

6 voters 4 voters 10 voters

| +6 | +4 | +10 | +2 |
| :---: | :---: | :---: | :---: |
| +3 | +2 | +5 | +1 |
| +2 | +1.33 | +3.33 | +0.66 |
| +1.5 | +1 | +2.5 | +0.5 |
| +1.2 | +0.8 | +2 | +0.4 |
| +1 | +0.66 | +1.66 | +0.33 |

## Why harmonic numbers?

##   0000000000000000000000 0000000000000000000000 <br> 6 voters

Suppose a party has $x$ supporters, with $x \geqslant \ell \frac{n}{k}$. Then the party
deserves at least $\ell$ seats. Note that

$$
\frac{x}{1}>\frac{x}{2}>\frac{x}{3}>\cdots>\frac{x}{\ell}=\frac{n}{k}
$$

It follows that if we elect all seats with marginal increment $\geqslant \frac{n}{k}$ then all parties obtain at least what they deserve.

## Why harmonic numbers?

- $\boldsymbol{w}=\left(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right)$ is the unique sequence such that Thiele's method is proportional in the party list case. Paper
- PAV is the unique approval-based committee rule* that satisfies
- symmetry
- continuity
- reinforcement
- proportionality (D'Hondt) on party list profiles
- Next: define proportionality when approval sets can intersect.


## A representation axiom that is too strong

$$
k=2
$$

"if $\frac{n}{k}$ voters have at least 1 candidate in common, then one of their common candidates should be elected"


## Justified Representation

If $S \subseteq N$ with $|S| \geq \frac{n}{k}$ have a candidate in common, $\left|\bigcap_{i \in S} A_{i}\right| \geqslant 1$, then it cannot be that $u_{i}(W)=0$ for all $i \in S$.


AV fails JR. CC and PAV satisfy JR.

## CC satisfies JR

- Let $W$ be the CC committee, violating JR.
- Some number $n^{\prime}<n$ of voters is covered by $W$.
- On average, each member of $W$ covers $<\frac{n}{k}$ voters.
- Thus, some member $c^{\dagger} \in W$ covers $<\frac{n}{k}$ voters.
- Remove $c^{\dagger}$, and add the candidate approved by the JR group. This gives higher CC score.


## Extended Justified Representation

If $S \subseteq N$ with $|S| \geq \ell \frac{n}{k}$ have $\ell$ candidates in common, $\left|\bigcap_{i \in S} A_{i}\right| \geqslant \ell$, then it cannot be that $u_{i}(W)<\ell$ for all $i \in S$.


AV and CC fail EJR. PAV satisfies EJR.

## PAV satisfies EJR

- Let $W$ be the PAV committee. Suppose $S \subseteq N$ has size $\geqslant \ell \frac{n}{k}$, and $u_{i}(W)<\ell$ for all $i \in S$, but there is $c^{*} \in \bigcap_{i \in S} A_{i} \backslash \mathrm{~W}$.
- Let $\widetilde{W}=W \cup\left\{c^{*}\right\}$.
- Note PAV- $\operatorname{score}(\widetilde{W}) \geqslant \operatorname{PAV}-\operatorname{score}(W)+|S| \frac{1}{\ell} \geqslant \operatorname{PAV}-\operatorname{score}(W)+\frac{n}{k}$.
- Claim: Can remove a member from $\widetilde{W}$ and lower PAV-score by $<\frac{n}{k}$.
- What is the average loss of PAV score from removal?
$\cdot \frac{1}{k+1} \sum_{c \in \widetilde{W}} \sum_{i: c \in A_{i}} \frac{1}{u_{i}(\widetilde{W})}=\frac{1}{k+1} \sum_{i \in N} \sum_{c \in A_{i} \cap \widetilde{W}} \frac{1}{u_{i}(\widetilde{W})} \leq \frac{1}{k+1} \sum_{i \in N} 1<\frac{n}{k}$.
- Hence there is some $c^{\dagger} \in \widetilde{W}$ with $\operatorname{PAV}-\operatorname{score}\left(\widetilde{W} \backslash\left\{c^{\dagger}\right\}\right)>$ PAV-score $(W)$, contradiction.


## PAV is not strategyproof



Theorem. No committee rule is strategyproof and satisfies EJR.

## ALGORITHM 1: Encode Problem for SAT Solving

Input: Set $C$ of candidates, set $N$ of voters, committee size $k$.
Question: Does a proportional and strategyproof committee rule exist?
for each profile $P \in \mathcal{B}^{N}$ do
if $P$ is a party-list profile then
allowed $[P] \leftarrow\left\{C \in \mathcal{C}_{k}: C\right.$ satisfies EJR $\}$
else
allowed $[P] \leftarrow \mathcal{C}_{k}$
for each committee $C \in \operatorname{allowed}[P]$ do
introduce propositional variable $x_{P, C}$
for each profile $P \in \mathcal{B}^{N}$ do
add clause $\bigvee_{C \in \operatorname{allowed}[P]} x_{P, C}$
add clauses $\bigwedge_{C \neq C^{\prime} \in \operatorname{allowed}[P]}\left(\neg x_{P, C} \vee \neg x_{P, C^{\prime}}\right)$
for each voter $i \in N$ do
for each $i$-variant $P^{\prime}$ of $P$ with $P^{\prime}(i) \subseteq P(i)$ do
for each $C \in \operatorname{allowed}[P]$ and $C^{\prime} \in \operatorname{allowed}\left[P^{\prime}\right]$ do if $C^{\prime} \cap P(i) \supsetneq C \cap P(i)$ then
add clause ( $\neg x_{P, C} \vee \neg x_{P^{\prime}, C^{\prime}}$ )

Lemma 5.3. There is no committee rule that satisfies proportionality and strategyproof ness for $k=3, n=3$, and $m=4$
Proof. Suppose for a contradiction that such a committee rule $f$ existed. Consider the profile $P_{1}=(a b, c, d)$. By proportionality, we have $c \in f\left(P_{1}\right)$ and $d \in f\left(P_{1}\right)$. Thus, w profile $P_{1}=(a b, c, d)$. By proportionality, we have $c \in f\left(P_{1}\right)$ and $d \in f\left(P_{1}\right)$. Thus, we enerality that $f\left(P_{1}\right)=a c d$.
Consider $P_{1.5}=(a b, a c, d)$. By Lemma 5.2, $d \in f\left(P_{1.5}\right)$. Thus, $f\left(P_{1.5}\right)=a c d$, or els ater 2 can manipulate towards $P_{1}$
Consider $P_{2}=(b, a c, d)$. By proportionality, $f\left(P_{2}\right) \in\{a b d, b c d\}$. If we had $f\left(P_{2}\right)=$ $a b d$, then voter 1 in $P_{1.5}$ could manipulate towards $P_{2}$. Hence $f\left(P_{2}\right)=b c d$.
Consider $P_{2.5}=(b, a c, c d)$. By Lemma 5.2, $b \in f\left(P_{2.5}\right)$. Thus, $f\left(P_{2.5}\right)=b c d$, or else ter 3 can manipulate towards $P_{2}$
Consider $P_{3}=(b, a, c d)$. By proportionality, $f\left(P_{3}\right) \in\{a b c, a b d\}$. If we had $f\left(P_{3}\right)=$ $a b c$, then voter 2 in $P_{2.5}$ could manipulate towards $P_{3}$. Hence $f\left(P_{3}\right)=a b d$.
Consider $P_{3.5}=(b, a d, c d)$. By Lemma 5.2, $b \in f\left(P_{3.5}\right)$. Thus, $f\left(P_{3.5}\right)=a b d$, or else voter 2 can manipulate towards $P_{3}$.
Consider $P_{4}=(b, a d, c)$. By proportionality, $f\left(P_{4}\right) \in\{a b c, b c d\}$. If we had $f\left(P_{4}\right)=$ $b c d$, then voter 3 in $P_{3.5}$ could manipulate towards $P_{4}$. Hence $f\left(P_{4}\right)=a b c$.
Consider $P_{4.5}=(b, a d, a c)$. By Lemma 5.2, $b \in f\left(P_{4.5}\right)$. Thus, $f\left(P_{4.5}\right)=a b c$, or else voter 3 can manipulate towards $P_{4}$.
Consider $P_{5}=(b, d, a c)$. By proportionality, $f\left(P_{5}\right) \in\{a b d, b c d\}$. If we had $f\left(P_{5}\right)=$ $a b d$, then voter 2 in $P_{4.5}$ could manipulate towards $P_{5}$. Hence $f\left(P_{5}\right)=b c d$.
Consider $P_{5.5}=(b, c d, a c)$. By Lemma $5.2, b \in f\left(P_{5.5}\right)$. Thus, $f\left(P_{5.5}\right)=b c d$, or else voter 2 can manipulate towards $P_{5}$.
Consider $P_{6}=(b, c d, a)$. By proportionality, $f\left(P_{6}\right) \in\{a b c, a b d\}$. If we had $f\left(P_{6}\right)=$ $a b c$, then voter 3 in $P_{5.5}$ could manipulate towards $P_{6}$. Hence $f\left(P_{6}\right)=a b d$.
Consider $P_{6.5}=(b, c d, a d)$. By Lemma $5.2, b \in f\left(P_{6.5}\right)$. Thus, $f\left(P_{6.5}\right)=a b d$, or els Consider $P_{6.5}=(b, c d, a d)$. By Le 3 can manipulate towards $P_{6}$.
Consider $P_{7}=(b, c, a d)$. By proportionality, $f\left(P_{7}\right) \in\{a b c, b c d\}$. If we had $f\left(P_{7}\right)=$ $b c d$, then voter 2 in $P_{6.5}$ could manipulate towards $P_{7}$. Hence $f\left(P_{7}\right)=a b c$
Finally, consider $P_{7.5}=(a b, c, a d)$. By Lemma $5.2, c \in f\left(P_{7.5}\right)$. Thus, $f\left(P_{7.5}\right)=a b c$, o alse voter 1 can manipulate towards $P_{7}$. But then voter 3 can manipulate towards $P_{1}=$ $(a b, c, d)$, because by our initial assumption, we have $f\left(P_{1}\right)=a c d$. Contradiction.
pass formula to SAT solver
return whether formula is satisfiable

## PAV is NP-complete

- Instance: Profile $P$, size $k$, number $B \geqslant 0$.
- Question: Is there a committee $W$ with $|W|=k$ such that $\operatorname{PAV}-\operatorname{score}(W) \geqslant B$ ?
- Clearly in NP. We'll show this is NP-hard by reducing from Cubic Independent Set:

- Instance: $\operatorname{Graph} G=(V, E)$ with $d(v)=3$ for all $v \in V$, size $k$.
- Question: Is there $V^{\prime} \subseteq V$ with $\left|V^{\prime}\right|=k$ such that for each $e=\{u, v\} \in E$, either $u \notin V^{\prime}$ or $v \notin V^{\prime}$ ?


## PAV is NP-complete

- Let $G=(V, E)$ be a cubic graph and let $1 \leqslant k \leqslant|V|$.
- Introduce candidates $C=V$, and voters $N=E$. Each voter approves its endpoints. Set $B=3 k$.
- We prove: There is a $k$-committee with PAV-score $B$ if and only if $G$ has an independent set of size $k$.
- $\Leftarrow$ : Let $V^{\prime}$ be an independent set of size $k$. Then no voter approves 2 candidates in $V^{\prime}$. Each candidate in $V^{\prime}$ is approved by the 3 incident edges. So the PAV-score of $V^{\prime}$ is $3 k$.
- $\Rightarrow$ : Suppose $W$ has PAV-score $3 k$. Each candidate is approved by 3 voters, so can contribute at most 3 to the PAV score. Since the total score is $3 k$, each member of $W$ contributes 3 . This can only happen if no voter approves more than 1 candidate in $W$, so it's an independent set.


## PAV can be computed by ILP

- In practice, using modern solvers like Gurobi, we can compute PAV as an integer linear program:
- Maximize $\sum_{i \in N} \sum_{\ell=1}^{k} \frac{1}{l} x_{i, \ell}$
subject to $\quad \sum_{\ell=1}^{k} x_{i, \ell}=\sum_{c \in A_{i}} y_{c}$ for all $i \in N$

$$
\begin{aligned}
& \sum_{c \in C} y_{c}=k \\
& y_{c} \in\{0,1\}, x_{i, \ell} \in\{0,1\} \text { for all } i, \ell, c .
\end{aligned}
$$

- Fun fact: If profile is single-peaked (i.e. candidates ordered left-to-right, everyone approves an interval), the ILP can be solved in polynomial time.


## Sequential PAV

- Greedy procedure for calculating PAV:
- $W \leftarrow \emptyset$
- while $|W|<k$ do
- Find $c \in C$ that maximizes PAV-score $(W \cup\{c\})$
- $W \leftarrow W \cup\{c\}$
- return $W$
- Theorem: Let $W$ be the optimum PAV committee, and let $W^{\prime}$ be the committee identified by seqPAV. Then $\operatorname{PAV}-\operatorname{score}\left(W^{\prime}\right) \geqslant\left(1-\frac{1}{e}\right) \mathrm{PAV}-\operatorname{score}(W) .63 \%$
- Proof: PAV-score is submodular, and approximation is true in general for the greedy algorithm for maximizing a submodular function.

| 1 | $\times 1$ | 1 |  | $a$ | $b$ | c | d | $e$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\times 1$ | 1 |  | $a$ | $b$ | c | d |  | $f$ |
| 9 | $\times 1$ | 9 |  | $a$ | $b$ |  | d | $e$ |  |
| 8 | $\times 1$ | 8 |  | $a$ | $b$ |  | d |  | $f$ |
| 8 | $\times 1$ | 8 |  | $a$ |  | c |  | $e$ |  |
| 10 | $\times 1$ | 10 |  | $a$ |  | c |  |  | $f$ |
| 1 | $\times 1$ | 1 |  | $a$ |  |  | d |  | $f$ |
| 4 | $\times 1$ | 4 |  |  | $b$ | c | d |  |  |
| 5 | $\times 1$ | 5 |  |  | $b$ | c |  |  | $f$ |
| 7 | $\times 1$ | 7 |  |  | $b$ |  |  | $e$ |  |
| 2 | $\times 1$ | 2 |  |  | $b$ |  |  |  | $f$ |
| 4 | $\times 1$ | 4 |  |  |  | c | d |  |  |
| 3 | $\times 1$ | 3 |  |  |  | c |  | $e$ |  |
| 1 | $\times 1$ | 1 |  |  |  | c |  |  | $f$ |
| 9 | $\times 1$ | 9 |  |  |  |  | d |  |  |
| 8 | $\times 1$ | 8 |  |  |  |  |  | e |  |
| 9 | $\times 1$ | 9 |  |  |  |  |  |  | $f$ |
| 18 | $\times 1$ | 18 | z |  |  |  |  |  |  |
|  |  |  | 18 | 38 | 37 | 37 | 37 | 36 | 37 |


| 1 | $\times 1 / 2$ | 1/2 |  | $a$ | $b$ | c | d | $e$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\times 1 / 2$ | 1/2 |  | $a$ | $b$ | c | d |  | $f$ |
| 9 | $\times 1 / 2$ | 9/2 |  | $a$ | $b$ |  | d | $e$ |  |
| 8 | $\times 1 / 2$ | 4 |  | $a$ | $b$ |  | d |  | $f$ |
| 8 | $\times 1 / 2$ | 4 |  | $a$ |  | c |  | $e$ |  |
| 10 | $\times 1 / 2$ | 5 |  | $a$ |  | c |  |  | $f$ |
| 1 | $\times 1 / 2$ | 1/2 |  | $a$ |  |  | d |  | $f$ |
| 4 | $\times 1$ | 4 |  |  | $b$ | c | d |  |  |
| 5 | $\times 1$ | 5 |  |  | $b$ | c |  |  | $f$ |
| 7 | $\times 1$ | 7 |  |  | $b$ |  |  | $e$ |  |
| 2 | $\times 1$ | 2 |  |  | $b$ |  |  |  | $f$ |
| 4 | $\times 1$ | 4 |  |  |  | c | d |  |  |
| 3 | $\times 1$ | 3 |  |  |  | c |  | $e$ |  |
| 1 | $\times 1$ | 1 |  |  |  | c |  |  | $f$ |
| 9 | $\times 1$ | 9 |  |  |  |  | $d$ |  |  |
| 8 | $\times 1$ | 8 |  |  |  |  |  | $e$ |  |
| 9 | $\times 1$ | 9 |  |  |  |  |  |  | $f$ |
| 18 | $\times 1$ | 18 | z |  |  |  |  |  |  |
|  |  |  | 18 | $\checkmark$ | 55/2 | 27 | 27 | 27 | 27 |


| 1 | $\times 1 / 3$ | 1/3 |  | $a$ | $b$ | c | d | $e$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\times 1 / 3$ | 1/3 |  | $a$ | b | c | d |  | $f$ |
| 9 | $\times 1 / 3$ | 3 |  | $a$ | $b$ |  | d | $e$ |  |
| 8 | $\times 1 / 3$ | 8/3 |  | $a$ | $b$ |  | d |  | $f$ |
| 8 | $\times 1 / 2$ | 4 |  | $a$ |  | c |  | $e$ |  |
| 10 | $\times 1 / 2$ | 5 |  | $a$ |  | c |  |  | $f$ |
| 1 | $\times 1 / 2$ | 1/2 |  | $a$ |  |  | d |  | $f$ |
| 4 | $\times 1 / 2$ | 2 |  |  | $b$ | c | d |  |  |
| 5 | $\times 1 / 2$ | 5/2 |  |  | $b$ | c |  |  | $f$ |
| 7 | $\times 1 / 2$ | 7/2 |  |  | $b$ |  |  | $e$ |  |
| 2 | $\times 1 / 2$ | 1 |  |  | $b$ |  |  |  | $f$ |
| 4 | $\times 1$ | 4 |  |  |  | c | d |  |  |
| 3 | $\times 1$ | 3 |  |  |  | c |  | $e$ |  |
| 1 | $\times 1$ | 1 |  |  |  | c |  |  | $f$ |
| 9 | $\times 1$ | 9 |  |  |  |  | d |  |  |
| 8 | $\times 1$ | 8 |  |  |  |  |  | $e$ |  |
| 9 | $\times 1$ | 9 |  |  |  |  |  |  | $f$ |
| 18 | $\times 1$ | 18 | $z$ |  |  |  |  |  |  |
|  |  |  | 18 | $\checkmark$ | $\checkmark$ | 133/6 | 131/6 | 131/6 | 22 |


| 1 | $\times 1 / 4$ | 1/4 |  | $a$ | $b$ | c | d | $e$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\times 1 / 4$ | 1/4 |  | $a$ | $b$ | c | d |  | $f$ |
| 9 | $\times 1 / 3$ | 3 |  | $a$ | $b$ |  | d | $e$ |  |
| 8 | $\times 1 / 3$ | 8/3 |  | $a$ | $b$ |  | d |  | $f$ |
| 8 | $\times 1 / 3$ | 8/3 |  | $a$ |  | c |  | $e$ |  |
| 10 | $\times 1 / 3$ | 10/3 |  | $a$ |  | c |  |  | $f$ |
| 1 | $\times 1 / 2$ | 1/2 |  | $a$ |  |  | d |  | $f$ |
| 4 | $\times 1 / 3$ | 4/3 |  |  | $b$ | c | d |  |  |
| 5 | $\times 1 / 3$ | 5/3 |  |  | $b$ | c |  |  | $f$ |
| 7 | $\times 1 / 2$ | 7/2 |  |  | $b$ |  |  | $e$ |  |
| 2 | $\times 1 / 2$ | 1 |  |  | $b$ |  |  |  | $f$ |
| 4 | $\times 1 / 2$ | 2 |  |  |  | c | $d$ |  |  |
| 3 | $\times 1 / 2$ | 3/2 |  |  |  | c |  | $e$ |  |
| 1 | $\times 1 / 2$ | 1/2 |  |  |  | c |  |  | $f$ |
| 9 | $\times 1$ | 9 |  |  |  |  | $d$ |  |  |
| 8 | $\times 1$ | 8 |  |  |  |  |  | $e$ |  |
| 9 | $\times 1$ | 9 |  |  |  |  |  |  | $f$ |
| 18 | $\times 1$ | 18 | $z$ |  |  |  |  |  |  |
|  |  |  | 18 | $\checkmark$ | $\checkmark$ | $\checkmark$ | 227/12 | 227/12 | 227/12 |


| 1 | $\times 1 / 5$ | 1/5 |  | $a$ | $b$ | c | d | e |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\times 1 / 5$ | 1/5 |  | $a$ | $b$ | c | d |  | $f$ |
| 9 | $\times 1 / 4$ | 9/4 |  | $a$ | $b$ |  | d | $e$ |  |
| 8 | $\times 1 / 4$ | 2 |  | $a$ | $b$ |  | d |  | $f$ |
| 8 | $\times 1 / 3$ | 8/3 |  | $a$ |  | c |  | $e$ |  |
| 10 | $\times 1 / 3$ | 10/3 |  | $a$ |  | c |  |  | $f$ |
| 1 | $\times 1 / 3$ | 1/3 |  | $a$ |  |  | d |  | $f$ |
| 4 | $\times 1 / 4$ | 1 |  |  | $b$ | c | d |  |  |
| 5 | $\times 1 / 3$ | 5/3 |  |  | $b$ | c |  |  | $f$ |
| 7 | $\times 1 / 2$ | 7/2 |  |  | $b$ |  |  | e |  |
| 2 | $\times 1 / 2$ | 1 |  |  | $b$ |  |  |  | $f$ |
| 4 | $\times 1 / 3$ | 4/3 |  |  |  | c | $d$ |  |  |
| 3 | $\times 1 / 2$ | 3/2 |  |  |  | $c$ |  | $e$ |  |
| 1 | $\times 1 / 2$ | 1/2 |  |  |  | $c$ |  |  | $f$ |
| 9 | $\times 1 / 2$ | 9/2 |  |  |  |  | d |  |  |
| 8 | $\times 1$ | 8 |  |  |  |  |  | $e$ |  |
| 9 | $\times 1$ | 9 |  |  |  |  |  |  | $f$ |
| 18 | $\times 1$ | 18 | z |  |  |  |  |  |  |
|  |  |  | 18 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 1087/60 | 541/30 |


| 1 | $\times 1 / 6$ | 1/6 |  | $a$ | $b$ | c | $d$ | $e$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\times 1 / 5$ | 1/5 |  | $a$ | $b$ | c | d |  | $f$ |
| 9 | $\times 1 / 5$ | 9/5 |  | $a$ | $b$ |  | d | $e$ |  |
| 8 | $\times 1 / 4$ | 2 |  | $a$ | $b$ |  | d |  | $f$ |
| 8 | $\times 1 / 4$ | 2 |  | $a$ |  | c |  | $e$ |  |
| 10 | $\times 1 / 3$ | 10/3 |  | $a$ |  | c |  |  | $f$ |
| 1 | $\times 1 / 3$ | 1/3 |  | $a$ |  |  | $d$ |  | $f$ |
| 4 | $\times 1 / 4$ | 1 |  |  | $b$ | c | d |  |  |
| 5 | $\times 1 / 3$ | 5/3 |  |  | $b$ | c |  |  | $f$ |
| 7 | $\times 1 / 3$ | 7/3 |  |  | $b$ |  |  | $e$ |  |
| 2 | $\times 1 / 2$ | 1 |  |  | $b$ |  |  |  |  |
| 4 | $\times 1 / 3$ | 4/3 |  |  |  | c | d |  |  |
| 3 | $\times 1 / 3$ | 1 |  |  |  | c |  | $e$ |  |
| 1 | $\times 1 / 2$ | 1/2 |  |  |  | c |  |  | $f$ |
| 9 | $\times 1 / 2$ | 9/2 |  |  |  |  | d |  |  |
| 8 | $\times 1 / 2$ | 4 |  |  |  |  |  | $e$ |  |
| 9 | $\times 1$ | 9 |  |  |  |  |  |  | $f$ |
| 18 | $\times 1$ | 18 | z |  |  |  |  |  |  |
|  |  |  | 18 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 541/30 |


| 1 | $\times 1 / 6$ | 1/6 |  | $a$ | $b$ | c | d | $e$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\times 1 / 6$ | 1/6 |  | $a$ | $b$ | c | d |  | $f$ |
| 9 | $\times 1 / 5$ | 9/5 |  | $a$ | $b$ |  | d | $e$ |  |
| 8 | $\times 1 / 5$ | 8/5 |  | $a$ | $b$ |  | $d$ |  | $f$ |
| 8 | $\times 1 / 4$ | 2 |  | $a$ |  | c |  | $e$ |  |
| 10 | $\times 1 / 4$ | 5/2 |  | $a$ |  | c |  |  | $f$ |
| 1 | $\times 1 / 4$ | 1/4 |  | $a$ |  |  | $d$ |  | $f$ |
| 4 | $\times 1 / 4$ | 1 |  |  | $b$ | c | d |  |  |
| 5 | $\times 1 / 4$ | 5/4 |  |  | $b$ | $c$ |  |  | $f$ |
| 7 | $\times 1 / 3$ | 7/3 |  |  | $b$ |  |  | $e$ |  |
| 2 | $\times 1 / 3$ | 2/3 |  |  | $b$ |  |  |  | $f$ |
| 4 | $\times 1 / 3$ | 4/3 |  |  |  | C | d |  |  |
| 3 | $\times 1 / 3$ | 1 |  |  |  | c |  | $e$ |  |
| 1 | $\times 1$ |  |  |  |  | c |  |  | $f$ |
| 9 |  | $=6$ | $=18$ |  |  |  | d |  |  |
| 8 |  | uires | EW |  |  |  |  | $e$ |  |
| 9 | $\times$ |  |  |  |  |  |  |  | $f$ |
| 18 | $\times 1$ | 18 | $z$ |  |  |  |  |  |  |
|  |  |  | 18 | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |

## Sequential PAV fails EJR

- This example is the smallest counterexample! (Though for $k=7 / 8 / 9, n=35 / 24 / 17$ is enough.)
- How to find such counterexamples? ILP!
- Fix $k$. In any given counterexample, we can relabel alternatives such that SeqPAV selects them in the order $c_{1}, c_{2}, \ldots, c_{k}$, and does not select $c_{k+1}$. Since unselected candidates have no influence, we can take $C=k+1$.
- For each $S \subseteq C$, add variable $z_{S} \in \mathbb{Z}$.
- Add constraints that for $j>i$, PAV-score $\left(\left\{c_{1}, \ldots, c_{i}\right\}\right)>\operatorname{PAV}-\operatorname{score}\left(\left\{c_{1}, \ldots, c_{i-1}, c_{j}\right\}\right)$
- Add constraint that $z_{\left\{c_{k+1}\right\}} \geqslant \frac{1}{k} \sum_{S} z_{S}$.
- Minimize $\sum_{S} z_{S}$.


## Is PAV always right?

$k=12$

| 4 | 5 | 6 | 10 | 14 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 |  | 9 | 13 | 17 |
|  | 2 |  | 8 | 12 | 16 |
|  | 1 |  | 7 | 11 | 15 |
| $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ | $v_{5}$ | $v_{6}$ |


| 4 | 5 | 6 | 10 | 14 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 |  | 9 | 13 | 17 |
|  | 2 |  | 8 | 12 | 16 |
|  | 1 |  | 7 | 11 | 15 |
| $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ | $v_{5}$ | $v_{6}$ |

EJR not strong
enough to capture
this!

## Phragmén's Sequential Rule (1894)

- It costs $\$ 1$ to elect a candidate to the committee.
- Each voter has a virtual bank account, initially empty.
- We slowly fill up the bank accounts until some

EDVARD PHRAGMÉN candidate has supporters who have $\$ 1$ in total.

- We elect such a candidate and take the supporters' money away.
- Finish when k candidates have been elected.


## Phragmén's Sequential Rule (1894)

- The rule fails EJR.
- But it satisfies PJR ("Proportional Justified Representation"): If $S \subseteq N$ with $|S| \geq \ell \frac{n}{k}$ have $\ell$ candidates in common, $\left|\bigcap_{i \in S} A_{i}\right| \geqslant \ell$, then it cannot be that fewer than $\ell$ candidates from $\bigcup_{i \in S} A_{i}$ are selected


## - Why?

- Phragmén cannot stop before at least $\$ k$ have been given out.
- By that point, $S$ has received $\$ \ell$. Before Phragmén gives out more than $\$ k, S$ must have $<\$ 1$ left, so has spent $>\$ \ell-1$.

| $c_{2 k}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\cdots$ |  |  |  |  |
| $c_{k+2}$ |  |  |  |  |
| $c_{k+1}$ |  |  |  |  |
| $c_{1}$ | $c_{2}$ | $c_{3}$ | $\cdots$ | $c_{k}$ |
|  | $v_{1}$ | $v_{2}$ | $v_{3}$ | $\cdots$ |$v_{k}$| Paper |
| :---: |

## Method of Equal Shares (2020)

- It costs $\$ \frac{n}{k}$ to elect a candidate. Every voter gets $\$ 1$.
- Repeatedly, we go through the candidates and see if they can be purchased with the money of their supporters. We compute the way it can be purchased that minimizes the maximum payment $\rho$ of any supporter.
- We elect the candidate with minimum $\rho$.
- This rule satisfies EJR.


## Is PAV always right?

$$
k=12
$$

| 4 | 5 | 6 | 10 | 14 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 |  | 9 | 13 | 17 |
|  | 2 |  | 8 | 12 | 16 |
|  | 1 |  | 7 | 11 | 15 |
|  | $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ | $v_{5}$ |

What axiom can exclude this?

| 4 | 5 | 6 | 10 | 14 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 |  | 9 | 13 | 17 |
|  | 2 |  | 8 | 12 | 16 |
|  | 1 |  | 7 | 11 | 15 |
| $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ | $v_{5}$ | $v_{6}$ |

## Core

- Let $W$ be a committee.
- A group $S \subseteq N$ with $|S| \geq \ell \frac{n}{k}$ blocks $W$ if there is $T \subseteq C$ with $|T|=\ell$ such that $u_{i}(T)>u_{i}(W)$ for all $i \in S$.
- $W$ is in the core if it is not blocked.
- Core implies EJR: An EJR failure is a blocking coalition where $T \subseteq \bigcap_{i \in S} A_{i}$.
- Open Problem: does there always exist a committee in the core?

| 4 | 5 | 6 | 10 | 14 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 |  | 9 | 13 | 17 |
|  | 2 |  | 8 | 12 | 16 |
|  | 1 |  | 7 | 11 | 15 |
|  | $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ | $v_{5}$ |



## Full Justified Representation (FJR)

If $S \subseteq N$ with $|S| \geq \ell \frac{n}{k}$ can propose a set $T$ of $\ell$ candidates such that $u_{i}(T) \geq \beta$ for all $i \in S$, then it cannot be that $u_{i}(W)<\beta$ for all $i \in S$.

- Always satisfiable.
- Satisfiable for all monotone utility functions!
- No known natural rule or polytime algorithm that satisfies it.

| 4 | 5 | 6 | 10 | 14 | 18 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 3 |  | 9 | 13 | 17 |
|  | 2 |  | 8 | 12 | 16 |
|  | 1 |  | 7 | 11 | 15 |
|  | $v_{1}$ | $v_{2}$ | $v_{3}$ | $v_{4}$ | $v_{5}$ |

