Axiomatic Social Choice

Characterisations of Voting Rules

Zoi Terzopoulou
GATE
University of Lyon - Saint-Etienne

Thanks Ulle!

Plan for Today

Social choice theory studies collective decision making. We will set the basics by seeing the following:

- Voting framework
- Famous voting rules
- Axiomatic characterisations
- Generalisations to incomplete inputs

All voting preliminaries can be found in the following review chapter:
W. Zwicker. Introduction to the Theory of Voting. Handbook of Computational Social Choice, 2016.

Example: Different Rules, Different Outcomes

What should be the voting outcome?

Example: Plurality

Winner with the most first positions:

Example: Borda

	8	R8\%	Ren
2	a	b	c
1	b	a	a
0	c	c	b

Winner with the most accumulated linear scores:

Example: Plurality with Runoff-Round 1

Two alternatives with the most first positions are promoted: b, c

Example: Plurality with Runoff—Round 2

The majority alternative wins: b

Formal Framework

- We consider a finite set of voters $N=\{1, \ldots, n\}$.
- They need to choose from a finite set of m alternatives A.
- Voters have preferences and cast ballots $>$, which are strict linear orders over the set of alternatives $\mathcal{L}(A)$.
- All ballots of the voters together provide us with a profile:

$$
\boldsymbol{P}=\left(>_{1}, \ldots,>_{n}\right) \in \mathcal{L}(A)^{n}
$$

- A voting rule (or social choice function) selects one or more winners for each such profile:

$$
F: \mathcal{L}(A)^{n} \rightarrow 2^{A} \backslash\{\emptyset\}
$$

If $|F(\boldsymbol{P})|=1$ for all profiles \boldsymbol{P}, then F is called resolute.
Most voting rules are irresolute. We must pair them with a tie-breaking rule (e.g., lexicographic) for a unique winner.

Positional Scoring Rules

A score vector consists of real number scoring weights:

$$
\boldsymbol{w}=\left(w_{1}, \ldots, w_{m}\right), \text { with } w_{1} \geqslant \cdots \geqslant w_{m} \text { and } w_{1}>w_{m}
$$

Any score vector induces a scoring rule F_{w} in which each voter awards w_{1} points to the alternative they rank 1st, w_{2} points to the 2 nd-ranked, and so on. All points awarded to a given alternative are summed, and the winners are the alternatives with the greatest sum.

- Borda: $\boldsymbol{w}=(m-1, m-2, \ldots, 0)$
- Plurality: $\boldsymbol{w}=(1,0, \ldots, 0)$
- Antiplurality (or veto): $\boldsymbol{w}=(1, \ldots, 1,0)$
- For any $k<m, k$-approval: $\boldsymbol{w}=(1, \ldots, 1,0, \ldots, 0)$

Normative Principles and Voting Rules

Consider Plurality, Plurality with runoff, and Borda.
Which of them satisfy the following axioms?

- Anonymity: The names of the voters don't matter.
- Neutrality: The names of the alternatives don't matter.
- Monotonicity: If a winning alternative receives additional support (it is ranked higher by some voter), then it should still win the election.
- Reinforcement: If alternative a wins in two disjoint electorates, then a should also win when we join those two electorates into one.

Condorcet Principle

The Condorcet winner is an alternative a such that for every other alternative b, a majority of voters ranks a higher than b.

Condorcet principle: If there exists a Condorcet winner, then it should win the election. A rule satisfying this principle is a Condorcet extension.

The Borda rule infamously fails the Condorcet principle.

Positional Scoring Rules and Condorcet

Theorem: No positional scoring rule is a Condorcet extension.

$$
\begin{aligned}
& \text { a: } 3 w_{1}+2 w_{3}+w_{2}+w_{2}=3 w_{1}+2 w_{2}+2 w_{3} \\
& \text { b: } 3 w_{2}+2 w_{1}+w_{1}+w_{3}=3 w_{1}+3 w_{2}+w_{3} \\
& \text { c: } 3 w_{3}+2 w_{2}+w_{3}+w_{1}=w_{1}+2 w_{2}+4 w_{3}
\end{aligned}
$$

Because $w_{1} \geqslant w_{2} \geqslant w_{3}$, b will win, although a is the Condorcet winner.

Condorcet Extensions

Other proposals exist, often based on the majority graph of a profile: A directed graph with nodes the alternatives in A, and with an edge from a to b whenever a beats b in a pairwise majority contest.

Under the Copeland rule, an alternative gets +1 point for every pairwise majority contest won and -1 point for every such contest lost. The alternatives with the most points win. The Condorcet principle holds.
F. Brandt, M. Brill \& P. Harrenstein. Tournament Solutions.

Handbook of Computational Social Choice, 2016.

Other Rules and Ballots

Input rankings

- Slater: Find ranking that minimises number of edges in majority graph we'd have to switch. Elect top alternative in that ranking.
- Young: Elect alternative a that minimises the number of voters we need to remove before a becomes the Condorcet winner.

Approval Voting

- You can approve of any subset of the alternatives. The alternative with the most approvals wins.

Majority judgment

- You award a grade to each alternative ("excellent", "'good", etc.). Highest median grade wins.

Axioms for Scoring Rules

Recall anonymity, neutrality, reinforcement.
Continuity says that a sufficiently large number of identical votes can always elect their first alternative.

Theorem. A voting rule satisfies anonymity, neutrality, reinforcement, and continuity if and only if it is a scoring rule.
P. Young. Social Choice Scoring Functions. Journal on Applied Mathematics, 1975.

Characterising the Plurality Rule

Independence of dominated alternatives (ida): If all voters rank a higher than b, then the winners should not change if we remove b.

Theorem. A voting rule satisfies neutrality, anonymity, reinforcement, and ida if and only if it is the Plurality rule.

Proof sketch.

- Lemma (by induction): If the first alternative of each voter is distinct, then all first alternatives should win.
- Then, take an arbitrary profile \boldsymbol{P} and split it into sub-profiles where voters have distinct first alternatives.
- From the Lemma, all alternatives with first positions will be the winners of each sub-profile.
- By applying reinforcement repeatedly, we are left with alternatives that have the most first positions.
S. Ching. A Simple Characterization of the Plurality Rule. Journal of Economic Theory, 1996.

Characterising the Borda Rule via Condorcet

Recall that Borda fails to elect the Condorcet winner. Condorcet loser: An alternative that loses a pairwise majority contest against all others.

Theorem. A scoring rule satisfies CL-consistency (i.e., never elects the Condorcet loser) if and only if it is the Borda rule.

	$k \times$ h	$k \times$ h	h
2	a	c	a
$1+\epsilon$	b	b	c
0	c	a	b

a): $2(k+1)$
(b): $2 k(1+\epsilon)$

Note that if $k>\frac{1}{\epsilon}$, then (b) will win, although it is the
Condorcet loser.
c) $2 k+1+\epsilon$
P.C. Fishburn \& W.V. Gehrlein. Borda's Rule, Positional Voting, and Condorcet's Simple Majority Principle. Public Choice, 1976.

Characterising the Borda Rule via Cancellation

Cancellation: If for every two alternatives a and b the number of voters that rank a higher than b is the same as the number of voters that rank b higher than a, then all alternatives should win the election (no alternative has a clear pairwise majority advantage).

Theorem: A scoring rule satisfies cancellation if and only if it is the Borda rule.
P. Young. An axiomatization of Borda's rule. Journal of Economic Theory, 1974.
B. Hansson \& H. Sahlquist. A proof technique for social choice with variable electorate. Journal of Economic Theory, 1976.

Truncated Orders

A truncated order strictly ranks a subset of alternatives, and places the remaining alternatives below. We define the top alternatives of a voter:

TopSet of a profile: The alternatives that are at the top for all voters.

Terzopoulou and Endriss. The Borda Class: An Axiomatic Study of the Borda Rule on Top-Truncated Preferences. Journal of Mathematical Economics, 2021.

The Borda rule on Top-Truncated Orders

Score vector in the Borda Class for k ranked alternatives:

$$
\left(m-1, m-2, \ldots, m-k, w_{k+1}, \ldots, w_{k+1}\right), \text { with } w_{k+1}<m-k
$$

Exercise: How often do these rules agree (on artificial and real data)?

Axioms for the Borda rule on Top-Truncated Orders

Theorem: A voting rule for top-truncated orders is a scoring rule if and only if it satisfies anonymity, neutrality, reinforcement, and continuity.

Top-cancellation: Cancellation, restricted to the TopSet of a profile. Top-CL-consistency: Never elect the Condorcret-loser of the TopSet.

Theorem: A scoring rule for top-truncated orders is in the Borda class if and only if it satisfies top cancellation (or top-CL consitency).

Additional axioms characterise specific rules:

- Cancellation: The averaged Borda rule.
- Domination power (i.e., a winning alternative a can only break a tie with a different winning alternative by having its support against it strictly increased): The optimistic Borda rule.
- Bottom indifference (i.e., the number of other alternatives with which some alternative shares the bottom position does not affect its performance): The pessimistic Borda rule.

Summary

We have presented the basic voting framework of social choice, famous voting rules, and their characterisations through desirable axioms.

- Scoring rules: anonymity, neutrality, reinforcement, continuity
- Plurality: anonymity, neutrality, reinforcement, independence of dominated alternatives
- Borda: scoring rule + cancellation (or CL-consistency)

We have also discussed extensions to domains of top-truncated orders.
\rightarrow Next: Impossibility results.

