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and Preferences” (http://www.illc.uva.nl/lgc/seminar/), a regular event at
the Institute for Logic, Language and Computation (ILLC) of the Universiteit
van Amsterdam. It reflects the work not only of the regular participants of
the seminar (PhD students at the ILLC), but also of visiting colleagues from
around the world. Moreover, it contains selected papers from a closely re-
lated research community in China: the participants of the seminar “Logi-
cal Dynamics of Information and Interaction” (http://staff.science.uva.nl/
˜johan/dynamicstest.html) and the participants of the “Dynamic Logic Semi-
nar” (http://loriweb.org/?p=1050), held at Tsinghua University, Beijing, in
Autumn 2008 and April 2009, respectively.
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12 Dynamic Epistemic Logic and Graded Modal Logic
by Minghui Ma 208



vi Contents

13 Formulaic Events and Local Product Models in Dynamic Epistemic
Logic
by Junhua Yu 220

14 Ceteris paribus modalities and the future contingents problem
by Carlo Proietti 238



Preface

Rational agency is an important research area these days, where many dis-
ciplines meet. And these disciplines definitely include logic. But to play its
role here, logic must address a number of topics beyond its traditional agenda.
“Logical dynamics” as represented in this volume is about the following set of
inter-connected issues:

(a) What basic informational acts do agents engage in? These include at least
observation, but also inference, questions, and perhaps other sources. Taken
together, these give our model of an agent, as an “intelligent computer”.

(b) How do agents update their attitudes on the basis of these inputs? Agents
are subjected to a constant stream of information, and this leads to continual
adjustment. Describing this is a challenge to logical theory. There is the one-step
dynamics of knowledge, but belief is also crucial.

(c) So far, logical theories have mostly described the information that we
have about relevant situations, and how we can get more of it. But in addition to
this basic phenomenon, there is another, equally fundamental one. Everything
we do, and even much of what we think about, is determined by our goals, and
these goals depend crucially on how we evaluate the relevant situations. Thus,
information and evaluation go hand in hand, and are the two main driving
forces of rational agency. This takes us to logics of preference, both static and
dynamic.

(d) Next, how do agents form groups that share information and act together?
What logical structures govern group decisions and social procedure?

(e) Finally, what happens as local changes in information and evaluation
get repeated to form longer temporal processes? Procedural information and
long-term goals have important properties of their own. Concrete examples
where this complexity becomes concrete are strategic games, protocols for in-
formational procedures, and learning methods “in the limit”.

While these topics may look diverse, they all add to one logical picture of
rational agents moving together intentionally through time. And this picture is
still being painted, with many students adding strokes and retouches. The pa-
pers in this volume represent work at the ILLC, University of Amsterdam, in the
long-running Dynamics Seminar http://www.illc.uva.nl/lgc/seminar/,
that has already produced quite a few dissertations. But the volume also

http://www.illc.uva.nl/lgc/seminar/


viii Preface

includes papers from congenial communities elsewhere, including our coun-
terparts in China. A parallel seminar was run in April of this year at Tsinghua
University, and you can read all about it at http://loriweb.org/?p=1050. The
papers in this volume, many of them accepted conference submissions, testify
to the liveliness of both these circles.

The editors are to be commended for their initiative in bringing these initial
results to the attention of a larger audience. I hope that they will be successful,
and start a broader tradition. Indeed, there are other places too where logics
of rational agency are cooking, with Stanford University as one more example:
http://ai.stanford.edu/˜epacuit/classes/logdyn-wkshp2009.html

I, for one, am hoping for a Dynamics Yearbook in the future, where we can
sample what this community is producing worldwide on such topics as logic
and information flow, logic and games, intentions, and preference dynamics.
But for now, there is just the immediate pleasure of reading a collection of
remarkable papers.

Johan van Benthem
Amsterdam & Stanford

http://loriweb.org/?p=1050
http://ai.stanford.edu/~epacuit/classes/logdyn-wkshp2009.html


Suggestions for Strategies in Modeling the
Role of Reasoning in Ensemble Coordina-
tion

Søren R. Frimodt-Møller
Institute for Philosophy, Education and the Study of Religions, University of Southern Denmark.
srfm@ifpr.sdu.dk

Abstract

Even though there is presumably a lot of direct communication going on
in a performance situation (through facial expressions, bodily cues, the sig-
nals of a conductor, if any, etc.), there will inevitably be situations where the
coordination of the musicians rests on an (often tacit) agreement on “what
to do next”. This agreement is in some cases only imagined (and hence the
coordination happens by chance), in other cases the result of the musicians
synchronously having the same expectations of what the other musicians
will do, and in yet other cases the result of certain strategies being common
knowledge (or a close approximation thereof) in the ensemble. This paper1

will be an introduction to how one can model the role played by the rea-
soning of the individual musicians in achieving coordination of the entire
group (more specifically, solving coordination problems). I move from a
very simplified model in terms of a classic multi-agent system over a sketch
of an analysis in terms of Michael Bacharach’s use of “variable frames” in
game theory to my present, very preliminary attempts of applying decision
theory and theories of belief revision to the description. (The latter two may
become important if we wish to describe how a composition or another set
of rules for the performance can be moderated during the performance.)

1 Introduction

Consider the following situation in a music ensemble: We have three players,
for the sake of desirable connotations let us denote them “the oboe”, “the
violin” and “the cello”. They are playing a new piece of scored music that is

1This paper is a slightly expanded version of a paper presented at CMMR 2008: The Genesis
of Meaning in Sound and Music, Copenhagen, May 19-23, 2008. The title of the original paper
was “Modeling Coordination Problems in a Music Ensemble: Some Logical and Game Theoretical
Considerations”.
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hence not part of their individual heritage as musicians.2 Let us for simplicity
consider 5 bars in this score, denoted bars 1-5 (although they may be thought
to occur at a later occasion than the beginning of the piece). Still for simplicity,
we decide that in these bars the three players each have two possible actions.
An action is in this context a phrase to be played within a bar. To echo the
theory of multi-agent systems as presented by Fagin et al. (2003)3 we define the
following.

Definition 1.1 (Local States in a Fictitious Ensemble). Let us call the set of
possible actions for a player i the set of possible local states for that player, Li.
We now define:

Loboe = {phrase1, phrase2}
Lviolin = {phrase3, phrase4}
Lcello = {phrase5, phrase6}

(To make the example more in accordance with reality, we could add a state
Λ to each of the sets Li, denoting that the player does not play anything. We
will, however, not consider cases where such behavior is involved here, and
therefore we omit these possible states. We could also have decided on a more
general definition of a state to include any sort of event and subsequently
added a set Le of possible states for the environment, where we could have
placed events external to the ensemble that may affect there actions, such as “a
truck passes the concert hall”. But due to the fairly short length of this paper
we only consider the behavior of our three players in their interrelations.)

Now, according to the score, the three players are supposed to play their
phrases in a rather staircase-like development: In bars 1-2, the oboe is supposed
to play phrase 1, the violin phrase 3 and the cello phrase 5. In bar 3, the oboe is
supposed to play phrase 2, the violin phrase 3 and the cello phrase 5. In bars 4-5
the oboe returns to playing phrase 1, but the violin plays phrase 4 in bar 4 and
then returns to phrase 3 in bar 5, whereas the cello continues playing phrase 5
in bar 4 and then plays phrase 6 in bar 5. The situation is illustrated in Table 1.

Bar 1 Bar 2 Bar 3 Bar 4 Bar 5
oboe phrase 1 phrase 1 phrase 2 phrase 1 phrase 1

violin phrase 3 phrase 3 phrase 3 phrase 4 phrase 3
cello phrase 5 phrase 5 phrase 5 phrase 5 phrase 6

Table 1: An Example from a Fictious Score

Intuitively, the violin should wait for the oboe to play phrase 2 and then play
phrase 4 at the following bar. The cello should wait for the violin to play phrase
4 and then play phrase 6 at the following bar. Now consider what happens,

2In previous conference presentations (“How Do Musicians Reach an Agreement? The Ensemble
as a Multi-Agent System” at Workshop on Deontic Logic, Roskilde University, November 9, 2007 and
participation in “Workshop on Academic Writing” at the annual graduate conference arranged
by the Danish Research School in Philosophy, History of Ideas and History of Science, Sandbjerg
Estate, December 7, 2007) I have described how the same sort of doubt may arise in a known piece
of music, for instance bars 4 to 8 in Schubert’s Unfinished Symphony. I have, however, found that
my audience is less likely to accept that it can be problematic for skilled musicians to coordinate in
such a (presumably) familiar context, therefore I have generalized the example.

3In which the theory is used to describe problems involving both communication and coordi-
nation such as the Problem of Coordinated Attack (see i.e. 109-122 and 190-199)
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if the oboe plays phrase 1 three times in a row. The violin might either think
“too bad for her, I’m proceeding to bar four anyway, or else the cello will not
know what to do” or “I’d better wait for the oboe to play her phrase 2 and
then interpret that bar as bar 3 and the following as my bar 4.” But what
will he think? This depends on how important he thinks the development in
the phrasing of the oboe is in comparison with the development of his own
phrasing not to mention that of the cello. Let us say that the violin chooses to
pursue the second tactic, namely resume playing his phrase 3 until he hears the
oboe playing phrase 2. What will the cello think? The cello might think, “The
oboe and the violin have both got it wrong, but that is not my problem, I am
going for the fifth bar in this development with my phrase 6 as planned, then
they can adjust to what I am doing in the following bar.” But she might also
think “Oh, we should probably wait for the oboe to commence her phrase 2 and
then continue the development as if that bar was bar 3.” (She might actually
also think “Never mind the oboe, I will wait for the violin to play his phrase
4 and then play phrase 6 at the next bar”, but this will amount to the same
line of action although the intention is different.) What she thinks depends on
whether she thinks her own voice or that of the oboe (or, for completeness, that
of the violin) is the most important in this section of the piece. Our troubles do
not end here. The oboe might also be considering what to do next, e.g. wonder
whether she should just think “Oh no, I blew it, but too bad, I just have to
continue according to the score” or “the other musicians are waiting for my
phrase 2, so I should play phrase 2 to get things going.” As with the other two,
what she chooses to do depends on how she conceives of the composition.

The score might quite probably give some clear normative guidelines as to
what is the most important in the composition. (We think of the composition
as something of which the score is an arrangement – in this way we are able to
distinguish between different arrangements of a composition, although these
arrangements will necessarily deviate in certain aspects from the original score
(if any) of the composer.) But it might also be that the question of what the
central parts of the composition are is a matter of interpretation, that is, relative
to respective musicians.

In the following we will try to elucidate how the three musicians can nav-
igate out of the situation through two different sorts of analysis. The first is
in terms of a multi-agent system within epistemic logic and considers the case,
where a set of guidelines being common knowledge in the ensemble will enable
the musicians to solve their coordination problem. The second is in terms of
Michael Bacharach’s idea of the role of framing (Bacharach et al. 2006) in game
theoretic problems and will address how musicians may be able to coordinate
even though they do not have exactly the same opinion of the salient features
of the composition.

2 The Coordination Problem Analyzed in Terms of
a Multi-Agent System

Let us pick up our definition above of the local states of the players. Fagin
et al. (2003, p.110-111) think of a state as an information state, that is, a state
that contains information. Strictly speaking, if we want to follow this line
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of reasoning, we should add a number of possible local states for a player i
containing information not only about what i is playing now, but also about
what the other players are playing, and what everyone was playing at previous
bars. In our example here, however, we assume that all players actually hear
everything that happens, and that they have perfect memory. We therefore
assume that everyone is always aware of what is happening at all local states,
and for the sake of simplicity we choose to model the information state of player
i as only containing information about the action of i at a given time.

Definition 2.1 (Global States in the Ensemble). We now define a global state,
G = (soboe, sviolin, scello), where si is the state for the player i (in our example,
the phrase that the player is playing). Intuitively G expresses some situation
where each of the players is playing a specific phrase from his or her respective
set of possible states. We thus have a set of possible global states, Gensemble =
Loboe×Lviolin×Lcello (the Cartesian product of all the sets of possible local states).4

We would like to model G as a function of time. For the present purposes we
think of time as being discreet and introduce a point in time m, m ∈ {0, 1 . . .}.
This is quite convenient because it allows us to think of steps in time as being
synchronous with and equal to the length of developments from one bar to
another, which is exactly what we will do.

Definition 2.2 (Runs and Systems). We define a run to be a description of how
the global state develops through time, more precisely, the global state as a
function of m: r(m) = (soboe, sviolin, scello), such that r(0) is the initial global state,
r(1) the next global state etc. We now define a multi-agent system Rensemble over
G

ensemble as a set of runs over Gensemble. A point (r,m) is the time-point m in the
run r. We say that (r,m) is a point in the systemRensemble, if r∈ Rensemble. ri(m) = si,
so that ri(m) is player i’s local state at the point (r,m).

Before we can analyze our coordination problem above, we need to define
what it means for a player to distinguish (or not be able to distinguish) between
two global states:

Definition 2.3 (Distinguishability).

• Let s = (soboe, sviolin, scello) and s′ = (s′oboe, s
′

violin, scello) be two global states in
Rensemble. We say that player i cannot distinguish s from s’, notated s ∼i s′,
if player i has the same state in s and sı̈¿ 1

2 , in other words if si = s′i (An
important thing to notice here is that we think of a state not only as the
action of a player but as a situation in which the player chooses the action
that has given rise to the label of that state.)

• In accordance with this we say that player i cannot distinguish between
two points (r,m) and (r′,m), (r,m) ∼i (r′,m) if r(m) ∼i r′(m), in other words
if ri(m) = r′i (m)

In the epistemic logic of multi-agent systems described by Fagin et al. (2003),
the notion of indistinguishability is used to define the operator Ki, which in our

4These formalizations are identical with the definitions given by Fagin et al. (2003, p.111-121).
The following formalizations are my versions of definitions given in the same pages, only adapted
to my own example.
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case would intuitively mean “player i knows that . . .” In this example we will
not need to make statements about the players’ knowledge of propositional
facts, only their awareness of the global state and its relation to other global
states, hence we omit the definition of the Ki-operator.5

With these formalities in place we can now describe the stepwise develop-
ment of our coordination problem formulated as the systemRensemble. As hinted
at before, we take the time variable m to be a stepwise development of one bar
length. In a case where all three musicians follow the score perfectly (a specific
run in Rensemble which we choose to label rscore), m should therefore be perfectly
synchronized with the bar numbers such that the global states develop in this
way:

rscore(1) = (phrase1, phrase3, phrase5)

rscore(2) = (phrase1, phrase3, phrase5)

rscore(3) = (phrase2, phrase3, phrase5)

rscore(4) = (phrase1, phrase4, phrase5)

rscore(5) = (phrase1, phrase3, phrase6)

Now let us look at a case where the oboe forgets to play phrase 2 at bar 3. A
number of different runs might then occur in which the first three steps would
be

rlate(u)(1) = (phrase1, phrase3, phrase5)

rlate(u)(2) = (phrase1, phrase3, phrase5)

rlate(u)(3) = (phrase1, phrase3, phrase5)

(u should be read as a variable that can be substituted for a specific label.)
If phrase 2 and phrase 4 are strongly dissonant, the musicians would prob-

ably want to avoid a scenario where the two phrases occur at the same bar. In
other words we would e.g. like to avoid the run rlateoboe where

rlateoboe(4) = (phrase2, phrase4, phrase5)

Suppose that the violin chooses to wait for the oboe instead of proceeding
according to the score. Then we would have a run rlateviolin where

rlateviolin(4) = (phrase2, phrase3, phrase5)

But this run might continue in two different ways: One in which the cello
adjusts to the other players and does not play phrase 6 until the bar after the
violin has played phrase 4 (which would be a bar beyond our current example),
and another in which the cello proceeds according to the score, that is, where
we end up with

rlateviolin(5) = (phrase1, phrase4, phrase6)

5We also omit describing the Kripke-structure associated with the interpreted system Iensemble

(the system Rensemble along with an assignment of truth values to all propositions that occur in the
system for each state in the system) as we will not have need for it here. For a discussion of this
aspect of the semantics of multi-agent systems, see Fagin et al. (2003, 117-118).
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Of course for all 1,307,674,368,000 possible deviations from the score, there is
the possibility that everyone, including the player(s) with erroneous phrases,
tries to keep following the score as closely as possible by playing the “right”
phrase according to the score at the next m (thus interpreted as a bar number).
For simplicity, we will not try to describe this general case formally here. For
convenience, we may, however, add a run describing the situation where the
oboe forgets to play phrase 2 at m = 3, but where everyone, including the oboe,
continues according to the score:

rlatescorevar1(4) = (phrase1, phrase4, phrase5)

rlatescorevar1(5) = (phrase1, phrase3, phrase6)

And we can add a run describing the situation where the violin considers his
own phrase 4 more important than the oboe’s phrase 2, where he nevertheless
forgets to play this at m = 4, but where everyone continues according to the
score at m = 5:

rlatescorevar2(4) = (phrase1, phrase3, phrase5)

rlatescorevar2(5) = (phrase1, phrase3, phrase6)

To nearly complete the picture6, let us describe the case where the oboe forgets
to play phrase 2 at m = 3, but plays phrase 2 at a m = t, t > 3, where the violin
chooses to wait for the oboe and reinterpret the bar where the oboe plays phrase
2 as bar 3 according to the score, and where the cello likewise interprets the bar
where the violin plays phrase 4 as bar 4 according to the score:

rlateviolinwaits(t) = (phrase2, phrase3, phrase5)

rlateviolinwaits(t + 1) = (phrase1, phrase4, phrase5)

rlateviolinwaits(t + 2) = (phrase1, phrase3, phrase6)

(We could also describe a situation where the violin does not wait for the oboe,
but where the cello will wait for the violin. This is, however, not of relevance
to our analysis of the example at this point.)

Now we can identify and formalize the situations of doubt the three play-
ers may experience when the oboe forgets to play phrase 2 at bar 3. At m=3,
the violin does presumably realize that the other players are no longer pro-
ceeding according to rscore, but he does not know (in our current description
of the full situation) whether the other players are proceeding according to
rlateoboe, rlateviolin, rlatescorevar1, rlatescorevar2 or rlateviolinwaits. Formally

(rlateoboe, 3) ∼violin (rlateviolin, 3), (rlateoboe, 3) ∼violin (rlateviolinwaits, 3),
(rlateoboe, 3) ∼violin (rlatescorevar1, 3), (rlateoboe, 3) ∼violin (rlatescorevar2, 3),
(rlateoboe, 3) ∼violin (rlateviolinwaits, 3)

So how can he ever know what would be the appropriate way to proceed at
m=4, except by picking a choice at random? In fact, this situation is the case
for all of the players, hence

6Because the players can all hear each other, we have reason to believe that the oboe will
understand that the other players have proceeded past bars 4 and 5 in the score, once she hears
them play phrase 4 and phrase 6 respectively in succession.
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(rlateoboe, 3) ∼i (rlateviolin, 3), (rlateoboe, 3) ∼i (rlateviolinwaits, 3),
(rlateoboe, 3) ∼i (rlatescorevar1, 3), (rlateoboe, 3) ∼i (rlatescorevar2, 3),
(rlateoboe, 3) ∼i (rlateviolinwaits, 3)

because everyone has the same (local) state at m=3 no matter which of the
runs is executed. (Strictly speaking, it is rather unlikely that any of the players
should consciously choose to follow rlateoboe or rlateviolin, but we will return to the
discussion of what strategy a player is likely to choose later in this paper.)

In order for the players to be able to make a rational choice of what to play
at m=4 and onwards, they must either have common knowledge of some rule
that clearly states which of the runs is being executed, or they must have some
way of getting about the problem of disagreement on the character of the run.
The latter set of options is explored in the sections below. The aforementioned
rule could be stated as a rather strict obligation to wait for the oboe’s phrase
2 and then proceed according to rlateviolinwaits, but a formalization of this will
necessitate an introduction to deontic logic as well as temporal operators, for
which we do not have the sufficient amount of space here. We will, however,
dwell for a moment on the topic of what it means for such a rule to be common
knowledge among the players.

2.1 Common Knowledge of Rules and Its Implications for the
Ensemble

A statement p being common knowledge in a group G, notated CGp, entails
informally that everyone in the group knows p, and that the entire group is
somehow aware of p’s being known by everyone and being expected to be
known by everyone. The formal representation of CG in terms of the operator
EG, meaning “everyone in G knows that” is debated7 , but all theories grant
that EGp can be deduced from CGp, and hence that Kip (i knows that p) can be
deduced from CGp, for all i ∈ G.

Intuitively it should not be surprising that common knowledge in the group
of a rule is required in a situation where coordination depends on the group
members following the rule. In our example above, it is not enough that
everyone in the ensemble knows that a rule p holds, if someone is in doubt
whether the other ensemble members know that rule p holds. (We are of course
still assuming that the players have no way of communicating that they follow
p during a performance.) On the other hand, once p is common knowledge
in the ensemble, that is, once it is part of the collective consciousness of the
ensemble, it is safe to entail that everyone in the ensemble knows p. And since
p is a rule that states what the ensemble should do when deviating from the
score, knowing this rule combined with knowing that everyone else knows it
and assumes that everyone else knows it, results in the individual ensemble
member following the rule, thus ensuring coordination.

The idea of the ensemble being collectively conscious of a coordinating rule
p, however, amounts to an idea of the ensemble having the same opinion of
the salient features of the composition. Remember that in our description of
the piece of music, we do not know whether the oboe, the violin or the cello

7Fagin et al. (2003) discuss at least two different interpretations of the notion, one in terms of a
possible infinite iteration of the EG-operator (23-25), another in terms of sets of information states
in so-called Aumann structures (38-41).
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has the most important role in the passage. It might be that the voice of the
oboe is not only the initiator of a step-wise development in the voices but
also an indispensable part of this development, for example if the sequence
phrase 2 – phrase 4 – phrase 6 constitutes a melody that simply for the purpose
of a fun effect has been distributed onto three different voices. But it might
also be that the oboe’s phrase 2 is just like a small prologue to a theme that
actually begins with phrase 4 in the violin, and that phrase 4 for some reason
is tightly knit to a rhythmic structure that develops over bars 1-3. A similar
situation could be the case for the cello, if the oboe and the violin are merely
adding small fills to the last of four bars that naturally precede phrase 6 in the
cello. In any of the three cases, if we could point to a rule that, if common
knowledge in the ensemble, would ensure safe conduct in the situation of
doubt, this rule would indirectly be a statement of the compositional features
to be regarded as salient by every musician. In other words, this account
of coordination in the ensemble leaves no possibility of disagreement with
respect to the interpretation of the composition. For a programmer simulating
an en-semble as one virtual accompanist to one live soloist, this is not a big
issue. We would generally like an accompanist that, at the worst, is only in
disagreement with the soloist, not with itself also. For someone modeling the
interactions of several independent players, modeling players with different
initial perspectives on the music is, however, very important.8

In the following sections, we will examine what can be done for a formal
description of ensemble coordination without imposing a structure where ev-
eryone has to have the same idea of the salient features of the composition.

3 Game Theory with Variable Frames

A great deal of effort has been put into explaining how people are able to
coordinate in games where two or more players (here understood as players of
the game, not musicians) only receive a payoff, if they are able to simultaneously
choose the same of a number of options. For instance, in the introduction by
Natalie Gold and Robert Sugden to Bacharach et al. (2006), we find the example
of “Three Cubes and a Pyramid” (19). In this game two players have to choose
the same out of four objects, a red cube, a blue cube, a yellow cube and a
green pyramid. From an objective point of view, the probability that the two
players coordinate on the same object is just 0.25, because there are 16 possible
combinations of actions of the two and 4 possible ways they can choose the
same object. But experimental studies show (according to Bacharach et al) that
people actually tend to be much better at coordinating than that, and that the
players tend to choose the green pyramid. The intuitive answer to this question
(and the answer given by Schelling (1960, 64) in relation to similar experiments)
is that the choice of the green pyramid is somehow more salient than the other
options. But why?

First of all, the two players are not just picking at random without taking into
consideration how they perceive the game and its four objects. They describe
the game to themselves using predicates, and these predicates belong to what

8For one of many examples of the efforts being put into achieving alignment of a virtual accom-
panist’s delimitation of what counts as instances of a given piece of music and the interpretation
of the same composition by a soloist, see Fox and Quinn (2007)
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Bacharach calls families Bacharach et al. (2006, 14-16). Formally, we define a set
S of objects, a set P of predicates and a function E that assigns a (possibly empty)
subset of S to each predicate in P, such that if ϕ is a predicate, then E (ϕ) is the
set of objects ϕ describes (or the extension of ϕ).9 If we call the set of objects
in the “Three Cubes and a Pyramid”-game Sobjects = {x1, x2, x3, x4}, and decide
that x3 is the green pyramid, we have for instance Eobjects(cube) = {x1, x2, x4}

and Eobjects(pyramid) = {x3}. If the extension of a predicate has more than one
member, such as “cube” in this case, we call the act of singling out one object
to which that predicate applies, “picking”. If the extension is a singleton,
such as the extension of “pyramid”, we call the act of singling out the object
to which that predicate applies, “choosing”. In other words, the players can
“pick a cube” or “choose the pyramid” but not “choose a cube” or “pick a
pyramid”. The predicates can be arranged in families, understood as sets of
predicates, where, if one comes to mind for the player, the other ones will come
to mind as well. Hence we can define a shape family, Fshape = {cube, pyramid . . .}
and a color family Fcolor = {blue, red, yellow, green . . .}. We can also define a
“generic family” Fthing = {thing}, where Eobjects(thing) = {x1, x2, x3, x4}. We might
be able to come up with other families and predicates, but let us stop here
for the sake of clarity. Now, for each player, we can define a set of families
that might come to mind for that player. We call such a set a frame. Such
a set is a subset of the universal frame F, containing all families that can be
taken into consideration in the example (thus the universal frame in “Three
Cubes and a Pyramid” is Fobjects = {Fthing,Fshape,Fcolor}). Each player assigns to
his opponent (we are assuming a game of two players) a probability v(Fi) that
the opponent has a family Fi in his frame - this is also called the availability
of Fi. For instance, a player may think that v(Fthing) = 1 for his opponent,
v(Fcolor) = 0.6 and v(Fshape) = 0.8. So, if the player is right in how he considers
the availability of the families for his opponent, the probability that the player
will look upon the situation as choosing between shapes rather than “non-
descript” objects Bacharach et al. (2006, 16) is 0.8. Because there are three
cubes, the possibility of both players coordinating on the same cube if they
both decide on the act-description “pick a cube” is 0.33 (1/3), and, if we take the
availability of the shape family for granted, the possibility that they coordinate
in general is 0.33*0.8 = 0.26. This is only marginally better than the chances
of the players when just picking at random. If both of the players decide
to “choose the pyramid”, however, they have a 1*0.8 = 0.8 chance of perfect
coordination, as there is only one pyramid. If we assume that the payoff for
coordination is exactly the same no matter what the players agree to do, it seems
that choosing the pyramid is a much better option than any other possible act,
as the probability that the players coordinate is higher. (Actually, even if we
assume that both players assign an availability of 1 to all families in their
opponent’s frame, “choose the pyramid” will still be the optimal choice. This is
because the options “choose the blue”, “choose the red”, “choose the yellow”
and “choose the green” are discarded due to what Bacharach calls the principle
of symmetry disqualification10. This principle roughly entails that if there are
two or more predicates from the same family that have exactly the same size

9This is my rendition of Bacharach et al. (2006, 10-11 and 14-20).
10The analysis of ”Three Cubes and a Pyramid” is in essence the same as in (Bacharach et al. 2006,

19-22), although I have used a slightly different notation utilizing more transparent subscripts for
the different variables.
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of extension in the game, we have no reason for choosing one over the other,
and hence we should disregard the family entirely. Another way of putting it
in our case is that absence of a stand-out color choice converts the situation to
an arbitrary “picking” between act-descriptions issued from the color family
where the chances of coordinating are much smaller.)

We will now try to apply some of these ideas to our coordination problem
in the music ensemble.

3.1 An Analysis of the Musical Coordination Problem in Terms
of Variable Frame Theory

Our coordination problem as described in sections 1-2.1 can be interpreted as
a coordination game such as the one we have just examined. The object of
the “game” in our ensemble is to choose the same strategy as to which phrases
should be played at what time and after which phrases. In our example we have
roughly four different strategies: The first is where the musicians try to stick to
the score as much as possible and disregard mistakes as unfortunate mishaps.
The second is where all three musicians regard the oboe’s phrase 2 as essential
for the continuous development of the piece and thus wait for the oboe, if the
oboe is late. The third is where the musicians regard the violin’s phrase 4 as
essential and therefore disregard the oboe’s eventually being late as a source
of confusion but wait for the violin to commence phrase 4 before proceeding
according to bar 5 in the score. The fourth is where the musicians regard the
cello’s phrase 6 as essential, so that even if both the oboe and the violin is late,
these players will continue playing their phrases 1 and 3 respectively until the
cello commences phrase 6. Unless the cello is even later than both of the other
players, the first and fourth strategies amount to the same: follow the score
and just move on in case of errors. We can thus simplify our example a bit
by eliminating the fourth strategy from our considerations. From the cello’s
point of view, however, the second and third strategies amount to the same line
of action: wait for the violin to play phrase 4, then proceed to bar 5. On the
other hand, since it is impossible for the oboe to wait for the violin, the oboe
considers the first and third strategies similar with respect to her own line of
action: in both cases, she should continue according to the score. So, to sum
up, the only player for whom it really matters, if the violin’s phrase 4 is most
important of phrases 2, 4 and 6, is the violin. If we roughen our distinctions
a bit, we could say that the violin really faces a problem of choosing between
waiting for the oboe’s phrase 2 and not waiting for the oboe’s phrase 2. Not
waiting for the oboe does not rule out the violin being late himself, if he follows
the third strategy described above, but that does not change anything for the
other two players. We can therefore describe the coordination problem as a
game of coordinating on the same choice of strategy, where the two possible
strategies are:

“Wait” (meaning “wait for the oboe’s phrase 2 (the oboe plays phrase
2 when ready)”) and

“Don’t Wait” (meaning “do not wait for the oboe’s phrase 2 (con-
tinue according to the score if the oboe does not play phrase 2 at bar
3)”).
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The “objective game” in Bacharach’s terms Bacharach et al. (2006, 14), that
is, the game without a representation of the players’ frames looks like this:
Each of the three players have a possibility of 0.25 of coordinating on the
same strategy, whether “Wait” or “Don’t Wait” (because there are 8 different
combinations of strategies for the three players and 2 possible ways they can
choose the same line of action). But the objective game only describes the
situation as it would be, if the players picked their strategies at random. It
is, however, more likely that they describe the two choices to themselves in
terms of their qualities. For example a player could say that “Wait” is a more
“melodic” solution with respect to phrasing, or s/he could say that “Don’t
Wait” “keeps the piece going rhythmically” understood such that this strategy
is more in accordance with the overall rhythmical structure of the passage.
Let us symbolize “Wait” by x1 and “Don’t Wait” by x2. Then we can de-
fine a family of predicates Frhythm = {keeps the piece going rhythmically, . . .},
where E(keeps the piece going rhythmically) = {x2}. We can also define a fam-
ily Fmelody = {melodic, . . .}, where E(melodic) = {x10}. If we once again include the
generic family Fthing = {thing} where E(thing) = {x1, x2}, we have the universal
frame F = {Fthing,Frhythm,Fmelody} for the coordination game. Now, because of the
inclusion of Fthing, a player that has all three of the mentioned families in his
frame can decide on one of these act-descriptions: “pick a thing (something)”,
“choose the option that keeps the piece going rhythmically” or “choose the
melodic”. I have deliberately simplified the amount of possible choices and
predicates in this example, because our example has the complexity over “Four
Cubes and a Pyramid” that there is an extra player. Each player assigns two
availabilities for a family, that is, one for each of the other players. Let us
say that the violin assigns the possibility voboe(Fmelody) = 0.7 to the case where
Fmelody comes to mind for the oboe, voboe(Frhythm) = 0.3 to the situation where
Frhythm comes to mind for the oboe, vcello(Fmelody) = 0.6 to the situation where
Fmelody comes to mind for the cello and vcello(Frhythm) = 0.5 to the case where
Frhythm comes to mind for the cello. If the violin is right about his estimates
and decides to “choose the option that keeps the piece going rhythmically”,
he has a 0.3*0.5*1 = 0.15 chance of coordinating with the other musicians on
this strategy. If on the other hand he decides to “choose the melodic”, he has,
provided his estimates are correct, a 0.7*0.6*1 = 0.42 chance of coordinating
with them on this. This is still not an overwhelming safety, but if we grant that
coordination on a strategy is good no matter the strategy, it seems reasonable
for the violin to “choose the melodic” because he considers the probability of
coordinating with the other two players higher than by picking at random. But
does this ensure coordination in the ensemble? This is the subject of the next
section.

3.2 What Does the Availability of a Frame Show Us?

There are at least two problems that some readers will notice immediately in
the analysis above. The first is that it might be that the violin is wrong in his
assignments of availabilities to families in the frames of his co-players. The
second is that it might be that the other players have a different view of the
availabilities of families in each other’s frames, thus making the probability
assessment even more complicated. It is important to note in connection with
these two complications that what we have described above is how a player
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can rationally make a choice based on his or her expectations of how the other
players may be likely to think. Even if the violin is for instance right in his as-
sumption that voboe(Frhythm) = 0.3, this does not mean that it can never occur that
the oboe decides to “choose the option that kept the piece going rhythmically”.
But if his estimates of the availabilities are generally right, and if coordination,
no matter the strategy, is still the objective, the violin will be foolish not to go for
the strategy that gives him the highest probability of coordination. So the real
trouble here is on what basis a player makes his estimates of the availabilities
of families in the frames of his co-players. Intuitively, if an ensemble, such as
the trio we are considering here, have been working together for a long time, it
seems that it would be strange if the players deviated much from each other in
their views of the availability of a family in a given player’s frame. On the other
hand, an ad hoc ensemble of musicians where no one knows each other, might
have fairly the same expectations of the availabilities of different families in
each other’s frames, namely close to 0.5 for all families. The latter situation is,
however, not likely to ensure very good coordination because the possibilities
for coordination on a strategy will inevitably come out rather low. But both
of the mentioned intuitions point to the relevance of musicians “knowing each
other” prior to a performance.11

Of course, we can still improve the probabilities of coordination in the en-
semble by strengthening the common knowledge or “consciousness” of certain
rules inherent in the composition. In the above case, the violin would then prob-
ably assign the same availabilities to a family in all frames of his co-players.
What we wanted to show in our analysis in terms of Bacharach’s variable frame
theory was, however, that the players might be able to make non-random de-
cisions making coordination quite possible, even if they do not have common
knowledge of the rules of the composition but only some expectations of each
other’s way of perceiving the situation. Such estimates as the one described in
3.1 does not ensure coordination, but makes coordination more possible than
if everyone chooses at random.

4 Integrating Individual Interpretations of a Com-
position

If we view the composition as a set of rules guiding performance, not as a
specific sonic outcome, we could define the musicians’ interpretations of a
composition in the following way: Say, that the musicians are working from
a score by a composer, and that this score entails a list of rules (or instruc-
tions).“The composition” is obviously not identical with this list, since it would
otherwise not make sense to speak of “arrangements” of a composition (these
would by definition not be instances of the composition because they were
not following the rules given by the score exactly). The composition is thus a
selection of rules given by the score that are considered more important than
other rules given by the score. Which rules are selected might be dependent
on culture, context or even individual preferences. An interpretation is a pri-

11This in accordance with many of the musicians I know who either will not perform with other
people without extensive rehearsal or will only perform with people they are familiar with in
advance.
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oritized ordering of the rules constituting the composition, such that in cases
where not all of the instructions can be followed as originally intended (e.g. a
coordination problem), the musician will try to satisfy some rules before others.

We could for instance describe the rankings of the interpretation in terms of
a preference ordering for each player that determines which rules he/she will
try to follow when having to choose between two or more different actions. This
could also amount to modeling an extensive strategy for each player, that is, a
description of what the player should do in any situation that might occur.12

The possible benefit of such an approach would be that it allows a musician
to reason about the strategies of other musicians without considering them
capable of describing the different choices to themselves (as in variable frame
theory).

4.1 Revision of Strategies

It seems to be a consequence of wanting to achieve coordination that some
musicians – simply by being outnumbered – must occassionally give up their
own strategy and adjust to those of other musicians (if we are looking at an
improvisation context, revising ones own strategy is a constantly reoccuring
phenomenon).

A model for a less drastic revision process could also be imagined in which
a musician adds, removes or moves a rule to/from/in his or her interpretation13

(still viewed as a ranking of rules) as the performance moves along, in order to
either adjust to the other musicians or simply changes his or her mind about
the relevant aspects of the music.

Of course, the boundaries between small changes in the strategy of the
agent and a complete replacement with a new strategy are fluent. It is a
point of further discussion how much an interpretation can be altered before
it constitutes a new (or radically new view of the) composition. (This is a
problem because of the possibility of adding new elements external to the
initial composition.)

5 Conclusion

In order for perfect coordination to be certain to take place in the ensemble,
some rule determining a prioritized ranking of instructions in the composition
must be common knowledge. Yet, even if not everyone agrees on the ranking of
instructions in the composition, coordination is still possible, because musicians
reason according to their expectations of the actions of their co-players.

The above analysis is of course simplified but it points to a way of model-
ing ensemble relations that might be of relevance for researchers in computer
music modeling. The idea is that when modeling two or more ensemble play-
ers, we should define their (possibly virtual) characteristics as musicians, that
is, their musical background such as their tastes, their previous engagements

12A different approach I am now following is to try to define the interpretation in terms of the
sonic outcome the musician wants. This intended outcome defines the possible strategies from
which he can choose. (I am inspired here by the logic for intentions and their role in coordination
described by Roy (2008))

13Rules added might include musical ideas external to the score
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in other ensembles, their cultural heritage etc.14 Some of these traits might
be quasi-formalized, for instance a strong dependence to follow the score in
a rhythmically strict way or a partiality to the execution of central melodic
phrases. Depending on the outcome we want, we can make all of these char-
acteristics known to all players, only some of them or none. We can then
model how a rational player will navigate in situations of doubt (or, although
this requires a different sort of analysis, situations where the musicians devi-
ate from the score on purpose, such as in an improvisation) by computing his
possibilities of coordinating with other players on a strategy given his estimate
of what they are likely to choose. We can still include normative features of
a composition (understood as something of which the score is merely one of
many possible arrangements) in the model15 if we want to and define which
musicians know these features, but we do not need all of the players to agree
on these features in advance for coordination to take place.

In this paper I have tacitly relied on my own experience as a violinist in
several ensemble contexts. To achieve more accurate modeling of coordination
processes such as the ones I have tried to describe here, it will of course be
necessary to conduct experiments and interviews with several more ensemble
musicians.
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Abstract
A logic for reasoning about coalitional power is developed which explic-
itly represents agents’ preferences and the actions by which the agents can
achieve certain results. A complete axiomatization is given and its satisfia-
bility problem is shown to be decidable and EXPTIME-hard.

1 Introduction

Cooperation of agents plays a major role in many fields such as computer
science, economics, politics, social sciences and philosophy. Agents can decide
to cooperate and to form groups in order to share complementary resources or
because as a group they can achieve something better than individually.

When analyzing interactive situations involving multiple agents, we are
interested in what results agents can achieve – individually or together as
groups. There can be many ways how agents can achieve some result. They
can differ significantly, e.g. with respect to their feasibility, costs or side-effects.
Hence, it is not only relevant what results groups of agents can achieve but
also how exactly they can do so. In other words, plans and actions also play a
central role if we want to reason about cooperation in an explicit way. However,
cooperative ability of agents expressed only in terms of results and actions that
lead to these results does not tell us why a group of agents would actually decide
to achieve a certain result. We also need to take into account the preferences
based on which the agents decide what to do. Summarizing, we can say that
in interactive situations, the following three questions are of interest:

• What results can groups of agents achieve?

• How can they achieve something?

• Why would they want to achieve a certain result?

The above considerations show that coalitional power, actions/plans and pref-
erences play a major role in interactive situations and are moreover tightly
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connected. Thus, we argue that a formal theory for reasoning about agents’ co-
operative abilities in an explicit way should also take into account actions/plans
of agents and their preferences.

Modal logics have been used to develop formal models for reasoning about
each of these aspects – mostly separately. Coalitional power has mainly been
investigated within the frameworks of ATL (Alur et al. 1998), Coalition Logic
(Pauly 2002a) and their extensions.

Recently, there have been some attempts to develop logics for reasoning
about coalitional power that also take into account either agents’ preferences
or actions. One group of such logics looks at cooperation from the perspective
of cooperative games (Ågotnes et al. 2007a). In a non-cooperative setting,
preferences and strategic abilities have been considered in van Otterloo et al.
(2004). Another path that has been taken in order to make coalitional power
more explicit is to combine cooperation logics with (fragments of) action logics
(Sauro et al. 2006, Borgo 2007, Walther et al. 2007).

In this paper, a logic for reasoning about cooperation, actions and preferences
(CLA+P) is developed, which is obtained by combining the cooperation logic
with actions CLA (Sauro et al. 2006) with a preference logic (van Benthem
et al. 2006; 2007). Soundness and completeness are shown and the logic’s
expressivity and computational complexity are investigated.

The remainder of this paper is structured as follows. Section 2 gives an
overview of CLA. In Section 3, CLA+P is developed, a complete axiomatization
is given and its expressivity is discussed. Section 4 gives complexity results
and Section 5 concludes this work.

2 Cooperation Logic with Actions (CLA)

In this section, we briefly present the cooperation logic with actions (CLA)
developed by Sauro et al. (2006), which will be extended in the next section by
combining it with a preference logic. The idea of CLA is to make coalitional
power explicit by expressing it in terms of the ability to perform actions instead
of expressing it directly in terms of the ability to achieve certain outcomes.
CLA is a modular modal logic, consisting of an environment module for
reasoning about actions and their effects, and an agents module for reason-
ing about agents’ abilities to perform actions. By combining both modules,
a framework is obtained in which cooperative ability can be made more explicit.

The environment is modeled as a transition system whose edges are labeled
with sets of atomic actions.

Definition 2.1 (Environment Model (Sauro et al. 2006)). An environment model
is a set-labelled transition system

E = 〈S,Ac, (→)A⊆Ac,V〉.

S is a set of states, Ac is a finite set of atomic actions, →A⊆ S × S and V is a
propositional valuation. Each→A is required to be serial.

The intuition behing s →A t is that if in s all actions and only the actions in A
are performed concurrently, then the next state can be t.
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Then a modal language is defined with modalities [α], for α being a proposi-
tional formula built from atomic actions. The intended meaning of [α]ϕ is that
every transition→A such that A � α (using the satisfaction relation of proposi-
tional logic1) leads to a ϕ-state:

E, s � [α]ϕ iff ∀A ⊆ Ac, t ∈ S : if A � α and s→A t then E, t � ϕ.
Due to space restrictions, we cannot go into the underlying philosophy of ac-
tions but refer the reader to Broersen (2003) for a detailed discussion of action
logics. The restriction to a finite set of actions is reasonable for modelling many
concrete situations and also ensures that we have a finite axiomatization.

An environment logicΛE is developed, which is sound and complete (Sauro
et al. 2006). It contains seriality axioms and the K axiom for each modality [α],
for α being consistent. The environment logic can then be used for reasoning
about the effects of concurrent actions.

Then an agents module is developed for reasoning about the ability of
(groups of) agents to act. Each agent is assigned a set of atomic actions and a
group is assigned the actions its members can perform.

Definition 2.2 (Agents Model (Sauro et al. 2006)). An agents model is a triple
〈Ag,Ac,act〉, where Ag is a set of agents, Ac is a set of atomic actions and act
is a function act : Ag → P(Ac) such that

⋃
i∈Ag act(i) = Ac. For G ⊆ Ag, define

act(G) :=
⋃

i∈G act(i).

We are also interested in agents’ abilities to force more complex actions. A
language is developed with expressions 〈[G〉] α, meaning that the group G can
force that a concurrent action is performed that satisfies α. This means that
G can perform some set of atomic actions such that no matter what the other
agents do, the resulting set of actions satisfies α.
〈Ag,Ac,act〉 � 〈[G〉] α iff ∃A ⊆ act(G) : ∀B ⊆ act(Ag \ G) : A ∪ B � α.

Then a cooperation logic for actions is developed, which is very much in the
style of Coalition Logic (Pauly 2002a) – the main difference being that it is
concerned with the cooperative ability to force actions.

Definition 2.3 (Coalition Logic for Actions (Sauro et al. 2006)). The coalition
logic for actions ΛA is defined to be the logic derived from the following set of
axioms, with rule of inference modus ponens.

1. 〈[G〉] >, for all G ⊆ Ag,

2. 〈[G〉] α→ ¬〈[Ag \ G〉] ¬α,

3. 〈[G〉] α→ 〈[G〉] β if ` α→ β in propositional logic,

4. 〈[G〉] a→
∨

i∈G〈[{i}〉] a for all G ⊆ Ag and atomic a ∈ Ac,

5. (〈[G1〉] α ∧ 〈[G2〉] β)→ 〈[G1 ∪ G2〉] (α ∧ β), for G1 ∩ G2 = ∅,

6. (〈[G〉] α ∧ 〈[G〉] β)→ 〈[G〉] (α ∧ β) if α and β have no common atomic actions,

7. 〈[G〉] ¬a→ 〈[G〉] a for atomic a ∈ Ac,

8. 〈[G〉] α→
∨
{〈[G〉]

∧
Ψ|Ψ is a set of literals such that

∧
Ψ→ α}.

1That is, A � a iff a ∈ A, A � ¬α iff A 2 α, and A � α ∧ β iff A � α and A � β.
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Axiom 5 says how groups can join forces. The coalition logic for actions is
sound and complete with respect to the class of agents models (Sauro et al.
2006).

Next, agents are introduced as actors into the environment. This is done by
combining the environment models with the agents models. Then the agents
can perform actions which have the effect of changing the current state of the
environment.

Definition 2.4 (Multi-agent System (Sauro et al. 2006)). A multi-agent system
(MaS) is a tuple

M = 〈S,Ac, (→)A⊆Ac,V,Ag,act〉,

where 〈S,Ac, (→)A⊆Ac,V〉 is an environment model and 〈Ac,Ag,act〉 an agents
model.

Now, we can reason about what states of affairs groups can achieve by per-
forming certain actions. The corresponding language contains all expressions
of the previously defined logics and additionally expressions for saying that a
group has the power to achieve ϕ which means that the group can make the
system move into a state where ϕ is true.

Definition 2.5 (Language for MaS (Sauro et al. 2006)). The language for multi-
agent systems Lcla is generated by the following grammar:

ϕ ::= p ϕ ∧ ϕ ¬ϕ [α]ϕ 〈[G〉] α 〈[G〉] ϕ

for G ⊆ Ag and α being an action expression.

〈[G〉] ϕ means that G can force ϕ, i.e. G can perform a set of actions such that no
matter what the other agents do, the system moves to a ϕ-state.

M, s � 〈[G〉] ϕ iff ∃A ⊆ act(G) such that ∀B ⊆ act(Ag \ G), t ∈ S :
if s→A∪B t, then M, t � ϕ.

A complete axiomatization is obtained by combining the environment logic
and the coalition logic for agents by adding two interaction axioms.

Definition 2.6 (Cooperation Logic with Actions (Sauro et al. 2006)). The co-
operation logic with actions ΛCLA combines the environment logic ΛE and the
coalition logic for actions ΛA by adding

1. (〈[G〉] α ∧ [α]ϕ)→ 〈[G〉] ϕ,

2. 〈[G〉] ϕ→
∨
{〈[G〉] α ∧ [α]ϕ|α is the conjunction of a set of atomic actions or

their negations}.

CLA provides us with a formal framework for reasoning about what states of
affairs groups of agents can achieve and how they can do so. For a detailed
discussion of CLA, the reader is referred to Sauro et al. (2006). Now, we proceed
by adding preferences to CLA.

3 Cooperation, Actions and Preferences

In this section, a logic for reasoning about cooperation, actions and preferences
is developed. This is done by adding a preference logic to CLA. For a more
detailed discussion and proofs, see Kurzen (2007).
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3.1 Preference Logic

There are various ways how preferences can be added to a logic for cooperation
and actions. They could range over the actions that he can perform. Alterna-
tively, we can think of each agent having preferences over the set of successor
states of the current state.

In the current work, we consider preferences of individual agents ranging
over the states of the environment. This is reasonable since by performing
actions the agents can change the current state of the environment, and the
preferences over those states can be seen as the base of how the agents decide
how to act. Such a preference relation can also be lifted in several ways to one
over formulas (van Benthem et al. 2007; 2006).

Definition 3.1 (Preference Model (van Benthem et al. 2006)). A preference
model is a tuple

MP = 〈S,Ag, {�i}i∈Ag,V〉,

where S is a set of states, Ag is a set of agents, for each i ∈ Ag,�i⊆ S × S is
reflexive and transitive, and V is a propositional valuation.

We use a fragment of the preference language developed by van Benthem et al.
(2007). It has strict and non-strict preference modalities.

Definition 3.2 (Preference Language). Given a set of propositional variables
and a finite set of agents Ag, define the preference language Lp to be the
language generated by the following syntax:

ϕ := p ¬ϕ ϕ ∨ ϕ ^�iϕ ^≺iϕ.

^�iϕ says that there is a state satisfying ϕ that agent i considers to be at least as
good as the current one. The semantics is defined as follows.

MP, s � ^�iϕ iff ∃t : s �i t and MP, t � ϕ.

Analogously for ^≺iϕ. The preference relation � is a preorder and ≺ is its
largest irreflexive subrelation. Hence, the following axiomatization.

Definition 3.3 (Preference Logic ΛP). For a given set of agents Ag, let ΛP be
the logic generated by the following axioms for each i ∈ Ag: For ^�i and ^≺i ,
we have Duality and K and for ^�i also reflexivity and transitivity axioms.
Moreover, there are four interaction axioms:

1. ^≺iϕ→ ^�iϕ,
2. ^�i^≺ϕ→ ^≺iϕ,
3. ^≺i^�iϕ→ ^≺iϕ,
4. ϕ ∧^�iψ→ (^≺iψ ∨^�i (ψ ∧^�iϕ)).

The inference rules are modus ponens, necessitation and substitution.

Transitivity for ^≺i follows. We show soundness and completeness using the
bulldozing technique (Blackburn et al. 2001) to deal with ≺. For details, we refer
to van Benthem et al. (2007).

Theorem 1. ΛP is sound and complete with respect to the class of preference models.
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Proof. Follows from Theorem 1 in van Benthem et al. (2007). �

The preference logic is able to distinguish between weak and strict prefer-
ence. This plays a major role in many concepts for reasoning about interaction
in multi-agent systems. Due to the logic’s simplicity it still has the modal char-
acter and talks about preferences from a local perspective. An additionally ^�

modality would have increased the expressivity but would have resulted in a
global existential modality with respect to all comparable states.

3.2 Environment Logic with Preferences

As an intermediate step towards a logic for cooperation, actions and pref-
erences, we combine the preference logic and the environment logic. Their
models are combined by identifying their states. The agents’ preferences range
over the states of the environment. The agents cannot act in the environment,
but can rather be seen as observing the environment from the outside while
having preferences over its states.

Definition 3.4 (Environment with Preferences). An environment model with
preferences is a tuple

E� = 〈S,Ac, (→)A⊆Ac, {�i}i∈Ag,V〉,

where 〈S,Ac, (→)A⊆Ac, {�i}i∈Ag,V〉 is an environment model and 〈S,Ag, {�i
}i∈Ag,V〉 is a preference model.

We combine the languages for environment and preferences and add expres-
sions saying that “i (strictly) prefers every α-accessible state”. This will later
allow us to express statements saying by which actions groups can(not) achieve
an outcome better for (some of) its members.

Convention 1. We will write the symbol C in statements that hold for both � and ≺,
each uniformly substituted for C.

Definition 3.5 (Environment Language with Preferences). The language Lep
contains all expressions of the environment language and the preference lan-
guage and additionally formulas of the forms α ⊆�i and α ⊆≺i, for α being an
action expression.
Boolean combinations and expressions of previously defined languages are
interpreted as usual. For the newly introduced expressions, we have:

E�, s � α ⊆Ci iff ∀A ⊆ Ac, t ∈ S : if s →A t and A � α then s Ci
t.

α ⊆Ci cannot be defined in the preference language and the environment lan-
guage. because α ⊆�i says that each state accessible by an α-transition is also
accessible by �. Thus, we would have to be able to refer to particular states.
Therefore, we add two inference rules.

(PREF-ACT) �
�iϕ→[α]ϕ
α⊆�i

(STRICT PREF-ACT) �
≺iϕ→[α]ϕ
α⊆≺i

In order to obtain a complete axiomatization, two axioms are added which
correspond to the converse of the inference rules.
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Theorem 2. LetΛEP be the logic generated by all axioms of the environment logicΛE,
all axioms of the preference logic ΛP, and

1. α ⊆�i→ (��iϕ→ [α]ϕ),

2. α ⊆≺i→ (�≺iϕ→ [α]ϕ).

The inference rules are modus ponens, substitution, PREF-ACT and STRICT PREF-
ACT. Then ΛEP is sound and complete with respect to the class of environment models
with preferences.

Proof. Soundness is straightforward, and completeness follows from complete-
ness of the sublogics and the closure under the new rules. �

In ΛEP, the performance of concurrent actions changes the current state of
the system also with respect to the agents’ “happiness”: transitions can also be
a transitions up or down in the agents’ preference orderings.

3.3 Cooperation Logic with Actions and Preferences

Now, we introduce agents as actors by combining the environment models
with preferences with agents models. The resulting model is then called a
multi-agent system with preferences (henceforth MaSP).

Definition 3.6 (Multi-agent System with Preferences). A multi-agent system
with preferences (MaSP) M� is a tuple

M� = 〈S,Ac, (→)A⊆Ac,Ag,act, {�i}i∈Ag,V〉,

where 〈S,Ac, (→)A⊆Ac,V,Ag,act〉 is a MaS, 〈S,Ag, {�i}i∈Ag,V〉 is a preference
model and 〈S,Ac, (→)A⊆Ac, {�i}i∈Ag,V〉 is an environment with preferences.

Remark 1. Note that given a deterministic MaSP in which each preference relation
�i is total, we can consider each state s as having a strategic game (Osborne and
Rubinstein 1994) Gs attached to it.

Gs = 〈Ag, (P(act(i)))i∈Ag, (.i)i∈Ag〉,

×
n
i=1Ai .i ×

n
i=1A′i iff t �i t′ for s→⋃

i∈Ag Ai t and s→⋃
i∈Ag A′i

t′.

Next, we introduce two expressions saying that a group can force the system
to move into a ϕ-state that some agent (strictly) prefers.

Definition 3.7 (LanguageLcla+p). The languageLcla+p extendsLcla by formulas
of the form

^�iϕ | ^≺iϕ | α ⊆�i | α ⊆≺i | 〈[G�i〉] ϕ | 〈[G≺i〉] ϕ.

The first four expressions are interpreted as in the environment logic with
preferences and for the last two we have the following.

M�, s � 〈[GCi〉] ϕ iff ∃A ⊆ act(G): ∀B ⊆ act(Ag \ G), t ∈ S :
if s→A∪B t, then M�, t � ϕ and s Ci t.
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Let us now look at how coalitional power to achieve an improvement for an
agent is made explicit in CLA+P. We can show that 〈[GCi〉] ϕ is equivalent to the
existence of an action expression α that G can force such that all transitions of
type α lead to a ϕ-state preferred by i.

Observation 1. Given a MaSP M� and a state s of its environment,
M�, s � 〈[GCi〉] ϕ iff there exists an action expression α such that

M�, s � 〈[G〉] α ∧ [α]ϕ ∧ (α ⊆Ci).

Proof. Analogous to that of Observation 14 in Sauro et al. (2006). Use the action
expression

∧
Φ(A,G) :=

∧
(A∪
{
¬a|a ∈ (act(G) \ A), a < act(Ag \ G)

}
) for A being

the “witness” of G’s ability to force ϕ. �

Now we need axioms establishing a relationship between the newly added
formulas and the expressions of the sublogics.

Definition 3.8 (Cooperation Logic with Actions and Preferences). ΛCLA+P is
defined to be the smallest logic generated by the axioms of the cooperation
logic with actions, the environment logic with preferences and

1. (〈[G〉] α ∧ [α]ϕ ∧ (α ⊆Ci))→ 〈[GCi〉] ϕ,

2. 〈[G�i〉] ϕ→
∨
{〈[G〉] α ∧ [α]ϕ ∧ (α ⊆�i)|α is a conjunction of action literals},

3. 〈[G≺i〉] ϕ→
∨
{〈[G〉] α ∧ [α]ϕ ∧ (α ⊆≺i)|α is a conjunction of action literals}.

The inference rules are modus ponens, necessitation for action modali-
ties and preference modalities (��i ,�≺i ), substitution of logical equivalents,
PREF −ACT and STRICT PREF −ACT.

Theorem 3. The logic ΛCLA+P is sound and complete with respect to the class of
MaSP’s.

Proof. Soundness of the axioms is straightforward and completeness follows
from completeness of the sublogics. �

3.4 Expressivity of CLA+P

We now show that in CLA+P, we can express some concepts relevant for rea-
soning about game-like interaction in multi-agent systems.

Stability. Given a MaSP, M� = 〈S,Ac, (→A)A⊆Ac,Ag,act, {�i}i∈Ag,V〉, the fol-
lowing formula characterizes the states that are individually stable (group
stable), i.e. no individual (group) has the power to achieve a strict im-
provement (for all its members).

ψind. stable :=
∧
i∈Ag

¬〈[{i}≺i〉] >.

ψgr. stable :=
∧

G⊆Ag

∧
A⊆act(G)

∨
i∈G

¬

((∧
Φ(A,G)

)
⊆≺i

) .



Lena Kurzen 23

Dictatorship. We can express that an agent d is a (strong) dictator in the sense
that coalitions can only achieve what d (strictly) prefers.

ψd=dict. :=
∧

G⊆Ag

∧
A⊆act(G)

((∧
Φ(G,A)

)
⊆Cd

)
.

Then, we can also say that there is no (strong) dictator:

ψno dict. :=
∧
i∈Ag

¬

 ∧
G⊆Ag

∧
A⊆act(G)

((∧
Φ(G,A)

)
⊆Ci

) .
Enforcing Unanimity. In some situations we might want to impose the condi-

tion on a MaSP that groups should only be able to achieve something if
they can do so by making all its members happy:

〈[G〉] ϕ→

 ∨
A⊆act(G)

∧
i∈G

((∧
Φ(A,G)

)
⊆ ≺i

)
∧

[∧
Φ(A,G)

]
ϕ


 .

Note that the length of the last four formulas is exponential in the number of
agents (and atomic actions).

3.5 CLA+P and Coalition Logic

Let us now briefly discuss the relation between CLA+P and Coalition Logic
(CL) (Pauly 2002a) in order to illustrate how CLA+P builds upon existing
frameworks for reasoning about coalitional power and how exactly the under-
lying actions that are only implicitly represented in the semantics of CL are
made explicit. Given a fixed set of agents Ag, a coalition model M = 〈(S,E),V〉
with S being a set of states, E : S → (P(Ag) → P(P(S))) being a playable effec-
tivity function and V being a propositional valuation, we can we use Theorem
3.2 of Pauly (2002a) and obtain a corresponding game frame, i.e. each state has
an associated strategic game form in which each outcome corresponds to some
accessible state. Looking back at Remark 1, it is now easy to see how we can con-
struct a corresponding MaS: We take the same set of states and add actions for
each of the strategies in the attached games and define the accessibility relation
in accordance with the outcome function. Finally, we can define a translation
τ of formulas of CL to those of CLA in a straightforward way: formulas [G]ϕ
talking about coalitional power in CL are translated into 〈[G〉] τ(ϕ).

If we add preferences to the game forms in the game frame we obtained
from the coalition model, then we can transform it into a MaSP in an analogous
way.

This shows that the framework of CLA+P is a natural way to make coali-
tional power as modelled in CL and its extensions more explicit.

4 Complexity of CLA+P

In this section, we analyze the complexity of SAT of CLA+P.
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4.1 Decidability of CLA+P

We show that SAT of CLA+P is decidable. The first step is to show that only a
restricted class of models of CLA+P needs to be checked.

We start by looking at how we can restrict the class of models with respect
to the set of agents. Let Ag(ϕ) denote the set of agents occurring in ϕ. Now, we
ask: Is every satisfiable ϕ also satisfiable in a MaSP with set of agents Ag(ϕ)? In
Coalition Logic, the answer is negative: the formula ϕ′ = ¬〈[G〉] {1}p∧¬〈[{1}〉] q∧
〈[{1}〉] (p ∨ q) is only satisfiable in models with at least two agents (Pauly 2002b).
However, as in CLA+P the environment models can be nondeterministic, here
ϕ′ can indeed be satisfied in a model with only one agent, as the reader can
check.

It can be shown that every satisfiable formula ϕ ∈ Lcla+p is satisfiable in a
MaSP with set of agents Ag(ϕ)∪ {k}, for k being a new agent. k takes the role of
all opponents of Ag(ϕ) collapsed into one: k gets the ability to perform exactly
the actions that agents not occurring in ϕ can perform as a group.

Theorem 4. Every satisfiable formula ϕ ∈ Lcla+p is satisfiable in the class of MaSP’s
with at most |Ag(ϕ)| + 1 many agents.

Proof. Assume that M� = 〈S,Ac, (→A)A⊆Ac,Ag,act, {�i}i∈Ag,V〉 satisfies ϕ.
If Ag ⊃ Ag(ϕ), we construct M′�′ = 〈S,Ac, (→)A⊆Ac,Ag(ϕ) ∪ {k},act′, {�′i
}i∈Ag(ϕ)∪{k},V〉, with act′(k) =

⋃
j∈Ag\Ag(ϕ) act( j) and act′(i) = act(i) for i , k.

The preferences are defined as follows: �′i=�i for i ∈ Ag(ϕ) and �′k= S × S. By
induction, we can show that M�, s � ϕ iffM′�′ , s � ϕ. The case where ϕ is of the
form 〈[G〉] α follows from the definition of act′. Then the other cases involving
coalition modalities follow. �

Next, we want to know how many actions a model needs for satisfying some
formula. Consider e.g. ϕ = 〈[G〉] (p ∧ q) ∧ 〈[G〉] (¬p ∧ q) ∧ 〈[G〉] (¬p ∧ ¬q). It is
only satisfiable in models with |Ac| ≥ 2. The main task is to find “witnesses” for
formulas of the form 〈[G〉] ψ in terms of concurrent actions. We can show that
every satisfiable ϕ is satisfiable in a MaSP whose set of atomic actions consists
of those in ϕ, one additional one (a dummy for ensuring that each agent can
perform an action), and for every subformula 〈[G〉] ψ or 〈[GCi〉] ψ, one action for
each of G’s members.

The key step in transforming a model satisfying a formula ϕ into one whose
set of actions satisfies the above condition is to appropriately define the action
distribution and the accessibility relations. For every α occurring in ϕ, we have
to ensure that two states are related by an α-transition in the new model iff they
were in the original one. Additionally, for formulas 〈[G〉] ψ and 〈[GCi〉] ψ, the set
of actions introduced for them serves for making explicit how G can force ϕ.

Theorem 5. Every satisfiable formula ϕ ∈ Lcla+p is satisfiable in a MaSP with at
most |Ac(ϕ)|+ (

∑
〈[G〉] ψ∈Sub(ϕ) |G|)+ (

∑
〈[G�i 〉] ψ∈Sub(ϕ) |G|)+ (

∑
〈[G≺i 〉] ψ∈Sub(ϕ) |G|)+ 1 many

actions.

Proof. Assume that M� = 〈S,Ac, (→A)A⊆Ac,Ag,act, {�i}i∈Ag,V〉 satisfies ϕ. We
construct a model M′�′ = 〈S,Ac′, (→′)A′⊆Ac′ ,Ag,act′, {�′i }i∈Ag,V〉 as follows.

Ac′ := Ac(ϕ) ∪
⋃
〈[G〉] ψ∈Sub(ϕ) AGψ ∪

⋃
〈[G�i 〉] ψ∈Sub(ϕ) AG�iψ ∪⋃

〈[G≺i 〉] ψ∈Sub(ϕ) AG≺iψ ∪{â}.
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AGψ and AGCiψ consist of newly introduced actions aGψ j, and aGCiψ j respectively,
for each j ∈ G. Action abilities are distributed as follows:

act′(i) := (act(i)∩Ac(ϕ))∪{â}∪{aGi|〈[G〉]ψ ∈ Sub(ϕ) or 〈[GCi〉]ψ ∈
Sub(ϕ), for i ∈ G}.

For defining the accessibility relation→A′⊆Ac′ , we first define for any state s its
set of successors.

t ∈ Ts
A′ iff the following conditions are satisfied:

1. ∀[α]ψ ∈ Sub(ϕ) such that A′ � α : If M�, s � [α]ψ, then
M�, t � ψ,

2. ∀α ⊆Ci∈ Sub(ϕ) such that A′ � α : If M�, s � α ⊆Ci,
then s Ci t,

3. ∀〈[G〉] ψ ∈ Sub(ϕ) such that A′ �
∧
Φ(AGψ,G), there is

some Ā ⊆ act(G) such that s →A t for some A ⊆ Ac
such that A �

∧
Φ(Ā,G), and if M�, s � 〈[G〉] ψ then

M�, s � [
∧
Φ(Ā,G)]ψ

4. ∀〈[GCi〉] ψ ∈ Sub(ϕ) such that A′ �
∧
Φ(AGCiψ,G), there

is some Ā ⊆ act(G) such that s→A t for some A ⊆ Ac
such that A �

∧
Φ(Ā,G), and if M�, s � 〈[GCi〉] ψ then

M�, s � [
∧
Φ(Ā,G)]ψ and M�, s � (

∧
Φ(Ā,G) ⊆ Ci)}.

For any t ∈ Ts
A′ , we set s→′A′ t. Then we can show by induction on ψ ∈ Sub(ϕ)

that M�, s � ψ iffM′�′ , s � ψ. �

The next step is to show that every satisfiable formula ϕ is satisfiable in a
model with a certain number of states. Such results are usually obtained by
transforming a model into a smaller one using a transformation that preserves
the truth of subformulas of ϕ.

In the case of CLA+P, the irreflexivity of the strict preferences and the fact
that also α ⊆�i is not modally definable in a basic modal language call for a
modification of the standard techniques.

We appropriately modify the method of filtration (Blackburn et al. 2001)
and show that any satisfiable formula ϕ ∈ Lcla+p is satisfiable in a model with
exponentially many states. The idea of a filtration is to transform a possibly
infinite model into a finite one by identifying states that agree on the truth
value of each subformula of the considered formula. So, given that we know
that ϕ is satisfied in some MaSP M� with states S, we construct an MaSPM�

f

with set of states SSub(ϕ) = {|s|Sub(ϕ) |s ∈ S}, where |s|Sub(ϕ) denotes the equivalence
class of the states that in the model M agree with s on the truth values of all
ψ ∈ Sub(ϕ). The main task is to appropriately define the accessibility relations
for actions and preferences inM�

f
such that for ψ ∈ Sub(ϕ), we then have that

M�, s � ψ iffM�
f
, |s| � ψ. Here, it is important to note that formulas of the form

〈[G〉] ψ and 〈[GCi〉] ψ correspond to formulas of the form
∨

A⊆act(G)[
∧
Φ(A,G)]ψ

and
∨

A⊆act(G)([
∧
Φ(A,G)]ψ ∧ (

∧
Φ(A,G) ⊆ Ci)), respectively – for

∧
Φ(A,G) as

in the proof of Observation 1. Moreover, the transformation of the model does
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not change the underlying agents model. Thus, the truth of formulas of the
form 〈[G〉] α is preserved.

Theorem 6. Every satisfiable ϕ ∈ Lcla+p is also satisfiable in a MaSP with ≤ 2|ϕ|

many states.

Proof. Given that M�, s � ϕ for some M� = 〈S,Ac, (→A)A⊆Ac,Ag,act, {�i}i∈Ag,V〉
and s ∈ S, we obtain M�

f
= 〈SSub(ϕ),Ac, (→ f )A⊆Ac,Ag,act f , {� f

i }i∈Ag,V f
〉 by fil-

trating M� through Sub(ϕ), where the accessibility relations for actions and
preferences are defined as follows:
|s| → f

A |t| iff the following conditions are satisfied:

1. ∀[α]ψ ∈ Sub(ϕ) such that A � α : if M�, s � [α]ψ,
then M�, t � ψ,

2. (a) ∀α ⊆�i∈ Sub(ϕ) such that A � α : if M�, s �
α ⊆�i, then s �i t,

(b) ∀α ⊆≺i∈ Sub(ϕ) such that A � α : if M�, s �
α ⊆≺i, then s ≺i t,

3. ∀〈[G〉] ψ ∈ Sub(ϕ) such that A �
∧
Φ(A′,G) for some

A′ ⊆ act(G) : if M�, s � [
∧
Φ(A′,G)]ψ, then M�, t �

ψ,

4. (a) ∀〈[G�i〉] ψ ∈ Sub(ϕ) such that A �
∧
Φ(A′,G)

for some A′ ⊆ act(G): if M�, s � [
∧
Φ(A′,G)]ψ

and M�, s � (
∧
Φ(A′,G) ⊆ �i), then M�, t � ψ

and s �i t.

(b) ∀〈[G≺i〉] ψ ∈ Sub(ϕ) such that A �
∧
Φ(A′,G)

for some A′ ⊆ act(G): if M�, s � [
∧
Φ(A′,G)]ψ

and M�, s � (
∧
Φ(A′,G) ⊆ ≺i), then M�, t � ψ

and s ≺i t.

|s| � f
i |t| iff the following conditions hold:

1. (a) ∀^�iψ ∈ Sub(ϕ): if M�, t � ψ ∨ ^�iψ then
M�, s � ^�iψ,

(b) If there is some ^≺iψ ∈ Sub(ϕ), then s �i t,

2. If there is some α ⊆�i∈ Sub(ϕ) or some α ⊆≺i∈

Sub(ϕ), then s �i t,

3. If there is some 〈[G�i〉] ψ ∈ Sub(ϕ) or some 〈[G≺i〉] ψ ∈
Sub(ϕ), then s �i t.

V f (p) := {|s||M, s � p}, for all propositional letters p ∈ Sub(ϕ). We can show by
induction that for all ψ ∈ Sub(ϕ) and s ∈ S it holds that M�, s � ψ iffM� f

, |s| � ψ.
This follows from the definitions of (→ f )A⊆Ac and� f , and the fact that we do not
change the underlying agents model. The interesting cases are those involving
strict preferences and those with formulas 〈[G�i〉] ψ and α ⊆�i. Here, what
makes the proof go through is that by conditions 1 b), 2 and 3 of � f , |s| �i |t|
implies s �i t. Similarly, due to conditions 2 and 4 of → f

A, the truth values of
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subformulas α ⊆Ci and 〈[GCi〉] ψ is as in the original model. Moreover, M�
f

is
a proper MaSP since each � f

i is reflexive and transitive, and each→ f
A is serial.

By definition of SSub(ϕ), |SSub(ϕ)| ≤ 2|ϕ|. �

Now, we apply the constructions of the last three proofs successively.

Corollary 1. Every satisfiable formula ϕ ∈ Lcla+p is satisfiable in a MaSP of size
exponential in |ϕ| satisfying the conditions |Ag| ≤ |Ag(ϕ)| + 1 and |Ac| ≤ |Ac(ϕ)| +∑
〈[G〉] ψ∈Sub(ϕ) |G| + (

∑
〈[G�i 〉] ψ∈Sub(ϕ) |G|) + (

∑
〈[G≺i 〉] ψ∈Sub(ϕ) |G|) + 1.

Having non-deterministically guessed a model of size exponential in |ϕ|, we
can check in time exponential in |ϕ|whether this model satisfies ϕ.

Theorem 7. The satisfiability problem of CLA+P is in NEXPTIME.

Proof. Given ϕ, we non-deterministically choose a model M� of size expo-
nential in |ϕ| satisfying the conditions |Ag| ≤ |Ag(ϕ)| + 1 and |Ac| ≤ |Ac(ϕ)| +∑
〈[G〉] ψ∈Sub(ϕ) |G| + (

∑
〈[G�i 〉] ψ∈Sub(ϕ) |G|) + (

∑
〈[G≺i 〉] ψ∈Sub(ϕ) |G|) + 1. Then, given this

model, we can check in time O(|ϕ|||M�||), for |M�| being the size of M�, whether
M� satisfies ϕ. Thus, given a model of size exponential in |ϕ| that also satisfies
the conditions on its sets of agents and actions explained earlier, it can be com-
puted in time exponential in |ϕ| whether it satisfies ϕ. Since it can be checked
in time linear in the size of the model whether it is a proper MaSP, we conclude
that SAT of CLA+P is in NEXPTIME. �

This section has shown that SAT of CLA+P is in NEXPTIME. Now we show
that the environment logic is already EXPTIME-hard.

4.2 Lower Bound

In order to show a lower bound for the complexity of SAT of CLA+P, we show
that SAT of the environment logic is EXPTIME-hard. This is done by reduction
from the Boolean modal logic K¬∪m (Lutz and Sattler 2001, Lutz et al. 2001).

Formulas of K¬∪m are interpreted in models M = 〈W,R1, . . .Rm,V〉, where W
is a set of states, Ri ⊆W ×W and V is a valuation.

Definition 4.1. Let R1, . . .Rm be atomic modal parameters. Then the set of
modal parameters of K¬∪m is the smallest set containing R1, . . .Rm that is closed
under ¬ and ∪. The language L¬∪m is generated by the following grammar:

ϕ ::= p ϕ ∧ ϕ ¬ϕ 〈S〉ϕ S ::= Ri ¬S S1 ∪ S2.

The extension E(S) ⊆W ×W of a parameter S in a model is as follows.

E(Ri) = Ri
E(¬S) = (W ×W) \ E(S)
E(S1 ∪ S2) = E(S1) ∪ E(S2)

Formulas ofL¬∪m are interpreted in a model M = 〈W,R1, . . .Rm,V〉 as follows:
Propositional letters and boolean combinations are interpreted in the standard
way and for modal formulas we have

M,w � 〈S〉ϕ iff ∃w′ ∈W : (w,w′) ∈ E(S) and M,w′ � ϕ.
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We define a translation τ consisting of two components τ1 for formulas and
τ2 for models. Let us extend the language Le by a propositional letter q < L¬∪m .
Then τ1 is defined as follows:

τ1(p) = p τS(Ri) = ai
τ1(ϕ1 ∧ ϕ2) = τ1(ϕ1) ∧ τ1(ϕ2) τS(S1 ∪ S2) = τS(S1) ∨ τS(S2)

τ1(¬ϕ) = ¬τ1(ϕ) τS(¬S) = ¬τS(S)
τ1(〈S〉ϕ) = ¬[τS(S)](q ∨ ¬τ1(ϕ))

τ2 translates a model M of K¬∪m into an environment model τ2(M) = 〈W ∪
{u},Ac, (→)A⊆Ac,V′〉with u being a newly introduced state and

w→A w′ iff A = {ai|(w,w′) ∈ Ri} or w′ = u.

Thus, each→A is serial and τ2(M) is an environment model. V′(q) = {u}, and
for all p , q, V′(p) = V(p). Before showing that for any ϕ ∈ L¬∪m and M ∈M¬∪

m
for any state w ∈ W : M,w � ϕ iff τ2(M),w � τ1(ϕ), we proof a lemma saying
that if in M w′ is S-accessible from w, then in τ2(M), w′ is accessible from w by
a transition of type τS(S).

Convention 2. For M = 〈W,R1, . . .Rm,V〉 ∈ M¬∪
m and τ2(M) = 〈W ∪ {u},Ac, (→

)A⊆Ac,V′〉, define Aw,w′ := {ai ∈ Ac|(w,w′) ∈ Ri}.

Lemma 1. Let M = 〈W,R1, . . .Rm,V〉 be a model of K¬∪m . Then for any modal
parameter S and for any states w,w′ ∈W it holds that

(w,w′) ∈ E(S) iff in τ2(M) : ∃A ⊆ Ac : w→A w′ and A � τS(S).

Proof. Note that by definition of (→A)A⊆Ac, the righthand side is equivalent to
Aw,w′ � τS(S). Then the proof goes by induction on S. �

Theorem 8. For any formula ϕ ∈ L¬∪m and any model M of K¬∪m , it holds that for any
state w in M:

M,w � ϕ iff τ2(M),w � τ1(ϕ).

Proof. By induction. Base case and boolean cases are straightforward. Let
ϕ = 〈S〉ψ.

(⇒) M,w � 〈S〉ψ⇔ ∃w′ : (w,w′) ∈ E(S) and M,w′ � ψ. By the previous lemma
and induction hypothesis, τ2(M),w � τ1(〈S〉ψ).

(⇐) τ2(M),w � τ1(〈S〉ψ) ⇔ τ2(M),w � ¬[τS(S)](q¬τ1(ψ)). Then ∃w′ ∈ W ∪
{u},∃A ∈ Ac : A � τS(S),w →A w′ and τ2(M),w′ � ¬q ∧ τ1(ψ). Thus,
w′ , u. By induction hypothesis and the previous lemma, M,w′ � ψ and
(w,w′) ∈ E(S). Hence, M,w � 〈S〉ψ.

�

Theorem 9. SAT of ΛE is EXPTIME-hard.

Proof. We can polynomially transform any ϕ ∈ L¬∪m into τ1(ϕ). Now, if
τ1(ϕ) is satisfiable in an environment model E = 〈W,Ac, (→)A⊆Ac,V〉 with
Ac = {a1, . . . am}, then ϕ is satisfiable in a model M = 〈W,R1, . . .Rm,V〉, where
(w,w′) ∈ Ri iff ∃A ⊆ Ac such that ai∈Ac and w →A w′. This can be shown by
induction on ϕ. If τ1(ϕ) is not satisfiable in an environment model then it
cannot be satisfiable in any model M of K¬∪m because otherwise by the previous
theorem, τ1(ϕ) would be satisfied in τ2(M). �
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Corollary 2. SAT of CLA+P is EXPTIME-hard.

This section has shown that the satisfiability problem of CLA+P is EXPTIME-
hard but still decidable. This rather high complexity is due to the environment
logic which itself is already EXPTIME-hard.

5 Conclusions and Future Work

We developed a modular modal logic that allows for reasoning about the
coalitional power of agents, actions and their effects, and agents’ preferences.
The current approach is based on the logic CLA (Sauro et al. 2006) which is
combined with a preference logic (van Benthem et al. 2007). The resulting logic
CLA+P, which is shown to be sound and complete, allows us to make explicit
how groups can achieve certain results. We can also express how a group can
achieve that a transition takes place that is an improvement for some agent.
In the framework of CLA+P, it can be expressed how the abilities to perform
certain actions are distributed among the agents, what are the effects of the
concurrent performance of these actions and what are the agents’ preferences
over those effects. Moreover, in CLA+P, we can distinguish between different
ways how groups can achieve some result – not only with respect to the actions
that lead to some result, but also with respect to the preferences. We can for
instance express that a group can achieve some result in a way that is ‘good’
for all its members in the sense that after the achievement all of them are
better off. This then also allows us to axiomatize properties that one might
want to impose onto a multi-agent system, e.g. the restriction that groups can
only achieve the truth of a certain formula if this can be done without making
anybody worse off. Thus, CLA+P provides a framework for reasoning about
interactive situations in an explicit way that gives us more insights into the
cooperative abilities of agents. Comparing CLA+P to CL shows that CLA+P
naturally builds on game frames underlying the semantics of CL and makes
both the agents’ actions and the preferences explicit that are only implicitly
represented in the semantics of CL.

The satisfiability problem of CLA+P is shown to be decidable and EXPTIME-
hard. Keeping in mind that using CLA+P we can talk about strict preferences,
intersections of accessibility relations as well as the property of one relation be-
ing a subset of another, EXPTIME-hardness is not surprising. Even though the
modular models of CLA+P are rather special, its complexity is in accordance
with general results concerning the connection between expressive power and
complexity of modal logics for reasoning about coalitional power and prefer-
ences (Dégremont and Kurzen 2009).

We showed that the satisfiability problem of the underlying environment
logic is by itself already EXPTIME-hard. Thus, we identified one cause for the
high complexity of CLA+P. It is mostly due to the fact that the accessibility
relation of the models can be arbitrary: there does not need to be any relation
between→A,→B and→A∩B. Whereas this generality allows us to model a lot of
dynamic processes, from a computational viewpoint, it seems to be appealing
to change the environment logic in order to decrease computational complexity.
Also, when comparing our models to the game frames of CL, we can see that
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restricting ourselves to deterministic environment models can be reasonable.
The same holds for considering only total preorders as preference relation. This
would also increase the expressive power (Dégremont and Kurzen 2009).

There are several immediate ways to extend the logic developed in this
paper. First of all, we can follow the ideas of Ågotnes et al. (2007b) and add
a restricted form of quantification that allows statements of the form 〈[P�i〉] ψ
saying that there is some group G that has property P and 〈[G�i〉] ψ. In the cur-
rent work, we chose a rather simple preference logic with unary modalities. In
order to increase the expressive power with respect to the agents’ preferences
over outcomes that can be achieved, it seems very promising to consider more
expressive preference logics that also contain binary preference modalities say-
ing e.g. that an agent prefers every ϕ state over every ψ state (van Benthem
et al. 2007).

Moreover, it will be interesting to develop a cooperation logic with actions
and preferences based on a logic for reasoning about complex plans such as the
the one developed by Gerbrandy and Sauro (2007).
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Abstract
In this paper we bring Aumann’s Agreement Theorem to dynamic-
epistemic logic. We show that common belief of posteriors is sufficient for
agreements in “epistemic-plausibility models”, under common and well-
founded priors, from which the usual form of agreement results, using
common knowledge, follows. We do not restrict to the finite case, and
show that in countable structures such results hold if and only if the un-
derlying “plausibility ordering” is well-founded. We look at these results
from a syntactic point of view, showing that neither well-foundedness nor
common priors are expressible in a commonly used language, but that the
static agreement result is finitely derivable in an extended modal logic. We
finally consider “dynamic” agreement results, and show they have a coun-
terpart in epistemic-plausibility models. We also show to which agreements
one gets via “public announcements.” A comparison of the two types of
dynamic agreements reveals that they can indeed be different.

1 Introduction

In this paper we bring Aumann’s Agreement Theorem Aumann (1976) and
some of its subsequent extensions Geanakoplos and Polemarchakis (1982) and
generalizations Cave (1983), Bacharach (1985) to dynamic-epistemic logic Bal-
tag and Smets (2006), van Ditmarsch et al. (2007). We show that common belief
of posteriors is sufficient for agreements in “epistemic-plausibility models”, un-
der common and well-founded priors, from which the usual form of agreement
results, using common knowledge, follows. We do not restrict to the finite case,
thus improving on known qualitative agreement theorems Bacharach (1985),
and show that in countable structures such results hold if and only if the un-
derlying “plausibility ordering” is well-founded. We then look at these results
from a syntactic point of view, showing that neither well-foundedness nor
common priors are expressible in the language proposed in Baltag and Smets
(2008), even extended with a common belief operator, but we also show a fini-
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tary syntactic derivation of the static agreement result in an extended modal
language. We finally consider “dynamic” agreement results. We show that
“agreements via dialogues” Cave (1983), Bacharach (1985) have a counterpart
in epistemic-plausibility models, and that one also gets agreements via “public
announcements,” a type of belief update that has so far not been considered
in the agreement literature—see Bonanno and Nehring (1997) and Ménager
(2006). A comparison of the two types of dynamic agreements reveals that in
some situations they are indeed different.

These technical results answer an “internal” question for dynamic-epistemic
logic, namely whether agreement results hold in this framework, but they also
offer new insights on the contribution of agreement theorems to interactive
epistemology. That common belief of posteriors is sufficient for agreements,
under common and well-founded priors, strengthens one of the key lessons
of agreement theorems, viz. that first-order information is highly dependent
on higher-order information in situations of interaction Bonanno and Nehring
(1997). Our inexpressibility results, on the other hand, support a qualm al-
ready voiced in the literature concerning the difficulty for agents to reason
about static agreements Samet (In Press). The two dynamic results not only
make a sharp distinction between two forms of belief changes, they also allow
to more adequately capture the idea that agreements are reached via public
dialogues. Bringing agreement theorems to dynamic-epistemic logic is thus of
importance both technically and conceptually, and it helps to bridge the exist-
ing literature on agreements with the logical approaches to knowledge, beliefs
and the dynamics of information.

2 Definitions

In this section we introduce the models in which we study the various agree-
ment results, and the logical language used in Baltag and Smets (2008) to
describe them.

2.1 Epistemic Plausibility Models

An epistemic plausibility model Baltag and Smets (2006) is a qualitative repre-
sentation of the agents’ beliefs as well as first- and higher-order information in
a given interactive situation.

Definition 2.1 (Epistemic Plausibility Model). Given a countable set of atomic
propositions , an epistemic plausibility model M = 〈W, (≤i)i∈I, (∼i)i∈I,V〉 has
W , ∅ and is countable, I = {1, 2, . . . ,n} is a finite set of agents, and for each i ∈ I,
≤i is a total (plausibility) pre-order on W and ∼i is binary equivalence relation
on W, and V : → ℘(W). An epistemic plausibility frame F is an epistemic
plausibility model with the valuation V omitted.

The total plausibility pre-order ≤i induces i’s priors. If w ≤i w′ we say that i
considers w′ at least as plausible as w. Given a set X ⊆W, we say that w ∈ X is
≤i-minimal in X if w ≤i w′ for all w′ ∈ X. The relation ∼i induces i’s information
partition W. We write Ki[w] to denote the cell of this partition {v ∈ W | w ∼i v}
to which w belongs. Ki[w] should be seen as i’s (private) information at w. We
write |M| =W for the domain ofM.
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The next two assumptions are crucial in the following.

Definition 2.2 ((Local) well-foundedness). A plausibility pre-order satisfies:

• Local well-foundedness. If for all w ∈ W and i ∈ I, for all X ⊆ Ki[w], X
has ≤i-minimal elements.

• Well-foundedness. If for all X ⊆W and i ∈ I, X has a≤i-minimal elements.

M satisfies (Local) Well-foundedness if every plausibility pre-order has the cor-
responding property.

Definition 2.3 ((A priori/ a posteriori) Most plausible elements). • For all
X ⊆W, let βi(X) = min≤i (X) = {w : w is ≤i -minimal in X}.

• For all w ∈W, let Bi[w] = βi(Ki[w]).
We write w BBi v iff v ∈ Bi[w], and w→X

i v iff v ∈ βi(Ki[w] ∩ X).

Intuitively βi(X) are the a priori most plausible elements of a set, ignoring the
information partitions. Bi[w] gives the states i considers the most plausible,
conditional on the information he possesses at w, i.e. conditional on Ki[w].
Observe that βi is well-defined if the plausibility pre-order is well-founded,
while local well-foundedness is sufficient for Bi to be well-defined.

Definition 2.4 (Common Prior). There is common prior beliefs among group G
in an epistemic plausibility modelMwhen ≤i = ≤ j for all i, j ∈ G.

The reflexive-transitive closure of the union of the epistemic accessibility
relations ∼i for all agents i in a group G is the model-theoretic counterpart of
the notion of “common knowledge” in G Fagin et al. (1995), van Ditmarsch
et al. (2007). We define “common belief” analogously.

Definition 2.5 (Common knowledge). For each G ⊆ I, let ∼∗G be the reflexive-
transitive closure of

⋃
i∈G ∼i. Let [w]∗G = {w

′
∈W | w ∼∗G w′}.

Definition 2.6 (Common belief). For each G ⊆ I, letB∗G be the reflexive-transitive
closure of

⋃
i∈G B

B

i .

2.2 Doxastic-Epistemic Logic

The logical language used in Baltag and Smets (2008) to describe epistemic-
plausibility models is a propositional modal language with three families of
modal operators, which we extend here with “common belief” operators.

Definition 2.7 (Epistemic Doxastic Language). The language LEDL is defined
as follows:

φ := p | ¬φ | φ ∧ φ | Kiφ | B
φ
i φ | CGφ | CBGφ

where i ranges over N, p over a countable set of proposition letters  and
∅ , G ⊆ I.

The propositional fragment of this language is standard, and we write⊥ for
p ∧ ¬p and > for ¬⊥. A formula Kiφ should be read as “i knows that φ”, CGφ
as “it is common knowledge among group G that φ”, CBGφ as “it is common
belief among group G that φ.” The formula Bφi ψ, should be read “ conditional
onφ, i believes thatψ.” These formulas are interpreted in epistemic plausibility
models as follows:
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Definition 2.8 (Truth definition). We write ||φ||M for {w ∈ |M| : M,w 
 φ}. We
omitMwhen it is clear from the context.

M,w 
 p iff w ∈ V(p)
M,w 
 ¬φ iff M,w 1 φ
M,w 
 φ ∧ ψ iff M,w 
 φ andM,w 
 ψ
M,w 
 Kiφ iff ∀v (if w ∼i v thenM, v 
 φ)

M,w 
 Bψi φ iff ∀v (if w→||ψ||
M

i v thenM, v 
 φ)
M,w 
 CGφ iff ∀v (if w ∼∗G v thenM, v 
 φ)
M,w 
 CBGφ iff ∀v (if w B∗G v thenM, v 
 φ)

Simple belief conditional only on i’s information at a state w is defin-
able using the conditional belief operator: Biφ = B>i φ, since: M,w 

B>i φ iff ∀v (if w BBi v thenM, v 
 φ).

3 Static Agreements and Well-foundedness

We first show that if an epistemic plausibility model is well-founded, then
common belief that agent i believes that φ while j does not believe that φ
implies that i and j have different priors, which is the contrapositive form of the
agreement theorem.

Theorem 1 (Agreement theorem - Common Belief). If a well-founded epistemic
plausibility modelM satisfiesM,w 
 CB{i, j}(Bip ∧ ¬B jp) for some w ∈W, then i and
j have different priors inM.

This immediately implies the “common knowledge” agreement result be-
low, because CGφ → CBGφ is a valid implication in epistemic plausibility
models. Note, however, that this result can also have be shown independently,
by application of Bacharach’s Bacharach (1985) result on qualitative “decision
functions”, modulo generalization to the countable case.

Corollary 1 (Agreement theorem - Common Knowledge). If an epistemic plau-
sibility modelM satisfies well-foundedness andM,w 
 C{i, j}(Bip ∧ ¬B jp) for one
w ∈W, then i and j have different priors inM.

Well-foundeness of the plausibility ordering is the crux of Theorem 1 and
Corollary 1: if an epistemic-plausibility model is well-founded then common
prior excludes the possibility of disagreements. Moreover the next result shows
that the converse holds as well, and thus that well-foundedness cannot be weak-
ened to local well-foundedness.

Proposition 1. There exists a pointed epistemic plausibility modelM,w which satisfies
local well-foundedness and common prior such thatM,w 
 C{1,2}(B1p ∧ ¬B2p).

Well-foundedness of the plausibility ordering is thus the safeguard against
common knowledge of disagreement, once we drop the assumption that the
state space is finite.
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4 Expressive Power and Syntactic Proofs

LEDL is a natural choice of language to talk about epistemic-plausibility mod-
els, and but we show here that it cannot express Theorem 1 nor Corollary 1,
because it cannot express two of their key assumptions, common prior and
well-foundedness.

Fact 2. The class of epistemic plausibility frames that satisfies common prior is not
definable in LEDL.

This result confirms the idea that to reason about (common) priors the
agents must make “inter-[information]-state comparisons” Samet (In Press),
which they cannot do because their reasonings in LEDL are local, i.e. bounded
by the “hard information” van Benthem (2007) they have. This limitation also
makes well-foundeness inexpressible, and with it the two static agreement
results.

Fact 3. There is no formula φ ofLEDL which is true in a pointed epistemic plausibility
modelM,w iff Theorem 1 or Corollary 1 holds inM,w.

The syntactical counterpart of the model-theoretic agreement results thus
lives in more expressive languages. In the appendix we present a finite deriva-
tion inH(@, ↓,CG), which extends the hybrid languageH(@, ↓) with a common
knowledge modality CG. The satisfiability problem for this language on the
class of conversely well-founded frames is Σ1

1-hard ten Cate (2005), ruling out
any finite axiomatization of its validities. The derivation we show, however, is
finite and uses only sound axioms. It is still unknown to us whether the agree-
ment results of Section 3 could be derived in a less complex language. The
fact that the syntactic derivation reported here pertains to such an expressive
language nevertheless shows that reasoning explicitly about agreement results
requires heavy expressive resources.

5 Agreements via dialogues

In this section we turn to“agreements-via-dialogues” Geanakoplos and Pole-
marchakis (1982), Bacharach (1985), which analyze how agents can reach agree-
ment in the process of exchanging information about their beliefs by updating
the latter accordingly.

5.1 Agreements via Conditioning

We first consider agreements by repeated belief conditioning. It is known that
if agents repeatedly exchange information about each others’ posterior beliefs
about a certain event, and update these posteriors accordingly, these posteriors
will eventually converge Geanakoplos and Polemarchakis (1982), Bacharach
(1985). We show here that this result also holds for the “qualitative” form of
beliefs conditionalization in epistemic plausibility models.

We call a conditioning dialogue aboutφGeanakoplos and Polemarchakis (1982)
at a state w of an epistemic plausibility model M a sequence of belief condi-
tioning, for each agent, on all other agents’ beliefs about φ. This sequence
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can be intuitively described as follows. It starts with the agents’ simple belief
about φ, i.e. for all i: Biφ ifM,w 
 Biφ and ¬Biφ otherwise. Agent i’s beliefs
about φ at the next stage is defined by taking his beliefs about φ, conditional
upon learning the others’ belief about φ at that stage. Syntactically, this gives,
IB1,i = Biφ if M,w 
 Biφ and IB1,i = ¬Biφ otherwise and, for two agents i, j,
IBn+1,i = BIBn, jφ

i φ if M,w 
 BIBn, jφ

i φ and ¬BIBn, jφ

i φ otherwise. This syntactic ren-
dering is only intended to fix intuitions, though, since in countable models the
limit of this sequence exceeds the finitary character of LEDL. We thus focus on
models-theoretic conditioning.

Conditioning on a given event A ⊆ W boils down to refining an agent’s
information partition by removing “epistemic links” connecting A and non-A
states.

Definition 5.1 (Conditioning by a subset). Given an epistemic plausibility
model M, the collection of epistemic equivalence relation of the agents is
an element of ℘(W × W)I. Given a group G ⊆ I, the function fG : ℘(W) →
(℘(W ×W)I

→ ℘(W ×W)I) is a conditioning function for G whenever:

(w, v) ∈ fG(A)(i)({∼i}i∈I) =

(w, v) ∈∼i and (w ∈ A iff v ∈ A) if i ∈ G
(w, v) ∈∼i otherwise

Given M = 〈W, (≤i)i∈I, (∼i)i∈I,V〉 we write fG(A)(M) for the model 〈W, (≤i
)i∈I, fG(A)((∼i)i∈I),V〉.

It is easy to see that the relations ∼i in fG(A)(M) are equivalence relations.
Here we are interested in cases where the agents condition their beliefs upon
learning in which belief state the others are.

Definition 5.2 (Belief states). LetM an epistemic plausibility model and A ⊆W,
we write

BMj (A) for {w : β j(KMj [w]) ⊆ A} and

¬BMj (A) for W \ BMj (A)

We define IBM,w
j (A) as follows:

IBM,w
j (A) =

BMj (A) if w ∈ BMj (A)

¬BMj (A) otherwise

Observation 4. For any plausibility epistemic model M indexed by a finite set of
agents I, 〈℘(W ×W)I,⊆〉 is a chain complete poset. Moreover for all A ⊆ W, w ∈ W
and G ⊆ I, fG(A) is deflationary.

Taking fI(
⋂

j∈I IBM,w
j (||φ||M)) as a mapping on models, it is easy to see from

the preceding observation that conditioning by agents’ beliefs about some event
is deflationary with respect to the relation of epistemic-submodel. It follows
then by the Bourbaki-Witt fixed-point Theorem Bourbaki (1949) (see appendix
for an exact statement) that conditioning by agents’ beliefs has a fixed point.

Given an initial pointed modelM,w and some event A ⊆ W, we can con-
struct its fixed point under conditioning by agents’ beliefs as the limit of a
sequences of models, that are the model-theoretic counterpart of the dialogues
described above.
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Definition 5.3. A conditioning dialogue about φ at the pointed plausibility epis-
temic model M,w, with M = 〈W, (≤i)i∈I, (∼i)i∈I,V〉 is the sequence of pointed
epistemic plausibility models (Mn,w) with

(M0,w) =M,w

(Mβ+1,w) = fI(
⋂
j∈I

IBMβ,w
j (||φ||M))(Mβ),w

(Mλ,w) =
⋂
β<λ

(Mβ,w) for limit ordinals λ

This extends to the countable case the standard representation of a dialogue
about φ in the literature on dynamic agreements Geanakoplos and Polemar-
chakis (1982), Bacharach (1985). By Observation 4 we know that dialogues
cannot last forever, i.e. that each such sequence has a limit.

Corollary 2. For any pointed epistemic plausibility modelM,w and φ ∈ LEDL there
is a α f such that, for all i ∈ I, w ∈W and α > α f ,Kα,i[w] = Kα f ,i[w].

Once the agents have reached this fixed-point α f —possibly after trans-
finitely many steps—they have eliminated all higher-order uncertainties con-
cerning the posteriors about φ of the others, viz. these posteriors are then
common knowledge:

Theorem 5 (Common knowledge of beliefs about φ). At the fixed-point α f of
a conditioning dialogue about φ we have that for all w ∈ W and i ∈ I, if w ∈

B
M

α f ,w
i (||φ||M) then w′ ∈ B

M
α f ,w

i (||φ||M) for all w′ ∈ [w]∗
α f ,I

, and similarly if w <

B
M

α f ,w
i (||φ||M).

With this in hand we can directly apply the static agreement result for
common knowledge (Corollary 1, Section 3) to obtain that the agents indeed
reach agreements at the fixed-point of a dialogue about φ.

Corollary 3 (Agreement via conditioning dialogue). Take any dialogue about φ
with common and well-founded, priors and α f as in Corollary 2. Then for all w in W,

either [w]∗
α f ,I
⊆
⋂

i∈I B
M

α f ,w
i (||φ||M) or [w]∗

α f ,I
⊆
⋂

i∈I ¬B
M

α f ,w
i (||φ||M).

This result brings qualitative dynamic agreement results Cave (1983),
Bacharach (1985) to epistemic plausibility models, and show that agents can
indeed reach agreement via iterated conditioning, even when one drops the
finite model assumption.

5.2 Agreements via Public Announcements

In this section we show that iterated “public announcements” lead to agree-
ments, thus bringing a distinct form of information update to the agreement
literature. Public announcements are “epistemic actions” van Ditmarsch et al.
(2007) where truthful hard information is made public to the members of a
group by a trusted source, in a way that no member is in doubt as whether the
others received the same piece of information as him.
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One extends a given logical language with public announcements by op-
erators of the form [φ!]ψ, meaning “after the announcement of φ, ψ holds”
Plaza (1989), Gerbrandy (1999). A dialogue about φ via public announcements
among the members of a group G thus starts, as before, with i simple beliefs
about φ, for all i ∈ I. The agents’ beliefs about φ at the next stage are then
defined as those they would have after a public announcement of all agents’
beliefs about φ at the first stage. Syntactically, this gives: IB1,i as in Section 5.1,
and IBn+1,i, as [

⋂
j∈I IBn, jφ!]Biφ ifM,w 
 [

⋂
j∈I IBn, jφ!]Biφ and as [

⋂
j∈I IBn, jφ!]¬Biφ

otherwise. For the same reason as in the previous section, we now move our
analysis to the level of models.

The A-generated-submodel of a given epistemic plausibility model M,
the precise definition of which is in the appendix, is the model which
results after of public announcement of A in M. We write Sub(M) =
{M

′ is the A-generated submodel ofM | A ⊆ |M|} and M′ v M whenever
M
′
∈ Sub(M).

Definition 5.4 (Relativization by agents beliefs). Let IBi(M,w, φ) be defined as
follows:

IBi(M,w, φ) =

||Biφ||M ifM,w 
 Biφ

||¬Biφ||M otherwise

Then given an epistemic-plausibility model M = 〈W, (≤i)i∈I, (∼i)i∈I,V〉, the
relativization !Bφw by agents’ beliefs about φ at w (where w ∈ |M|), takes M
to !Bφw(M). Here !Bφw(M) is the

⋂
i∈I IBi(M,w, φ)-generated submodel !Bφw(M) =

〈W!Bφw ,≤!Bφw
i ,∼!Bφw

i ,V!Bφw〉 ofM such that:

• W!Bφw =
⋂

i∈I IBi(M,w, φ)

and for each i ∈ I

• ≤
!Bφw
i =≤i ∩ (W!Bφw ×W!Bφw )

• ∼
!Bφw
i =∼i ∩ (W!Bφw ×W!Bφw )

• For each v ∈W!Bφw , v ∈ V!Bφ (p) iff v ∈ V(p)

Note that by construction above the actual state w is never eliminated.

Observation 6. For any plausibility epistemic model M indexed by a finite set of
agents I, 〈Sub(M),v〉 is a chain complete poset. Moreover for all φ ∈ LEDL, w ∈ W,
!Bφ is deflationary.

It follows then by Bourbaki-Witt Bourbaki (1949) Theorem (see appendix
for an exact statement) that the process of public announcement of beliefs has a
fixed point. Given an initial pointed modelM,w and some formula φ ∈ LEDL,
we can construct this fixed point by taking the limit of a sequence of models,
that we call a public dialogue.

Definition 5.5. A public dialogue about φ starting in M,w is a sequence of
epistemic-doxastic pointed models {(Mn,w)} such that:

• M0 =M is a given epistemic-plausibility model.
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• Mβ+1 =!Bφw(Mβ)

• (Mλ) is the submodel ofM generated by
⋂
β<λ |Mβ| for limit ordinals λ

It is known that such a dialogue needs not to stop after the first round of
announcements, in e.g. the “muddy children” case van Benthem (2006), but by
Observation 6 we know that it will stop at some point.

Corollary 4 (Fixed-point). Given an epistemic-plausibility modelM0,w and a public
dialogue about φ, there is a αφ such that (Mα,w) = (Mαφ ,w) for all α ≥ αφ.

Moreover atMαφ ,w, which we call the fixed point of the public dialogue about
φ, the posteriors of the agents about this formula are common knowledge,
which means that they will reach an agreement on φ if they have common and
well-founded priors.

Theorem 7 (Common knowledge at the fixed point). At the fixed-point of a public
dialogueMαφ ,w aboutφ, for all w ∈W and i ∈ I, if w ∈ ||Biφ||

M
αφ then w′ ∈ ||Biφ||

M
αφ

for all w′ ∈ [w]∗
αφ,I

, and similarly if w < ||Biφ||
M

αφ .

Corollary 5 (Agreements via Public Announcements). For any public dialogue
about φ, if there is common and well-founded priors then at the fixed-point Mαφ ,w
either all agents believe that φ or they all do not believe that φ.

This new form of dynamic agreements result is conceptually important
because it fits better than iterated conditioning the intuitive idea of a public
dialogue. Public announcements systematically change the higher-order infor-
mation in a given interactive situation. This reflects the fact that the agents
in a given group not only simultaneously receive the same piece of private
information, as in conditioning dialogues, but that it is common knowledge
that all agents receive it. The information sharing process induced by public
announcements is thus genuinely public, and it leads to different agreement
than conditioning, as we now show.

5.3 Comparing Agreements via Conditioning and Public An-
nouncements

In this section we illustrate by way of an example that conditioning dialogues
and dialogues via public announcements can lead to a different agreement.

Example 8. Consider the model in Figure 1. The arrow represents 1 and 2’s common
plausibility ordering, with w1 < w2, while the solid and dotted rectangles represent
1 and 2’s information partitions, respectively. Take a proposition letter p and assume
that V(p) = {w1}. Let φ := p ∧ ¬B2p, i.e. “p but 2 doesn’t believes that p”. Observe
that φ holds at w1, that 1 believes it but that 2 does not. The conditioning dialogue and
the dialogue via public announcements, both about φ, reach their fixed point n∗ after
one round in this model, where [w1]n∗,1 = [w1]n∗,2 = {w1}. The formula φ leads to an
“unsuccessful update” by public announcement van Ditmarsch et al. (2007), and at
the fixed point of the dialogue neither 1 nor 2 believe that φ. In conditioning dialogue,
however, both agents do believe that φ at the fixed point.
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W

2
1 1

w1 w2

Figure 1: An epistemic plausibility model where conditioning leads to different
agreements than public announcements

This example hinges on the fact that public announcement and belief con-
ditioning threat higher-order information differently. In conditioning the truth
value of the formula at hand remains fixed. If the formula contains epistemic (Ki
or CBG) or doxastic (Bi,CG) operators, this means that the conditioning dialogue
bears on the knowledge and beliefs of the agents anterior to the information
exchange Baltag and Smets (2008). In dialogues via public announcements the
truth value of the formula φ is dynamically adapted to the incoming new in-
formation, reflecting the fact that knowing that others receive the same piece of
information might lead an agent to revise his higher-order information as well.
Obviously, this only lead to different agreements when the dialogue is about
an informational fact, but the point remains: the difference between public
announcement and belief conditioning highlights the public character of the
former in comparison to the latter, and shows the importance of both in the
landscape of agreement results.

6 Conclusion

We studied agreement theorems from the point of view of dynamic-epistemic
logic. We showed that both static and dynamic agreement results hold in epis-
temic plausibility models, answering an open question in the logic literature.
We pointed the need for rather expressive logical languages to reason explicitly
about static agreements results. We furthermore improved on existing qualita-
tive agreement results, by proving that common belief in posteriors is sufficient
to ensure agreement, under common and well-founded priors, and so for both
finite and countable structures. Finally, we coped on the distinction between
conditioning and public announcements to provide two dynamic agreement
results, and argued that the later capture better the public character of dia-
logues. Bringing agreement theorems to dynamic-epistemic logic thus proves
to be both technically and conceptually fruitful, and it bridges two important
bodies of literature.

For future work one should put the full generality dynamic-epistemic logic
Baltag et al. (1998), van Ditmarsch et al. (2007) to use, as well as recent devel-
opments on “softer” forms of belief updates van Benthem (2007), Baltag and
Smets (200X), to analyze the possibility of agreements in a larger class of situ-
ations. It remains also open whether one can finitely axiomatize a logic which
can derive the agreement results, in both their static and dynamic forms. Fi-
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nally, the expressibility of alternative static agreement theorems, e.g. in Samet
(In Press), should also be investigated from a logical point of view.
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Appendix: Proofs

Proof of Theorem 1

Proof. We show that there is no pointed epistemic plausibility model M,w
which satisfies well-foundedness and common prior such thatM,w 
 CB{i, j}(Bip ∧
¬B jp). To do that we assumeM,w 
 CB{i, j}(Bip ∧ ¬B jp) andM satisfies common
prior and show by induction thatMmust not be well-founded, by constructing
an infinite descending chain w1 > w2 > . . ., such that w1 B∗{1,2} wn for every
n ∈ ω. Note that by common prior we have that ≤1=≤2=≤. Now assume that
M,w 
 CB{1,2}(B1p ∧ ¬B2p) (1) and suppose, towards contradiction, that ≤ is
well-founded.

Base case. First of all we start by constructing a descending chain of length 2.
By (1) we have in particularM,w 
 B1(B1p ∧ ¬B2p). By assumption it follows
from truth definition of B1 (and ≤1=≤-well-foundedness) that there is some
state, call it w0 such that w0 ∈ min≤K1[w], i.e. wBBi w0 (2) andM,w0 
 B1p∧¬B2p
(3). In particularM,w0 
 ¬B2p (4). By the same argument as before that there
must thus be a state, call it w1, such that w1 ∈ min≤K2[w0], i.e. w0 BB2 w1 (5) and
M,w1 
 ¬p (6).

But by (1), (2) and (5) it follows that M,w1 
 B1p (7), i.e. {v ∈ W|v ∈
min≤K1[w1]} ⊆ V(p) (8). But then by the now usual argument it follows that
there is a state, call it w2 such that w2 ∈ min≤K1[w1] (9) andM,w2 
 p (10). But
then from (6), (8) and (9) it follows that w1 > w2.

Induction step. Assume that we have been able to construct a chain of
length n, i.e. we have w1 > w2 > . . . > wn such that w1 B∗{1,2} wn (11) for every
n′ ≤ n. Assume that there is no state v such that wn > v (12). Clearly wn
must be minimal within both K1[wn] (13) and K2[wn] (14). It is easy to see
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that by truth condition of common belief we have by (2), (5), (11) and (1) that
M,wn 
 B1p (15). But then by (13) we have wn 
 p (16). Similarly we have
M,wn 
 ¬B2p (17). It then follows WLOG that there must be state vn such that
(vn ≤ wn & vn ≥ wn) (18) such that wn 
 ¬p (19). It follows that vn < K1[wn]
(20). Moreover by common belief we have that vn 
 B1p (21). But it follows that
vn < min≤K1[vn] (22). Since this set is non-empty it follows that there is some
state wn+1 ∈ min≤K1[vn] (23). But then we have by (22) and (23) that vn > wn+1
(24). But (24) and (18) implies that wn > wn+1 (25). Concluding the induction
step and the proof. �

Proof of Theorem 1

Proof. Let the modelM be defined as follows, with I = {1, 2}.

• M = 〈ZZ, (≤i)i∈I, (∼i)i∈I,V〉 such that:

– ZZ is the set of integers.

– For both agents i ∈ I, x ≤i y iff x ≥ y.

– For all x, y ∈ ZZ: x ∼1 y is the smallest equivalence relation such
that x ∼1 y whenever y = x + 1 and x is odd; x ∼2 y is the smallest
equivalence relation such that x ∼2 y whenever y = x + 1 and x is
even.

– V(p) = {x : x is odd } and V(q) = ∅ for all q , p in .

It is easily checked that at every x ∈ ZZ we haveM, x 
 (¬B1p ∧ B2p), and so that
M, x 
 C1,2(¬B1p ∧ B2p), and moreover that M satisfies local well-foundedness
and common prior. �

Proof of Fact 2

Proof. Take W = {x, y} and ∼1=∼2= {(x, x), (y, y)}. We consider two epistemic
plausibility frames F and F ′. F = 〈W,∼1,∼2,≤1,≤2〉 and F ′ = 〈W,∼1,∼2
,≤′1,≤

′

2〉 where ≤1=≤2= {(x, x), (x, y), (y, y)} while ≤′1= {(x, x), (x, y), (y, y)} and
≤
′

2= {(x, x), (y, x), (y, y)}. Clearly F satisfies common prior while F ′ does not.
Now assume for contradiction that there is a formula ψ ∈ LEDL that defines the
class of epistemic plausibility frames with common prior. Then we have F 
 ψ
(1) while F ′ 1 ψ (2). It follows from (2) that there is some valuation V and
some state s ∈ W = {x, y}, such that F ′,V, s 1 ψ (3). But if follows from (1) that
F ,V, s 
 ψ (4).

We now prove by induction on the complexity of φ that for all φ ∈ LEDL and
for all s ∈ W we have F ,V, s 
 φ iff F ′,V, s 
 φ which together with (3) and (4)
gives us a contradiction. The base case for propositional letters is immediate.
The cases for common knowledge and knowledge follows from the fact that
the pointed models F ,V, s and F ,V, s are isomorphic with respect to ∼i. The
case for common belief is trivial due the fact that the information partitions
are (isomorphic) singletons. Moreover the structures are fully isomorphic for
agent 1. So it remains to consider the case of conditional belief for 2.

Take the state x (the proof is similar for y). Now assume that F ,V, x 
 Bφ2χ
(5). We need to show thatF ′,V, x 
 Bφ2χ. By IH we have ||φ||M = ||φ||M

′

(6), with
M = F ,V andM′ = F ′,V. Now (5) iff ∀v (if v ∈ β2(K2[x] ∩ ||φ||M) thenM, v 
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χ) (7). Observe that by (6) we know that β2(K2[x] ∩ ||φ||M) = β′2(K2[x] ∩ ||φ||M
′

)
(8), since K2[x] = {x} inM andM′. Now if (K2[x] ∩ ||φ||M) = ∅ we are done,
and otherwise we use (7), (8), truth condition of Bφ2χ and IH for χ. Concluding
the induction step and the proof. �

To show our next result we introduce a few more definitions.

Definition 6.1. Two modelsM andM′ are bisimilar whenever there is a relation
↔ ⊆W ×W′ such that for all w ∈W and v ∈W′, if w↔ v then:

• For all p ∈ , w ∈ V(p) iff v ∈ V′(p).

• Back and forth for ∼i.

– If w ∼i w′ then there is a v′ ∈W′ such that v ∼′i v′ and w′ ↔ v′.

– If v ∼i v′ then there is a w ∈W such that w ∼′i w′ and v′ ↔ w′.

• For all formulas φ, back and forth for→||φ||i . We write→φ
i in what follows.

– If w→φ
i w′ then there is a v′ ∈W′ such that v→

′φ
i v′ and w′ ↔ v′.

– If v→
′φ
i v′ then there is a w ∈W such that w→φ

i w′ and v′ ↔ w′.

Two pointed modelsM,w andM′, v bisimilar, notedM,w↔M′, v, if w↔ v.

Fact 9. For all modelsM andM′, w ∈ W, v ∈ W′ and φ ∈ LEDL, ifM,w↔M′, v
thenM,w 
 φ iffM′, v 
 φ.

Proof of Fact 3 In the following proof we often write [w]1 forK1[w].

Proof. Let the model M be as in proof of Theorem 1 and M′ be defined as
follows, with I = {1, 2} in both cases. M′ = 〈W, I, (≤′)i∈I, (∼′)i∈I,V′〉 such that:

• W = {wo,we}.

• we <′1 wo and wo <′2 we.

• For both i ∈ I and w ∈W : [w]i =W.

• V′(p) = {wo} and V(q) = ∅ for all q , p in .

Observation 10. InM there is common prior andM, x 
 CBI(B1(¬p) ∧ B2(p)) for
all x ∈ ZZ. InM′ the latter is common belief as well, at both w ∈ W, but 1 and 2 have
different priors.

Define the relation ↔ ⊆M×M
′ as follows: x↔ wo for all odd integers x, and

x↔ we for all even integers.

Claim 11. The relation ↔ is a bisimulation.

Proof. The propositional clause is trivial. It should also be clear that the clause
for the relations ∼i and ∼′i is also satisfied. It remains to be shown that the
clause for the families of relations→φ

i and→
′φ
i are also satisfied. We show this

by induction φ. In fact we show something stronger, namely that for all φ:
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1. If x→φ
i y and x↔ w then there is a w′ such that w→

′φ
i w′ and y↔ w′.

2. If w→
′φ
i w′ then for all x↔ w there is a y such that x→φ

i y and w′ ↔ y.

3. If x is odd then x ∈ ||φ||M iff wo ∈ ||φ||M
′

, and if x is even then x ∈ ||φ||M iff
we ∈ ||φ||M

′

.

Base Case φ ∈ . We only have to consider p.

1. Assume that x is odd and that x→p
i y. Observe that by construction

it can only be that min≤i ([x]i∩ ||p||) = {x}, for both i = 1, 2. This means
that y = x, and so we are done, since wo →

′p
i wo and x↔ wo. Suppose

that x is even. Then x→p
1 y iff y = x − 1, again by construction. But

since y ↔ wo and we →
′p
1 wo, we are done. The case for x →p

2 y is
similar, with taking here y = x + 1.

2. Consider first wo, and suppose that wo →
′p
i w′. Observe again that

this can only happen if w′ = wo. Now take any x such that w0 ↔ x.
By definition any such x is odd, and thus x ∈ V(p). But we know,
furthermore, that min≤i ([x]i ∩ ||p||) = {x} for both i = 1, 2, and so we
are done. The case for we is entirely similar.

3. Follows directly from the definition of V and V′.

Inductive Step Our inductive hypothesis is that claims (1), (2) and (3) hold for
all φ′ of lower complexity than φ. We only show the cases for (1): the
arguments for (2) are entirely symmetrical, and the ones for (3) are simple
applications of the inductive hypothesis.

• φ := ¬ψ.

1. We only show the case where x is odd. The other one is similar,
with 1 and 2 reversed. Suppose that x →¬ψi y. This means
that M, y 1 ψ. Consider first the case where x = y. Then
M, x 1 ψ, and thus by our inductive hypothesis M′,wo 1 ψ.
This is enough to conclude that wo →

′
¬ψ

2 wo, simply because
we >′2 wo. So consider 1, for which we have that [x]1 = {x, x + 1}.
Since x >1 x+ 1, it must be thatM, x+ 1 
 ψ. This means, by the
inductive hypothesis again, thatM′,we 
 ψ. But since wo >′1 we,
we have that min≤′1 ([wo]1∩ ||¬ψ||) = {wo}, and so that wo →

′
¬ψ

1 wo.
The reasoning for x , y is similar, again with 1 and 2 reversed.

• φ := ψ ∧ ξ.

1. We show again only the case where x is odd. Suppose that
x→ψ∧ξ

i y. Since x↔ wo, we have to show that there is a w′ ∈W
such that wo →

′ψ∧ξ
i w′ and y↔ w′. Observe that either y = x or

y = x+ 1 if i = 1 and y = x or y = x− 1 if i = 2, which means that
in both cases y ∈ min≤i ([x]i ∩ ||ψ|| ∩ ||ξ||) iff

– either (*) y ∈ min≤i ([x]i ∩ ||ψ||), in which case, by the first
clause of the inductive hypothesis, there is a w′ such that
wo →

′ψ
i w′ and y↔ w′;
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– or (**) y ∈ min≤i ([x]i ∩ ||ξ||) in which case, again by the first
clause of the inductive hypothesis, there is a w′′ such that
wo →

′ψ
i w′′ and y↔ w′.

One can check that for each agent there is a unique w′ ∈ [wo]i
such that y↔ w′, whatever y is, and so if both (*) and (**) hold
then it must be that w′ = w′′, which means that we are done.
We show the case where only (*) holds. For agent 1, this can
only happen when x = y. By (*) and the inductive hypothesis
this means that wo →

′ψ
i wo, because there is no other w′ ∈ [w]i

such that x ↔ w′. By assumption, we know furthermore that
M, x 
 ξ, and so by the inductive hypothesis that M′,wo 
 ξ.
It remains to be shown toM′,we 1 ψ. Since (**) does not hold,
it has to be that M, x + 1 
 ξ: we know that M, x 
 ξ and
x >1 x+1. This means thatM, x+1 1 ψ, for otherwise we would
have x + 1 ∈ min≤1 ([w]i ∩ ||ψ|| ∩ ||ξ||), against the minimality of
x. By the inductive hypothesis, then know that M′,we 1 ψ,as
required. The case for agent 2 follows the same line, except that
(**) can only fail if x , y.

• φ := Kiψ.

1. Suppose that x is odd and x →K jψ

i y. We only show the case
for i = 1. Assume that j = 1 as well. Then M, y 
 K1ψ. By
positive introspection of Ki, this means thatM, y′ 
 K1ψ for all
y′ ∈ [x]1 = {x, x+1}, and since Kiφ→ φ is also valid for Ki, we get
thatM, y′ 
 ψ for all such y′. By the inductive hypothesis this
means thatM′,wo 
 ψ andM′,we 
 ψ, and so thatM′,wo 
 K1ψ
andM′,we 
 K1ψ. Since y is either x or x+ 1, we get that for any
w′ ↔ y, wo →

′K1ψ
1 w′. Suppose now that j = 2 and y = x. This

means that M, x 
 K2ψ. Again by positive introspection and
the truth axiom, we get thatM, x 
 ψ andM, x − 1 
 ψ. Using
our inductive hypothesis twice, we conclude that M′,wo 
 ψ
and M′,we 
 ψ. But this covers all w′ ∈ [wo]2 = [wo]1, and in
particular wo, so we have that wo →

′K2ψ
1 wo. The same reasoning

applies mutatis mutandis when y = x + 1, and if x is even.

• φ := Bξjψ.

1. Suppose that x is odd and x →
Bξjψ

i y. Assume that i , j, and
suppose that i = 1, the argument for i = 2 being entirely sym-
metric. We first show that it cannot be the case that y = x, for it
would imply thatM′,wo 
 Bξ2ψ whileM′,we 
 ¬Bξ2ψ, which is
impossible since [wo]2 = [we]2. If x = y then by the minimality
of x within [x]1 ∩ ||Bξ2ψ|| it must be that both:

– (*)M, x 
 Bξ2ψ and

– (**)M, x + 1 
 ¬Bξ2ψ.
If (*) then for all y′ ∈ min≤2 ([x]2 ∩ ||ξ||) we have thatM, y′ 
 ψ. If
[x]2 ∩ ||ξ|| is empty, thenM, x 1 ξ andM, x 1 ξ, which means by
our inductive hypothesis thatM′,wo 1 ξ andM′,we 1 ξ, and so
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thatM′,wo 
 Bξ2ψ trivially. If x ∈ min≤2 ([x]2∩||ξ||) ⊆ ||ψ||, then we
know by the inductive hypothesis thatM,wo 
 ξ∧ψ. But since
wo is ≥′2-minimal in [wo]2, we can conclude thatM′,wo 
 Bξ2ψ as
well. Finally, if x < min≤2 ([x]2 ∩ ||ξ||) ⊆ ||ψ||, it must be that x→ξ

2
x−1. By the inductive hypothesis we know that wo →

ξ
2 we, which

can only happen if M′,wo 
 ¬ξ, from which we can conclude
thatM′,wo 
 Bξ2ψ. So from (*) we get be thatM′,wo 
 Bξ2ψ. Now,
by (**) we know that there is a y′ ∈ min≤2 ([x+ 1]∩ ||ξ||) such that
x < ||ψ||. This y′ is either x+1↔ we or x+2↔ wo. In the first case
we get from our inductive hypothesis that we →

′ξ
2 we, which can

only happen if min≤2 ([x + 1] ∩ ||ξ||) = {we}, and thus ifM′,we 

¬Bξ2ψ. In the second case we get by inductive hypothesis that
M
′,wo 
 ξ∧¬ψ, from which we also know thatM′,we 
 ¬Bξ2ψ,

since wo is ≥′2-minimal in [wo]2 and Bφi φ
′
→ KiB

φ
i φ
′ is valid in

epistemic plausibility models. From (**) we thus know that
bothM′,we 
 ¬Bξ2ψ, which means in conjunction with (*) that it
cannot be that x = y.

Assume thus that x , y. This means that x →Bξ2ψ
1 x + 1. We are

done if we can show that wo →
′Bξjψ

i we, for which it is enough

to show that M′,we 
 Bξ2ψ. That x →Bξ2ψ
1 x + 1 means that

M, x1 
 Bξ2ψ. From there we reach the intended conclusion by
following the same steps as above for (*).

Suppose then that i = j = 1. Then x →
Bξ1ψ
1 y. This means that

M, y 
 Bξ1ψ and M, x 
 Bξ1ψ because Bφi φ
′
→ KiB

φ
i φ
′ is valid

in epistemic plausibility models. This means, first, x →>1 y and
thus by the inductive hypothesis that there is a w′ ↔ y such that
wo →

′
>

1 y, i.e. that w′ is ≥′1-maximal in [wo]i. If we can show
thatM′,wo 
 Bξ1ψ then we are thus done. IfM, x 
 Bξ1ψ because
[x]i ∩ ||ξ|| = ∅ then we are done. Otherwise, ifM, x + 1 
 ξ then
by the inductive hypothesis we know thatM′,we 
 ξ ∧ ψ and
so we are done because we is ≥′1-maximal in [wo]i = [we]i. If
finally M, x + 1 1 ξ but yet [x]i ∩ ||ξ|| , ∅ then it must be that
M, x 
 ξ ∧ ψ. But then by the inductive hypothesis we know
that M′,wo 
 ξ ∧ ψ and M′,we 1 ξ, which is enough to show
thatM′,wo 
 Bξ1ψ. The argument for i = j = 2 is symmetric.

• φ := CGψ.

1. The cases when G is a singleton boils down to knowledge. So
we consider the case were G = {1, 2}. Assume x ↔ w (H) and
x →C{1,2}ψ

i y (0). By definition of →C{1,2}ψ
i it follows that M, y 


C{1,2}ψ. By definition of M it follows that for all z ∈ |M| = ZZ
we have M, z 
 ψ. By IH it follows that for all v ∈ |M′| we
have M′, v 
 ψ. Moreover in both models C{1,2}ψ is satisfied
everywhere (1). Now assume that i = 1, and that x is even. It
follows that K1[x] = {x − 1, x}. Moreover x is the minimum of
K1[x] (2). So by (0), (1) and (2) we have x = y. Now we have
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x ↔ we and in the second model we →
C{1,2}ψ
i we. Now assume

that x is odd. It follows that K1[x] = {x, x + 1}. Moreover x + 1
is the minimum of K1[x] (3). So by (0), (1) and (3) we have
x+ 1 = y. Now we have y = x+ 1↔ we and in the second model
wo →

C{1,2}ψ
i we. Now assume i = 2 and that x is odd. It follows

that K2[x] = {x − 1, x}. Moreover x is the minimum of K2[x] (2).
So by (0), (1) and (2) we have x = y. Now we have x↔ wo and in
the second model wo →

C{1,2}ψ
i wo. Suppose finally that x is even.

It follows thatK2[x] = {x, x+ 1}. Moreover x+ 1 is the minimum
of K2[x] (3). So by (0), (1) and (3) we have x + 1 = y. Now we
have y = x + 1↔ wo and in the second model we →

C{1,2}ψ
i wo.

• φ := CBGψ. We have that x→CBGφ
i y iff x→CGφ

i y inM, and similarly
inM′.

�

This concludes the proof of the Claim and the whole argument. �

Existence of a finite syntactic derivation of the Agreement Theorem. In what
follows we prove the existence of a finite syntactic derivation of Corollary 1,
and additional facts about an interesting logic of agreement. The language we
use authorizes the following basic programs.

α := 1 | 2 | 1 ∪ 2 | (1 ∪ 2)∗ | ≥ j | > j

where j ranges over {1, 2}. We additionally authorize intersection of the basic
program only.

β := α | α ∩ α

Finally we recursively define our language as follows:

φ := p | i | x |¬φ | φ ∧ φ | 〈β〉φ | @iφ | @xφ

where i ranges over a countable set of nominals , x over a countable set of
state variables  and p over a countable set of proposition letters . All
these sets are assumed to be disjoint. Let us call this languageH(↓,@)[1, 2, (1 ∪
2),≥ j, > j,CG,Res(∩)]. We immediately stress that our usage of intersection,
union and of the strict modality does not increase the expressive power of
H(↓,@)[1, 2,≥ j,CG], i.e. of the fragment that does not allow intersection, union,
or the strict modality. We give below reduction axioms that sustain this claim.

The programs {1, 2,≥ j, > j} are interpreted in the obvious way. For example
R1 stands for ∼1. The language H(↓,@)[1, 2, (1 ∪ 2),≥ j, > j,CG,Res(∩)] is inter-
preted on epistemic plausibility models together with an assignment function
g : →W that maps states variables to states. The valuation function maps
elements of  to singletons set of states. The following clauses cover the
interpretation of the binder, of states variable and of the @ operator.

M, g,w 
 x iff g(x) = w
M, g,w 
 i iff w ∈ V(i)
M, g,w 
 @xφ iff M, g, g(x) 
 φ
M, g,w 
 @iφ iff M, g, v 
 φ where V(i) = {v}
M, g,w 
↓x.φ iff M, g[g(x) := w],w 
 φ
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For the basic modalities {1, 2,≥ j, > j}we have the classical scheme

M, g,w 
 〈α〉φ iff ∃v such that (wRαv) andM, g, v 
 φ

For the fragment of PDL we are using the clauses are:

M, g,w 
 〈1 ∪ 2〉φ iff ∃v such that (w ∼1 v or w ∼2 v) andM, g, v 
 φ
M, g,w 
 〈1 ∪ 2〉∗φ iff ∃v such that w ∼∗

{1∪2} v andM, g, v 
 φ

The second operator is nothing but a notational variation of common knowl-
edge, in the sense that C{1,2}φ ↔ ¬〈1 ∪ 2〉∗¬φ which is useful to shorten our
formulas when intersection is involved. The first one is the diamond version of
the “everybody knows” modality. Finally we give the clause for intersection.

M, g,w 
 〈α ∩ β〉φ iff ∃v such that (wRαv and wRαv) andM, g, v 
 φ

Proposition 2. The following reduction are axioms are sound on the class of epistemic
plausibility models.

1.〈<〉φ↔↓x.〈≤〉(φ ∧ [≤]¬x) where x does not occur in φ.
2. 〈α ∩ β〉φ↔↓x.〈α〉(↓ y.(φ ∧ @x〈β〉y)) where x, y does not occur in φ.
3. For α ∈ {1, 2, (1 ∪ 2), (1 ∪ 2)∗,≥1≥2} and β ∈ {1, 2, (1 ∪ 2), (1 ∪ 2)∗}:
〈α ∩ β〉φ↔↓x.〈α〉(φ ∧ 〈β〉x)) where x does not occur in φ.
4. For α ∈ {1, 2, (1 ∪ 2), (1 ∪ 2)∗}:
〈> j ∩α〉φ↔↓x.〈α〉(φ ∧ [≥]¬x ∧ 〈α〉x)) where x does not occur in φ.

Proof. Sahlqvist correspondence argument. (2) is valid for arbitrary programs
on arbitrary relational structures. (3) and (4) uses the fact that the epistemic
relation is symmetric. �

Let us note that the latter reduction axioms, which draw on the symmetry of
the epistemic relations, are more efficient in terms of hybrid operator alternation
and fresh variables we need. Therefore we will rather work with them in the
syntactic proof.

Corollary 6. On the class of epistemic plausibility models H(↓,@)[1, 2,≥ j,CG] is at
least as expressiveH(↓,@)[1, 2, (1 ∪ 2) ≥ j, > j,CG,Res(∩)].

In addition to the reduction axioms given and the axiomatization of the
pure hybrid logic H(↓,@) (see ten Cate (2005)) we will make us of additional
axioms in this proof. Their soundness is proved below.

Proposition 3. The following axioms are valid on the class of well-founded epistemic-
plausibility model.

5. [>]([>]p → p) → [>]p
6. ↓x.((〈≥〉(¬〈≥〉x ∧ p)) → ((〈≥〉((¬〈≥〉x ∧ p) ∧ ¬ ↓z.〈≥〉(¬〈≥〉z ∧ p)))))
7. For α ∈ {1, 2, (1 ∪ 2), (1 ∪ 2)∗}: ↓x.[α]〈α〉x
8. 〈α ∩ β〉φ → (〈α〉φ ∧ 〈β〉φ)
9. 〈α∗〉φ↔ (φ ∨ 〈α〉〈α∗〉φ)

Proof. (5) is sound on the class of <-well-founded frames (see Blackburn et al.
(2001)). For (6) note that by Ax.(1), (6) is equivalent to 〈>〉p → 〈>〉(p ∧ ¬〈>〉p)
which is equivalent on the level of frames to (5). (7) is sound on class of frames
for which Rα is symmetric. (8) is obvious. See Blackburn et al. (2001). �
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Theorem 12. ¬C{1,2}(B1p ∧ ¬B2p) is a theorem of the logics ofH(↓,@)[≥ j] extended
by Löb’s axiom (item 5 and 6 in Proposition 3), the multi-agent S5-epistemic logic
including CG, S4 for ≥ j and the Axiom of Common Prior: 〈≥i〉φ↔ 〈≥ j〉φ.

Proof. For convenience we additionally use axioms 7 and 8 from Proposition 3
as useful shortcuts. (Löb(>)) is either Axiom 5 or 6 in Proposition 3. For the
axiomatizationH(↓,@)[≥ j] see ten Cate (2005). For the multi-agent S5-epistemic
logic including CG see Fagin et al. (1995).

In the following proof after the axiom of common prior has been applied,
we drop the label, since the plausibility relation is thus the same for both agents.
Our goal is to derive a contradiction from the assumption that disagreement is
common knowledge.

(0) [(1 ∪ 2)∗]〈≥ ∩2〉(([> ∩2]⊥) ∧ ¬p) Hypothesis.
(1) [(1 ∪ 2)∗][≥ ∩1](([> ∩1]⊥) → p) Hypothesis.
(2) [(1 ∪ 2)∗][2][≥ ∩1](([> ∩1]⊥) → p) From (0) by PDL.
(3) [(1 ∪ 2)∗][≥ ∩2][≥ ∩1](([> ∩1]⊥) → p) From (2) by ∩ .
(4) [(1 ∪ 2)∗][≥ ∩2][≥ ∩1](¬p → >) From (3) by PL.
(4′) [(1 ∪ 2)∗][≥ ∩2](¬p → 〈> ∩1〉>) From (3) by Ref for (≥ ∩1).
(5) [(1 ∪ 2)∗]〈≥ ∩2〉(([> ∩2]⊥) ∧ ¬p∧

(¬p → 〈> ∩1〉>)) From (1) and (4’) by ML.
(6) [(1 ∪ 2)∗]〈≥ ∩2〉(([> ∩2]⊥) ∧ ¬p ∧ 〈> ∩1〉>) From (5) by PL and ML.
(7) ↓x.((〈≥〉(¬〈≥〉x ∧ p)) →

((〈≥〉((¬〈≥〉x ∧ p) ∧ ¬ ↓z.〈≥〉(¬〈≥〉z ∧ p))))) Axiom. Löb for >
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(8) ↓x.((〈≥〉(¬〈≥〉x ∧ 〈(1 ∪ 2)∗〉x)) →
((〈≥〉((¬〈≥〉x ∧ 〈(1 ∪ 2)∗〉x) ∧ ¬ ↓z.〈≥〉(¬〈≥〉z From (7)
∧ 〈(1 ∪ 2)∗〉x))))) by Uni Sub of p by 〈(1 ∪ 2)∗〉x.
(9) [(1 ∪ 2)∗][≥ ∩2] ↓x.((〈≥〉(¬〈≥〉x∧

((〈≥〉((¬〈≥〉x ∧ 〈(1 ∪ 2)∗〉x)∧
¬ ↓z.〈≥〉(¬〈≥〉z ∧ 〈(1 ∪ 2)∗〉x))))) From (8) by Gen
(10) 〈> ∩1〉φ↔↓x.〈≥〉((¬〈≥〉x ∧ 〈1〉x) ∧ φ) Reduction Axiom < ∩1
(11) 〈> ∩1〉> ↔↓x.〈≥〉(¬〈≥〉x ∧ 〈1〉x) From (10) by Uni Sub of φ by > and PL.
(12) [(1 ∪ 2)∗][≥ ∩2](〈> ∩1〉> ↔
↓x.〈≥〉(¬〈≥〉x ∧ 〈1〉x)) From (11) by Gen

(13) [(1 ∪ 2)∗]〈≥ ∩2〉((([> ∩2]⊥) ∧ ¬p ∧ 〈> ∩1〉>)
∧ ↓x.〈≥〉(¬〈≥〉x ∧ 〈1〉x)) From (6) and (12) by ML.

(14) 〈1〉x → 〈(1 ∪ 2)∗〉x PDL
(15) [(1 ∪ 2)∗]〈≥ ∩2〉((([> ∩2]⊥) ∧ ¬p ∧ 〈> ∩1〉>)∧
↓x.[(〈≥〉(¬〈≥〉x ∧ 〈1〉x)) ∧ (〈≥〉(¬〈≥〉x∧ From (13), (14) and (9)
〈(1 ∪ 2)∗〉x) ∧ ¬ ↓z.〈≥〉(¬〈≥〉z ∧ 〈(1 ∪ 2)∗〉x))]) by ML and PL.

(16) [(1 ∪ 2)∗]〈≥ ∩2〉((([> ∩2]⊥) ∧ ¬p ∧ 〈> ∩1〉>)∧
↓x.[(〈≥〉(¬〈≥〉x ∧ 〈1〉x)) ∧ (〈≥〉(¬〈≥〉x∧
〈(1 ∪ 2)∗〉x)∧ ↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z))]) From (15) by ML and PL.

(16′) [(1 ∪ 2)∗]〈≥ ∩2〉(
↓x.[(〈≥〉(〈(1 ∪ 2)∗〉x)∧ ↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z))]) From (16) by ML and PL.
(17) ↓x.(〈≥〉(〈(1 ∪ 2)∗〉x ∧ φ) → 〈≥ ∩(1 ∪ 2)∗〉φ) Axiom. By symmetry of (1 ∪ 2)∗ and ∩
(17′) ↓x.(〈≥〉(〈(1 ∪ 2)∗〉x∧ ↓z.[≥](〈(1 ∪ 2)∗〉x → From (17) by Uni Sub of φ
〈≥〉z)) → 〈≥ ∩(1 ∪ 2)∗〉 ↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z)) by ↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z).

(18) [(1 ∪ 2)∗]〈≥ ∩2〉 (
↓x.〈≥ ∩(1 ∪ 2)∗〉(↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z)) From (16’) and (17’) by ML and PL.
(19) [(1 ∪ 2)∗][(1 ∪ 2)∗][≥ ∩1](([> ∩1]⊥) → p) From (1) by PDL.
(20) [(1 ∪ 2)∗][2][(1 ∪ 2)∗][2][≥ ∩1](([> ∩1]⊥) → p) From (19) by PDL.
(21) [(1 ∪ 2)∗][2∩ ≥][(1 ∪ 2)∗∩ ≥][2∩ ≥][≥ ∩1]
(([> ∩1]⊥) → p) From (20) by ∩
(22) [(1 ∪ 2)∗][2∩ ≥][(1 ∪ 2)∗∩ ≥][2∩ ≥][≥ ∩1]
(¬p → (〈> ∩1〉>)) From (20) by PL and ML.
(21′) [(1 ∪ 2)∗][2∩ ≥][(1 ∪ 2)∗∩ ≥]〈≥ ∩2〉
(([> ∩2]⊥) ∧ ¬p) From (0) by a similar derivation.
(21.1) [(1 ∪ 2)∗]〈≥ ∩2〉 (↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.[≥](〈(1 ∪ 2)∗〉x → 〈≥〉z) )∧
〈≥ ∩2〉(([> ∩2]⊥) ∧ ¬p)] From (18) and (21’) by ML and PL.
(21.2) ↓x.[(1 ∪ 2)∗]〈(1 ∪ 2)∗〉x Axiom for symmetry.
(21.3) ↓x.[(1 ∪ 2)∗][2]〈(1 ∪ 2)∗〉x PDL.
(21.4) ↓x.[(1 ∪ 2)∗][2∩ ≥]〈(1 ∪ 2)∗〉x By ∩
(21.5) [(1 ∪ 2)∗]〈≥ ∩2〉(↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.[≥ ∩2](〈(1 ∪ 2)∗〉x → 〈≥〉z)) From (21.1) by ML and ∩
(21.6) [(1 ∪ 2)∗]〈≥ ∩2〉(↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.〈≥ ∩2〉([(([> ∩2]⊥) ∧ ¬p)∧ From (21.1), (21.4) and (21.5) by ML and PL.
(〈(1 ∪ 2)∗〉x ∧ 〈≥〉z)]
(21.7) [(1 ∪ 2)∗]〈≥ ∩2〉(↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.〈≥ ∩2〉([(〈(1 ∪ 2)∗〉x ∧ 〈≥〉z ∧ 〈> ∩1〉>)∧
([> ∩2]⊥) ∧ ¬p)] From (21.1), (21.4) and (21.5) by ML and PL.
(21.8) [(1 ∪ 2)∗]〈≥ ∩2〉(↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.〈≥ ∩2〉[(〈> ∩1〉>)) From (21.8) by ML and PL.

(21.81) [(1 ∪ 2)∗]〈≥ ∩2〉(↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.〈≥ ∩2〉[(〈≥ ∩1〉(¬〈≥〉z))) From (21.8) by ML and PL.
(21.82) [(1 ∪ 2)∗]〈≥ ∩2〉(↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.[≥](¬〈≥〉z → ¬〈(1 ∪ 2)∗〉x))] From (21.1) by ML and PL.
(21.83) [(1 ∪ 2)∗]〈≥ ∩2〉(↓x.〈≥ ∩(1 ∪ 2)∗〉[
(↓z.〈≥ ∩2〉[(〈≥ ∩1〉(¬〈(1 ∪ 2)∗〉x))) From (21.81) and (21.82) by ML and PL.
(23) [(1 ∪ 2)∗]〈2〉 (↓x.〈(1 ∪ 2)∗〉[(↓z.〈2〉[
(〈1〉(¬〈(1 ∪ 2)∗〉x))) From (21.83) by ∩ . (A contradiction)
(23.1) [(1 ∪ 2)∗]〈2〉 (↓x.〈(1 ∪ 2)∗〉(¬〈(1 ∪ 2)∗〉x))) From (23) by PDL. (A contradiction)

�
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Bourbaki-Witt Theorem

Theorem 13 (Bourbaki-Witt Bourbaki (1949)). Let X be a chain complete poset. If
f : X→ X is inflationary (deflationary), then f has a fixed point.

Proof of Observation 4

Proof. Taking ℘(W ×W)I as a product, it is easy to see that 〈℘(W ×W)I,⊆〉 is a
poset. The intersection of a decreasing sequence is the greatest lower bound of
this sequence. Finally it is easy to see by inspection Definition 5.1 that fG(A)
is deflationary. Indeed for every i and we have fG(A)(∼i) ⊆∼i and thus by
definition of a product fG(A)(×i∈I(∼i)) ⊆ ×i∈I(∼i). �

Below we give the general definition of a generated submodel.

Definition 6.2 (Generated submodel). Given an epistemic plausibility modelM
= 〈W, (≤i)i∈I, (∼i)i∈I,V〉 and a A ⊆ W. The submodel of M generated by A (or
A-generated submodel), that we noteMA is defined as follows:
M
A = 〈WA, (≤A

i )i∈I, (∼A
i )i∈I,VA

〉

• WA =W ∩ A

and for each i ∈ I

• ≤
A
i =≤i ∩WA

×WA

• ∼
A
i =∼i ∩WA

×WA

• For each v ∈WA, v ∈ VA(p) iff v ∈ V(p)

Proof of Observation 6

Proof. It is easy to see that 〈Sub(M),v〉 is a poset. Moreover taking the submodel
ofMgenerated by the intersection of the domain of each element any decreasing
sequence is the greatest lower bound of this sequence. Finally it is easy to see
by inspection Definition 5.4 that !Bφ is deflationary. �

Proof of Theorem 5 To save on notation we write Bα f

i (A) for BMα, f

i (A).

Proof. Let α f be the fixed point existing by Corollary 5.5.
Given an arbitrary state w in the domain of Mα f we prove that for any

w′ ∈ [w]∗
α f ,I

and for any i ∈ I we have w ∈ Bα f

i (||φ||) iff w′ ∈ Bα f

i (||φ||). The proof
is by induction on length of the smallest chain C = 〈w1 ∼α f ,x ... ∼α f ,y wn〉 where
x, y ∈ I, w1 = w and wn = w′.

Base case. For |C| = 1 is immediate by definition.
Induction step. We have two cases.
Case 1. w ∈ Bα f ,i(||φ||). Assume that we have a chain C = 〈w1 ∼α f ,x ... ∼α f ,y

wn+1〉 where x, y ∈ I, w1 = w and wn+1 = w′ of length n + 1. By IH we have
wn ∈ Bα f ,i(||φ||) (1). We have now two subcases. Subcase 1a: wn ∼α f ,i w′

but then by epistemic introspection of beliefs and (1) we have w′ ∈ Bα f ,i(||φ||).
Subcase 1b: wn ∼α f , j w′ in C, for some j , i in I. Now assume for contradiction
that w′ < Bα f ,i(||φ||). It follows then by definition of the conditioning function
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fI(
⋂

j∈I IBM,w
j (||φ||M)) that fI(

⋂
j∈I IBM,w

j (||φ||M))(∼α f , j)  ∼α f , j. Contradicting the

choice of α f .
Case 2. The argument for the case of w < Bα f ,i(||φ||) is entirely similar,

except that we use negative introspection of beliefs (if w < Bi(X) then Ki[w] ⊆
¬Bi(X)). �

Proof of Theorem 7 The proof follows the same line as for Theorem 5.
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Abstract
Describing the interactional behavior of rational agents and seeking equilib-
rium solutions are two main perspectives in game theory. In game theory,
an agent is always assumed to be rational, i.e. to maximize her expected
payoff, given her probabilistic beliefs about the strategies used by her oppo-
nents. However, Game theory itself can’t precisely model the higher-order
information change of mutual knowledge among agents, so these inter-
pretations and expressions about rationality are vague in game theory. In
this paper, we redefine rationality by incorporating epistemic ingredient,
provide a method for helping to solve and refine Nash equilibriums based
on public announcement logic, and indicate this method can reduce a game
model with iterating some announcement of proper rationality assertion.
Meanwhile, we show the iterating announcement of this rationality asser-
tion characterizes iterated admissibility.

Key words: strategic-form game; iterated admissibility algorithm ; ratio-
nality ; public announce logic

1 Introduction

In general, game-theoretic solution is relevant to some specific algorithm. For
instance, a perfect information extensive-form game can be solved by Back-
ward Induction, Iterated Eliminations of Strictly Dominated strategy can be
used for static-form game. Whether Backward Induction algorithm or Iterated
Eliminations of Strictly Dominated strategy algorithm, are both based on a as-
sumption which is all players are rational, and the rationality is postulated as
common knowledge among players. However, lots of literatures show that this
assumption is too ideal and crude.(Refer to Aumann (1999),Rubinstein (1998)
and others). In this paper, based on the epistemic game model constructed by
van Benthem (2006a), we give a deep analysis about players’ rationality from
the Dynamic Epistemic perspective, redefine rationality ,and indicate this ra-
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tionality can be as a proper announcement assertion in public announcement
logic(PAL). Consequently, bring forward a new method for Nash Equilibrium
based on PAL, which characterizes just algorithm of iterated admissibility intro-
duced by Gilli (2002) and Brandenburger et al. (2008), The algorithm is known
to provide a valuable criterion for selecting among multiple equilibriums and
to yield sharp predictions in finite games (Refer to Brandenburger et al. (2008)).
Concretely, the classical concept of iterated admissibility, which is well estab-
lished in the theory of finite game, is based on the notion of (weak) dominance.
Considering two strategies si, ri of a player i, si dominates ri if, against any
choice of stategies of the other players, si performs at least as well as ri, but
there are cases in which si performs strictly better than ri. In terms of our ratio-
nality, atomic proposition ′′a player is rational′′ is just fails at the worlds which
corresponding to the strategies are dominated. Accordingly, after public an-
nouncing this proposition for one time, we can remove simultaneously all these
worlds. This leads to a new subgame model. In this subgame model, players
possibly discover that some of their retaining strategies are again dominated
owing to absence of some worlds. So, repeat the announcement, and remove
continuously irrational worlds until this proposition holds at every world in
some subgame model. For a game with finite strategy spaces, the procedure
stabilities after a finite number of stages, the solution concept postulating that
outcomes of a game should involve only strategies that survive the iterated
elimination is called iterated admissibility (a precise definition follows). This
procedure required extensive efforts. However, we will indicate the procedure
which is constructed by removing worlds after repeated public announcements
of some proper assertion is just corresponding to the procedure of iterated ad-
missibility.

The paper is organized as follows. In the next section we review the defi-
nition of strategic-form game , admissibility and iterated deletion procedures
mentioned by M.Gill. Reviewing for Public Announcement Logic is arranged
in Section 3. In Section 4, we introduce an epistemic game model mentioned
by J.van Benthem, and point out why we need incorporate epistemic ingredi-
ent in a notion of rationality in game. Thus, we redefine a rationality in this
Section. In Section 5, we show it is justified to repeated announcing for this
rationality can characterize the iterated admissibility. In Section 6,we discuss
related, while Section 7 contains a summary and concluding remarks.

2 Game and dominance

In this paper we restrict attention to finite strategic-form games with pure
strategies, which are defined as follows.

Definition 2.1. A finite strategic-form game is a quintuple

G = 〈N, {Si}i∈N, {<i}i∈N, {Ui}i∈N〉,

where

N = {1, 2, · · · ,n} is a set of players;

Si is a finite set of strategies of player i ∈ N;
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<i is player i′s preference; 1

Ui is a list of all players’ payoffs function: S→ R that give player i’s vN-M
utility Ui(s) for each strategy profile s ∈ S. (where S = S1 × · · · × Sn)

Given a player i we denote by S−i the set of strategy profiles of the players
other than i, that is, S−i = S1 × · · · × Si−1 × Si+1 × · · · × Sn.When we want to focus
on player i we shall denote the strategy profile s ∈ S by (si, s−i)where si ∈ Si, and
s−i ∈ S−i .

Definition 2.2. Given a game G = 〈N, {Si}i∈N, {<i}i∈N, {Ui}i∈N〉, let s′i and s′′i are
available strategies for player i, and a set S′

−i ⊆ S−i, we say s′i is weakly domi-
nated2 by s′′i on S′

−i if
ui(s′′i , s−i) ≥ ui(s′i , s−i) for all s−i ∈ S−i and ui(s′′i , s

′

−i) > ui(s′i , s
′

−i)
for some s′

−i ∈ S−i. For a set S′ ⊆ S, we say that a strategy s′′i ∈ Si is admissible
with respect to S′i , if no strategy in S′i dominates s′′i on S′

−i. In additional, a
dominated strategy ri is also called inadmissible for a player i.

Definition 2.3. The iteratively weakly undominated strategies (IWUS)3 is the
following procedure. Given a game G = 〈N, {Si}i∈N, {<i}i∈N, {Ui}i∈N〉, let WUD
be the set of iterated weakly undominated strategies (or iteratively admissible
strategies) of G define recursively as follows.
WUD =

∏
i∈N WUDi, where WUDi =

⋂
m>0 WUDm

i , with WUD0
i = Si and for

m > 1,WUDm
i = WUDm−1

i \ WDm−1
i , where WDm−1

i = {si ∈ WUDm−1
i | si is

inadmissible with respect to WUDm−1
}.

Note that in definition 2.4, it is assumed that at each stage all dominated
strategies are simultaneously deleted. In contrast to most equilibrium concepts,
iterative admissibility yields a rectangular set of strategy profiles, i.e. a Carte-
sian product of sets. Accordingly, whether the choice of a particular player is
rational in the sense does not depend on the choices of the other players. This
IWUS procedures is illustrated in the following figure 1.

Figure 1: IWUS procedure

1player i′s preference is a partial relation, satisfied reflexivity,antisymmetry and transitivity.
And the interpretation of si <i s′i is that, according to player i, the utilities obtained by selecting si is
at least as good as that of selecting s′i . Meanwhile, the strict ordering �i is defined as usual: si �i s′i
if and only if si <i s′i and not s′i <i si. The interpretation of is that player i strictly prefers si to s′i .

2Later, we will refer to dominated(or dominate) as weakly dominated(or weakly dominate).
3The procedure of IWUS is the algorithm of iterated admissibility introduced by Gilli (2002).
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WUD0
1 = {X,Y,Z},WD0

1 = ∅,WUD0
2 = {a, b, c},WD0

2 = {b}

WUD1
1 = {X,Y,Z},WD1

1 = {X,Z},WUD1
2 = {a, c},WD1

2 = ∅

WUD2
1 = {Y} =WUD1,WD2

1 = ∅,WUD2
2 = {a, c},WD2

2 = {c}

WUD3
2 = {a} =WUD2. Thus, WUD = {(Y, a)}

In Gilli (2002), the next proposition holds. In some sense, it is in accord with
the announcement limits we mentioned later.

Theorem 1. In every game G,there exists a finite number K ∈ Nsuch that ∀n ≥
K,WDn

i (G) =WDi(G) , ∅ for every i ∈ N.4

3 Public Announcement Logic

The prominent application of logic is to model reasoning about agent’s knowl-
edge and belief in multi-agent system, although epistemic logic can basically
finish this task. But the standard epistemic logic can not describe communica-
tion of knowledge and information. It’s very important to model the change
of agent’s knowledge and information in a multi-agent system. So logicians
develop many dynamic epistemic logics to model the change of high-order
information of agents.(Refer to Baltag et al. (1999), Gerbrandy (1999), van der
Meyden (2005) and van Ditmarsch et al. (2007) et al). Being a simple dynamic
epistemic logic, public announcement logic can enhance expression power by
adding a dynamic modality [ϕ] to the standard epistemic logic, so as to describe
and character the change of agent’s information arose by agent’s action. Apart
from all the formation rules of standard epistemic logic, PAL include this dy-
namic modality [ϕ] ,which means public announcing proposition [ϕ]. so, the
meaning of formula [ϕ]ψ is: after truthful public announcement of ϕ, formula
ψ holds. The truth condition is that: M,w � [ϕ]ψ iffM,w � ϕ then M |ϕ,w � ψ.

With this language, we can say things like [ϕ]Kiψ: after truthful public
announcement of ϕ, agent i knows ψ, or [ϕ]CBϕ: after its announcement, ϕ
has become common knowledge in the group B of agents and so on. Further-
more, the assertion of announcement can inclusive epistemic ingredient. The
following formulas indicates some typical valid principles in PAL.

• [α]p↔ (α→ p) atomic permanence

• [α]¬β↔ (α→ ¬[α]β) announcement and negation

• [α](β ∧ γ)↔ ([α]β ∧ [α]γ) announcement and conjunction

• [α]Kiβ↔ (α→ Ki[α]β) announcement and knowledge

• [α]β is valid if and only if [α]CNβ is valid.

Definition 3.1. For any model M and formula ϕ ,the announcement limit
](ϕ,M) is the first submodel in the repeated announcement sequence where
announcing ϕ has no further effect.5.

4Its proof refer to p15 in Gilli (2002).
5This definition is in van Benthem (2006a)
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Consequently, J.van Benthem indicated for any model M we can keep an-
nouncing ϕ, retaining just those worlds where ϕ holds in van Benthem (2006a).
This yields an sequence of nested decreasing sets, which must stop in finite
models, i.e.](ϕ,M).

4 Epistemic Game Model and Rationality

In order to give a dynamic epistemic analysis of game solution as model change,
we provides a epistemic game model based the structure of some initial game,
which is derived from van Benthem (2006a).

Definition 4.1. The full epistemic model over G is a multi-S52 epistemic
structure MG

6 whose worlds are all strategy profiles, and whose epistemic
accessibility Ri for player i is defined as the equivalence relation of agree-
ment of profiles in the i’th coordinate. That’s to say, adding to Kripke
frame S5n function σi: Ω → Si(i ∈ N), satisfying the following property:
Riwv⇔ σi(w) = σi(v).Meanwhile, incorporating the following valuation :

MG,w � si if and only if σi(w) = si;
MG,w � (si <i s′i ) if and only if ui(si, σ−i(w)) ≥ ui(s′i , σ−i(w)).
MG,w � (si �i s′i ) if and only if ui(si, σ−i(w)) > ui(s′i , σ−i(w)).

Figure 2 represents a full epistemic game model from the game showed
in figure 1. For convenience, we always take game model as epistemic game
model, and make analysis on it directly. Here player 2’s uncertainty relation R2
runs along columns, because player 2 knows his own action, player 2, but not
that of player 1. The uncertainty relation of player 1 runs among the rows.

(X, a)

2

1 (X, b)

2

1 (X, c)

2

(Y, a)

2

1 (Y, b)

2

1 (Y, c)

2

(Z, a) 1 (Z, b) 1 (Z, c)

Figure 2: Epistemic game model

Definition 4.2. A general epistemic game model M′G is any submodel of a full
epistemic game model.

As van Benthem (2006a) observes, every S52-model is bisimular to a general
game model .Thus, the logic corresponding a general epistemic game model
is just S52. Hence, the following research and analysis are based on S52. But
in order to express some conceptions of game theory with our epistemic logic
languages, such as Nash Equilibrium (NE), the best response(Br), we need to

6In order to keep the general proposal as simple as possible, we focus on two-players strategic
games with pure strategies, but our research results can extend to multi-players strategic games
with pure strategies.
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expand our languages with game languages by considering them as atomic
propositions, and we can describe the concepts of game with these atomic
proposition in epistemic language. The best response Bri for player i says that
i’s utility cannot improve by changing her action in w, keeping the others’actions
fixed. Formally:
MG,w � Bri ⇐⇒MG,w � ∧a∈Si,a,σi(w)(ui(σi(w), σ−i(w)) ≥ ui(a, σ−i(w))
Nash Equilibrium is expressed by the conjunction: NE = ∧i∈NBri, that’s to say,
MG,w � NE⇐⇒MG,w � ∧i∈NBri

The figure 3 describes the distributions of the players’ best responses for
figure 1. It’s easy to prove that MG � (¬K1Br1 ∧ ¬K2Br2) from this figure, i.e.,
neither players knows that he plays a the best response. However, rationality
means players aim at maximizing their utility, in other words, a rational player
i (Rai) always choose his the best response (Bri). Thus, we can deduce : MG 2
CNRai . But this is in contradiction with the analysis principle of game theory,
which is rationality is common knowledge among players. So it is necessary to
modify the definition of rationality, and we need to add epistemic ingredient
to definition of rationality.7

Br2

2

1 Br1

2

1 o

2

Br1 ,Br2

2

1 o

2

1 Br1

2

o 1 o 1 Br2

Figure 3: Distributions of players’ the best responses

Definition 4.3. Player i is rational at a world w if there is not strategy si , so that
player i knows si to be at least as good as σi(w), and she considers it possible
thatsi is better than σi(w). formally:
MG,w � Rai ⇐⇒ ¬∃si ∈ Si,MG,w � Ki(si <i σi(w))∧ 〈Ki〉(si �i σi(w))(i ∈ N, 〈Ki〉 is
dual for Ki)

According to this definition, MG,w � Rai means ¬∃si ∈ Si so that, for ∀v ∈
Ω, Riwv satisfied MG, v � (si <i σi(w)) and ∃v′ ∈ Ω,Riwv′ so that MG, v′ �
(si �i σi(w)). Furthermore, we have: ¬∃si ∈ Si satisfied for ∀v ∈ Ω,Riwv so
that ui(si, σ−i(v)) ≥ ui(σi(w), σ−i(v)) and ∃v′ ∈ Ω,Riwv′ satisfied ui(si, σ−i(v′)) >
ui(σi(w), σ−i(v′)). Because Riwv means σi(w) = σi(v), MG,w � Rai is equal to
¬∃si ∈ Si so that, for ∀v ∈ Ω, Riwv satisfied ui(si, σ−i(w)) ≥ ui(σi(w), σ−i(w))
and ∃v′ ∈ Ω,Riwv′ satisfied ui(si, σ−i(w)) > ui(σi(w), σ−i(w)). Therefore, Rai
fails exactly at the rows or columns with which weakly dominated strategies
correspond for player i in a general game model. For instance, in figure 2, Ra2

fails at the states (X, b), (Y, b) and (Z, b).

7This part is motivated by van Benthem (2006a) and Blackburn et al. (2007.).
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5 Solving for NE Based on PAL

It’s known that the assertion which players announce publicly must be the
statements which they know are true in PAL. The following theorems guar-
antee that the rationality which we define can be as a suitable assertion for
public announcement. After each public announcement of the rationality, we
can remove all the worlds which are corresponding to the weakly dominated
strategies for players.

Theorem 2. Every finite general game model has worlds with Ra true. (Ra = ∧i∈NRai ).

Proof. According to the fact that atomic proposition Rai fails exactly at the rows
or columns with which weakly dominated strategies correspond for player i
in a general game model. Consider any of general game model M′G, If there
is not a weakly dominated action for all player in the M′G, then Ra is true at
all the worlds in it. Thus, iterated announcement of Ra can no more change
the game model, and get stuck in cycles in this situation. If there is a weakly
dominated action for some player in the game, but because of the relativity
of the definition of weakly dominated strategy, i.e. if player i has a weakly
dominated strategy a, then he must has a strategy which is weakly better than
strategy a, let strategy b. Thus, Rai holds at all the worlds which are belong to
the row or the column corresponding strategy b. On the other hand, for player
j, if he has not a weakly dominated action, then also Ra j holds at all the worlds,
furthermore, Ra j holds at the worlds which are belong to the row or the column
corresponding strategy b. So, Ra holds in the general game model. But if player
j has a weakly dominated action, accordingly he must has a weakly dominant
action, let action Y, and Ra j is true at at the worlds which are belong to the row
or the column corresponding strategy Y. Therefore, Ra is satisfied at the world
(Y, b).
To sum up the above arguments, Every finite general game model has worlds
with Ra true. (Ra = ∧i∈NRai ). �

Theorem 3. Rationality is epistemically introspective. i.e. The formula Rai → KiRai

is valid on a general game model.

Proof. Given a general epistemic game model M′G, an arbitrary w in M′G, and
M′G,w � Rai , but M′G,w 2 KiRai because M′G,w 2 KiRai which means ∃v ∈W,Riwv
so that M′

G, v 2 Rai therefore ∃si ∈ Si,satisfied M′G, v � Ki(si <i σi(v)) ∧ 〈Ki〉(si �i
σi(v)) i.e. for ∀v′,Rivv′ so that M′G, v

′ � (si <i σi(v)) and ∃v′′,Rivv′′ satisfied
M′G, v

′′ � (si �i σi(v)). Then, Riwv′ and Riwv′′, since Ri is equivalent relation.
Thus, M′G,w � Ki(si <i σi(w)) ∧ 〈Ki〉(si �i σi(w)). So, M′G,w 2 Rai , by Definition
4.3, this is in contradiction with M′

G,w � Rai . The formula Rai → KiRai is valid
on a general game model. �

Consequently, these theorems guarantee that we can remove the worlds at
which Ra(Ra = ∧i∈NRai ) doesn’t hold after each of players starts telling each
other things they know about their behavior at some actual worlds at the same
time.

In the figure 4, the left-most model is the model from figure 1. The other
models are obtained by public announcements of Ra successively for three
times. So, in the last submodel, we have:
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MG, (Y, a) � [Ra][Ra][Ra]CB(NE). This formula indicates if the players iteratively
announce that they are rational, the process of dominated strategy elimination
leads them to a solution that is commonly known to be NE. And this procedure
is closely to the IWUS procedures in some sense,we can say IWUS procedures
can be characterized based on a Dynamic Epistemic logic.

Theorem 4. Given a full epistemic game model MG based a finite strategic-form G
and an arbitrary world w, w is in a general epistemic game model M′G which is stable
by repeated announcement of Ra for all player if and only if σ(w) ∈ WUD. That’s to
say, w ∈ ](Ra,MG)⇔ σ(w) ∈WUD.

Proof. (a) From left to right: if w ∈ ](Ra,MG), i.e. w ∈ M′G, then, M′G,w � Ra i.e.
M′G,w � ∧i∈NRai . The proof is by induction.

First, we need to show that σi(w) <WD0
i (see Definition 2.5)for every player

i. Suppose it doesn’t hold, then there is a player j such that σ j(w) ∈ WD0
j .

That is, strategy σ j(w) of player j is weakly dominated in G by some other
strategy s j ∈ S j: for ∀s− j ∈ S− j,u j(s j, s− j) ≥ u j(σ j(w), s− j), and ∃s′

− j ∈ S− j, satisfied
u j(s j, s′− j) > u j(σ j(w), s′

− j). Then, for ∀v, satisfied R jwv, we have u j(s j, σ− j(v)) ≥
u j(σ j(w), σ− j(v)) and ∃v′,R jwv′, so that u j(s j, σ− j(v′)) > u j(σ j(w), σ− j(v′)), so, for
every v,R jwv satisfied u j(s j, σ− j(v)) ≥ u j(σ j(v), σ− j(v)) and ∃v′,R jwv′ so that
u j(s j, σ− j(v′)) > u j(σ j(v′), σ− j(v′)), Because of Riwv ⇔ σi(w) = σi(v). It followed
from Definition 4.3, M′G,w � ¬Rai . This contradicts the hypothesis that M′

G,w �
Ra. Thus, since, σ(w)8

∈ S = WUD0, We have shown that, σ(w) ∈ WUD0
\

WD0 = WUD1. Now, Fix an integer m ≥ 1, and suppose σ(w) ∈ WUDm. We
want to show σ(w) < WDm. Suppose, by contradiction, there exists a player
i, σi(w) ∈ WDm

i , this means σi(w) is weakly dominated by some other s′i ∈
WUDm

i . By hypothesis, for every player j, σ j(w) ∈ WUDm
j , It follows, for every

s− j ∈ WUDm
− j,ui(s′i , s− j) ≥ ui(σi(w), s− j) and ∃s′

− j ∈ WUDm
− j, satisfied ui(s′i , s

′

− j) >
ui(σi(w), s′

− j), Thus, by Definition 4.3, M′G,w � ¬Rai , which contradicts the initial
hypothesis. Accordingly, for every player i ∈ N, σi(w) ∈ ∩m>0WUDm

i . And
therefore, σ(w) ∈WUD.

(b) From right to left: Let σ(w) ∈WUD =
⋂

m>0 WUDm, by Definition2.5, for
∀i ∈ N,¬∃si ∈WUDm−1

i , so that
ui(si, s−i) ≥ ui(σi(w), s−i) f or every s−i ∈WUDm−1

−i ;
ui(si, s−i) > ui(σi(w), s−i) f or some s−i ∈WUDm−1

−i
Then, for every v, Riwv,ui(si, σ−i(v)) ≥ ui(σi(w), σ−i(v));
for some v′, satisfied Riwv′,ui(si, σ−i(v′)) > ui(σi(w), σ−i(v′)), by Definition 4.1,
Riwv⇔ σi(w) = σi(v), we have: M′G,w � Rai . Therefore, w ∈ ](Ra,MG). �

8σ(w) := (σ1(w), σ2(w), ..., σn(w))is a strategies profile at the w.
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6 Discussion

Many scholars has studied algorithms of iterated elimination, For example:
Apt and Zvesper (2007), Christian (2002), Pearce (1984), van Benthem (2004) et
al. In particular, Bonanno (2008) and van Benthem (2006a) are both to describe
and characterize different algorithms in game theory by redefining rationality
based on epistemic logic. The primary thought of this paper is derived from
these papers. But there are many distinctions between them.

In van Benthem (2006a), J.van Benthem defined two types of rationality,
weak rationality and strong rationality, which are denoted by WR and SR.
Iterated public announcements of these rationality characterize respectively
algorithms of iterated elimination strictly dominated strategy and of rational-
izability, which is correspond to Bernheim’s version of the rationalizability
algorithm in Bernheim (1984). To compare the definition of our rationality (Ra)
to these rationalities, we can conclude: as the worlds removed by announcing
WR must be deleted by announcing Ra, so Ra is stronger than WR in some sense.
But, there isn’t the relation between Ra and SR. A NE, which can be solved
by iterated announcement of SR, is not necessarily solved by iterated public
announcement of Ra, and vice versa. For example, in the following games, G1
can be only solved by repeating announcement of SR, but for G2, we can only
find the NE by announcement of Ra.

Figure 4: comparison between SR and Ra

In addition, J .van Benthem explained the two rationality based on fix-point
logic, accordingly, more deeply analyzed the epistemic foundations on these
algorithms. This is just our further work in the future.

In Bonanno (2008), the author also puts forward the two rationality, WR′

and SR′, examined the implications of common belief and common knowledge
of two, rather weak, notion of rationality, and showed that weaker axiom of
rationality characterizes the iterated elimination strictly dominated strategy,
while the stronger axiom characterizes the pure-strategy version of the algo-
rithm introduced in Stalnaker (1997). As the same as the above reason, Ra is
stronger than WR′ in some sense. Comparing to SR′, although they are very
closely in literal sense, because the epistemic game model which we defined
is different from the game model defined by him, this leads to large difference
in removing procedure and outcomes. The epistemic accessible relation in our
epistemic game model is equivalent. It is built on the facts which are a definite
game structure and this structure being common knowledge among players.
Thereby, we provide epistemic game models to explain and analyze these iter-
ated elimination algorithm from participants’(i.e. players themselves) views.
However, the relation defined in Bonanno (2008) in the game logic is arbitrary,
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and what it models is major the structures of players’ belief for a game. So, to a
certain degree, he constructed epistemic game models from exterior modelers’
view. Meanwhile, what we characterized for the algorithm of iterated admissi-
bility is dynamic epistemic analysis, Bonanno focused on characterization for
outcomes, which is a static description in some sense. But he provided char-
acterization results in line with the notion of frame characterization in modal
logic, this does not exist in our paper, and it is one of our future goals.

7 Conclusions

Iterated dominance is perhaps the most basic principle in game theory. The
epistemic foundation of this principle is an assumption which is all players
are rational. Many literatures have been developed to describe various of
iterated dominance procedure in epistemic logic. Few people characterize
the algorithm of iterated admissibility (weak dominance) from dynamic logic
perspective, although iterated admissibility is a long-standing and attractive
solution concept, make strong predictions in many games, e.g. the forward
induction in signalling games and backward-induction in perfect-information.
In this paper, we showed the first, characterize iterated admissibility procedure
based on Public Announcement Logic, by redefining a rationality served as a
proper assertion of announcement, thereby provided the dynamic epistemic
foundations for iterated admissibility.

We have restricted attention to strategic-form games. In the future work, we
intend to analyze the operator of rationality announcement from fix-point logic,
and extend these analysis to extensive-form games with perfect information and
the notion of backward induction.
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Abstract
We formalise a notion of dynamic rationality in terms of a logic of condi-
tional belief on (doxastic) plausibility models. Similarly to other epistemic
statements (e.g. negations of Moore sentences and of Muddy Children an-
nouncements), dynamic rationality changes its meaning after every act of
learning, and may become true after players learn it is false. Applying this
to extensive games, we “simulate” the play of a game as a succession of
dynamic updates of the original plausibility model: the epistemic situation
when a given node is reached can be thought of as the result of a joint act of
learning (via public announcements) that the node is reached. We then use
the notion of “stable belief”, i.e. belief that is preserved during the play of
the game, in order to give an epistemic condition for backward induction:
rationality and common knowledge of stable belief in rationality. This condition
is weaker than Aumann’s and compatible with the implicit assumptions
(the ‘epistemic openness of the future’) underlying Stalnaker’s criticism of
Aumann’s proof. The ‘dynamic’ nature of our concept of rationality ex-
plains why our condition avoids the apparent circular- ity of the ‘backward
induction paradox’: it is consistent to (continue to) believe in a player’s
rationality after updating with his irrationality.

Aumann has proved that common knowledge of substantive rationality implies
the backward induction solution in games of perfect information. Stalnaker
has proved that it does not. Halpern (2001)

The jury is still out concerning the epistemic conditions for backward induction,
the “oldest idea in game theory” (Aumann 1995, p. 635). Aumann (1995) and
Stalnaker (1996) take conflicting positions in the debate: the former claims that
common “knowledge” of “rationality” in a game of perfect information entails
the backward-induction solution; the latter that it does not.1 Of course there is

1Others agree with Stalnaker in disagreeing with Aumann: for example, Samet (1996) and Reny
(1992) also put forwards arguments against Aumann’s epistemic characterisation of subgame-
perfect equilibrium. Section 7 is devoted to a discussion of related literature.
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nothing wrong with any of their relevant formal proofs, but rather, as pointed
out by Halpern (2001), there are differences between their interpretations of the
notions of knowledge, belief, strategy and rationality. Moreover, as pointed out
by Binmore (1987, 1996), Bonanno (1991), Bicchieri (1989), Reny (1992), Bran-
denburger (2007) and others, the reasoning underlying the backward induction
method seems to give rise to a fundamental paradox: in order even to start the
reasoning, a player assumes that (common knowledge of, or some form of
common belief in) “rationality” holds at all the last decision nodes (and so the
obviously irrational leaves are eliminated); but then, in the next reasoning step
(going backward along the tree), some of these (last) decision nodes are elim-
inated, as being incompatible with (common belief in) “rationality”! Hence,
the assumption behind the previous reasoning step is now undermined: the
reasoning player can now see, that if those decision nodes that are now de-
clared “irrational” were ever to be reached, then the only way that this could
happen is if (common belief in) “rationality” failed. Hence, she was wrong to
assume (common belief in) “rationality” when she was reasoning about the
choices made at those last decision nodes. This whole line of arguing seems to
undermine itself!

Belief Dynamics In this paper we use as a foundation the relatively standard
and well-understood setting of Conditional Doxastic Logic (CDL, Board (2002),
Baltag and Smets (2006; 2008a;b)), and its “dynamic” version (obtained by
adding to CDL operators for truthful public announcements [!ϕ]ψ): the logic
PAL-CDL, introduced by van Benthem (2007a). In fact, we consider a slight
extension of this last setting, namely the logic APAL-CDL, obtained by further
adding dynamic operators for arbitrary (truthful) public announcements [!]ψ,
as in Balbiani et al. (2008). We use this formalism to capture a novel notion
of “dynamic rationality” and to investigate its role in decision problems and
games. As usual in these discussions, we take a deterministic stance, assuming
that the initial state of the world at the beginning of the game already fully
determines the future play, and thus the unique outcome, irrespective of the
players’ (lack of) knowledge of future moves. We do not, however, require that
the state of the world determines what would happen, if that state were not
the actual state. That is, we do not need to postulate the existence of any “objective
counterfactuals”. But instead, we only need “subjective counterfactuals”: in the
initial state, not only the future of the play is specified, but also the players’
beliefs about each other, as well as their conditional beliefs, pre-encoding their
possible revisions of belief. The players’ conditional beliefs express what one may
call their “propensities”, or “dispositions”, to revise their beliefs in particular
ways, if given some particular pieces of new information.

Thus at the outset of a game, all is “done”, including the future. But all is
not necessarily “said”. In a deterministic model, as time progresses the only
thing that changes are the pictures of the world in the minds of the players:
the information states of the players. This is “on-line” learning: while the game
is being played, the players learn the played moves, and so they may change
their minds about the situation. We can simulate this on-line learning (and its
effect on the players’ beliefs) via off-line “public announcements”: if, before the
start of the game, the agents were publicly told that the game will reach some
node u, then they would be in the same epistemic state as they would have been



Alexandru Baltag, Sonja Smets and Jonathan A. Zvesper 69

by (not having any such public announcement but instead) playing the game
until node u was reached.

So in this paper we stress the importance of the dynamics of beliefs and
rationality during a play of an extensive game, and we use dynamic operators
in order to simulate the play of the game. Since we focus on games of perfect
information, we only need public announcements to simulate the moves of the
game. The idea of adding modalities for public announcements to epistemic
logic was introduced and developed in Plaza (1989), Gerbrandy and Groeneveld
(1997). Dynamic epistemic logic Baltag et al. (1999) provides for much richer
dynamic modalities than just public announcements, capturing the effects of
more complex and more “private” forms of learning. We think these could be
applied to the case of games with imperfect information. However, for simplicity,
we leave these developments for future work and consider for now only perfect
information, and so only public announcements.

Games Using the terminology of Brandenburger (2007), ours is a belief-based
approach to game theory (in the same category as the work of Battigalli and
Siniscalchi (1999, 2002)), in contrast to the knowledge-based approach of Aumann
(1995) and others. According to the belief-based approach, “only observables
are knowable. Unobservables are subject to belief, not knowledge. In particular,
other players’ strategies are unobservables, and only moves are observables.”
(Brandenburger 2007, p. 489) This means that we take the players’ beliefs (in-
cluding conditional beliefs) as basic, instead of their knowledge. However, there
is a notion of knowledge that naturally arises in this context: the “irrevocable
knowledge”, consisting of the beliefs that are absolutely unrevisable, i.e. believed
under any conditions. This notion of knowledge is meant to apply only to
the players’ “hard information”, obtained by observation or by undoubtable
evidence. This is a much stronger condition than “certain belief” (subjective
probability 1) or even “true belief”, and as a result it may happen that very few
things are “known” in this sense. One of the things we assume to be irrevocably
known is the structure of the game: the possible outcomes, the players’ prefer-
ences etc; also, in a game of perfect information, the played moves are observed,
and thus known, after they are played; finally, another thing irrevocably known
to a player is her own beliefs: by introspection, she knows what she believes and
what not. Besides this, we do not assume much else to be known, although our
general setting is in principle consistent with (common) knowledge of all the
players’ beliefs, their strategies, their rationality etc.

One thing we do not assume as known is the future of the game: no outcomes
that are consistent with the structure of the game are to be excluded at the
outset of the game. In fact, we make the opposite assumption: that it is
common knowledge that nobody knows the future, i.e. nobody knows that
some outcome will not be reached. This “open future” assumption seems to
contradict common knowledge of rationality; but in fact, it is consistent with it,
if by rationality we only mean “rational planning”, leaving open the possibility
that players may make mistakes or may change their minds. The players may
certainly believe their rational plans will be faithfully carried out, but they have
no way to “know” this in advance. We think of our “open future” assumption
as being a realistic one, and moreover one that embodies the agents’ “freedom
of choice”, as well as the “possibility of error”, that underly a correct notion
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of rationality. An agent’s rationality can be assessed only if she is given some
options to freely choose from. There are certainly cases in which the future
can be known, e.g. when it is determined by a known natural law. But it is
an essential feature of rational agents that their own choices are not known to
them to be thus determined; or else, they would have no real choices, and thus
no rational choice. Any natural determinism is assumed to be absorbed in the
definition of the game structure, which does pose absolute limits to choices. In
a sense, this simply makes precise the meaning of our “knowledge” as “hard
information”, and makes a strict delimitation between the past and the future
choices, delimitation necessary to avoid the various paradoxes and vicious
circles that plague the notions of rational decision and freedom of choice: the
agents may have “hard information” about the past and the present, but not
about their own future free choices (although they may have “soft” information,
i.e. “certain” beliefs, with probability 1, about their future choices).

Dynamic Rationality Maybe the most important original feature of our paper
is our notion of “dynamic” rationality, which takes into account the dynamics
of beliefs, as well as the dynamics of knowledge. On the one hand, following
Stalnaker, Reny, Battigalli and Siniscalchi etc. (and in contrast with Aumann),
we assess the rationality of a player’s move at a node against the beliefs held
at the moment when the node is reached. On the other hand, we incorporate
the above-mentioned epistemic limitation to rationality: the rationality of an
agent’s move only makes sense when that move is not already known (in an
irrevocable manner) to her. Players cannot be held responsible for moves that
they cannot choose or change any more (including their own past moves). Since
the players’ knowledge increases during a game of perfect information, their
set of available options decreases: passed options/nodes, or nodes that were
by-passed, cannot be the objects of choice any more. As a result, our notion
of rationality is future-oriented: at any stage of the game, whether or not an
agent is dynamically rational at that stage depends only on her current and future
moves. So a player can be rational now even if in the past she has made some
“irrational” moves. In effect, performing such an irrational move in a game
of perfect information is equivalent to a public announcement that “the player
is (currently) not rational” (at the moment of moving)2. All the players jointly
learn this “fact” (as a piece of ‘hard’ information), but the “fact” itself may
vanish after being learnt: while previously “irrational” (since about to make a
‘wrong’ move), the player may “become rational” after the wrong move (simply
because, for all the decisions that she can still make after that, she chooses the
‘right’ moves). So the truth-value of the sentence “player i is (dynamically)
rational” may change after a move by player i. The way this is captured and
explained in our formal setting is original and interesting in itself: the meaning
of our “rationality” changes in time, due to the change of beliefs and of the known
set of options. This is because the “rationality of an agent” is an epistemic-doxastic
concept, so it is obviously affected by any changes in the information possessed
by that agent (including the changes induced by the agent’s own moves). In our
Dynamic-Epistemic Logic setting, this is a natural and perfectly standard feature,
an immediate consequence of the epistemic definition of rationality: in general,

2Technically, this claim is correct only for binary games, in which at any node there are only two
possible moves; but a weak version of this claim holds in general.
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epistemic sentences do not necessarily preserve their truth value after they are
“learnt”. Epistemic logicians are already familiar with this phenomenon, e.g.
the examples of Moore sentences Moore (1942) and of the repeated public
announcements of “ignorance” in the Muddy Children Scenario Fagin et al.
(1995).

Our concept of dynamic rationality, developed on purely a priori grounds,
solves in one move the “BI-paradox”: the first reasoning step in the backward-
induction argument (dealing with the last decision nodes of the game) is not
undermined by the result of the second reasoning step, since the notion of “ratio-
nality” assumed in the first step is not the same as the “rationality” disproved
in the second step! The second step only shows that some counterfactual nodes
cannot be reached by rational play, and thus it implies that some agent must
have been irrational (or must have had some doubts about the others’ rational-
ity, or must have made some “mistake”) before such an “irrational” node was
reached; but this doesn’t contradict in any way the assumption that the agents
will be rational at that node (and further in the future).

Stability Dynamics cannot really be understood without its correlative: in-
variance under change. Certain truths, or beliefs, stay true when everything else
changes. We have already encountered an “absolute” form of invariance: “irre-
vocable knowledge”, i.e. belief that is invariant under any possible information
change. Now, we need a second, weaker form of invariance: “stability”. A
truth, or a belief, is stable if it remains true, or continues to be believed, after any
(joint) learning of “hard” information (via some truthful public announcement). In
fact, in the case of an “ontic” (non-doxastic) fact p, Stalnaker’s favourite notion
of “knowledge” of p Stalnaker (1996; 2006) (a modal formalisation of Lehrer
and Klein’s “defeasibility theory of knowledge”), corresponds precisely to the
‘factive’ (i.e. truth-entailing) version of stable belief in p, also called “safe belief”
in Baltag and Smets (2008b). (But note that the two notions differ when applied
to a doxastic-epistemic property, such as “rationality”!) Stability can be or not
a property of a belief or a common belief: a proposition P is a “stable (common)
belief” if the fact that P is (common) belief is a stable truth, i.e. P continues to
be (common) belief after any (joint) learning of “hard” information.

What is required for achieving the backward induction outcome is stable
belief in dynamic rationality, as a default condition (i.e. commonly known to hold
for all agents). In some contexts, we can think of this condition as expressing an
‘‘optimistic” belief-revision policy about the opponents’ potential for rationality: the
players “keep hoping for rationality” with respect to everybody’s current and
future play, despite any past irrational moves. Of course, whether or not the
words “hope” and “optimism” are appropriate depends on the players’ payoffs:
e.g. in common interest games (in which all players’ payoffs are identical at all
nodes), it indeed makes sense to talk about “hoping” for opponents’ rationality;
while in other games, it may be more appropriate to talk about “persistent
cautiousness” and a “pessimistic” revision policy.

We can now give an informal statement of the main theorem of this paper:

Common knowledge of (the game structure, of “open future” and of)
stable (common3) belief in dynamic rationality entails common belief in
the backward induction outcome.

3Adding the word “common” to this condition doesn’t make a difference: common knowledge
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Overview of the Paper To formalise stability and “stable common belief”, we
introduce in the next section Conditional Doxastic Logic CDL and its dynamic
version APAL-CDL. Section 2 recalls the definition of extensive games and
shows how to build models of those games in which the structure of the game
is common knowledge, in our strong sense of “knowledge”. In Section 3 we
define “rationality” and “rational play”, starting from more general decision-
theoretic considerations, and arriving at a definition of dynamic rationality in
extensive (aka “dynamic”) games, which is in some sense a special case of the
more general notion. Section 4 gives a formal statement of our main results, to
whose proofs Section 5 is devoted. In Section 6 we consider a weaker condition
that ensures the backward induction outcome, and is based on what we call
stable true belief. Finally, Section 7 discusses connections between our work
and some of the existing literature on the epistemic foundations of backward
induction.

1 Conditional Doxastic Logic and its Dynamic Ex-
tensions

CDL models, also called “plausibility models” are essentially the “belief revi-
sion structures” in Board (2002), simplified by incorporating structurally the
assumption of Full Introspection of Beliefs (which allows us to use binary
plausibility relations on worlds for each agent, instead of ternary relations).
But since we will also want to talk about the actual change under the effects
of actions, like moves in a game, rather than just the static notion that is in
effect captured by Board’s models, we will enrich the language of CDL with
model-changing dynamic operators for “public announcements”, in the spirit
of Dynamic Epistemic Logic (cf. Baltag et al. (1999), Benthem (2007a;b)).

The models are “possible worlds” models, where the worlds will usually be
called states. Grove (1988) showed that the AGM postulates Alchourrón et al.
(1985) for rational belief change are equivalent to the existence of a suitable
pre-order over the state space.4 The intended interpretation of the pre-order ≤i
of some agent i is the following: s ≤i t means that, in the event {s, t}, i considers
s at least as plausible as t.

In interactive situations, where there are several players, each player i has
a doxastic pre-order ≤i. In addition to having different beliefs, any two players
might have different knowledge. We follow the mainstream in game theory
since Aumann and model interactive knowledge using a partitional structure.
However, as in Board (2002), we will derive i’s partition from i’s pre-order ≤i.
Let us be more precise: fix a set S and a relation ≤i⊆ S × S; then we define
the comparability class of s ∈ S for ≤i to be the set [s]i = {t ∈ S | s ≤i t or t ≤i s}
of states ≤i-comparable to s. Now we want the set of comparability classes
to form a partition of S, so we will define a plausibility frame to be a sequence
(S,≤i)i∈N in which S is a non-empty set of states, and each ≤i a pre-order on S
such that for each s ∈ S, the restriction of ≤i to [s]i is a “complete” (i.e. “total”
or “connected”) pre-order.

that everybody has a stable belief in P is the same as common knowledge of common safe belief in
P.

4A pre-order is any reflexive transitive relation. In Grove’s representation theorem the pre-order
must also be total and converse-well-founded.
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Proposition 1. In any plausibility frame, {[s]i | s ∈ S} forms a partition of S. We
will interpret this as the information partition for player i (in the sense of “hard”
information, to be explained below).

So we can define player i’s knowledge operator in the standard way, putting
for any “proposition” P ⊆ S:

KiP := {s ∈ S | [s]i ⊆ P}

As explained below, this captures a notion of indefeasible, absolutely unre-
visable knowledge. But we also want a notion of belief B, describing “soft”
information, which might be subject to revision. So we want conditional belief
operators BP, in order to capture the revised beliefs given some new information P.
If S is finite, let min≤i (P) denote the ≤i-minimal P elements {s ∈ P | ∀t ∈ P, s ≤i t}.
So min≤i (P) denotes the set of states which i considers most plausible given
P. Then min≤i (P ∩ [s]i) denotes the set of that states which i considers most
plausible given both P and i’s knowledge at state s. Thus we define player i’s
conditional belief operator as:

BQ
i P := {s ∈ S | min≤i (Q ∩ [s]i) ⊆ P}.

There is a standard way to extend this definition to total pre-orders on infinite
sets of states, but we skip here the details, since we are mainly concerned with
finite models. BQ

i P is the event that agent i believes P conditional on Q. Conditional
belief should be read carefully: BQ

i P does not mean that after learning that
Q, i will believe P; rather it means that after learning Q, i will believe that
P was the case before the learning. This is a subtle but important point: the
conditional belief operators do not directly capture the dynamics of belief, but
rather as van Benthem (2007a) puts it, they ‘pre-encode’ it. We refer to Benthem
(2007a), Baltag and Smets (2008b) for more discussion. The usual notion of (non-
conditional) belief can be defined as a special case of this, by putting BiP := BS

i P.
The notions of common knowledge CkP and common belief CbP are defined in the
usual way: first, one introduces general knowledge EkP :=

⋂
i KiP and general

belief EbP :=
⋂

i BiP, then one can define CkP :=
⋂

n(Ek)nP and CbP :=
⋂

n(Eb)nP.
It will be useful to associate with the states S some non-epistemic content;

for this we use a valuation function. Assume given some finite set Φ of symbols,
called basic (or atomic) sentences, and meant to describe ontic (non-epistemic,
non-doxastic) “facts” about the (current state of the) world. A valuation on Φ is
a function V that associates with each p ∈ Φ a set V(p) ⊆ S: V specifies at which
states p is true. A plausibility model for (a given set of atomic sentences) Φ is a
plausibility frame equipped with a valuation on Φ.

Interpretation: ‘Hard’ and ‘Soft’ Information Information can come in differ-
ent flavours. An essential distinction, due to van Benthem (2007a), is between
‘hard’ and ‘soft’ information. Hard information is absolutely “indefeasible”,
i.e. unrevisable. Once acquired, a piece of ‘hard’ information forms the basis of
the strongest possible kind of knowledge, one which might be called irrevocable
knowledge and is denoted by Ki. For instance, the principle of Introspection
of Beliefs states that (introspective) agents possess ‘hard’ information about
their own beliefs: they know, in an absolute, irrevocable sense, what they be-
lieve and what not. Soft information, on the other hand, may in principle be
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defeated (even if it happens to be correct). An agent usually possesses only
soft information about other agents’ beliefs or states of mind: she may have
beliefs about the others’ states of mind, she may even be said to have a kind of
‘knowledge’ of them, but this ‘knowledge’ is defeasible: in principle, it could be
revised, for instance if the agent were given more information, or if she receives
misinformation.

For a more relevant, game-theoretic example, consider extensive games of
perfect information: in this context, it is typically assumed (although usually
only in an implicit manner) that, at any given moment, both the structure of
the game and the players’ past moves are ‘hard’ information; e.g. once a move is
played, all players know, in an absolute, irrevocable sense, that it was played. More-
over, past moves (as well as the structure of the game) are common knowledge
(in the same absolute sense of knowledge). In contrast, a player’s ‘knowledge’
of other players’ rationality, and even a player’s ‘knowledge’ of her own fu-
ture move at some node that is not yet reached, are not of the same degree of
certainty: in principle, they might have to be revised; for instance, the player
might make a mistake, and fail to play according to her plan; or the others
might in fact play “irrationally”, forcing her to revise her ‘knowledge’ of their
rationality. So this kind of defeasible knowledge should better be called ‘belief’,
and is based on players’ “soft” information.5

In the ‘static’ setting of plausibility models given above, soft information is
captured by the “belief” operator Bi. As already mentioned, this is defeasible,
i.e. revisable, the revised beliefs after receiving some new information ϕ being
pre-encoded in the conditional operator Bϕi . Hard information is captured by
the “knowledge” operator Ki; indeed, this is an absolutely unrevisable form
of belief, one which can never be defeated, and whose negation can never
be accepted as truthful information. This is witnessed by the following valid
identities:

KiP =
⋂
Q⊆S

BQ
i P = B¬P

i ∅.

Special Case: Conditional Probabilistic Systems If, for each player i, we are
given a conditional probabilistic system à la Renyi (1955) over a common set of
states S (or if alternatively we are given a lexicographic probability system in the
sense of Blume et al. (1991)), we can define subjective conditional probabilities
Probi(P|Q) even for events of zero probability. When S is finite and the system is
discrete (i.e., Prob(P|Q) is defined for all non-empty events Q), we can use this
to define conditional belief operators for arbitrary events, by putting BQ

i P :=
{s ∈ S : Probi(P|Q) = 1}. It is easy to see that these are special cases of finite
plausibility frames, by putting: s ≤i t iff Probi({s}|{s, t}) , 0. Moreover, the
notion of conditional belief defined in terms of the plausibility relation is the
same as the one defined probabilistically as above.

Dynamics and Information: ‘Hard’ Public Announcements Dynamic epis-
temic logic is concerned with the “origins” of hard and soft information: the

5By looking at the above probabilistic interpretation, one can see that the fact that an event or
proposition has (subjective) probability 1 corresponds only to the agent having “soft” information
(i.e. believing the event). “Hard” information corresponds to the proposition being true in all the
states in the agent’s information cell.
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“epistemic actions” that can appropriately inform an agent. In this paper, we
will focus on the simplest case of hard-information-producing actions: public
announcements. These actions model the simultaneous joint learning of some ‘hard’
piece of information by a group of agents; this type of learning event is perfectly
“transparent” to everybody: there is nothing hidden, private or doubtful about
it. But dynamic epistemic logic Baltag et al. (1999) also deals with other, more
complex, less transparent and more private, forms of learning and communi-
cation.

Given a plausibility model M = (S,≤i,V)i∈N and a “proposition” P ⊆ S,
the updated model M � P produced by a public announcement of P is given
by relativisation: (P,≤i� P,V � P), where ≤� P is the restriction of ≤ to P and
(V � P)(p) = V(p) ∩ P. Notice that public announcements can change the
knowledge and the beliefs of the players. So far we have, for readability,
been writing events without explicitly writing the frame or model in question.
However, since we are now talking about model-changing operations it is useful
to be more precise; for this we will adopt a modal logical notation.

APAL-CDL: Language and Semantics Our language APAL-CDL is built re-
cursively, in the usual manner, from atomic sentences in Φ, using the Boolean
connectives ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ and ϕ ⇒ ψ, the epistemic operators Kiϕ, Bϕi ψ,
Ckϕ and Cbϕ and the dynamic modalities [!ϕ]ψ and [!]ϕ. (The language CDL
of conditional doxastic logic consists only of the formulas of APAL-CDL that
can be formed without using the dynamic modalities.)

For any formula ϕ of this language, we write JϕKM for the interpretation
of ϕ, the event denoted by ϕ, in M. We write Mϕ for the updated model
M � JϕKM after the public announcement of ϕ. The interpretation map is
defined recursively: JpKM = V(p); Boolean operators behave as expected; and
the definitions given above of the epistemic operators in terms of events give the
interpretation of epistemic formulae. Then the interpretation of the dynamic
formulae, which include public announcement modalities [!ϕ]ψ, goes as follows:

J[!ϕ]ψKM = {s ∈ S | s ∈ JϕKM ⇒ s ∈ JψKMϕ }

Thus [!ϕ]ψ means that after any true public announcement of ϕ, ψ holds. The
arbitrary (public) announcement modality [!]ϕ is to be read: after every (public)
announcement, ϕ holds. Intuitively, this means ϕ is a “stable” truth: not only
it is true, but it continues to stay true when any new (true) information is
(jointly) learned (by all the players). There are some subtleties here: do we
require that the new information/announcement be expressible in the language
for example? This is the option taken in Balbiani et al. (2008), where the
possible announcements are restricted to epistemic formulas, and a complete
axiomatisation is given for this logic. In the context of finite models (as the ones
considered here), this definition is actually equivalent to allowing all formulas
of our language APAL-CDL as announcements. As a result, we can safely use the
following apparently circular definition:

J[!]ϕKM = {s ∈ S | ∀ψ s ∈ J[!ψ]ϕKM}

Dynamic epistemic logic captures the “true” dynamics of (higher-level)
beliefs after some learning event: in the case of public announcements, the
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beliefs of an agent i after a joint simultaneous learning of a sentence ϕ are fully
expressed by the operator [!ϕ]Bi, obtained by composing the dynamic and
doxastic operators. Note that this is not the same as the conditional operator
Bϕi , but the two are related via the following “Reduction Law”, introduced in
Benthem (2007a):

[!ϕ]Biψ ⇔ (ϕ⇒ Bϕi [!ϕ]ψ).

This is the precise sense in which the conditional belief operators are said to
“pre-encode” the dynamics of belief.

Special Case: Bayesian Conditioning In the case of a conditional probability
structure, the update M � P by a public announcement !P corresponds to
Bayesian update (conditionalisation): the state space is reduced to the event P, and
the updated probabilities are given by Prob′i (Q) := Probi(Q|P). So a dynamic
modality [!P]Q corresponds to the event that, after conditionalising with P,
event Q holds. Similarly, the arbitrary announcement modality [!]P is the event
that P stably holds, i.e. it holds after conditionalising with any true event.

2 Models and Languages for Games

The notion of extensive game with perfect information is defined as usual (cf. Os-
borne and Rubinstein (1994)): Let N be a set of ‘players’, and G be a finite
tree of ‘decision nodes’, with terminal nodes (leaves) O (denoting “possible
outcomes”), such that at each non-terminal node v ∈ G − O, some player i ∈ N
is the decision-maker at v. We write Gi ⊆ G for the set of nodes at which i is the
decision-maker. Add to this a payoff function hi for each player i, mapping all
the leaves o ∈ O into real numbers, and you have an extensive game. We write
‘G’ to refer both to the game and to the corresponding set of nodes. We also
write u→ v to mean that v is an immediate successor of u, and u{ v to mean
that there is a path from u to v. A subgame of a game G is any game G′, having a
subset G′ ⊆ G as the set of nodes and having the immediate successor relation
→
′, the set of decision nodes G′i and the payoff function h′i (for each player i)

being given by restrictions to G′ of the corresponding components of the game
G (e.g. G′i = Gi ∩ G′ etc). For v ∈ G, we write Gv for the subgame of G in which
v is the root. A strategy σi for player i in the game G is defined as usually as
a function from Gi to G such that v → σi(v) holds for all v ∈ Gi. Similarly, the
notions of strategy profile, of the (unique) outcome determined by a strategy profile
and of subgame-perfect equilibrium are defined in the standard way (see e.g. Os-
borne and Rubinstein (1994)). Finally, we define as usually a backward induction
outcome to be any outcome o ∈ O determined by some subgame-perfect equi-
librium. We denote by BIG the set of all backward-induction outcomes of the
game G.

Consider as an example the “centipede” game G (cf. Rosenthal (1981)) given
in Figure 1. This is a two-player game for a (Alice) and b (Bob).

Here, we represent the nodes of the game by dots and the possible moves
by arrows. For each non-terminal node, the corresponding dot is labelled with
the name of the node and the name of the player who decides the move at
that node; while the dots corresponding to the terminal nodes (outcomes) are
labelled with the name of the node (o1, o2, o3, o4) and with the players’ payoffs,
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v0, a
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o1 (3, 0) v1, b

��
��

�
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??
??

o2 (2, 3) v2, a

��
��

��
??

??
??

o3 (5, 2) o4 (4, 5)

Figure 1: The “centipede” game G

written as pairs (pa, pb), where pa is Alice’s payoff and pb is Bob’s. Note that in
this game there is one backward induction outcome, o1, and furthermore that
the unique backward induction strategy profile assigns to each vm the successor
om+1.
Language for Games For any given game G, we define a set of basic (atomic)
sentences ΦG from which to build a language. First, we require ΦG to contain a
sentence for each leaf: for every o ∈ O, there is a basic sentence o. For simplicity,
we often just write o, instead of o. In addition ΦG contains sentences to express
the players’ preferences over leaves: for each i ∈ N and {o, o′} ⊆ O, ΦG has a basic
sentence o ≺i o′. Our formal language for games G is simply the language
APAL-CDL defined above, where the set of atomic sentences is the set ΦG. To
talk about the non-terminal nodes, we introduce the following abbreviation:

v :=
∨
v{o

o ,

for any v ∈ G −O. As for terminal nodes, we will often denote this sentence by
v for simplicity, instead of v.
Plausibility Models for Games We now turn to defining models for games. A
plausibility model for game G is just a plausibility model (S,≤i,V)i∈N for the set
ΦG. We interpret every state s ∈ S as an initial state in a possible play of the game.
Intuitively, the sentence o is true at a state s if outcome o will be reached during
the play that starts at s; and the sentence o ≺i o′ says that player i’s payoff at o is
strictly smaller than her payoff at o′.

Observe that nothing in our definition of models for G guarantees that states
come with a unique outcome or that the players know the set of outcomes! To
ensure this (and other desirable constraints), we later focus on a special class of
plausibility models for a game, called “game models”.

Examples Figures 2 and 3 represent two different plausibility modelsM1 and
M2 for the centipede game G. Here, we use labelled arrows for the converse
plausibility relations ≥a (going from less plausible to more plausible states), but
for convenience we skip all the loops and all the arrows that can be obtained by
transitivity.

Note that in the model M2, Alice (player a) knows the state of the world: in
each state, she knows both the outcome and Bob’s beliefs (and belief revision
policy), i.e. the sentence

∧
o∈O(o ⇒ Kao) holds at all states of M2. But this is
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o3

o1 o2

o4

a, b

a, b

a, b

a, b

Figure 2: A game modelM1 for the centipede game G

o3

o1 o2

o4

b

b

b

b

Figure 3: A plausibility model M2 for G which is not a “game model” (see
below)

not true in model M1: on the contrary, in M1 (it is common knowledge that)
nobody knows the outcome of the game, and moreover nobody can exclude
any outcome. Intuitively, the future is “epistemically open” inM1, but not in
M2. However, we can also intuitively see that, in both models, (it is common
knowledge that) all the players know the (structure of the) game: the available
outcomes, the structure of the tree, the payoffs etc.

We now want to formalise our intuitions about open future and about having
common knowledge of the structure of the game. To do this, we will focus on a
special class of models, that we call “game models”. Intuitively, each state of a
game model comes with a complete play of the game, and hence it should have
a uniquely determined outcome, and the set of possible outcomes as well as the
players’ preferences over them should be common knowledge. However, the
players in this (initial) state should not have non-trivial knowledge about the
outcome of the play. Indeed, they should have “freedom of choice” during the
play, which means they can in principle play any move, so that at the outset of
the play they cannot exclude a priori any outcomes.

Game Models The class of game models for G, denoted by MG, is the class of
all plausibility model for G satisfying the following conditions (for all players
i ∈ N):

1. ∀s ∈ S∃!o ∈ O : s ∈ V(o)
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2. V(o ≺i o′) =
{

S if hi(o) < hi(o′)
∅ otherwise

3. ∀s ∈ S∀o ∈ O : V(o) ∩ [s]i , ∅

The first condition entails that there is common knowledge of the set of possible
outcomes, as well as of the fact that to each state is associated a unique actual
outcome. This reflects the fact that the future, for each particular play (state), is
determined. The second condition entails that the preferences over outcomes
are commonly known. Finally, the third condition says that (it is common
knowledge that) the future is epistemically open: in the initial state of any play,
no player has “knowledge” (in the strong sense of “irrevocable”, absolutely
unrevisable knowledge) that any outcome is impossible. This is meant to
apply even to the states that are incompatible with that player’s plan of action.

Open Future We take condition (3) to embody the players’ freedom of choice,
as well as the possibility of error: in principle, players might always change their
minds or make mistakes, hence any belief excluding some of the outcomes may
have to be revised later. Even if we would assume (as is usually assumed) that
players (irrevocably) know their own strategy, i.e. even if they are not allowed to
change their minds, and even if we assume (as postulated by Aumann) that
they have common knowledge of “rationality” (and so that they can exclude some
obviously irrational choices), it still would not follow that they can completely
exclude any outcome: mistakes can always happen, or players may always
lose their rationality and become temporarily insane; so a rational plan does
not necessarily imply a rational play, and hence the future still remains open.

Condition (3) is natural given our interpretation of the “knowledge” opera-
tor K as representing hard information, that is absolutely certain and irrevocable.
If any node is “known” (in this sense) to be unreachable, then that node should
simply be deleted from the game tree: this just corresponds to playing a different
game. So if a player i were to irrevocably know that a given node is unreach-
able, then the structure of the game would not really be common knowledge:
i would in fact know that she is playing another game than G. Thus, one can
consider the “open future” postulate as a natural strengthening of the “common
knowledge of the game” assumption.

A different way to proceed would be to impose the above conditions only
locally, at the “real” (initial) state of the play. Let StructG be the following
sentence, describing the “structure of the game” G:∨

o∈O

o ∧
∧

o,o′∈O

¬(o ∧ o′) ∧
∧

i∈N,o,o′∈O
s.t. hi(o)<hi(o′)

o ≺i o′ ∧
∧

i∈N,o,o′∈O
s.t. hi(o)≥hi(o′)

¬o ≺i o′

Similarly, let FG :=
∧

o∈O,i∈N ¬Ki¬o be the sentence saying that at the outset of
game G the future is epistemically open. Then our proposed “local” require-
ment is that in the initial state s we have “common knowledge of the structure
of the game and of open future”, i.e. s satisfies the sentence Ck(StructG ∧ FG).
Then it is easy to see that this “local” requirement is equivalent to the above
global requirement of having a “game model”: for every state s in any plausi-
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bility modelM for G, s satisfies Ck(StructG ∧ FG) iff it is bisimilar6 to a state in
some game modelM′ ∈MG.

Examples Note that the model M1 from Figure 2 is a game model, while M2
from Figure 3 is not: indeed, inM2 it is common knowledge that Alice always
knows the outcome, which contradicts the “Open future” assumption.

Encoding Strategies as Conditional Beliefs If a player adopts a particular
(pure) strategy, our language can encode this in terms of the player’s conditional
beliefs about what she would do at each of her decision nodes. For instance, we
say that Alice “adopts the backward induction strategy” in a given state s of
a model for the Centipede Game in Figure 1 iff the sentences Bao1 and Bv2

a o3
hold at state s. Similarly, we can express the fact that Bob adopts a particular
strategy, and by putting these together we can capture strategy profiles. A given
profile is realized in a model if the correspondent sentence is true at a state of
that model.

Note that, in our setting, nothing forces the players to adopt (pure) strategies.
Strategies are “complete” plans of action prescribing a unique choice (a belief
that a particular move will be played) for each decision node of the player. But
the players might simply consider all their options as equi-plausible, which
essentially means that they do not have a strategy.

Examples In (any state of) modelM1 from Figure 2, it is common knowledge
that both players adopt their backward induction strategies. In contrast, in the model
M3 from Figure 4, it is common knowledge that no player has a strategy (at any
node):

o3

o1 o2

o4

a, b

a, b

a, b

a, b

Figure 4: A game modelM3 in which players don’t have strategies

So the assumption that players have (pure) “strategies” is an extremely strong
assumption, which we will not need. There is no a priori reason to assume
(and there are good empirical reasons to reject) that players play according to
fully-determined strategies. Our models are general enough to dispense with
this assumption; indeed, our work shows that this assumption is not needed for
proving (common belief) that the backward induction strategy is played.
Intentions as Beliefs In the above discussion, we identified an agent’s intentions
with her beliefs about what she is going to do, and so we represented the decision

6Here, “bisimilarity” is the standard notion used in modal logic, applied to plausibility models
viewed as Kripke models with atomic sentences in Φ and with relations ≤i. The important point is
that our language APAL-CDL cannot distinguish between bisimilar models and states.
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maker’s plan of action as a belief about her (future) action. This identification
is philosophically debatable, since agents may be aware of the possibility of
mistakes, and so they may doubt that their intentions will be realized. But
one can also argue that, in the context of Game Theory, such distinctions will
be of very limited significance: indeed, an intention that is not believed to
be enforceable is irrelevant for strategic planning (though see Roy (2008) for
a discussion of intentions in game theory). The players only need to know
each others’ beliefs about their future actions and about each others’ beliefs
etc., in order to make their own rational plans; whether or not they are being
informed about each others’ (completely unenforceable and not believed to be
enforceable) “intentions” will not make any difference. So, for the purposes
of this paper, we can safely adopt the simplifying assumption that the agents
believe that they will be able to carry out their plans. Given this assumption, an
agent’s “intentions” can be captured by her beliefs about her (future) actions.

Representing Players’ Evolving Beliefs Recall that we think of every state
of a game modelMG ∈ MG as an initial state (of a possible play) of the game G.
As the play goes on, the players’ hard and soft information, their knowledge
and beliefs, evolve. To represent this evolution, we will need to successively
change our model, so that e.g. when a node v is reached, we want to obtain a
corresponding model of the subgame Gv. That is precisely, in this perfect infor-
mation setting, what is achieved by updating the model with public announcements:
indeed, in a game of perfect information, every move, say from a node u to one
of its immediate successors u′, can be “simulated” by a public announcement
!u′. In this way, for each subgame Gv of the original model M, we obtain a
modelMv, that correctly describes the players’ knowledge and beliefs at the moment
when node v is reached during a play. This is indeed a model of the corresponding
subgame Gv:

Proposition 2. IfM ∈MG thenMv
∈MGv .

Example Consider a play of the Centipede game G that starts in the initial
situation described by the modelM1 in Figure 2, and in which the real state of
the world is the one having outcome o2: so Alice first plays “right”, reaching
node v1, and the Bob plays “down”, reaching the outcome o2. The modelM1
from Figure 2 gives us the initial situation, the modelMv1

1 in Figure 5 describes
the epistemic situation after the first move, and then the modelMo2

1 in Figure 6
gives the epistemic situation at the end of the play:

In this way, for each given initial state s (of a given play v0, v1, . . . , o of the
game, where o is the unique outcome such that s ∈ V(o)), we obtain a sequence
of evolving game models

M =Mv0 ,Mv1 , . . . ,Mo ,

describing the evolving knowledge and beliefs of the players during any play. Each
modelMv accurately captures the players’ beliefs at the moment when node v is
reached. Note also that every such sequence ends with a modelMo consisting
of only one node (a leaf o); this reflects the fact that at the end of the game, there
is no uncertainty left: the outcome, as well as the whole history of the game, are
now common knowledge.

Simulating Moves by Public Announcements Using the dynamic “public
announcement” modalities in constructs such as [!v]Bi, we can talk, at the initial
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Figure 5: The modelMv1
1

o3 o4

o2

a, b

a, b

a, b

o2

Figure 6: The modelMo2
1

state s ∈ M and without leaving the original modelM ∈MG, about all these future,
evolving beliefs of the players at nodes v other than the initial node v0. Indeed,
in a game of perfect information, all the moves are public. So the epistemic
effect of a move to node v is the same as that of a truthful public announcement
!v (saying that the node v is reached during the play). In other words, we can
“simulate” moves in games of perfect information by truthful public announcements.7

3 Dynamic Rationality in Decisions and Games

We now define our fundamental notions of dynamic rationality and rational
play. First we will look at single-agent (one-step) decision situations, and then at
interactive decision situations, i.e. games.

3.1 Single Agent Decision Problems

Given a one-step decision problem P with a set of outcomes O, the decision-maker i
selects one of the outcomes o ∈ O. The decision-maker may have various hard
and soft information about which outcomes can actually be realized and which
not. This will determine her knowledge and her beliefs. We assume that her
“hard” knowledge restricts her possible choices: she can only select outcomes that
she doesn’t know to be impossible.

What this amounts to is the following: for the decision maker i, the “true”
set of possible outcomes is {o ∈ O | ¬Ki¬o}, i.e. the set of all the “epistemically
possible” outcomes. So her selected option must satisfy: o ∈ {o ∈ O | ¬Ki¬o}. This
allows us to capture the “selection” problem using epistemic operators.

7We believe that the more general case, of games of imperfect information, can also be handled
by using other kinds of epistemic actions proposed in Dynamic Epistemic Logic Baltag et al. (1999).
But we leave this development for future work.



Alexandru Baltag, Sonja Smets and Jonathan A. Zvesper 83

To assess whether the decision is “rational” or not, one considers the
decision-maker’s subjective preferences, modelled as a total pre-order 4i on
O. We assume that agents know their preferences; indeed, these are interpreted
as “doxastic” preferences: beliefs about what’s best. Given this interpretation,
the CDL postulation of Full Introspection (of beliefs) implies that agents know
their preferences.
Rational Choice Rationality, in this case, corresponds to requiring that the
selected option is not worse than any other (epistemically) possible alternative.
In other words, i’s solution of the decision problem P is rational if she does
not choose any option that is strictly less preferable than an option she doesn’t
know to be impossible:

RPi :=
∧

o,o′∈O

(o ≺i o′ ∧ ¬Ki¬o′ ⇒ ¬o).

The main difference between our definition and the standard definition of ra-
tional decision-making is the epistemic limitation of the choice set. The epistemic
operators are used here to delimit what is currently known about the availability of
options: i’s choice should only be compared against options that are not known
to be unavailable. This is an important difference, and its importance becomes
clear when we generalise our definition to extensive games, cf. the difference be-
tween ‘dynamic’ rationality and traditional ‘substantive’ rationality, described
below.

3.2 Extensive Games

We now aim to extend the above definitions to the case of multi-agent many-
stage decisions, i.e. extensive games (of perfect information). Recall that in an
extensive game we are given the players’ subjective preferences 4i only over
the leaves. However, at all the intermediate stages of the game, players have to
make local choices, not between “final” outcomes, but between “intermediary”
outcomes, that is: between other nodes of the game tree.

So, in order to assess players’ rationality, we need to extend the subjective
preference relations to all the nodes of the game tree. Fortunately, given the
above doxastic interpretation of preferences, there is an obvious (and natural)
way to define these extensions. Namely, a player considers a node u to be
strictly less preferable to a node u′ if she believes the first to be strictly dominated by
the second. More precisely, if every outcome that she believes to be achievable
given that u is reached is worse than every outcome that she believes to be
achievable given that u′ is reached:

u ≺i u′ :=
∧

o,o′∈O

(¬Bu
i ¬o ∧ ¬Bu′

i ¬o′ ⇒ o ≺i o′).

By the Full Introspection of beliefs (a postulate of the logic CDL), it follows that
we still have that players know their extended preferences over all the nodes of the
game.
Rationality at a Node Each node v ∈ Gi can be considered as a (distinct)
decision problem, in which the decision-maker is i, the set of outcomes is the
set {u ∈ G : v→ u}of all immediate successors of v, and the subjective preference
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relation is given by the (restriction of the) extended relation≺i defined above (to
the set {u ∈ G : v→ u}). So we can define the rationality of a player i at a node
v ∈ Gi as rationality for the corresponding decision problem, i.e. the player’s
selection at each decision node consists only of “best answers”. Note that, as
before, the player’s choice is epistemically limited: if she has “hard knowledge”
excluding some successors (for instance, because those nodes have already been
bypassed), then those successors are excluded from the set of possible options.
The only difference is that the “knowledge” involved is the one the agent would
have at that decision node, i.e. it is conditional on that node being reached. Formally,
we obtain:

Rv
i :=

∧
u,u′←v

(u ≺i u′ ∧ ¬Kv
i ¬u′ ⇒ ¬u)

where Kϕ
i ψ := Ki(ϕ⇒ ψ).

Dynamic Rationality Let Ri be the sentence

Ri =
∧
v∈Gi

Rv
i .

If Ri is true, we say that player i satisfies dynamic rationality. By unfolding the
definition, we see it is equivalent to:

Ri =
∧
v∈Gi

∧
u,u′←iv

(u ≺i u′ ∧ ¬Kv
i ¬u′ ⇒ ¬u).

As we’ll see, asserting this sentence at a given moment is a way of saying that
the player will play rationally from that moment onwards, i.e. she will make the best
move at any current or future decision node.

In the following, “Dynamic Rationality” denotes the sentence

R :=
∧

i

Ri

saying that all players are dynamically rational.

Comparison with Substantive Rationality To compare our notion with Au-
mann’s concept of “substantive rationality”, we have to first adapt Aumann’s
definition to a belief-revision context. This has already been done by a number
of authors e.g. Battigalli and Siniscalchi (1999, 2002), resulting in a definition
of “rationality at a node” that differs from ours only by the absence of epistemic
qualifications to the set of available options (i.e. the absence of the term ¬Kv

i ¬u′).
The notion of substantive rationality is then obtained from this in the same way
as dynamic rationality, by quantifying over all nodes, and it is thus equivalent
to the following definition:

SRi =
∧
v∈Gi

∧
u,u′←iv

(u ≺i u′ ⇒ ¬u).

It is obvious that substantive rationality implies dynamic rationality

SRi ⇒ Ri,

but the converse is in general false. To better see the difference between SRi and Ri,
recall that a formula being true in a modelM ∈ MG means that it is true at the
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first node (the root) of the game tree G. However, we will later have to evaluate
the formulas Ri and SRi at other nodes w, i.e. in other models of the form Mw

(models for subgames Gw). Since the players’ knowledge and beliefs evolve during the
game, what is (not) known/believed conditional on v in model Mw differs from
what was (not) known/believed conditional on v in the original model (i.e. at the
outset of the game). In other words, the meaning of both dynamic rationality
Ri and substantive rationality SRi will change during a play. But they change in
different ways. At the initial node v0, the two notions are equivalent. But, once a
node v has been bypassed, or once the move at v has already been played by a
player i, that player is counted as rational at node v according to our definition,
while according to the usual (non-epistemically qualified) definition the player
may have been irrational at v.

In other words, the epistemic limitations we imposed on our concept of
dynamic rationality make it into a future-oriented concept. At any given moment,
the rationality of a player depends only on her current beliefs and knowledge,
and so only on the options that she currently considers possible: past, or by-passed,
options are irrelevant. Dynamic Rationality simply expresses the fact that
the player’s decision in any future contingencies is rational (given her future
options and beliefs). Unlike substantive rationality, our concept has nothing
to do with the past or with contingencies that are known to be impossible: a
player i may still be “rational” in our sense at a given moment/node v even
when v could only have been reached if i has already made some “irrational”
move. The (knowledge of some) past mistake(s) may of course affect the others’
beliefs about this player’s rationality; but it doesn’t directly affect her rationality,
and in particular it doesn’t automatically render her irrational.

Solving the BI Paradox As explained above, our concept is very different from
(and, arguably, more realistic than) Aumann’s and Stalnaker’s substantive ra-
tionality, but also from other similar concepts in the literature (for example
Rabinowicz’s (1998) “habitual” or “resilient” rationality, etc). The difference
becomes more apparent if we consider the assumption that “rationality” is com-
mon belief, in the strongest possible sense, including common “strong” belief (in the
sense of Battigalli and Siniscalchi (2002)), common persistent belief, or even
common “knowledge” in the sense of Aumann. As correctly argued by Stal-
naker and Reny, these assumptions, if applied to the usual notions of rationality
in the literature, bear no relevance for what the players would do (or believe)
at the nodes that are incompatible with these assumptions! The reason is that,
if these counterfactual nodes were to be reached, then by that time the belief in
“rationality” would have already been publicly disproved: we cannot even en-
tertain the possibilities reachable by irrational moves except by suspending our
belief (or “knowledge”) in rationality. Hence, the above assumptions cannot
tell us anything about the players’ behaviour or rationality at such counterfac-
tual nodes, and thus they cannot be used to argue for the plausibility of the
backward induction solution (even if they logically imply it)! In contrast, our
notion of dynamic rationality is not automatically disproved when we reach a
node excluded by common belief in it: a player may still be rational with respect
to her current and future options and decisions even after making an “irrational”
move. Indeed, the player may have been playing irrationally in the past, or
may have had a moment of temporary irrationality, or may have made some
mistakes in carrying out her rational plan; but she may have recovered now
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and may play rationally thereafter. Since our notion of rationality is future-
oriented, no information about past moves will necessarily and automatically
shatter belief in rationality (although of course it may still shatter it, or at least
weaken it). So it is perfectly consistent (although maybe not always realistic)
to assume that players maintain their common belief in dynamic rationality
despite all past failures of rationality. In fact, this is our proposed solution to
the BI paradox: we will show that such a “stable” common belief in dynamic
rationality (or more precisely, common knowledge of the stability of the players’
common belief in rationality) is exactly what is needed to ensure common belief
in the backward induction outcome!

Rational Planning A weaker condition requires only that, for each decision
node v, the option that the decision-maker is planning at v to select (at v) is the
best, given the other (epistemically) possible alternatives. By identifying as
above the players’ plans of actions with their beliefs about their actions, we
can thus say that a decision maker is a rational planner in the game G if at each
decision node she believes that she will take “the best decision”, even if in the
end she may accidentally make a wrong choice:

RPi :=
∧
v∈Gi

Bv
i Rv

i .

By unfolding the definition, we see it is equivalent to:

RPi =
∧
v∈Gi

∧
u,u′←iv

(u ≺i u′ ∧ ¬Kv
i ¬u′ ⇒ Bv

i ¬u).

No Mistakes RPi only states that the decision maker i has a rational plan for
current and future contingencies. But mistakes can happen, so if we want to
ensure that the decision that is actually taken is rational we need to require the
player makes no mistakes in carrying out her plan:

No-Mistakesi :=
∧
v∈Gi

∧
u←v

(Bv
i ¬u⇒ ¬u)

The sentence No-Mistakesi says that player i’s decision are always consistent
with her “plan”: she never plays a move that, at the moment of playing, she
believed won’t be played.

As expected, the conjunction of “rational planning” and “no mistakes”
entails “rational playing” (i.e., “dynamic rationality”):

RPi ∧No-Mistakesi ⇒ Ri.

4 Backward Induction in Games of Perfect Informa-
tion

It is easy to see that Aumann’s theorem stating that common knowledge of sub-
stantive rationality implies the backward induction outcome Aumann (1995)
can be strengthened to the following

Proposition 3. In any state of any plausibility model for a game of perfect information,
common knowledge of dynamic rationality implies the backward induction outcome.
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Unfortunately, common knowledge of (either dynamic or substantive) ra-
tionality can never hold in a game model: it is simply incompatible with the
“Epistemically-Open Future” condition. By requiring that players have “hard”
information about the outcome of the game, Aumann’s assumption does not
allow them to reason hypothetically or counterfactually about other possible outcomes,
at least not in a consistent manner.8 This undermines the intuitive rationale
behind the backward induction solution, and it is thus open to Stalnaker’s
criticism.

So in this section, we are looking for natural conditions that can be satisfied
on game models, but that still imply the backward induction outcome (or at
least common belief in it). One such condition is common knowledge of (general)
stable belief in (dynamic) rationality: Ck[!]EbR. This is in fact a “strong” form of
common belief, being equivalent to Ck[!]CbR, i.e. to common knowledge of stable
common belief in rationality.

Theorem 1. The following holds in any state s of any game modelM ∈MG:

Ck[!]EbR ⇒ Cb(BIG) ,

where BIG :=
∨
{o | o ∈ BIG} is the sentence saying that the current state determines

a backward-induction outcome in the game G. Equivalently, the following formula is
valid over plausibility frames for the game G:

Ck(StructG ∧ FG ∧ [!]CbR) ⇒ Cb(BIG).

In English: assuming common knowledge of the game structure and of
open future, if it is common knowledge that, no matter what new (truthful)
information the players may (jointly) learn during the game (i.e. no matter what
is played), general belief in rationality will be maintained, then it is common
belief that the backward induction outcome will be reached. If we define
“stable common belief” in a proposition P as [!]CbP, then we can give a more
concise English formulation of the above theorem: common knowledge of the game
structure, of open future and of stable common belief in dynamic rationality implies
common belief in the backward-induction outcome.

Although rationality cannot be common knowledge in a game model, ratio-
nal planning can be. When this is the case, we obtain the following

Corollary 1. In a game model, common knowledge of “rational planning” and of stable
belief in “no mistakes” implies the backward-induction outcome; i.e. the formula

Ck(RP ∧ [!]EbNo-Mistakes) ⇒ Cb(BIG)

is valid on game models.

The above results only give us common belief in the backward-induction
outcome, but nothing ensures that this belief is correct. If we want to ensure
that the backward-induction outcome is actually played, we need to add the
requirement that the (stable common) belief in rational play assumed in the
premise is correct, i.e. that players actually play rationally:

Theorem 2. The following holds in any state s of any game modelM ∈MG:

R ∧ Ck[!]EbR ⇒ BIG

8Indeed, if o is the backward induction outcome, then the above Proposition entails Kio for all
players i, and thus for every other outcome o′ , o and every proposition P, we have Bo′

i P: the
players believe everything (including inconsistencies) conditional on o′.
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No strategies! Observe that we did not assume that the players have complete
(pure) “strategies”. That is, we do not insist that they have fully determined
plans of action, uniquely specifying one move for at each decision node, but
only that they have partial plans, i.e. incomplete beliefs about what moves
they should play: at each decision node they choose a set of moves rather
than one unique move. So an important side-result of our work is that the
assumption that players have (complete, pure) strategies is not necessary for
proving backward-induction results.

Ensuring Backward-Induction Strategy Profile If, however, we want to pos-
tulate that every player does have a (complete, pure) strategy, we need to say that,
for each node v of her choice, there exists a (unique) immediate successor u that
she believes will be played if v is reached (i.e. she plans to play u at v):

Strategies :=
∧

i

∧
v∈Gi

∨
u←iv

Bv
i u.

In cases where Strategies is common knowledge as well, we can strengthen the
Theorem 1 to:

Corollary 2. The following holds in any state s of any game modelM ∈MG:

Ck(Strategies ∧ [!]EbR) ⇒ Cb(BI-ProfileG)

where BI-ProfileG is the sentence saying that the strategies given by each player’s
conditional beliefs in the initial state s form a backward-induction profile.

Finally, the following theorem ensures that above results are not vacuous:

Theorem 3. For every extensive game G, there is a game modelM ∈MG and a state
s ∈ M satisfying the sentence

No-Mistakes ∧ Ck(RP ∧ Strategies ∧ [!]EbNo-Mistakes).

As a consequence, the sentence R ∧ Ck[!]EbR ∧ CkStrategies is also satisfied.

The proofs of these theorems are in the next section. Some alternative
(weaker) conditions ensuring the backward induction outcome are given in
Section 6.

5 Proofs

Definition 5.1. For a finite set O of “outcomes” and a finite set P of “players”,
we denote byGames(O,P) the class of all perfect information games having any
subset of O as their set of outcomes and having any subset of P as their set of
players.

Definition 5.2. For any sentence ϕ of our language,
ϕ is valid on a game G if ϕ is true at every state s of every game modelM ∈MG.
ϕ is valid over Games(O,P) if ϕ is valid on every game G ∈ Games(O,P).

When the game G is implicit from the context, we will often abbreviate BIGu ,
i.e. the name for the formula that defines all the backward-induction outcomes
in the subgame of G that starts at the node u, to BIu.
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Lemma 1. For every perfect information game G, if we denote the root of G by v0, the
first player of G (playing at v0) by i and the first move of i (the successor node played
at v0) by v1, then the sentence

Rv0
i ∧

∧
u←v0

Bu
i [!u]BIu

∧ [!v1]BIv1 ⇒ BI

is valid on G.

Proof. This follows directly from the definition of rationality at a node and
the definition of BI. The assumption that Bu

i [!u]BIu is true at s means that
all the states (deemed as “most plausible by i conditional on u ”) in the set
su

i := min≤i (u∩ [s]i) have only outcomes that are backward induction outcomes
in the corresponding subgame: i.e. we have o(t) ∈ BIGu for all t ∈ su

i . Given
that all these outcomes {u : u← v0} are consistent with i’s knowledge (since we
are in a game model), the fact that i is rational at v0 implies that the successor
node v1 chosen by i must be one that maximises her payoff hi(o(su

i )) among all
the outcomes in

⋃
u←v0

BIGu . But, by the definition, such a node v1 is exactly
the choice prescribed at v0 by the backward induction strategy! Given this
backward-induction choice (v1) of i at node v0, and given the fact (ensured
by the condition [!v1]BIv1 ) that starting from node v1 everybody will play the
backward induction choices, we can conclude that the outcome o(s) belongs to
the backward induction set of outcomes BIGv0 = BIG for the game G. Hence s
satisfies BIG. �

The Main Lemma underlying our results is the following:

Lemma 2. (“Main Lemma”) Fix a finite setO of outcomes and a finite set P of players.
Let ϕ be any sentence in our language APAL-CDL having the following property: for
every game G ∈ Games(O,P), if we denote the root of G by v0, the first player of G
(playing at v0) by i and the first move of i (the successor node played at v0) by v1, then
the sentence

ϕ⇒ Rv0
i ∧

∧
u←v0

Bu
i [!u]ϕ ∧ [!v1]ϕ

is valid on G.
Given this condition, we have that the sentence

ϕ⇒ BIG

is valid over Games(O,P).

Proof. We need to prove that, for every game G ∈ Games(O,P), the sentence
ϕ⇒ BIG is valid on G. The proof is by induction on the length of the game G.

For games of length 0 (only one outcome, no available moves), the claim is
trivial (since the only possible outcome is by definition the backward induction
outcome).

Let G be now a game of length n > 0, and assume the claim is true for
all games of smaller length. Let v0 be the root of G, i be the first player of G,
M ∈MG be a game model for G and s be a state inM such that s |=M ϕ.

Let u be any arbitrary immediate successor of v0 (i.e. any node such that
u ← v0). By the property assumed in the statement of this Lemma, we have
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that s |=M Bu
i [!u]ϕ, and so (if su

i is the set defined in the proof of the previous
Lemma, then) we have t |=M [!u]ϕ for all t ∈ su

i . Hence, we have t |=Mu ϕ for all
t ∈ su

i ∩ u. By the induction hypothesis, we must have t |=Mu BIu (sinceMu is
a game model for Gu, which has length smaller than G, and so the implication
ϕ ⇒ BIu is valid onMu), for all t ∈ su

i ∩ u. From this we get that t |=M [!u]BIu

for all t ∈ su
i , and hence that s |=M Bu

i [!u]BIu.
Let v1 be now the first move of the game in state s (i.e. the unique immediate

successor v1 ← v0 such that s |=M v1). By the property assumed in this Lemma,
we have that s |=M [!v1]ϕ. By the same argument as in the last paragraph,
the induction hypothesis gives us that s |=M [!v1]BIv1 . Putting together with
the conclusion of the last paragraph and with the fact (following from the
Lemma’s hypothesis) that ϕ ⇒ Rv0

i is valid on M, we infer that s |=M Rv0
i ∧∧

u←v0
Bu

i [!u]BIu
∧ [!v1]BIv1 . The desired conclusion follows now from Lemma

1. �

Lemma 3. The sentence
ϕ := R ∧ Ck[!]EbR

has the property assumed in the statement of Lemma 2.

Proof. The claim obviously follows from the following three sub-claims:

1. dynamic rationality is a “stable” property, i.e. the implication R ⇒∧
u[!u]R is valid;

2. the implication Ck[!]Ebψ⇒ Bu
i [!u]Ck[!]Ebψ is valid, for all formulasψ and

all nodes u ∈ G;

3. the implication Ck[!]Ebψ ⇒ [!u]Ck[!]Ebψ is valid, for all formulas ψ and
all nodes u.

All these claims are easy exercises in dynamic-epistemic logic. The first
follows directly from the definition of dynamic rationality.

The second sub-claim goes as follows: assume that we have Ck[!]Ebψ at some
state of a given model; then we also have Ck[!u][!]Ebψ for any node u (since [!]θ
implies [!u][!]θ), and so also KiCk[!u][!]Ebψ (since common knowledge implies
knowledge of common knowledge), from which we get Bu

i Ck[!u][!]Ebψ (because
knowledge implies conditional belief under any conditions). This is the same
as Bu

i (u → Ck[!u][!]Ebψ), which implies Bu
i (u → Cku[!u][!]Ebψ) (since common

knowledge implies conditional common knowledge). But this last clause is
equivalent to Bu

i [!u]Ck[!]Ebψ (by the Reduction Law for common knowledge
after public announcements).

The third sub-claim goes as follows: assume that we have Ck[!]Ebψ in some
state of a given model; then as before we also have Ck[!u][!]Ebψ, and thus
Cku[!u][!]Ebψ (since common knowledge implies conditional common knowl-
edge). From this we get u→ Cku[!u][!]Ebψ (by weakening), which is equivalent
to [!u]Ck[!]Ebψ (by the Reduction Law for common knowledge after public
announcements). �

Theorems 2 and 1
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Proof. Theorem 2 follows now from Lemma 2 and Lemma 3. Theorem 1 follows
from Theorem 2, by applying the operator Ck[!]Eb to both its premiss and its
conclusion, and noting that the implication

Ck[!]Ebψ⇒ Ck[!]EbCk[!]Ebψ

is valid. �

6 An Alternative Condition: Common
Stable True Belief in Dynamic Rationality

The epistemic condition R ∧ Ck[!]EbR given above is not the weakest possi-
ble condition that ensures the backward induction outcome. Any property
ϕ satisfying the condition of our Main Lemma (Lemma 2) would do it. In
particular, there exists a weakest such condition (the smallest event E ⊆ S such
that E ⊆ Rv0

i ∩
⋂

u←v0
Bu

i [!u]E ∩ [!v1]E), but it is a very complicated and unnat-
ural condition. The one given above seems to be the simplest such condition
expressible in our language APAL-CDL.

However, one can give weaker simple conditions if one is willing to go a bit
beyond the language APAL-CDL, by adding fixed points for other (definable)
epistemic operators.

Let stable true belief be a belief that is known to be a stable belief and it is
also a stably true belief. Formally, we define:

Stbiϕ := Ki[!]Biϕ ∧ [!]ϕ.

Thus stable true belief is stable belief in a stably true proposition. Stable true
belief is a form of “knowledge”, since it implies truth and belief:

Stbiϕ⇒ ϕ ∧ Biϕ.

We can also think of stable true belief as an epistemic attitude towards the
stability of a proposition: clearly it implies stably truth (Stbiϕ ⇒ [!]ϕ), but
furthermore, knowledge that something is stably true implies stable true belief in it.

Ki[!]ϕ⇒ Stbiϕ.

Stable true belief is inherently a “positively introspective” attitude, i.e.

Stbiϕ⇒ StbiStbiϕ,

but it is not positively introspective with respect to (“hard”) knowledge:

Stbiϕ; KiStbiϕ.

Stable true belief is not negatively introspective, neither inherently nor with
respect to knowledge.

If we restrict our attention to only ontic (i.e. non-doxastic) facts p, then we
cannot detect the subtleties of stable true belief, and the difference between
this concept, “stable belief” (simpliciter) and “safe belief”. Notice in particular
that, when when applied to ontic facts p, stable true belief of p is just the same as
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stable belief of p and the same as the “safe belief” in p from Baltag and Smets
(2008b). (which is the same as what Stalnaker calls “knowledge” Stalnaker
(2006)). However, it is typical of interactive epistemology that one is not in general
interested in epistemic/doxastic attitudes towards ontic facts, but in attitudes
towards propositions that in turn depend on other attitudes. Examples of such
higher-level attitudes are the important game-theoretic notions of “common
knowledge of (or common belief in) rationality”, “common knowledge of stable
belief in rationality” and “common stable true belief in rationality”: exactly the
notions that interest us in this paper!

We can define common stable true belief in the same way as common knowl-
edge: first define general stable true belief

Estbϕ =
∧
i∈P

Stbiϕ

(“everybody has stable true belief”), then put

Cstbϕ =
∧

n

(Estb)nϕ.

Note that this definition, although semantically meaningful, is not a definition
in our language APAL-CDL, since it uses infinite conjunctions. Indeed, we
conjecture that common stable true belief is undefinable in the language APAL-
CDL, since it doesn’t seem to be expressible as a combination of common
knowledge, common belief and dynamic operators.

Lemma 4. The sentence CstbR satisfies the condition of our Main Lemma (Lemma 2).

As an immediate consequence, we have:

Theorem 4. The sentence
CstbR⇒ BIG

is valid over game models. In English: (if we assume common knowledge of
the structure of the game and of open future, then) common stable true belief in
(dynamic) rationality implies the backward induction outcome .

7 Comparison with Other Work

The game-theoretic issues that we deal with in this paper originate in the work
of Aumann (1995), Stalnaker (1994, 1996, 1998) and Reny (1992), and have been
investigated by a number of authors Binmore (1987; 1996), Bicchieri (1989),
Battigalli (1997), Battigalli and Siniscalchi (1999; 2002), Bonanno (1991), Bran-
denburger (2007), Halpern (2001), Samet (1996), Clausing (2003) etc. Our work
obviously owes a great deal to these authors for their illuminating discussions
of the topic.

The logic CDL of conditional belief was first introduced and axiomatised
by Board (2002), in a slightly more complicated form. The version presented
here is due to Baltag and Smets (2006, 2008b). The dynamic extension of CDL
obtained by adding the public announcements modalities (coming from the
public announcement logic PAL, originally developed by Plaza (1989)) has been
developed by van Benthem (2007a) and, independently, by Baltag and Smets



Alexandru Baltag, Sonja Smets and Jonathan A. Zvesper 93

Baltag and Smets (2006). The extension of PAL with arbitrary announcement
modalities [!]ϕ is due to Balbiani et al (2008). The belief-revision-friendly
version of APAL presented here (obtained by combining APAL with CDL) is
an original contribution of our paper.

The work of Battigalli and Siniscalchi (2002) is the closest to ours, both
through their choice of the basic setting for the “static logic” (also given by
conditional belief operators) and through the introduction of a strengthened
form of common belief (“common strong belief”) as an epistemic basis for a
backward-induction theorem. Strong belief, though different from our “sta-
ble” belief, is another version of persistent belief: belief that continues to be
maintained unless and until it is contradicted by new information. However,
their notion of rationality is only “partially dynamic”: although taking into
account the dynamics of beliefs (using conditional beliefs given node v to as-
sess the rationality of players’ choices at v), it does not fully take into account
the limitations posed to the set of possible options by the dynamics of “hard
knowledge”. In common with most other previous notions of rationality, it
requires agents to make rational choices at all nodes, including the past ones
and the ones that have already been bypassed. As a result, it is enough for a
player to make only one “irrational” move to completely shatter the (common)
belief (however strong) in rationality; and as a consequence, common strong
belief in rationality does not by itself imply backward induction. To obtain their
theorem, Battigalli and Siniscalchi have to add another assumption: that the
game model is a complete type structure, i.e. it contains, in a certain sense, every
possible epistemic-doxastic “type” for each player. This means that the players
are assumed to have absolutely no “hard” information, not only about the outcomes
or about the other players’ strategies, but also about the other players’ beliefs, so that
they have to consider as epistemically possible all consistent (probabilistic) be-
lief assignments for the other players! This is an extremely strong (and, in our
opinion, unrealistic) “completeness” assumption, one that can only be fulfilled
in an infinite model. In contrast, the analogue completeness assumption in
our approach is the much weaker “Open Future” assumption, postulating that
(at the beginning of the game) players have no non-trivial “hard” informa-
tion about the outcomes (except the information given by the structure of the
game): they cannot foretell the future, cannot irrevocably know the players’
freely chosen future moves (though they do irrevocably know the past, and
they may irrevocably know the present, including all the beliefs and the plans
of action of all the players). Our more realistic postulate is weak enough to be
realized on finite models. In particular, it can be realized on models as small as
the set of terminal nodes of the game tree (having one state for each terminal
node), and in which all the plans of action are common knowledge, so that
the only uncertainty concerns possible mistakes in playing (and hence the final
outcome).

Samet (1996) introduces a notion of hypothetical knowledge, in order to
develop an epistemic characterisation of backward induction. Hypothetical
knowledge looks prima facie similar to conditional belief, except that the in-
terpretation of the hypothetical knowledge formula Kϕ

i ψ is different: “Had ϕ
been the case, i would have known ψ” (Samet (1996), p. 237). This mixture of
counterfactual conditionals and knowledge is specifically introduced in Samet
(1996) only to discuss backward induction, and it has not occurred before or
subsequently in the literature. In contrast, our approach is grounded in the
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relatively standard and well-understood foundations of Conditional Doxastic
Logic, independently studied by logicians and philosophers. While Samet does
make what we agree is the important point that some form of counterfactual
reasoning is of vital importance to the epistemic situation in extensive games,
his model and conditions seem to us more complex, less transparent and less
intuitive than ours.

We are aware of only one prior work that uses dynamic epistemic logic
(more precisely, the logic of public announcements, but in the context of “clas-
sical DEL”, i.e. dealing only with knowledge update and not with belief revi-
sion) for the analysis of solution concepts in extensive games: Benthem (2007b).
That work takes Aumann’s “static” notion of rationality as given, and accepts
Aumann’s classical result as valid, and so it does not attempt to deal with the
cases in which Aumann’s assumptions do not apply, nor to address the criticism
and the issues raised by Stalnaker, Reny and others. Instead, van Benthem’s
contribution focuses on the sources of knowledge, on explaining how complex
epistemic conditions of relevance to Game Theory (such as Aumann’s common
knowledge of rationality) can be brought about, via repeated public announce-
ments of rationality. So van Benthem does not use public announcements in
order to simulate a play of the game. Public announcements in van Benthem’s
approach represent off-line learning, i.e. pre-play or inter-play learning, whereas
the public announcements in our present approach simulate on-line learning,
i.e. learning that takes place during the play of the game. A very interesting
open question is to address the same issue answered by van Benthem, but
for the case of the dynamic-epistemic condition proposed here, instead of Au-
mann’s condition: find some off-line communication or learning protocol that
can achieve common knowledge of stable common belief in rational play.

We should say how our result resolves the apparently conflicting positions
of Aumann and Stalnaker. Under sympathetic interpretations of those authors,
we would say that we agree with both of them:

We have already commented on the differences between our approach and
that of Aumann (1995). However, in order to find a similarity, notice that if
we say that strategies are beliefs, then the condition we give begins to look
a little like common knowledge of rational strategies. (This identification of
strategies with beliefs was not possible in Aumann’s framework, so even from
this perspective our work would be a considerable advance.)

Stalnaker writes that “[t]he rationality of choices in a game depend[s] not
only on what players believe, but also on their policies for revising their beliefs”
(1998, p. 31). He then gives a condition on belief revision policies in terms of
“epistemic independence” of the players. We agree entirely with the sentiment
in the quoted sentence. Indeed game models provide a specification of exactly
how players will revise their beliefs, including their beliefs about other players’
beliefs, so that these beliefs remain consistent no matter how the play of the
game goes. Theorem 2 goes further and specifies conditions necessary on such
models, purely in terms of epistemic and doxastic attitudes towards rationality,
that ensure the backward induction outcome. Stable belief in dynamic ratio-
nality is in effect a partial description of an “optimistic” belief revision policy,
that says: “when you revise your beliefs, maintain at all costs a belief in the
opponents’ rational potential, despite their past deviations from rationality”.

In fact, as mentioned in the Introduction, whether this policy can appro-
priately be called “optimistic” or “pessimistic” depends on the game and the
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players’ payoffs. In many contexts, such an “incurably optimistic” (or “persis-
tently pessimistic”) revision policy may seem naı̈ve, but our point is that only
such a policy can offer a rational doxastic justification to backward induction. The
well-known examples of “catastrophic” BI outcomes can thus been seen to il-
lustrate the dangers of “rational” pessimism, while the examples of “desirable”
BI outcomes illustrate the saving power of “incurable” optimism.
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Abstract
This work provides a comparison of learning by erasing (Lange et al. 1996)
and iterated epistemic update (Baltag and Moss 2004) as analyzed in dy-
namic epistemic logic (see e.g. van Ditmarsch et al. 2007). We show that
finite identification can be modelled in dynamic epistemic logic and that
the elimination process of learning by erasing can be seen as iterated belief-
revision modelled in dynamic doxastic logic.

1 Introduction

There have been many formal attempts to grasp the phenomenon of epistemic
change. In this paper we will discuss two of them. On the one hand we have the
formal learning theory (LT) framework (see e.g. Jain et al. 1999), with its direct
implications for analysis of scientific discovery, on the other — belief-revision
theory in its interrelation with dynamic epistemic logic (DEL). In learning
theory, the classical framework of identification in the limit (Gold 1967) was
motivated mostly by the problem of language acquisition. It turned out to be
very useful for modelling the process of grammar inference, and found numer-
ous applications in the area of syntax. Initially the idea of identification was
unappreciated in semantic considerations, but eventually also this direction has
started to be developed resulting in applications to the acquisition of semantics
of natural language (Tiede 1999, Costa Florêntio 2002, Gierasimczuk 2007) as
well as in modelling the process of scientific inquiry (Kelly 1996). The serious
step towards involving more semantics was coupled with the design of model-
theoretic learning (Osherson et al. 1997) and its application to belief-revision
theory (Martin and Osherson 1998).

Other, very prominent directions that explicitly involve notions of knowl-
edge and belief have been developed in the area of epistemology. First, a precise
language to discuss epistemic states of agents has been established in (Hintikka
1962). After that the need of formalizing dynamics of knowledge emerged. The
belief-revision AGM framework (Alchourrón et al. 1985) constitutes an attempt
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to talk about the dynamics of epistemic states. Belief-revision policies thus ex-
plained have been successfully modelled in dynamic epistemic logic (see van
Ditmarsch et al. 2007) and in the above-mentioned model-theoretic learning
(Martin and Osherson 1998).

In the present paper we show how those two important traditions, LT and
DEL, can be merged. We explain this connection by joining iterated epistemic
update as modelled in DEL with a special case of learning in the limit — learning
by erasing (Freivalds and Zeugmann 1996, Lange et al. 1996).

We will proceed according to the following plan. First we explain the ideas
of dynamic epistemic logic (DEL) from a strictly semantic point of view. We
will also mention an important modification of DEL, namely dynamic doxastic
logic (DDL). As we will see the part ‘dynamic’ in those names refers to the
fact that those logics include operators which modify models. With respect to
those modifications we discuss the notions of epistemic and doxastic update. In
particular, we focus on public announcement as a special case. Then we leave
this logical subject and move to briefly recall the basics of formal learning theory
in its set-theoretical version. After that the definition of learning by erasing is
provided. The last two parts present a way to model finite identification in
DEL and learning by erasing in DDL.

2 Dynamic Epistemic Logic. Semantic Perspective

In general, dynamic epistemic logic has been introduced to formalize knowl-
edge change. In this section basic notions of DEL will be provided. The
definitions are based on (van Benthem et al. 2007). Let us take Atom to be a set
of atomic propositions and A — a set of agents.

Definition 2.1 (Epistemic Model). Epistemic model M is a triple

〈W, {∼i}i∈A,V〉 ,

where W is a set of possible worlds, for each i ∈ A, ∼i⊆ W ×W is an indistin-
guishability relation and V : Atom→ ℘(W) is a valuation.

Intuitively, M formalizes the epistemic situation of all agents from A. The in-
distinguishability relation models their uncertainty about which of the possible
worlds is the actual one.

Definition 2.2 (Event Model). An event model E is a triple
〈
S, {→i}i∈A, pre

〉
,

where S is a set of worlds, for each i ∈ A, →i⊆ S × S, and pre : S → Atom is a
pre-condition function which indicates what pre-condition a world has to satisfy
to enable the event to take place.

Event model describes the epistemic content of the event. Relation →i
directly corresponds to the indistinguishability relation ∼i of epistemic model.

Definition 2.3 (Product Update). Let M, E be such that M = 〈W, {∼i}i∈A,V〉
and E =

〈
S, {→i}i∈A, pre

〉
. The product update M ⊗ E is the epistemic model

M′ = 〈W′, {∼′i}i∈A,V′〉 such that:

• W′ = {(w, s)|w ∈W, s ∈ S and M,w |= pre(s)},

• (w, s) ∼i (w′, s′) iff w ∼i w′ and s→i s′,
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• V′((w, s)) = V(w).

Definition 2.4 (Public Announcement (Batlag et al. 1998)). The public an-
nouncement of a formula ϕ is the event model Eϕ =

〈
S, {→i}i∈A, pre

〉
, such

that S = {e} and for each i ∈ A, e→i e and pre(e) = ϕ.

The major result of updating an epistemic model M with public announce-
ment of ϕ is a submodel of M containing only the states that satisfy ϕ.

Example 1. Let us take the set of agents A = {a (Anne), b (Bob), c (Carl)} and the
deck of cards consisting of: 1, 2, 3. Each person gets one card. We can represent
the situation after dealing as a triple xyz, where x, y, z are cards and the first
position in the triple assigns the value to a (Anne), second to b (Bob), etc. For
instance, 231 means that Anne has 2, Bob has 3 and Carl has 1. All possible
situations after a deal are: 123, 132, 213, 231, 312, 321. We assume that all the
players are witnessing the fact of dealing but they do not know the distribution
of the cards. The epistemic model M of this situation is illustrated in the figure.

213

123

312

132

321

231

c

b

a

a

b c

a

b

c

Let us then assume that as a result the actual world is 231. Obviously
each player’s knowledge does not allow certainty about which is the actual
world. In the model the uncertainty of the agent x about the worlds w and w′

is symbolized by the following: w ∼x w′ (in the Figure this relation is depicted
by two states being joined by a line labeled with x).

Let us now assume that Anne shows her card to all the players publicly, i.e.,
all the players see her card and all of them know that all of them see it. This
event is modelled by E = (S, {→i}i∈A, pre), where S = {s}, for each x ∈ A, s →x s
and pre(s) = 2 (‘Anne has 2’).

2

a, b, c

The public announcement of ‘Anne has 2’ results in the epistemic situation,
which can be presented as M′ =M ⊗ E (depicted below).

213 231a

Event E is an example of a public announcement, in this case: ‘Anne has
2’. In dynamic epistemic logic the public announcement of ϕ is represented by
‘!ϕ’ and corresponds to the elimination of all those possible worlds that do not
satisfy ϕ. In other words, public announcement works as relativization of the
model to those worlds that satisfy the content of the announcement.
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3 Dynamic Doxastic Logic

The objective of dynamic doxastic logic (DDL) is to formalize the notion of
belief change. This is usually done by introducing preference relations over the
possible worlds. Each agent has his own preference relation. Belief of agent a
is determined by the set of his most preferred states.

Definition 3.1 (Epistemic Plausibility Model). Let Atom be a set of atomic
propositions and A — a set of agents. Epistemic plausibility model E is a
quadruple: 〈W, {∼i}i∈A, {≤i}i∈A,V〉 , where W is a set of possible worlds, for each
i ∈ A, ∼i⊆W ×W is an indistinguishability relation, ≤i⊆W ×W is a preference
relation and V : Atom→ ℘(W) is a valuation.

Definition 3.2 (Plausibility Event Model). An event model E is a quadruple:〈
S, {→i}i∈A, {�i}i∈A, pre

〉
, where S is a set of worlds, for each i ∈ A, →i⊆ S × S,

�i⊆ S × S and pre : S→ Atom is a pre-condition function.

For completeness’ sake we add the definition of priority update.

Definition 3.3 (Priority Update). The priority update works analogously to the
epistemic update. The additional condition is for the ≤i relation:

• for w ∈W and s ∈ S, (w, s)≤′i(w′, s′) iff s ≺i s′, or s 'i s′ and w ≤i w′, where
s 'i s′ iff s �i s′ and s′ �i s.

4 Learning Theory

4.1 Identification in the Limit

Learning theory is concerned with the process of inductive inference (Gold
1967). We can think of it as of a game between Scientist and Nature. In the
beginning we have a class of possible worlds together with a class of hypotheses
(possible descriptions of worlds). Different hypotheses may describe the same
world. We assume that both Scientist and Nature know what all the possibilities
are, i.e., they both have access to the initial classes. Nature chooses one of those
possible worlds to be the actual one. Scientist has to guess which it is. Scientist
receives information about the world in an inductive manner. The stream of
data is infinite and contains only and all the elements from the chosen reality.
Each time Scientist receives a piece of information he answers with one of
the hypotheses from the initial class. We say that Scientist identifies Nature’s
choice in the limit if after some finite number of guesses his answers stabilize
on a correct hypothesis. Moreover, to discuss more general identifiability, we
require that the same is true for all the possible worlds from the initial class,
i.e., regardless of which element from the class is chosen by Nature to be true,
Scientist can identify it in the limit on the basis of data about the actual world.

To formalize this simple setting we need to make the notion of stream of data
clear. In learning theory such streams are often called ‘environments’1.

Let us consider E — the set of all computably enumerable sets. Let C ⊆ E
be some class of c.e. sets. For each S in C we consider Turing machines hn
which generate S and in such a case we say that n is an index of S. The Turing

1We are concerned here only with sequences of positive information (texts).
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machines will function as the conjectures that Scientist makes. It is well-known
that each S has infinitely many indices. Let us take IS to be the set of all indices
of the set S, i.e, IS = {n|hn generates S}.

Definition 4.1 (Environment). By environment of S, ε, we mean any infinite
sequence of elements from S such that:

1. ε enumerates all the elements from S;

2. ε enumerates only the elements from S;

3. ε allows repetitions.

Definition 4.2 (Notation). We will use the following notation:

• εn is the n-th element of ε;

• ε|n is a sequence (ε0, ε1, . . . , εn−1);

• SEQ denotes the set of all finite initial segments of all environments;

• set(ε) is a set of elements that occur in ε;

• hn will refer to a hypothesis, i.e., a finite description of a set, a Turing
machine generating S;

• L is a learning function — a map from finite data sequences to indices of
hypotheses, L : SEQ→ IHC .

The structure of the identifiability in the limit can be formulated by the
following chain of definitions:

Definition 4.3 (Identification in the limit, LIM). We say that a learning function
L:

1. identifies S ∈ C in the limit on ε iff there is a number k, such that for
co-finitely many m, L(ε|m) = k and k ∈ IS;

2. identifies S ∈ C in the limit iff it identifies S in the limit on every ε for S;

3. identifies C in the limit iff it identifies in the limit every S ∈ C.

The notion of identifiability can be strengthened in various ways. One
radical case is to introduce a finiteness condition for identification.

Definition 4.4 (Finite identification, FIN). We say that a learning function L:

1. finitely identifies S ∈ C on ε iff, when successively fed ε, at some point L
outputs a single k, such that k ∈ IS, and stops;

2. finitely identifies S ∈ C iff it finitely identifies S on every ε for S;

3. finitely identifies C iff it finitely identifies every S ∈ C.
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4.2 Learning by Erasing

Learning by erasing (Lange et al. 1996, Freivalds et al. 2002) is an epistemo-
logically intuitive modification of identification in the limit. Very often the
cognitive process of converging to a correct conclusion consists of eliminating
those possibilities that are falsified during the inductive inquiry. Accordingly,
in the formal model the outputs of the learning function are negative, i.e., the
function each time eliminates a hypothesis, instead of explicitly guessing one
that is supposed to be correct. A special case of learning by erasing is co-
learning (Freivalds and Zeugmann 1996). The set S ∈ C is co-learnable iff there
is a function which stabilizes by eliminating all indices from IHC except just one
from IS. The difference between this approach and the usual identification is
in the interpretation of the positive guess of the learning function. In learning
by erasing there is always some ordering of the initial hypothesis space. This
allows to interpret the actual positive guess of the learning-by-erasing function
to be the least hypothesis (in a given ordering) not yet eliminated.

Let us give now the two definitions that explain the notion of learning by
erasing.

Definition 4.5 (Function Stabilization). In learning by erasing we say that a
function stabilizes to number k on environment ε if and only if for co-finitely
many n ∈N:

k = min{N − {L(ε|0), . . . ,L(ε|n)}}.

Definition 4.6 (Learning by Erasing, E-learning). We say that a learning func-
tion, L:

1. learns S ∈ C by erasing on ε iff L stabilizes to k on ε and k ∈ IS;

2. learns S ∈ C by erasing iff it learns by erasing S from every ε for S;

3. learns C by erasing iff it learns by erasing every S ∈ C.

A variety of additional conditions for learning can be defined. Let us men-
tion the following conditions on e-learning function L (Lange et al. 1996).

1. L erases all but one, correct hypothesis (co-learning, e-ALL);

2. L erases only hypotheses that are incorrect (e-SUB);

3. L erases exactly all hypotheses that are incorrect (e-EQ);

4. L erases all hypotheses that are incorrect but may also erase some that are
correct (e-SUPER);

Let us cite two theorems (Lange et al. 1996) that establish the relationships
between various types of learning: e-learning, finite identifiability and identi-
fiability in the limit.

Theorem 1. FIN ⊂ e-EQ ⊂ e-SUB ⊂ LIM

Theorem 2. e-ALL, e-SUPER = LIM
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5 Finite Identification in DEL

The word ‘learning’ is used in epistemology to cover a variety of epistemic
processes. One of them is the epistemic update in the form of one-step learning
that ϕ, followed by a direct modification of the set of beliefs, as we have seen
in sections 2 and 3. In the learning-theoretic setting the incoming information
is of a different nature than the actual thing being learned. This feature has
an important consequence for modelling learning in DEL. We are forced to
provide two-sorted models, with one sort for pieces of incoming information
and another for the hypotheses. To establish a bridge between those two
different ontologies we treat a hypothesis as the set of events that it predicts,
e.g., if we take a hypothesis h to be ‘There are all natural numbers except 3’ it
predicts that the environment will enumerate all the natural numbers except 3.

The possible worlds in our epistemic model are identified with hypotheses.
Unlike in the classical DEL approach, the event models are announcements of
data corresponding to elements of the sets being learned, and not hypotheses
themselves.

A further difference is in the number of agents. In sections 2 and 3 we
provided definitions for multi-agent epistemic cases. Although science as well
as learning seem to be at least a two-player game, in the present paper we
are concerned only with the role of Scientist (Learner). By implication, we
assume Nature (Teacher) to be an objective machine that makes an arbitrary
choice and gives out random data, she does not have any particular strategy,
is neither helping the learner, nor obstructing his attempts to identify a correct
hypothesis. We recognize the possibility and potential of analyzing two or
more agents in the contexts of inductive inference. However, for the sake of
simplicity our DEL and DDL models are going to account only for one agent.

Let us again fix C to be a class of sets, and for each Sn ∈ C we consider hn to
be a hypothesis that describes Sn. In learning by erasing we can take the initial
epistemic model to represent the background knowledge of Scientist together
with his uncertainty about which world is the actual one. Let us take the initial
epistemic frame to be

M = 〈HC,∼〉 ,

where HC is a possibly infinite2 set of worlds (hypotheses that are considered
possible) and ∼⊆ HC × HC is an uncertainty relation for Scientist. Since we
assume that the initial hypothesis space is arbitrary, we also do not require any
particular preference of the scientist over HC. Hence, we take the relation ∼ to
be a universal, equivalence binary relation over HC. The initial epistemic state
of the Scientist is depicted in Figure 1. This model corresponds to the starting
point of the scientific discovery process. Each world represents a hypothesis
from the initial set determined by the background knowledge. In the beginning
Scientist considers all of them possible. The model also reflects the fact that
Scientist is given the class of hypotheses HC. In other words he knows what
the alternatives are.

Next, Nature decides on some state of the world by choosing one possibility
from C. Let us assume that as a result h3 correctly describes the chosen world.

2We can effectively deal with the epistemic update and identification in infinite domains by
using special enumeration strategies (for explanation and examples see Gierasimczuk 2009).
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h0 h1 h2 h3 h4 h5 . . .∼ ∼ ∼ ∼ ∼ ∼

Figure 1: Initial epistemic model

Then, she decides on some particular environment ε, of the elements from the
world. We picture this enumeration in Figure 2 below.

. . .

ε0

ε1

ε2

ε3

Figure 2: Environment ε consistent with h3

The sequence ε is successively given to Scientist. Let us focus now on the
first step of the procedure. We have the uncertainty range of Scientist, it runs
through the whole set of hypotheses HC. A piece of data ε0 is given to Scientist.
This fact can be represented by the event model E0 =

〈
{e},→, pre

〉
, where e→ e

and pre(e) = ε0 (see Figure 3).

ε0

Figure 3: Event model E0 of the announcement of ε0

Scientist, when confronted with the announcement of ε0 updates his epis-
temic state accordingly. We will represent the process formally by the product
update M ⊗ E0. The result of the product update is again an epistemic model
M′ = 〈HC

′,∼′〉, where:

1. HC
′ = {(hn, e)|hn ∈ HC & pre(e) ∈ Sn)};

2. ∼′=∼ |HC
′.

We use here event models similar in spirit to those of public announcement
(Batlag et al. 1998). They consist in only one state with a pre-condition deter-
mined by the piece of data that is given. In Figure 4 Scientist’s confrontation
with ε0 is depicted.

Scientist tests each hypothesis with ε0. If a hypothesis is consistent with it,
it remains as a possibility, if it is not consistent, it is eliminated (see figure 5).
Let us assume that ε0 is not consistent with h2.

This epistemic update can be iterated infinitely many times along ε resulting
in an infinite sequence of models which according to the lines of DEL can be
called ε-generated epistemic model (see e.g. van Benthem et al. 2007).
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h0 h1 h2 h3 h4 h5 . . .
ε0

Figure 4: Confrontation with data

h0 h1 h2 h3 h4 h5 . . .

h0 h1 x h3 h4 h5 . . .
ε0

Figure 5: Epistemic update

Definition 5.1 (Generated Epistemic Model). The generated epistemic model
(M)ε, with ε = ε0, ε1, ε2, . . ., is the result of epistemic update M⊗E0⊗E1⊗E2⊗ . . .,
where for each n, the event En corresponds to the announcement of εn.

Let us now see a simple example of finite identification of a single hypoth-
esis.

Example 2. Let us take HC = {h0, h1, h2}, such that hn = {0, ...,n}. Nature makes
her choice regarding what the world is like. We assume that as a result h2 holds.
Then, Nature chooses an enumeration ε = 0, 1, 0, 2, 1, . . .. After the first piece
of data, 0, the uncertainty range of Scientist includes the whole HC. After the
second, 1, Scientist eliminates h0 since it does not contain the event 1 and now
he hesitates between h1 and h2. The third piece, 0, does not change anything,
however the next one, 2, eliminates h1. Uncertainty is eliminated as well. He
knows that the only hypothesis that can be true is h2. Therefore, we can say
that he learned it conclusively, with certainty.

The above discussion suggests the following thesis.

Thesis 1. Finite identifiability can be modelled within the DEL framework, using:

• epistemic states for hypotheses;

• infinite sequences of announcements for environments;

• epistemic update for the progress in eliminating uncertainty over hypothesis
space.

Scientist succeeds in finite identification of S from ε if and only if there is a finite initial
segment of ε, ε|n, such that the domain of the ε|n-generated model contains only one
hypothesis hk and k ∈ IS. In other words, there is a finite step of the iterated epistemic
update along ε, that eliminates Scientist’s uncertainty.

6 Learning by Erasing in DDL

From Scientist’s point of view the process of learning has a few components
that are very important in logical modelling. The first is of course the current
conjecture — a hypothesis that is considered appropriate in a given step of the
procedure. The second is the set of those hypotheses that were used in the past
and have already been discarded. The third part is the set of hypotheses that
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are still considered to be possible, but for some reasons less probable than the
chosen one.

Let us consider the following example of a learning scenario, in which the
uncertainty is never eliminated.

Example 3. As you probably observed, in the Example 2 Scientist was very
lucky. Let us assume for a moment that nature had chosen h1, and had fixed
the enumeration ε = 0, 1, 0, 1, 1, 1, 1, . . . In this case Scientist’s uncertainty can
never be eliminated.3

This example indicates that the central element of the identification in the
limit model is the unavoidable presence of uncertainty. The limiting framework
allows however the introduction of some kind of operational knowledge, which
is uncertainty-proof.

To model the algorithmic nature of the learning process that includes ac-
tual guess and other not-yet-eliminated possibilities, we enrich the epistemic
model with some preference relation ≤: HC × HC. The relation ≤ represents
some preference over the set of hypotheses, e.g., if Scientist is an occamist, the
preference would be defined according to the simplicity of hypotheses. In the
initial epistemic state the uncertainty of the scientist again ranges over all of
HC. This time however the class is ordered and Scientist current belief is the
most preferred hypothesis. Therefore, we consider the initial epistemic state of
Scientist to be:

M = 〈HC,∼,≤〉 .

The procedure of erasing hypotheses that are inconsistent with successively
incoming data is the same as in the previous section. This time however let
us introduce the current-guess state which is interpreted as the actual guess
of the Scientist. It is always the one that is most preferred — the smallest one
according to ≤. In doxastic logic a set of most preferred hypotheses is almost
invariably interpreted as the one that the agent believes in. Let us go back to
Example 2, where Nature chose a world consistent with h1. After seeing 1 and
eliminating h0, Scientist’s attention focuses on h1, then h1 is his current belief.
It is the most preferred hypothesis, and as such it can be reiterated as long
as it is consistent with ε. In this particular case, since Nature chose a world
consistent with h1, it will never be contradicted, so Scientist will always be
uncertain between h1 and h2. However, his preference directs him to believe in
the correct hypothesis, without him being aware of the correctness. Therefore,
we claim the following.

Thesis 2. Learning by erasing can be modelled within the DDL framework, using:

• epistemic states for hypotheses;

• infinite sequences of announcements for environments;

• epistemic update for the progress in eliminating uncertainty over the hypothesis
space;

3As we are interested here in learning by erasing, we assume a suitable underlying ordering of
hypothesis space. In this case it is: h0, h1, h2. However, note that this type of identification is not
order-independent. If the initial ordering was: h0, h2, h1, then Scientist would not stabilize on the
correct hypothesis.



108 Learning by Erasing in Dynamic Epistemic Logic

• preference relation for the underlying hypothesis space;

• in each step of the procedure, the most preferred hypothesis for the actual positive
guess of the learning function.

Scientist learns S by erasing from ε if and only if there is n such that for every m > n,
the most preferred state of the domain of the ε|m-generated epistemic model is hk, and
k ∈ IS.

7 Conclusions and Further Work

In this paper we argued that the process of inductive inference can be modelled
in dynamic epistemic logic and dynamic doxastic logic. To support our claim
we provided a translation of the components of learning into a two-sorted
semantics for DEL and DDL. In particular, we see DEL as an appropriate
framework to analyze the notion of finite identifiability. Learning by erasing,
a special case of identifiability in the limit, is based on the existence of an
underlying ordering of hypothesis space. Therefore, in logical modelling it
requires adding to the epistemic model a preference relation over possible
worlds. This indicates that it should be formalized in DDL, where the preference
relation is a standard element of any model.

The above-presented conceptual work has many implications and possible
continuations. After establishing a correspondence on the semantic level, it is
possible to formulate axioms of epistemic logic for inductive inference. We find
this project promising and potentially fruitful for both DEL and LT. Moreover,
modal analysis of the process of learning can be continued in the following
directions:

• formulating LT theorems as validities in epistemic and temporal logic;

• analyzing the inductive inference process in game-theoretical terms, and
discussing strategies for learning and teaching;

• studying the notion of non-introspective operational knowledge and un-
certainty that are involved in the process of inductive inference;

• comparing formal learning theory and belief-revision theory in a system-
atic way.
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Analyzing the behavior of agents in a dynamic environment requires describing
the evolution of their knowledge as they receive new information. Moreover
agents entertain beliefs that need to be revised after learning new facts. I might
be confident that I will find the shop open, but once I found it closed, I should
not crash but rather make a decision on the basis of new consistent beliefs. Such
beliefs and information may concern ground-level facts, but also beliefs about
other agents. I might be a priori confident that the price of my shares will rise,
but if I learn that the market is rather pessimistic (say because the shares fell
by 10%), this information should change my higher-order beliefs about what
other agents believe.

Tools from modal logic have been successfully applied to analyze knowl-
edge dynamics in multi-agent contexts. Among these, Temporal Epistemic
Logic Parikh and Ramanujam (2003), Fagin et al. (1995)’s Interpreted Systems,
and Dynamic Epistemic Logic Baltag et al. (1998) have been particularly fruitful.
A recent line of research Benthem and Pacuit (2006), Benthem et al. (2007; 2008)
compares these alternative frameworks, and Benthem et al. (2007) presents a
representation theorem that shows under which conditions a temporal model
can be represented as a dynamic one. Thanks to this link, the two languages
also become comparable, and one can merge ideas: for example, a new line
of research explores the introduction of protocols into the logic of public an-
nouncements PAL, as a way of modeling informational processes (see Benthem
et al. (2008)).

To the best of our knowledge, there are no similar results yet for multi-
agent belief revision. One reason is that dynamic logics of belief revision
have only been well-understood recently. But right now, there is work on
both dynamic doxastic logics Benthem (2007), Baltag and Smets (2006) and
on temporal frameworks for belief revision, with Bonanno (2006) as a recent
example. The exact connection between these two frameworks is not quite
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like the case of epistemic update. In this paper we make things clear, by
viewing belief revision as priority update over plausibility pre-orders. This
correspondence allows for similar language links as in the knowledge case,
with similar precise benefits.

We start in the next section with background about earlier results and basic
terminology. In section 2 we give the main new definitions needed in the
paper. Section 3 presents the key temporal doxastic properties that we will
work with. In section 4 we state and prove our main result linking the temporal
and the dynamic frameworks, first for the special case of total pre-orders and
then in general. We also discuss some variations and extensions. In Section
5 we introduce formal languages, providing an axiomatization for our crucial
properties, and discussing some related definability issues. In Section we
introduce the idea of protocols-based belief revision and give a Henking-style
completeness proof for an axiomatization of the class of doxastic temporal
models generated by protocols-based lexicographic upgrade. We state our
conclusions and mention some further applications and open problems in the
last section.

1 Introduction: background results

Epistemic temporal trees and dynamic logics with product update are com-
plementary ways of looking at multi-agent information flow. Representation
theorems linking both approaches were proposed for the first time in Benthem
(2001). A nice presentation of these early results can be found in (Liu 2008, ch5).
We start with one recent version from Benthem et al. (2008), referring the reader
to Benthem et al. (2008) for a proof, as well as generalizations and variations.

Definition 1.1 (Epistemic and Event Models, Product Update).

• An epistemic modelM is of the form 〈W, (∼i)i∈N,V〉 where W , ∅, for each
i ∈ N, ∼i is a relation on W, and V : Prop→ ℘(W).

• An event model ε = 〈E, (∼i)i∈N, pre〉 has E , ∅, and for each i ∈ N, ∼i is a
relation on W. Finally, there is a precondition map pre : E→ LEL, where
LEL is the usual language of epistemic logic.

• The product updateM⊗ ε of an epistemic modelM = 〈W, (∼′i )i∈N,V〉 with
an event model ε = 〈E, (∼i)i∈N, pre〉, is the model whose worlds are pairs
(w, e) with the world w satisfying the precondition of the event e, and
accessibilities defined as:

(w, e) ∼′i (w′, e′) iff e ∼i e′,w ∼i w′

Intuitively epistemic models describe what agents currently know while the
product update describe the new multi-agent epistemic situation after some
epistemic event has taken place. Nice intuitive examples are in Baltag and
Moss (2004).

Next we turn to the epistemic temporal models introduced by Parikh and
Ramanujam (2003). In what follows, Σ∗ is the set of finite sequences on any set
Σ, which naturally forms a branching ‘tree’.
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Definition 1.2 (Epistemic Temporal Models). An epistemic temporal model (ETL
model for short) H is of the form 〈Σ,H, (∼i)i∈N,V〉 where Σ is a finite set of
events, H ⊆ Σ∗ and H is closed under non-empty prefixes. For each i ∈ N, ∼i is
a relation on H, and there is a valuation V : Prop→ ℘(H).

The following epistemic temporal properties drive Benthem et al. (2008)’s
main theorem.

Definition 1.3. LetH = 〈Σ,H, (∼i)i∈N,V〉 be an ETL model. H satisfies:

• Propositional stability whenever h is a finite prefix of h′, then h and h′

satisfies the same proposition letters.

• Synchronicity iwhenever h ∼ h′, we have len(h) = len(h′).

Let ∼∗ be the reflexive transitive closure of the relation
⋃

i∈N ∼i:

• Local Bisimulation Invariance whenever h ∼∗ h′ and h and h′ are epis-
temically bisimilar1, we have h′e ∈ H iff he ∈ H.

• Perfect Recall whenever ha ∼i h′b, we also have h ∼i h′ .

• Local No Miracles whenever ga ∼ g′b and g ∼∗ h ∼ h′, then for every
h′a, hb ∈ H, we also have h′a ∼ hb.

These properties describe the idealized epistemic agents needed in:

Theorem 1.1 (van Benthem et al. Benthem et al. (2008)). LetH be an ETL model,
M an epistemic model, and the ‘protocol’ P a set of finite sequences of pointed events
models closed under prefixes. We write ⊗ for product update. Let Forest(M,P) =⋃
~ε∈P M ⊗ ~ε be the ‘epistemic forest generated by’M and sequential application of the

events in P. 2 The following are equivalent:

• H is isomorphic to Forest(M,P).

• H satisfies propositional stability, synchronicity, local bisimulation invariance,
Perfect Recall, and Local No Miracles.

Thus, epistemic temporal conditions describing idealized epistemic agents
characterize just those trees that arise from performing iterated product update
governed by some protocol. Benthem et al. (2008) and (Liu 2008, ch5) have
details.

Our paper extends this analysis to the richer case of belief revision, where
plausibility orders of agents evolve as they observe possibly surprising events.
First we prove two main results (in Section 4 and Section 5 respectively), with
variations and extensions:

Theorem. LetH be a doxastic temporal model,M a plausibility model, ~ε a sequence of
event models, and ⊗ priority update. The following are equivalent, where the notions
will of course be defined later:

1. H is isomorphic to the forest generated byM⊗ ~ε

1The reader is referred to subsection 3.1 for a definition of bisimulation invariance.
2For a more precise definition of this notion, see Section 2 below.
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2. H satisfies propositional stability, synchronicity, invariance for bisimulation, as
well as principles of Preference Propagation, Preference Revelation and Accom-
modation.

Theorem. Preference Propagation, Preference Revelation and Accommodation are
definable in an extended doxastic modal language.

We then consider protocol-based belief revision and prove completeness of
an axiomatization of the class of doxastic temporal trees generated by protocols-
based lexicographic upgrade. Usually in belief revision any information can
received. Adding a protocol corresponds to the intuition is that the incoming
signal might be constrained by some external rules and by physical laws. To
be precise in Section 6 we prove the following theorem:

Theorem (Completeness). Stbr is sound and strongly complete with respect to the
class of DoTL models generated by a sequence of protocol-based lexicographic upgrade.

2 Definitions

We now turn to the definitions needed for the simplest version of our main
representation theorem, postponing matching formal languages to Section 5.
Let N = {1, . . . ,n} be a finite set of agents.

2.1 Plausibility models, event models and priority update

As for the epistemic case, we first introduce static models that encode the current
prior (conditional) beliefs of agents. These carry a pre-order ≤ between worlds
encoding a plausibility relation. Often this relation is taken to be total, but
when we think of elicited beliefs as multi-criteria decisions, a pre-order allowing
for incomparable situations may be all we get Eliaz and Ok (2006). We will
therefore assume reflexivity and transitivity, but not totality.

As for notation: we write a'b (‘indifference’) if a ≤ b and b ≤ a, and a < b if
a ≤ b and b � a.

The following definition strongly relates to the models introduced in Board
(2004), Ditmarsch (2005), Baltag and Smets (2006).

Definition 2.1 (Doxastic Plausibility Models). A doxastic plausibility modelM =
〈W,
(�i)i∈N,V〉 has W , ∅, for each i ∈ N, �i is a pre-order on W, and V : Prop →
℘(W).

There are at least two ways to think and work with the preceding models.
Either they can be taken to encode the beliefs of the agents (including their con-
ditional belief), or they can be taken to encode the prior beliefs of the agent and
should be combined with an epistemic relation, taking the minimal elements of
each information partition to encode the posterior belief of the agents. We don’t
decide between the two approaches and discuss both throughout the paper.

We now consider how such models evolve as agents observe events.
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Definition 2.2 (Plausibility Event Model). A plausibility event model (event
model, for short) ε is a tuple 〈E, (�i)i∈N, pre〉 with E , ∅, each �i a pre-order on
E, and pre : E→ L, where L is a doxastic language. 3

The reader should note immediately that a plausibility event model content
way more structure than a simple formula. The contrast with standard belief
revision is that the signal is really what triggers the revision. Strong signals
will alter our current belief in a strong manner while weaker signals or signals
coming from less trusted sources might keep them much less changed. Classical
belief revision theories consider different ways agents can update their belief
with an incoming formula. By doing so they take the type of update to be
determined by the kind of agents. Different agents, different belief update style.
The current approach consider this approach philosophically implausible: the
same agent can update in different ways depending on the signals she received.
In this sense there are no choice to be made between different update rule.
The last event come with all the instructions as how prior beliefs should be
overridden. The following is therefore the natural choice of update rule:

Definition 2.1 (Priority Update; Baltag and Smets (2006)). Priority update of a
plausibility modelM = 〈W, (�i)i∈N,V〉 and an event model ε = 〈E, (�i)i∈N, pre〉 is the
plausibility modelM⊗ ε = 〈W′, (�′i )i∈N,V′〉 defined as follows:

• W′ = {(w, e) ∈W × E | M,w 
 pre(e)}

• (w, e) �′i (w′, e′) iff either e≺ie′, or e'ie′ and w �i w′

• V′((s, e)) = V(s)

The idea behind the following definition is clear. Priority is given to the
current event plausibility order. If the agent is indifferent, the old plausibility
order applies. More motivation can be found in Baltag and Smets (2006),
Benthem (2008). But we insist that the reader don’t think that the preceding
rule allows only very strong signals. In fact many of the classical update rule
can be simulated by a suitable event model. Example of such simulations can
be found in Baltag and Smets (2008).

2.2 Doxastic Temporal Models

We now turn to the global temporal perspective on multi-agent belief revision.
Our models can be seen as a natural counterpart doxastic counterpart to Parikh
and Ramanujam (2003)’s ETL models (and equivalent models such as (Fagin
et al. 1995, ch. 4)’ Interpreted Systems, cf. Pacuit (2007)). And they are also
related to Bonanno (2006; 2007)’s temporal doxastic models.

Definition 2.3 (Doxastic Temporal Models). A doxastic temporal model (DoTL
model for short) H is of the form 〈Σ,H, (≤i)i∈N,V〉, where Σ is a finite set of
events, H ⊆ Σ∗ is closed under non-empty prefixes, for each i ∈ N, ≤i is a
pre-order on H, and V : Prop→ ℘H.

Our task is to identify just when a doxastic temporal model is isomorphic
to the ‘forest’ generated by a sequence of priority updates:

3 This definition is incomplete without specifying the relevant language, but all that follows can
be understood by considering the formal language as a ‘parameter’.
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2.3 Dynamic Models Generate Doxastic Temporal Models

First of all let us see how a sequence of priority updates of plausibility models
generate doxastic temporal forests.

Definition 2.2 (DoTL model generated by a sequence of updates). Each ini-
tial plausibility model M = 〈W, (�i)i∈N,V〉 and sequence of event models ε j =

〈E j, (�
j
i )i∈N, pre j〉 yields a generated DoTL plausibility model 〈Σ,H, (≤i)i∈N,V〉

as follows:

• Let Σ :=
⋃m

i=1 ei.

• Let H1 := W and for any 1 < n ≤ m let Hn+1 := {(we1 . . . en)|(we1 . . . en−1) ∈
Hn andM⊗ ε1 ⊗ . . . ⊗ εn−1 
 pren(en)}. Finally let H =

⋃
1≤k≤m Hk.

• If h, h′ ∈ H1, then h ≤i h′ iff h �Mi h′.

• For 1 < k ≤ m, he ≤i h′e′ iff 1. he, h′e′ ∈ Hk, and 2. either e≺k
i e′, or e'k

i e′ and
h ≤i h′.

• Let wh ∈ V(p) iff w ∈ V(p).

Now come the key doxastic temporal properties of our idealized agents.

3 Crucial Frame Properties for Priority Updaters

We first introduce the notion of bisimulation, modulo a choice of language.

3.1 Bisimulation Invariance

Definition 3.1 (≤-Bisimulation). LetH andH ′ be two DoTL plausibility models
〈H, (≤1, . . . ,≤n)
,V〉 and 〈H′, (≤′1, . . . ,≤

′
n),V′〉 (for simplicity, assume they are based on the same

alphabet Σ). A relation Z ⊆ H ×H′ is a ≤-Bisimulation if, for all h ∈ H, h′ ∈ H′,
and all ≤i in (≤1, . . . ,≤n),

(prop) h and h′ satisfy the same proposition letters,

(zig) If hZh′ and h ≤i j, then there exists j′ ∈ H′ such that jZj′ and h′ ≤′i j′,

(zag) If hZh′ and h′ ≤′i j′, then there exists j ∈ H such that jZj′ and h ≤i j.

If Z is a ≤n-bisimulation and hZh′, we call h and h′ are ≤-bisimilar.

Definition 3.2 (≤-Bisimulation Invariance). A DoTL model H satisfies ≤-
bisimulation invariance if, for all ≤-bisimilar histories h, h′ ∈ H, and all events e,
h′e ∈ H iff he ∈ H.
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3.2 Agent-Oriented Frame Properties

In the following we drop agent labels and the “for each i ∈ N” for the sake of
clarity. Also, when we write ha we will always assume that ha ∈ H. We will
make heavy use of the following notion:

Definition 3.3 (Accommodating Events). Two events a, b ∈ Σ are accommodating
if, for all ga, g′b, (g ≤ g′ ↔ ga ≤ g′b) and similarly for ≥, i.e., a, b preserve and
anti-preserve plausibility.

Definition 3.4. LetH = 〈Σ,H, (≤i)i∈N,V〉 be a DoTL model. H satisfies:

• Propositional stability whenever h is a finite prefix of h′, then h and h′

satisfy the same proposition letters.

• Synchronicity whenever h ≤ h′, we have len(h) = len(h′).

The following three properties trace the belief revising behavior of agents in doxastic
trees.

• Preference Propagation whenever ja ≤ j′b, then h ≤ h′ implies ha ≤ h′b.

• Preference Revelation whenever jb ≤ j′a, then ha ≤ h′b implies h ≤ h′.

• Accommodation a and b are accommodating whenever both ja ≤ j′b and
ha � h′b.

These properties - and in particular the last one - are somewhat trickier than
in the epistemic case, reflecting the peculiarities of priority update in settings
where incomparability is allowed. But we do have:

Fact 3.1. If≤ is a total pre-order andH satisfies Preference Propagation and Preference
Revelation, thenH satisfies Accommodation.

Proof. From left to right. Assume that g ≤ g′ and ja ≤ j′b. By Preference
Propagation, ga ≤ g′b. Now assume that ha � h′b. Then by totality, h′b ≤ ha.
Since g ≤ g′, it follows by Preference Propagation that gb ≤ g′a.

From right to left, assume that gb ≤ g′a and that ja ≤ j′b. It follows by
Preference Revelation that g ≤ g′. Now assume that ga ≤ g′b (1) and ha � h′b
(2). From (2), it follows by totality that h′b ≤ ha (3). But if (3) and (1), then by
Preference Revelation we have g ≤ g′. �

We can also prove a partial converse without assuming totality:

Fact 3.2. IfH satisfies Accommodation, it satisfies Preference Propagation.

Proof. Let ja ≤ j′b (1) and h ≤ h′ (2). Assume that ha � h′b. Then by Accommo-
dation, for every ga, g′b, g ≤ g′ ↔ ga ≤ g′b. So, in particular, h ≤ h′ ↔ ha ≤ h′b.
But since h ≤ h′, we get ha ≤ h′b: a contradiction. �

No similar result holds for Preference Revelation. An easy counter-example
shows that, even when ≤ is total:

Fact 3.3. Accommodation does not imply Preference Revelation.
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4 The Main Representation Theorem

We start with a warm-up case, with plausibility a total pre-order.

4.1 Total pre-orders

Theorem 4.1. LetH be a total doxastic-temporal model,M a total plausibility model,
~ε a sequence of total event models, and let ⊗ stand for priority update. The following
are equivalent:

• H is isomorphic to the forest generated byM⊗ ~ε.

• H satisfies propositional stability, synchronicity, bisimulation invariance, Pref-
erence Propagation, and Preference Revelation.

Proof.

Necessity We first show that the given conditions are indeed satisfied by any
DoTL model generated through successive priority updates along some given
protocol sequence. Here, Propositional stability and Synchronicity are straight-
forward from the definition of generated forests.

Preference Propagation Assume that ja ≤ j′b (1). It follows from (1) plus the
definition of priority update that a ≤ b (2). Now assume that h ≤ h′ (3). It
follows from (2), (3) and priority update that ha ≤ h′b.

Preference Revelation Assume that jb ≤ j′a (1). It follows from (1) and the
definition of priority update that b ≤ a (2). Now assume ha ≤ h′b (3). By the
definition of priority update, (3) can happen in two ways. Case 1: a < b (4).
It follows from (4) by the definition of < that b � a (5). But (5) contradicts (2).
We are therefore in Case 2: a'b (6) and h ≤ h′ (7). But (7) is precisely what we
wanted to show.

Note that we did not make use of totality here.

Sufficiency Given a DoTL modelM, we first show how to construct a DDL
model, i.e., a plausibility model and a sequence of event models.

Construction Here is the initial plausibility modelM = 〈W, (�i)i∈N, V̂〉:

• W := {h ∈ H | len(h) = 1}.

• Set h �i h′ iff h ≤i h′.

• For every p ∈ Prop, V̂(p) = V(p) ∩W.

Now we construct the j-th event model ε j = 〈E j, (�
j
i )i∈N, pre j〉:

• E j := {e ∈ Σ | there is a historyhe ∈ H with len(h) = j}

• For each i ∈ N, set a� j
i b iff there are ha, h′b ∈ H such that len(h) = len(h) = j

and ha ≤i h′b.
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• For each e ∈ E j, let pre j(e) be the formula that characterizes the set
{h | he ∈ H and len(h) = j}. By general modal logic, bisimulation invariance
guarantees that there is such a formula, though it may be an infinitary
one in general.

Now we show that the construction is correct in the following sense:

Claim 4.2 (Correctness). Let ≤ be the plausibility relation in the given doxastic
temporal model. Let 4F

DDL be the plausibility relation in the forest induced by priority
update over the just constructed plausibility model and matching sequence of event
models. We have:

h ≤ h′ iff h 4F
DDL h′.

Proof of the claim The proof is by induction on the length of histories. The
base case is obvious from the construction of our initial modelM. Now for the
induction step. As for notation we will write a ≤ b for a�n

i b with n the length
for which the claim has been proved, and i an agent.

From DoTL to Forest(DDL) Assume that h1a ≤ h2b (1). It follows that in the
constructed event model a ≤ b (2). Case 1: a < b. By priority update we
have h1a 4F

DDL h2b. Case 2: b ≤ a (3). This means that there are h3b, h4a such
that h3b ≤ h4a. But then by Preference Revelation and (1) we have h1 ≤ h2
(in the doxastic temporal model). It follows by the inductive hypothesis that
h1 4F

DDL h2. But then by priority update, since by (2) and (3) a and b are
indifferent, we have h1a 4F

DDL h2b.

From Forest(DDL) to DoTL Next let h1a 4F
DDL h2b. The definition of priority

update has two clauses. Case 1: a < b. By definition, this implies that b � a. But
then by the above construction, for all histories h3, h4 ∈ H we have h3b � h4a.
In particular we have h2b � h1a. But then by totality4, h1a ≤ h2b. Case 2: a'b
(4) and h1 4F

DDL h2. For a start, by the inductive hypothesis, h1 ≤ h2 (5). By (4)
and our construction, there are h3a, h4b with h3a ≤ h4b (6). But then by Preference
Propagation, (5) and (6) imply that we have h1a ≤ h2b. �

Next, we turn to the general case of pre-orders, allowing incomparability.

4.2 The general case

While the argument went smoothly for total pre-orders, it gets somewhat more
interesting when incomparability enters the stage. In the case of pre-orders we
need the additional axiom of Accommodation as stated below:

Theorem 4.3. Let H be a doxastic-temporal model, M a plausibility model, ~ε be a
sequence of event models while ⊗ is priority update. The following assertions are
equivalent:

• H is isomorphic to the forest generated byM⊗ ~ε,

• H satisfies bisimulation invariance, propositional stability, synchronicity, Pref-
erence Revelation and Accommodation.

4Note that this is the only place in which we make use of totality.
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By Fact 3.2, Accommodation also gives us Preference Propagation.

Proof. Necessity of the conditions
The verification of the conditions in the preceding subsection did not use

totality. So we concentrate on the new condition:

Accommodation Assume that ja ≤ j′b (1). It follows by the definition of
priority update that a ≤ b (2). Now let ha � h′b (3). This implies by priority
update that a ≮ b (4). By definition, (2) and (4) means that a'b (5). Now assume
that g ≤ g′ (6). It follows from (5), (6) and priority update that ga ≤ g′b. For
the other direction of the consequent assume instead that g � g′ (7). It follows
from (5), (7) and priority update that ga � g′b.

Sufficiency of the conditions Given a DoTL model, we again construct a DDL
plausibility model plus sequence of event models:

Construction The plausibility modelM = 〈W, (�i)i∈N, V̂〉 is as follows:

• W := {h ∈ H | len(h) = 1},

• Set h �i h′ whenever h ≤i h′,

• For every p ∈ Prop, V̂(p) = V(p) ∩W.

We construct the j-th event model ε j = 〈E j, (�
j
i )i∈N, pre j〉 as follows:

• E j := {e ∈ Σ | there is a history of the form he ∈ H with len(h) = j}

• For each i ∈ N, define a� j
i b iff either (a) there are ha, h′b ∈ H such that

len(h) = len(h) = j and ha ≤i h′b, or (b) [a new case] a and b are accommo-
dating, and we put a ' b (i.e. a ≤ b and b ≤ a).

• For each e ∈ E j, let pre j(e) be the formula that characterizes the set {h | he ∈
H and len(h) = j}. Bisimulation invariance guarantees that there is always
such a formula (maybe involving an infinitary syntax).

Again we show that the construction is correct in the following sense:

Claim 4.4 (Correctness). Let ≤ be the plausibility relation in the doxastic temporal
model. Let 4F

DDL be the plausibility relation in the forest induced by successive priority
updates of the plausibility model by the sequence of event models we constructed. We
have:

h ≤ h′ iff h 4F
DDL h′.

Proof of the claim We proceed by induction on the length of histories. The
base case is clear from our construction of the initial modelM.

Now for the induction step, with the same simplified notation as earlier.

From DoTL to Forest(DEL) We distinguish two cases.



120 Bridges between dynamic doxastic and doxastic temporal logics

Case 1. ha ≤ h′b, h ≤ h′. By the inductive hypothesis, h ≤ h′ implies h 4F
DDL h′

(1). Since ha ≤ h′b, it follows by construction that a ≤ b (2). It follows from (1)
and (2) that by priority update ha 4F

DDL h′b.

Case 2. ha ≤ h′b, h � h′. Clearly, then, a and b are not accommodating and thus
the special clause has not been used to build the event model, though we do
have a ≤ b (1). By the contrapositive of Preference Revelation, we also conclude
that for all ja, j′b ∈ H, we have j′b � ja (2). Therefore, our construction gives
b � a (3), and we conclude that a < b (4). But then by priority update, we get
ha 4F

DDL h′b.

From Forest(DEL) to DoTL We distinguish again two cases.

Case 1. ha 4F
DDL h′b, h 4F

DDL h′. By definition of priority update, ha 4F
DDL h′b

implies that a ≤ b (1). There are two possibilities. Case 1: The special clause
of the construction has been used, and a, b are accommodating (2). By the
inductive hypothesis, h 4F

DDL h′ implies h ≤ h′ (3). But (2) and (3) imply that
ha ≤ h′b. Case 2: Clause (1) holds because for some ja, j′b ∈ H, in the DoTL
model, ja ≤ j′b (4). By the inductive hypothesis, h 4F

DDL h′ implies h ≤ h′ (5).
Now, it follows from (4), (5) and Preference Propagation that ha ≤ h′b.

Case 2. ha 4F
DDL h′b, h 64F

DDL h′. Here is where we put our new accommodation
clause to work. Let us label our assertions: h 64F

DDL h′ (1) and ha 4F
DDL h′b (2).

It follows from (1) and (2) by the definition of priority update that a < b (3),
and hence, by definition b � a (4). Clearly, a and b are not accommodating
(5): for otherwise, we would have had a'b, and hence b ≤ a, contradicting (4).
Therefore, (3) implies that there are ja, j′b ∈ H with ja ≤ j′b (6). Now assume
for contradictio that (in the DoTL model) ha � h′b (7). It follows from (6) and (7)
by Accommodation that a and b are accommodating, contradicting (5). Thus
we have ha ≤ h′b. �

Given a doxastic temporal model describing the evolution of the beliefs of
a group of agents, we have determined whether it could have been generated
by successive ‘local’ priority updates of a plausibility model. Of course, further
scenarios are possible, e.g., bringing in knowledge as well. We discuss some
extensions in the next subsection.

4.3 Extensions and variations of the theorem

Unified plausibility models

There are two roads to merging epistemic indistinguishability and doxastic
plausibility. The first works with a plausibility order and an epistemic indis-
tinguishability relation, explaining the notion of belief with a mixture of the
two. Baltag and Smets Baltag and Smets (2006) apply product update to epis-
temic indistinguishability and priority update to the plausibility relation. A
characterization for the doxastic epistemic temporal models induced in this
way follows from van Benthem et al. Benthem et al. (2008) Theorem 1.1 plus
Theorem 4.3 of previous subsection (or its simpler counterpart for total orders).
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All this has the flavor of working with prior beliefs and information partitions,
taking the posteriors to be computed from them.

However there are also reasons for working with (posterior) beliefs only (see
e.g. Morris (1995)). Indeed, Baltag and Smets Baltag and Smets (2006) take
this second road, using unified ‘local’ plausibility models with just one explicit
relation E. We briefly show how our earlier results transform to this setting. In
what follows, we write a � b iff a E b and b E a.

Definition 4.1. The priority update of a unified plausibility model M =
〈W, (Ei)i∈N,V〉 and a E-event model ε = 〈E, (Ei)i∈N, pre〉 is the unified plausi-
bility modelM⊗ ε = 〈W′, (E′i )i∈N,V′〉 constructed as follows:

• W′ = {(w, e) ∈W × E | M,w 
 pre(e)},

• (w, a) E′i (w′, b) iff either 1. a Ei b, b 6 Ea and w E w′ ∨ w′ E w or 2. a Ei b,
b E a and w E w′,

• V′((s, e)) = V(s).

Here are our, by now familiar, key properties in this setting.

Agent revision properties in terms of Ei

• E-PerfectRecall whenever ha E h′b we have h E h′ ∨ h′ E h.

• E-PreferencePropagation whenever h E h′ and ja E j′b then ha E h′b.

• E-PreferenceRevelation, whenever ha E h′b and jb E j′a, also h E h′.

• E-Accommodation if, whenever ( ja E j′b, h′ E h and ha 6 Eh′b), for all
ga, g′b ∈ H (g E g′ ↔ ga E g′b), and for all g′a, gb ∈ H (g E g′ ↔ gb E g′a).

The last axiom is slightly weaker than Accommodation. The following
result is proved in the extended version of this paper.

Theorem 4.5. Let H be a unified doxastic-temporal model,M a unified plausibility
model, ~ε be a sequence of unified event models, while⊗ is priority update. The following
assertions are equivalent:

• H is isomorphic to the forest generated byM⊗ ~ε,

• H satisfies bisimulation invariance, propositional stability, synchronicity, E-
Perfect Recall, E-Preference Propagation, E-Preference Revelation and E-
Accommodation.

Proof. For the sake of space we just give the idea of how the core of the argument
goes. The construction is the same as in the case for general pre-orders. Ne-
cessity goes smoothly. For sufficiency and keeping the notation of the previous
case.

From DoTL to Forest(DDL)

Case 1. ha ≤ h′b, h ≤ h′. Follows from the standard clause of the construction,
IH and the update rule.
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Case 2. ha ≤ h′b, h � h′. Using again the standard clause of the construction,
E-Perfect Recall, the contrapositive of E-Preference Revelation and the update
rule.

From Forest(DEL) to DoTL

Case 1. ha 4F
DDL h′b, h 4F

DDL h′. Distinguishing between clauses of the con-
struction. If a, b are accommodating the result is immediate from IH. If they
are not then we have ∃ j , j′ ja ≤ j′b (1). And the result follows from IH, (1) and
Preference Propagation.

Case 2. ha 4F
DDL h′b, h 64F

DDL h′. For this case. It follows by the update rule and
construction that a, b are not accomodating in the DoTL model. But then by
construction we have ∃ j , j′ ja ≤ j′b (2). Thus by accomodation the assumption
that ha � h′b (in the DTL model) would mean that a, b are accomodating which
would contradict (2). The result follows by reductio. �

Our next source of variation is an issue that we have left open throughout
our analysis so far, which may have bothered some readers.

Bisimulations and pre-condition languages

Our definition of event models presupposed a language for the preconditions,
and correspondingly, the right notion of bisimulation in our representation re-
sults should matching (at least, on finite models) the precondition language
used. For instance, if the precondition language contains a belief operator
scanning the intersection of a plausibility ≤i relation and an epistemic indistin-
guishability relation ∼, then the zig and zag clauses should not only apply to ≤i
and ∼i separately, but also to ≤i ∩ ∼i. And things get even more complicated if
we allow temporal operators in our languages (cf. Benthem et al. (2007)). We
do not commit to any specific choice here, since the choice of a language seems
orthogonal to our main concerns. But we will discuss formal languages in the
next section, taking definability of our major structural constraints as a guide.

Finally, our results can be generalized by including one more parameter.

Protocols

So far we have assumed that the same sequences of events were executable
uniformly anywhere in the initial doxastic model, provided the worlds fulfilled
the preconditions. This strong assumption is lifted in Benthem et al. (2007;
2008), who allow the protocol, i.e., the set of executable sequences of events
forming our current informational process, to vary from state to state. Initially,
they still take the protocol to be common knowledge, but eventually, they allow
for scenarios where agents need not know which protocol is running. These
variations change the complete dynamic-epistemic logic of the system. It would
be of interest to extend this work to our extended doxastic setting.
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5 Dynamic and Temporal Doxastic Languages

Our emphasis so far has been on structural properties of models. To conclude,
we turn to the logical languages that can express these, and hence also, the type
of doxastic reasoning our agents can be involved with.

5.1 Dynamic doxastic language

We first look at a core language that matches dynamic belief update.

Syntax

Definition 5.1 (Dynamic Doxastic-Epistemic language). The language of dy-
namic doxastic language DDEL is defined as follows:

φ := p | ¬φ | φ ∨ φ | 〈≤i〉φ | 〈i〉φ | Eφ | 〈ε, e〉φ

where i ranges over over N, p over a countable set of proposition letters Prop,
and (ε, e) ranges over a suitable set of symbols for event models.

All our dynamic doxastic logics will be interpreted on the following models.

Models

Definition 5.2 (Epistemic Plausibility Models). An epistemic plausibility model
M = 〈W, (�i)i∈N, (∼i)i∈N,V〉 has W , ∅, and for each i ∈ N, �i is a pre-order on
W, and ∼i any relation, while V : Prop→ ℘H.

Definition 5.3 (∼,�-event model). An epistemic plausibility event model (∼,�-
event model for short) ε is of the form 〈E, (�i)i∈N, (∼i)i∈N, pre〉 where E , ∅, for
each i ∈ N, �i is a pre-order on E and ∼i is a relation on W. Also, there is a
precondition function pre : E→ DDEL

Definition 5.4 (Priority update). The priority update of an epistemic plausibility
model M = 〈W, (�i)i∈N, (∼i)i∈N,V〉 and a ∼,≺-event model ε = 〈E, (�i)i∈N, (∼i
)i∈N, pre〉 is the plausibility modelM⊗ ε = 〈W′, (�′i )i∈N,V′〉 whose structure is
defined as follows:

• W′ = {(w, e) ∈W × E | M,w 
 pre(e)}

• (w, e) �′i (w′, e′) iff e≺ie′, or e'ie′ and w �i w′

• (w, e) ∼′i (w′, e′) iff e ∼i e′ and w ∼i w′

• V′((s, e)) = V(s).

Semantics

Here is how we interpret the DDE(L) language. A pointed event model is an
event model plus an element of its domain. To economize on notation we use
event symbols in the semantic clause. We write pre(e) for preε(e) when it is
clear from context.
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Definition 5.5 (Truth definition). Let Ki[w] = {v | w ∼i v}.

M,w 
 p iff w ∈ V(p)
M,w 
 ¬φ iff M,w 1 φ
M,w 
 φ ∨ ψ iff M,w 
 φ orM,w 
 ψ
M,w 
 〈≤i〉φ iff ∃v such that w �i v andM, v 
 φ
M,w 
 〈i〉φ iff ∃v such that v ∈ Ki[w] andM, v 
 φ
M,w 
 Eφ iff ∃v ∈W such thatM, v 
 φ
M,w 
 〈ε, e〉φ iff M,w 
 pre(e) andM× ε, (w, e) 
 φ

Knowledge Ki and the universal modality A are defined as usual.

Reduction axioms

The methodology of dynamic epistemic and dynamic doxastic logics revolves
around reduction axioms. On top of some complete static base logic, these
fully describe the dynamic component. Here is well-known Action−Knowledge
reduction axiom of Baltag et al. (1998):

[ε, e]Kiφ↔ (pre(e) →
∧
{Ki[ε, f]φ : e ∼i f }) (1)

Similarly here is the key reduction axiom for 〈ε, e〉〈≤i〉with priority update:

Proposition 5.1. The following dynamic-doxastic principle is sound for plausibility
change:

〈ε, e〉〈≤i〉φ↔ (pre(e) ∧ (〈≤i〉
∨
{〈f〉φ : e'i f } ∨ E

∨
{〈g〉φ : e <i g})) (2)

The crucial feature of such a dynamic ‘recursion step’ is that the order
between action and belief is reversed. This works because, conceptually, the
current beliefs already pre-encode the beliefs after some specified event. In the
epistemic setting, principles like this also reflect agent properties of Perfect
Recall and No Miracles Benthem and Pacuit (2006). Here, they rather encode
radically ‘event-oriented’ revision policies, and the same point applies to the
principles we will find later in a doxastic temporal setting.

Finally for the existential modality 〈ε, e〉Ewe note the following fact:

Proposition 5.2. The following axiom is valid for the existential modality:

〈ε, e〉Eφ↔ (pre(e) ∧ (E
∨
{〈f〉φ : f ∈ Dom(ε)})) (3)

We do not pursue further issues of axiomatic completeness here, since we
are just after the model theory of our dynamic and temporal structures.

5.2 Doxastic epistemic temporal language

Next epistemic-doxastic temporal models are simply our old doxastic temporal
modelsH extended with epistemic accessibility relations ∼i.
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Syntax

Definition 5.6 (Doxastic Epistemic Temporal Languages). The language of
DETL is defined by the following inductive syntax:

φ := p | ¬φ | φ ∨ φ | 〈e〉φ | 〈e−1
〉φ | 〈≤i〉φ | 〈i〉φ | Eφ

where i ranges over N, e over Σ, and p over proposition letters Prop.

Semantics

The language DETL is interpreted over nodes h in our trees (cf. Benthem and
Pacuit (2006)):

Definition 5.7 (Truth definition). Let Ki[h] = {h′ | h ∼i h′}.

H , h 
 p iff h ∈ V(p)
H , h 
 ¬φ iff H , h 1 φ
H , h 
 φ ∨ ψ iff H , h 
 φ orH , h 
 ψ
H , h 
 〈e〉φ iff ∃h ′ ∈ H such that h′ = he andH , h′ 
 φ
H , h 
 〈e−1

〉φ iff ∃h ′ ∈ H such that h′e = h andH , h′ 
 φ
H , h 
 〈≤i〉φ iff ∃h ′ such that h ≤i h′ andH , h′ 
 φ
H , h 
 〈i〉φ iff ∃h ′ such that h′ ∈ Ki[h] andH , h′ 
 φ
H , h 
 Eφ iff ∃h ′ ∈ H such thatH , h′ 
 φ

Now we have the right syntax to analyze our earlier structural conditions.

5.3 Defining the frame conditions

We will prove semantic correspondence results (cf. Blackburn et al. (2001)) for our
crucial properties using somewhat technical axioms that simplify the argument.
Afterwards, we present some reformulations whose meaning for belief-revising
agents is more intuitive.

The key correspondence result

Theorem 5.3 (Definability). Preference Propagation, Preference Revelation and
Accommodation are definable in the doxastic-epistemic temporal language DETL.

• H satisfies Preference Propagation iff the following axiom is valid:

E〈a〉〈≤i〉〈b−1
〉> → ((〈≤i〉〈b〉p ∧ 〈a〉q) → 〈a〉(q ∧ 〈≤i〉p) (PP)

• H satisfies Preference Revelation iff the following axiom is valid:

E〈b〉〈≤i〉〈a−1
〉> → (〈a〉〈≤i〉(p ∧ 〈b−1

〉>) → 〈≤i〉〈b〉p) (PR)

• H satisfies Accommodation iff the following axiom is valid:

E〈a〉〈≤i〉〈b−1
〉>

∧ E [〈a〉 (p1 ∧ E (p2 ∧ 〈b−1
〉>) ) ∧ [a] (p1 → [≤i]¬p2)]

→ ( (〈≤i〉〈b〉q → [a]〈≤i〉q)

∧ (〈a〉〈≤i〉(r ∧ 〈b−1
〉>) → 〈≤i〉〈b〉r) (AC)
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Proof. We only prove the case of Preference Propagation, the other two are in the
extended version of the paper. We drop agent labels for convenience.

(PP) characterizes Preference Propagation We first show that (PP) is valid
on all modelsH based on preference-propagating frames. Assume thatH , h 

E〈a〉〈≤i〉〈b−1

〉> (1). Then there are ja, j′b ∈ H such that ja ≤ j′b (2). Now
let H , h 
 (〈≤〉〈b〉p ∧ 〈a〉q) (3). Then there is h′ ∈ H such that h ≤ h′ (4) and
H , h′ 
 〈b〉p (5), while alsoH , ha 
 q (6). We must show thatH , h � 〈a〉(q ∧ 〈≤i〉p)
(7). But, from (2),(4),(6) and Preference Propagation, we get ha ≤ h′b, and the
conclusion follows by the truth definition.

Next, we assume that axiom (PP) is valid on a doxastic temporal frame,
that is, true under any interpretation of its proposition letters. So, assume that
ja ≤ j′b (1), and also h ≤ h′ (2). Moreover, let ha, h′b ∈ H (3). First note that (1)
automatically verifies the antecedent of (PP) in any node of the tree. Next, we
make the antecedent of the second implication in (PP) true at h by interpreting
the proposition letter p as just the singleton set of nodes h′b, and q as just ha (4).
Since (PP) is valid, its consequent will also hold under this particular valuation
V. Explicitly we haveH ,V, h 
 〈a〉(q ∧ 〈≤i〉p). But spelling out what p, q mean
there, we get just the desired conclusion that ha ≤ h′b. �

The preceding correspondence argument is really just a Sahlqvist substitu-
tion case (cf. Blackburn et al. (2001)), and so are the other two. (See Benthem
and Dégremont (2008) for the proofs.)

(PR) characterizes Preference Revelation

(AC) charachterizes Accommodation We do not prove a further completeness
result, but will show one nice derivation, as a syntactic counterpart to our earlier
Fact 3.1.

E [〈a〉 (ψ ∧ E (φ ∧ 〈b−1
〉>) ) ∧ [a] (ψ → [≤i]¬φ)]

→ (〈a〉〈≤i〉(φ ∧ 〈b−1
〉>) → 〈≤i〉〈b〉φ)

(F)

Here is an auxiliary correspondence observation:

Fact 5.4. On total doxastic temporal models the following axiom is valid:

〈a〉(ψ ∧ E (φ ∧ 〈b−1
〉>)) →

( 〈a〉(ψ ∧ 〈≤i〉φ) ∨ E〈b〉(φ ∧ 〈≤i〉(ψ ∧ 〈a−1
〉>)) (Tot)

Now we can state an earlier semantic fact in terms of axiomatic derivability
in some obvious minimal system for the language DETL:

Fact 5.5. • ` ((PP) ∧ (F)) → (AC) • ` ((PR) ∧ (Tot)) → (F)

Benthem and Dégremont (2008) has the details. We now get an immediate
counterpart to Fact 3.1:

Corollary 5.6.
` ((PP) ∧ (PR) ∧ (Tot)) → (AC) (4)
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Two intuitive explanations

Here are two ways to grasp the intuitive meaning of our technical axioms.

Reformulation with safe belief. An intermediate notion of knowledge first
considered by Stalnaker (1981) has been argued for doxastically as safe belief by
Baltag and Smets (2006) as describing those beliefs we do not give up under true
new information. The safe belief modality �≥ is just the universal dual of the
existential modality 〈≥〉 scanning the converse of ≤. Without going into details
of its logic (e.g., safe belief is positively, but not negatively introspective), here
is how we can rephrase our earlier axiom:
• H satisfies Preference Propagation iff the following axiom is valid onH :

E〈a〉〈≥〉〈b−1
〉> → (〈a〉�≥i p → �≥i [b]p) (PP’)

A similar reformulation is easy to give for Preference Revelation. These
principles reverse action modalities and safe belief much like the better-known
Knowledge-Action interchange laws in the epistemic-temporal case. We invite
the reader to check their intuitive meaning in terms of acquired safe beliefs as
informative events happen.

Analogies with reduction axioms Another way to understand the above
axioms in their original format with existential modalities is their clear analogy
with the reduction axiom for priority update. Here are two cases juxtaposed:

〈ε, e〉〈≤i〉p↔ (pre(e) ∧ (〈≤i〉
∨
{〈 f 〉p : e'i f } ∨ E

∨
{〈g〉p : e <i g})) (2)

E〈a〉〈≤i〉〈b−1
〉> → (〈≤i〉〈b〉p → [a]〈≤i〉p) (PP)

E〈b〉〈≤i〉〈a−1
〉> → (〈a〉〈≤i〉(p ∧ 〈b−1

〉>) → 〈≤i〉〈b〉p) (PR)

Family resemblance is obvious, and indeed, (PP) and (PR) may be viewed as
the two halves of the reduction axiom, transposed to the more general setting
of arbitrary doxastic-temporal models.

5.4 Variations and extensions of the language

Weaker languages

The above doxastic-temporal language is by no means the only reasonable one.
Weaker forward-looking modal fragments also make sense, dropping both
converse and the existential modality. But they do not suffice for the purpose
of our correspondence.

Proposition 5.7 (Undefinability).
Preference propagation, Preference Revelation and Accommodation are not defin-

able in the forward looking fragment of DETL

Proof. The reason is the same in all cases: we show that these properties are
not preserved under taking bounded p-morphic images. The Figure gives an
indication how this works concretely. �
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Figure 1: Propagation is not preserved in the p-morphic images

Richer languages

But there is also a case to be made for richer languages. For instance, if we want
to define the frame property of synchronicity, we must introduce an equilevel
relation in our models, with a corresponding modality for it. While expressing
synchronicity then becomes easy, this move is dangerous in principle. Van
Benthem and Pacuit Benthem and Pacuit (2006) point at the generally high
complexity of tree logics when enriched with this expressive power.

Likewise, finer epistemic and doxastic process descriptions will require
further temporal modalities, such as “Since” and “Until”, beyond the basic op-
erators that we used for matching the needs of dynamic doxastic logic directly.

Finally, there may be even more urgent language extensions for doxastic
temporal logic, having to do with our very notion of belief. We have em-
phasized the notion of safe belief, which scans the plausibility relation ≥ as an
ordinary modality. This notion can be used to define the more standard notion
of belief as truth in all most plausible worlds: cf. Boutilier (1994). But it has
been argued recently by Baltag and Smets (2006), and also by de Jongh and
Liu (2006) that we really want a more ‘entangled’ version of the latter notion
as well, referring to the most plausible worlds inside the epistemically accessible
ones. Such a notion of ‘posterior belief’ has the following semantics:

H , h 
 Biφ iff ∀h ′ ∈Min(Ki[h],≤i) we haveH , h′ 
 φ

Technically, expressing this requires an additional intersection modality. While
this extension loses some typical modal properties, it does satisfy reduction
axioms in the format discussed here: cf. Liu (2008).

6 Axiomatization of protocols-based dynamic logics
of belief revision

While PAL is an interesting special case of DEL, Dynamic belief revision (Lex-
icographic Upgrade) is an interesting special case of DDL. For the interested
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reader the precise analogy will be given as the end of the section.
The aim of this section is to consider protocols-based version of logics of

belief revision. First of all one will therefore be interested in a particular cases
of soft priority update, namely whenever informally events can be identified
with their preconditions, i.e. with formulas of a doxastic language. Secondly
not all events can be executed everywhere, i.e. certain formulas will be de-
clared/observed in some states but not in some other. This information is pre-
cisely what a protocol is about: indicating what can be “said” (what sequences
of formulas) where or when (in which doxastic state). Precisely:

Definition 6.1. Dynamic Belief Revision Protocol
Given a doxastic language L we let Ptcl(L) = {P|P ⊆ L∗ and P is closed

under initial segments}. Given a doxastic modelM = 〈W, (�i)i∈N,V〉, a dynamic
belief revision protocol is a mapping p : W → Ptcl(L).

For each n, let hn stand for the initial segment of h of length n. We will be
interested in a particular kind of forests. Namely:

Definition 6.2 (DoTL model generated by a sequence of protocol-based lexico-
graphic upgrade). Each initial plausibility modelM = 〈W, (�i)i∈N,V〉 and each
dynamic belief revision protocol p : W → Ptcl(L) yields a yields a generated
DoTL plausibility modelH = 〈Σ,H, (≤i)i∈N,V〉 as follows:

• Let Σ := L.

• Let H1 :=W and for any 1 < n let Hn+1 := {(wφ1 . . . φn)|(wφ1 . . . φn−1) ∈ Hn
such that φ1 . . . φn ∈ p(w)}

Finally let H =
⋃

1≤k Hk.

• If h, h′ ∈ H1, then h ≤i h′ iff h �Mi h′.

• For 1 < k and for h = wφ1 . . . φk−1, h′ = w′φ1 . . . φk−1, h ≤i h′ iff one of the
following holds:

1. H , (wφ1 . . . φk−2) 
 φk−1 whileH , (w′φ1 . . . φk−2) 1 φk−1

2. H , (wφ1 . . . φk−2) 
 φk−1 iff H , (w′φ1 . . . φk−2) 
 φk−1, and
(wφ1 . . . φk−2) ≤i (w′φ1 . . . φk−2).

• For each 1 ≤ k, for each h, h′ ∈ Hk, let h ≡ h′ iff hk = h′k.

• Let wh ∈ V(p) iff w ∈ V(p).

One might be interested in different natural doxastic language. Depending
on some cardinality assumptions about the model some of the fragments of
this logic have the needed expressive power. Moreover some of them are
easier to axiomatize than other. In general one would like our language to
be able to define (static) conditional belief in the static part of our language.
We will look at axiomatizations of protocol-based lexicographic updgrade for
different static doxastic languages. In general there are two strategies to have
our axiomatization include conditional belief. One is to take is as a defined
notion. The other is to handle it directly, giving in particular a pseudo reduction
axiom for it. Of course one would expect the latter to be derivable from the
axioms for the modalities with which it can be defined.
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On finite models, it is known (see (Girard 2008, 3.3.6)) that conditional beliefs
can defined using a modality for the plausibility pre-order and the universal
modality. In the general case more expressive power is needed. One way to
go is to allow for state variable and a hybrid state binder, binding a variable to
the current state. We first discuss our first option in the next subsection. We
discuss different languages in the one after.

6.1 Axiomatization of the dynamic logic of protocols-based be-
lief revision.

We first present the static doxastic language LDox(E,≥).

Definition 6.3 (Protocol-constrained Multi-agent Belief Revision Language).
The purely doxastic language LDox(E,≥) is:

φ := p | ¬φ | φ ∨ φ | 〈≤i〉φ | 〈≥i〉φ | E≡φ |

where i ranges over N and p over a countable set of proposition letters Prop
Its dynamic extension is defined as expected:
The language of TBR(LDox(E,≥)) is defined by the following inductive syn-

tax:

φ := p | ¬φ | φ ∨ φ | 〈≤i〉φ | 〈≥i〉φ | E≡φ | 〈⇑ ψ〉φ |

where i ranges over N, ψ over LDox(E,≥) and p over a countable set of proposi-
tion letters Prop. We make use of the usual shortcuts. In particular the universal
modality A≡ is defined as usual. Moreover (Girard 2008, 3.3.6) has shown that
conditional belief can be defined as follows:

Bψi φ ↔ A(ψ → 〈≥i〉(ψ ∧ [≥i](ψ → φ)))

Definition 6.4 (Truth definition). The language TBR(LDox(E,≥)) is interpreted
over nodes wh in our trees (cf. Benthem and Pacuit (2006)) - where w is a
sequence of length 1 and h is possibly the empty sequence - together with
an assignment g : SVAR → H1 (reminding to the reader that H1 is the set of
sequences of length 1.)

H ,wh, g 
 p iff wh ∈ V(p)
H ,wh, g 
 ¬φ iff H ,wh, g 1 φ
H ,wh, g 
 φ ∨ ψ iff H ,wh, g 
 φ orH ,wh, g 
 ψ
H ,wh, g 
 〈≤i〉φ iff ∃h ′ such that wh ≤i h′ andH , h′, g 
 φ
H ,wh, g 
 〈≥i〉φ iff ∃h ′ such that h′ ≤i wh andH , h′, g 
 φ
H ,wh, g 
 E≡φ iff ∃h ′ ≡ wh such thatH , h′, g 
 φ
H ,wh, g 
 〈⇑ φ〉ψ iff ∃h ′ ∈ H such that h′ = whφ andH , h′, g 
 ψ

To be sure, on finite state spaces, the syntactic definition of Bφi ψ is sound
with respect to the following definition: For each φ, let Bφi [wh] =Min({h′ | wh ≡
h′ andH , h′ � φ},≤i).

H ,wh, g 
 Bφi ψ iff ∀h ′ such that h′ ∈ Bφi [wh] we have H , h′, g 
 ψ
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Let us now turn to the axiomatization of this fragment.
We will call it Dox(E, 〈≥〉).

Definition 6.5 (Axiomatization).

Ax1 S4 for 〈≤i〉 and 〈≥i〉

Ax2 S5 for E≡

Ax3 (p → [≤i]〈≥i〉p) ∧ (p → [≥i]〈≤i〉p)

Ax4 Bψi φ ↔ A(ψ → 〈≥i〉(ψ ∧ [≥i](ψ → φ)))

For any φ ∈ LDox we have also:

Ax5 K for 〈⇑ φ〉

Ax6 For p atomic we have 〈⇑ φ〉p ↔ 〈⇑ φ〉> ∧ p.

Ax7 〈⇑ φ〉¬ψ ↔ 〈⇑ φ〉> ∧ ¬〈⇑ φ〉ψ

Ax8 〈⇑ φ〉ψ ∧ χ ↔ 〈⇑ φ〉ψ ∧ 〈⇑ φ〉χ

Ax9

〈⇑ φ〉〈≤i〉ψ ↔ 〈⇑ φ〉>∧

[ (φ ∧ E≡(¬φ ∧ 〈⇑ φ〉ψ))
∨ (φ ∧ 〈≤i〉〈⇑ φ〉ψ)
∨ (¬φ ∧ 〈≤i〉(¬φ ∧ 〈⇑ φ〉ψ)) ]

(5)

Ax10 〈⇑ φ〉E≡ψ ↔ 〈⇑ φ〉> ∧ E≡〈⇑ φ〉ψ

It is easily checked that the following are derivable.

〈⇑ φ〉A≡ψ ↔ 〈⇑ φ〉> ∧ A≡(〈⇑ φ〉> → 〈⇑ φ〉ψ) (Th1a)

〈⇑ φ〉[≤i]ψ ↔ 〈⇑ φ〉>∧

[(φ → A≡(¬φ → ¬〈⇑ φ〉¬ψ))
∧ (φ → [≤i]¬〈⇑ φ〉¬ψ)
∧ [≤i](¬φ → ¬〈⇑ φ〉¬ψ)]

(Th1b)

Completeness

Since conditional belief can be cashed out in terms of the existential and the
〈≥i〉 modalities we will consider the conditional belief free fragment of TBRL.
For the completeness proof we start by defining a Stbr-canonical initial model
and prove that it can be unfolded in a satisfactory belief revision forest.

Definition 6.6 (Canonical initial doxastic model).
Stbr canonical initial modelMΣ

0 = 〈W
0,≤0

i ,≥
0
i ,≡

0,V0
〉 defined as follows:

• W0 is the set of Stbr-MCSs
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• For each w, v ∈W0, define w ≤0
i v iff {φ | [≤i]φ ∈ w} ⊆ v

• For each w, v ∈W0, define w ≥0
i v iff {φ | [≥i]φ ∈ w} ⊆ v

• For each w, v ∈W0, define w ≡0 v iff {φ | Aφ ∈ w} ⊆ v

• Finally define V0(p) = {w ∈ H0
| p ∈ w}.

A piece of notation h(n) stand for the n-th element of h. We can now define
a canonical doxastic forest by unfolding the canonical initial model:

Definition 6.7 (Canonical doxastic forest).
Stbr canonical forestHΣ = 〈HΣ, λ,≤Σi ,≥

Σ
i ,V

Σ
〉 is defined as follows:

• H0 =W0

• For each h ∈ H0 let λ(h) = h

• Hn+1 = {hφ | h ∈ Hn and 〈⇑ φ〉> ∈ λ(h)}

• For each k > 0 and hφ ∈ Hk let λ(hφ) = {ψ | 〈⇑ φ〉ψ ∈ λ(h)}

• HΣ =
⋃
k≥0

Hk

• For each h, h′ ∈ H0, define h ≤Σi h′ iff {φ | [≤i]φ ∈ λ(h)} ⊆ λ(h′)

• For each h, h′ ∈ H0, define h ≥Σi h′ iff {φ | [≥i]φ ∈ λ(h)} ⊆ λ(h′)

• For each h, h′ ∈ H0, define h ≡Σ h′ iff {φ | A≡φ ∈ λ(h)} ⊆ λ(h′)

• For each k > 0 and hφ, h′ψ ∈ Hk, define hφ ≤Σ h′ψ iff h = h′, φ = ψ and
one of the following holds:

1. φ ∈ λ(h) while φ < λ(h′)

2. φ ∈ λ(h) iff φ ∈ λ(h′), and h ≤i h′.

• For each k > 0 and hφ, h′ψ ∈ Hk, define hφ ≥Σ h′ψ iff h′ψ ≤Σ hφ

• For each k > 0 and for each hφ, h′ψ ∈ Hk, define hφ ≡Σ h′ψ iff h ≡Σ h′ and
φ = ψ.

• For each h ∈ HΣ, define Vσ(p) = {h ∈ HΣ | p ∈ λ(h(1))}.

Lemma 6.1. For each k ≥ 0, for each h ∈ Hk, λ(h) is Stbr-MCSs.

Proof. The proof is by induction on k. The base case holds by definition. Assume
that the claim holds for k = n. Now assume that hφ ∈ Hn+1. By IHλ(h) is a MCSs.
Moreover by construction we have 〈⇑ φ〉> ∈ λ(h) (1). Let φ ∈ TBRL. Since λ(h)
is a MCSs we have either 〈⇑ φ〉ψ ∈ λ(h) or ¬〈⇑ φ〉ψ ∈ λ(h). If 〈⇑ φ〉ψ ∈ λ(h),
then by construction ψ ∈ λ(hφ). If instead ¬〈⇑ φ〉ψ ∈ λ(h) then by (1) and Ax7
we have 〈⇑ φ〉¬ψ ∈ λ(h). It follows by construction that ¬ψ ∈ λ(hφ). Therefore
for each φ ∈ TBRLwe have either ¬ψ ∈ λ(hφ) or ¬ψ ∈ λ(hφ).

Now we have to prove λ(hφ) is consistent. Assume for contradictio that it
is not. Then by definition we have a finite set of formulas {φ1, . . . , φm} ⊆ λ(hφ)
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such that ` (
∧m

i=1 φi) → ⊥ (2). It follows from (2) by standard modal reasoning
that ` 〈⇑ φ〉> → 〈⇑ φ〉(

∨m
i=1 ¬φi). It follows by Ax5 again that ` 〈⇑ φ〉> →

(
∨m

i=1〈⇑ φ〉¬φi) (3). By (1) and (3) it follows that (
∨m

i=1〈⇑ φ〉¬φi) ∈ λ(h) (4).
But since by IH λ(h) is a MCSs, there is some j such that 1 ≤ j ≤ m and
〈⇑ φ〉¬φ j ∈ λ(h) (5). From (5) and Ax7 we have ¬〈⇑ φ〉φ j ∈ λ(h) (6). From (2)
it follows by contruction that 〈⇑ φ〉φi ∈ λh for each i such that 1 ≤ i ≤ m (7).
But (6) and (7) together contradicts the fact that λ(h) is consistent. It follows by
reductio that λ(hφ) is consistent. �

Now we need to prove a Truth Lemma.

Lemma 6.2 (Truth Lemma). For every φ ∈ TBRL, for each h ∈ HΣ we have:

φ ∈ λ(h) iffHΣ, h 
 φ

Proof. The proof is by induction on the complexity of φ. Base case (for atomic
formulas) and boolean cases are easy.

[A≡-modality.] From left to right. Assume that A≡ψ ∈ λ(h) (0). There are two
cases. Either h ∈ H0 (1) or h ∈ (HΣ −H0) (2).

Let us consider the first case. Assume that h, h′ ∈ H0 and that h ≡Σ h′ (3).
It follows from (3) by construction that {φ | A≡φ ∈ λ(h)} ⊆ λ(h′) (4). From (4)
and (0) we know in particular that ψ ∈ λ(h′) (5). By (5) and the IH of the main
induction on formulas it follows that HΣ, h′ 
 ψ (6). Since h′ was arbitrary, it
follows therefore from (6) and truth definition of A≡ thatHΣ, h 
 A≡ψ (7).

Let us now the consider the second case: h ∈ (HΣ − H0) (2). Without loss
of generality let us assume that h is of the form wφ1 . . . φn+1 (8). From (8) and
(0) it follows by construction that 〈⇑ φn+1〉A≡ψ ∈ λ(wφ1 . . . φn) (9). Since by
Lemma 6.1 λ(wφ1 . . . φn) is a Stbr-MCS, it follows from (9) and (Th1a) that
〈⇑ φn+1〉> ∈ λ(wφ1 . . . φn) (10) and A≡(〈⇑ φn+1〉> → 〈⇑ φn+1〉ψ) ∈ λ(wφ1 . . . φn)
(11). Iterating the same argument we find that:

A≡(〈⇑ φ1〉> → (〈⇑ φ2〉> → . . . (〈⇑ φn〉> → (〈⇑ φn+1〉> → 〈⇑ φn+1〉ψ)) . . .)) ∈ λ(w)
(12)

and that for each i, 1 ≤ k ≤ n

〈⇑ φk+1〉> ∈ λ(wφ1 . . . φk) (13)

and that

〈⇑ φ1〉> ∈ λ(w) (14)

Now assume that h ≡Σ h′ (15). It follows from (15) by construction and
some easy induction that h′ is of the form vφ1 . . . φn+1 (16). Similarly it follows
from (15) by construction and some induction that w ≡Σ v (17). It follows by
construction from (17) and (12) that (〈⇑ φ1〉> → (〈⇑ φ2〉> → . . . (〈⇑ φn〉> →

(〈⇑ φn+1〉> → 〈⇑ φn+1〉ψ)) . . .)) ∈ λ(v) (18). But it is then easy to check that from
(18), (13) and (14) we have ψ ∈ h′ (19). It follows from (19) by the main IH that
H , h′ 
 ψ. But since h′ was arbitrary, we have: HΣ, h 
 A≡ψ.
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[A≡-modality.] From right to left. Assume that A≡ψ < λ(h) (0). There are two
cases. Either h ∈ H0 (1) or h ∈ (HΣ −H0) (2).

Let us consider the first case. Assume that A≡ψ < λ(h) (0). We have to prove
that HΣ, h 1 A≡ψ. To prove (0) it is sufficient to find a MCSs λ(h′) such that
ψ < λ(h′), but {φ | A≡φ ∈ λ(h)} ⊆ λ(h′). By Lindenbaum Lemma, it is sufficient
to show that v0 = {¬ψ} ∪ {φ | A≡φ ∈ λ(h)} is consistent. Assume for contradictio
that it is not. Then we have a finite set of formulas φ1 . . . φm ∈ {φ | A≡φ ∈ λ(h)}
such that (

∧m
i=1 φi) → ψ (3). But then it follows by standard modal reasoning

that (
∧m

i=1 A≡φi) → A≡ψ (4). But since λ(h) is a MCS, it follows from (4) that
A≡ψ ∈ λ(h) which contradicts (0).

Let us now consider the other case. Assume WLOG that h = wφ1 . . . φn+1.
Now assume that A≡ψ < λ(h) (0). It follows from (0) by maximality of λ(h)
and construction that 〈⇑ φn+1〉¬A≡ψ ∈ λ(wφ1 . . . φn) (1). It follows from (1) by
Ax7 that 〈⇑ φn+1〉> ∈ λ(wφ1 . . . φn) (2) and ¬〈⇑ φn+1〉A≡ψ ∈ λ(wφ1 . . . φn) (3). It
follows from (2), (3), an easy argument give us by Th1 that ¬A≡(〈⇑ φn+1〉> →

〈⇑ φn+1〉ψ) ∈ λ(wφ1 . . . φn) (4). Repeting this argument we find that ¬A≡(〈⇑
φ1〉> → 〈⇑ φ1〉(〈⇑ φ2〉> → (. . . 〈⇑ φn〉(〈⇑ φn+1〉> → 〈⇑ φn+1〉ψ) . . .))) ∈ λ(w)
(5).

We will know prove that there is a v such that wφ1 . . . φn+1 ≡ vφ1 . . . φn+1
and ψ < λ(vφ1 . . . φn+1) (7). First take the following set v0 = {χ | A ≡ χ ∈ λ(w)} ∪
{¬〈⇑ φ1〉> → 〈⇑ φ1〉(〈⇑ φ2〉> → (. . . 〈⇑ φn〉(〈⇑ φn+1〉> → 〈⇑ φn+1〉ψ) . . .))}.
Assume for contradictio that v0 is inconsistent (8). It follows from (8) that
there is a finite set of formumas {χ1, . . . χm} ⊆ {χ | A ≡ χ ∈ λ(w)} such that
` (
∧m

i=1 χi) → (〈⇑ φ1〉> → 〈⇑ φ1〉(〈⇑ φ2〉> → (. . . 〈⇑ φn〉(〈⇑ φn+1〉> → 〈⇑

φn+1〉ψ) . . .))) (9). But from (9) and standard modal reasoning we find that
` (
∧m

i=1 A≡χi) → A≡(〈⇑ φ1〉> → 〈⇑ φ1〉(〈⇑ φ2〉> → (. . . 〈⇑ φn〉(〈⇑ φn+1〉> →

〈⇑ φn+1〉ψ) . . .))) (10). But since λ(h) is a MCS, it follows from (10) that A≡(〈⇑
φ1〉> → 〈⇑ φ1〉(〈⇑ φ2〉> → (. . . 〈⇑ φn〉(〈⇑ φn+1〉> → 〈⇑ φn+1〉ψ) . . .))) ∈ λ(h)
which contradicts (5). Thus by reductio v0 is consistent. By Lindenbaum Lemma
we can extend v0 to a maximally consistent v. But by construction v ∈ HΣ (11).
Since {χ | A ≡ χ ∈ λ(w)} ⊆ v0 ⊆ v it follows by construction that w ≡ v. But then
an easy induction shows that for every 1 ≤ j ≤ n + 1 we have:

wφ1 . . . φ j ≡ vφ1 . . . φ j (A≡)

Since by construction ¬〈⇑ φ1〉> → 〈⇑ φ1〉(〈⇑ φ2〉> → (. . . 〈⇑ φn〉(〈⇑
φn+1〉> → 〈⇑ φn+1〉ψ) . . .)) ∈ λ(v) it follows that 〈⇑ φ1〉> ∈ λ(v) (12) and
¬〈⇑ φ1〉(〈⇑ φ2〉> → (. . . 〈⇑ φn〉(〈⇑ φn+1〉> → 〈⇑ φn+1〉ψ) . . .)) (13). But it fol-
lows from (12), (13) and Ax7, that 〈⇑ φ1〉¬(〈⇑ φ2〉> → (. . . 〈⇑ φn〉(〈⇑ φn+1〉> →

〈⇑ φn+1〉ψ) . . .)) ∈ λ(v) (14). But then by construction ¬(〈⇑ φ2〉> → (. . . 〈⇑
φn〉(〈⇑ φn+1〉> → 〈⇑ φn+1〉ψ) . . .)) ∈ λ(vφ1) (15). Repeting this argument we
find that ¬ψ ∈ λ(vφ1 . . . φn+1) (16). By Lemma 6.2 λ(vφ1 . . . φn+1) is consistent,
(16) therefore implies that ψ < λ(vφ1 . . . φn+1) (17). But (A≡), (11) and (17) is
all we need to prove (7). We can now apply the main IH on formulas to get
H
≡, vφ1 . . . φn+1 1 ψ (18). By (18) and the truth condition of A≡ it follows that

H
Σ, h 
 A≡ψ. Concluding the proof for this direction of for the A≡-subcase.
[[≤]-modality.] From left to right. Assume that A≡ψ ∈ λ(h) (0). There are

two cases. Either h ∈ H0 (1) or h ∈ (HΣ −H0) (2).
Let us consider the first case. Assume that h, h′ ∈ H0 and that h ≤Σ h′ (3).

It follows from (3) by construction that {φ | [≤]φ ∈ λ(h)} ⊆ λ(h′) (4). From (4)



Johan van Benthem and Cédric Dégremont 135

and (0) we know in particular that ψ ∈ λ(h′) (5). By (5) and the IH of the main
induction on formulas it follows that HΣ, h′ 
 ψ (6). Since h′ was arbitrary, it
follows therefore from (6) and truth definition of [≤] thatHΣ, h 
 [≤]ψ (7).

Let us now the consider the second case: h ∈ (HΣ−H0) (2). For simplicity we
assume that h is of the form wφ (8). The proof can be generalized along the lines
of theA≡-case. From (8) and (0) it follows by construction that 〈⇑ φ〉[≤]ψ ∈ λ(wφ)
(9). Since by Lemma 6.1 λ(w) is a Stbr-MCS, it follows from (9) and (Th1b) that
〈⇑ φn+1〉> ∈ λ(w) (10) and [(φ → A≡(¬φ → ¬〈⇑ φ〉¬ψ)) ∧ (φ → [≤i]¬〈⇑
φ〉¬ψ) ∧ [≤i](¬φ → ¬〈⇑ φ〉¬ψ)] ∈ λ(w) (11).

Now assume that h ≤Σ h′ (15). It follows from (15) by construction h′ is of
the form vφ (16). By (15) we know that we are in one of the following cases:

1. φ ∈ λ(w) while φ < λ(v)

2. φ ∈ λ(w), φ ∈ λ(v), and w ≤i v

3. φ < λ(w), φ < λ(v), and w ≤i v.

Case 1: φ ∈ λ(w) (17.1) while φ < λ(v) (17.2). By (11) we have: (φ →
A≡(¬φ → ¬〈⇑ φ〉¬ψ)) ∈ w (17.3). It follows from (17.1), (17.3) and Lemma 6.2
that (A≡(¬φ → ¬〈⇑ φ〉¬ψ)) ∈ w (17.4). From (17.4) we have by construction
(¬φ → ¬〈⇑ φ〉¬ψ) ∈ v (17.5). But it is easy to check that ¬φ ∈ v (17.6). Thus
by (17.5), (17.6) and Lemma 6.2 we have ¬〈⇑ φ〉¬ψ ∈ v (17.7). Again it is easy
to check that 〈⇑ φ〉> ∈ v (17.8). But (17.7), (17.8), Ax7 and Lemma 6.2 gives us
〈⇑ φ〉ψ ∈ v (17.9). By construction (17.9) gives usψ ∈ vφ (17.10). (17.10) gives us
by IH h′ 
 ψ (17.11). But since h′ was arbitrary, we have: HΣ, h 
 [≤]ψ (17.12).

Case 2: φ ∈ λ(w) (18.1), φ ∈ λ(v) (18.2) and w ≤ v (18.3). By (11) we have:
(φ → [≤i]¬〈⇑ φ〉¬ψ) ∈ w (17.3). An easy argument gives us [≤i]¬〈⇑ φ〉¬ψ ∈ w
(17.4). Thus by construction ¬〈⇑ φ〉¬ψ ∈ v (17.5). By construction we have also
〈⇑ φ〉> ∈ v which together with (17.5) and Ax7 gives us 〈⇑ φ〉ψ ∈ v (17.6). (17.6)
implies by construction that ψ ∈ v. The usual argument concludes the proof.

Case 3: φ < λ(w) (19.1), φ < λ(v) (19.2) and w ≤ v (19.3). By (11) we have:
[≤i](¬φ → ¬〈⇑ φ〉¬ψ) ∈ w (19.4). An easy argument gives us [≤i]¬〈⇑ φ〉¬ψ ∈ w
(17.4). Thus by construction ¬〈⇑ φ〉¬ψ ∈ v (17.5). By construction we have also
〈⇑ φ〉> ∈ v which together with (17.5) and Ax7 gives us 〈⇑ φ〉ψ ∈ v (17.6). (17.6)
implies by construction that ψ ∈ v. The usual argument concludes the proof
for this case and this direction.

[[≤i]-modality.] From right to left. Assume that [≤i]ψ < λ(h) (0). There are
two cases. Either h ∈ H0 (1) or h ∈ (HΣ −H0) (2).

The first case is along line the lines of the proof in the previous section.
Let us now consider the other case. For the sake of simplicity we assume

that h = wφ. The proof can be generalized along the lines of the A≡-case.
Now assume that [≤i]ψ < λ(h) (0). It follows from (0) by maximality of λ(h)
and construction that 〈⇑ φ〉¬[≤i]ψ ∈ λ(w) (1). It follows from (1) by Ax7 that
〈⇑ φ〉> ∈ λ(w) (2) and ¬〈⇑ φ〉[≤i]ψ ∈ λ(w) (3).

Given that (2) and (3), an easy argument give us by Th1b that ¬[(φ →
A≡(¬φ → ¬〈⇑ φ〉¬ψ)) ∧ (φ → [≤i]¬〈⇑ φ〉¬ψ) ∧ [≤i](¬φ → ¬〈⇑ φ〉¬ψ)] < w
and thus that ¬(φ → A≡(¬φ → ¬〈⇑ φ〉¬ψ)) ∨ ¬(φ → [≤i]¬〈⇑ φ〉¬ψ) ∨ ¬[≤i
](¬φ → ¬〈⇑ φ〉¬ψ)] (4). The preceding disjunction naturally displays three
cases.

Case 1: ¬(φ → A≡(¬φ → ¬〈⇑ φ〉¬ψ)) ∈ w (4.1). Since by Lemma 6.2
φ ∈ w (4.2) and ¬A≡(¬φ → ¬〈⇑ φ〉¬ψ) ∈ w (4.3). We will now prove that
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there is a v such that w ≡ v, φ < v and ψ < λ(vφ). First take the following set
v0 = {χ | A ≡ χ ∈ λ(w)} ∪ {¬φ ∧ 〈⇑ φ〉¬ψ} (4.5). Assume for contradictio that v0
is inconsistent (4.6). It follows from (4.6) that there is a finite set of formulas
{χ1, . . . χm} ⊆ {χ | A ≡ χ ∈ λ(w)} such that ` (

∧m
i=1 χi) → (¬φ → ¬〈⇑ φ〉¬ψ)

(4.7). But from (4.7) and standard modal reasoning we find that ` (
∧m

i=1 A≡χi) →
A≡(¬φ → ¬〈⇑ φ〉¬ψ) (4.8). But from (4.8), (4.2) and Lemma 6.2 we have
A≡(¬φ → ¬〈⇑ φ〉¬ψ) (4.9). But (4.9) contradicts (4.3), thus by reductio v0 is
consistent. By Lindenbaum Lemma it can be extended to a maximal consistent
set v+. But by construction v+ ∈ HΣ (4.10). Since {χ | A ≡ χ ∈ λ(w)} ⊆ v0 ⊆ v+ it
follows by construction that w ≡ v+ (4.11). By construction of v0 we have also
¬φ ∈ v0 ⊆ v+ (4.12). But it follows from (4.2), (4.12) and (4.11) by construction
that wφ ≤ vφ (4.13). But since by (4.5) and a simple argument 〈⇑ φ〉¬ψ ∈ v too,
we have ψ < vφ (4.14). But (4.13) and (4.14) gives us wφ 1 [≤i]ψ. Concluding
our proof for this subcase.

Case 2: ¬(φ → [≤i]¬〈⇑ φ〉¬ψ) ∈ w (5.1). It follows from (5.1) by Lemma
6.2 that φ ∈ w (5.2) and that ¬[≤]¬〈⇑ φ〉¬ψ ∈ w (5.3). By Ax7 it follows that
¬[≤](〈⇑ φ〉> → 〈⇑ φ〉ψ) ∈ w. The right to left argument of the A≡-case applies
replacing ≡ by ≤, i.e. we construct v+ such that by construction w ≤ v (5.4)
and 〈⇑ φ〉¬ψ ∈ v+ (5.5). We find by (5.5) and construction that ψ < vφ (5.6).
But since by construction (5.4) and (5.2) give us wφ ≤ vφ (5.7). The rest of the
argument is as usual.

Case 3: ¬[≤i](¬φ → ¬〈⇑ φ〉¬ψ) ∈ w (6.1). An easy argument show that by
(6.1) we have ¬[≤i](¬φ → (〈⇑ φ〉> → 〈⇑ φ〉ψ)) ∈ w (6.2). We construct v0 such
that ¬φ ∈ v0 (6.3), 〈⇑ φ〉> ∈ v0 (6.4) but 〈⇑ φ〉ψ < v0 (6.5) that can be extended
it to a MCS v+ (6.6) such that w ≤ v+ (6.7). By (6.6), (6.7) and (6.3) we have by
construction wφ ≤ vφ (6.8). But from (6.3) and (6.8) an easy argument gives
the desired result by the main IH. Concluding the proof for this subcase, this
direction and the case.

The case of [≥] is similar. �

We have shown that for every consistent set of formulae, there was a initial
state in our canonical forest such that all formulae in the set where satisfied
there. We finally need to show that our canonical forest can be generated by an
initial plausibility model and a dynamic belief revision protocol.

Lemma 6.3 (The canonical forest is isomorphic to a forest generated by an initial
plausibility model and a dynamic belief revision protocol).

Proof. We start by proving that the initial part of the canonical forest is isomor-
phic to a plausibility modelM (1). This proof follows by a classical Sahlqvist
correspondence argument (Blackburn et al. 2001, ch. 4). It remains to prove
that that there is a dynamic belief revision protocol p : W → Ptcl(L) such that
the forest generated by the initial part of the canonical forest according the
protocol p. Pick p such that p(w) = {σ | wσ ∈ HΣ}. We claim that a history
wσ ∈ HΣ iff hσ ∈ H(M, p) = Dom(H(M, p)). (The rest of the Lemma – i.e. the
clauses for the plausibility relation and for the valuation function – follows by
construction as the reader can check by inspecting clauses in Definition 6.2 and
Definition 6.7). The proof is by induction on the length of wσ. The base case is
immediate from (1). Now assume that that the equivalence holds for histories
of length n. Assume that wσφ is of length n+ 1 (2) and wσφ ∈ HΣ (3). It follows
by construction of the canonical model that wσ ∈ HΣ (4). But then by IH and(4)
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we have wσ ∈ H(M, p) (5). It follows by construction of p and (3) that σφ ∈ p
(6). But then by Definition 6.2 , (5) and (6) we have wσφ ∈ H(M, p) (7). The
other direction is similar. �

Theorem 6.4 (Completeness). Stbr is sound and strongly complete with respect
to the class of DoTL models generated by a sequence of protocol-based lexicographic
upgrade.

Proof. The proof follows from Truth Lemma and preceding Lemma by a stan-
dard argument Blackburn et al. (2001). �

6.2 More languages.

The preceding language is somewhat natural in terms of expressive power and
pleasant to work with due to its close connection to the model-theory. One
might be however interested in other languages. First of all do we have a direct
pseudo-reduction axiom for conditional belief. The answer is yes.

Proposition 6.5. The following axiom is sound with respect to the class of DoTL
models generated by a sequence of protocol-based lexicographic upgrade.

〈⇑ φ〉Bψi χ ↔ 〈⇑ φ〉>∧

[(E(φ ∧ 〈⇑ φ〉ψ) ∧ Bφ∧ 〈⇑φ〉ψi 〈⇑ φ〉χ)

∨ (¬E(φ ∧ 〈⇑ φ〉ψ) ∧ B〈⇑φ〉ψi 〈⇑ φ〉χ)]

(6)

It is also natural to be willing to work both with information sets and a plau-
sibility pre-order. Agents’ beliefs being then given as the best state (according
to the plausibility order) within the current information set. Both public an-
nouncement and soft update can in such a setting happily and fruitfully live
together. Here is an example of such a doxastic-epistemic language.

φ := p | ¬φ | φ ∨ φ | Kiφ | 〈≤i〉φ | 〈≥i〉φ | 〈∼i ∩ ≥i〉φ | E≡φ | BK
i φ |〈⇑ φ〉φ |

where i ranges over N, ψ over LDox(E,≥) and p over a countable set of proposi-
tion letters Prop. We make use of the usual shortcuts. In particular the dual of
the knowledge operator will be written K̂ and defined as usual.

By lack of space we are not introducing of the definition of doxastic-
epistemic models generated by a sequence of protocol-based lexicographic
upgrade, but the key idea is that information sets are never changed by lexico-
graphic upgrades, the rest of the definition is just as for purely doxastic models.
We turn to the new clauses of the truth definition.

Definition 6.8 (Truth definition). Assuming that the floor of our forests is finite,
the language are interpreted as previously. We display only the new cases. Let
Ki[h] = {h′ | h ∼i h′}.

H ,wh, g 
 Kiφ iff ∀h ′ such that wh ∼i h′ we haveH , h′, g 
 φ
H ,wh, g 
 〈∼i ∩ ≥i〉φ iff ∃h ′ such that h′ ≤i wh , wh ∼i h′

andH , h′, g 
 φ
H ,wh, g 
 BK

i φ iff ∀h ′ such that h′ ∈Min(Ki[wh],≤i)
we have H , h′, g 
 φ
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We now have a syntactic look at their behavior with respect to protocol-
based lexicographic update.

Proposition 6.6. The following axioms is sound with respect to the class of DoTL
models generated by a sequence of protocol-based lexicographic upgrade.

〈⇑ φ〉Kψ
i ↔ 〈⇑ φ〉> ∧ Ki(〈⇑ φ〉> → 〈⇑ φ〉ψ) (7)

〈⇑ φ〉〈∼i ∩ ≥i〉ψ ↔ 〈⇑ φ〉>∧

¬φ ∧ K̂i(φ ∧ 〈⇑ φ〉ψ)
¬φ ∧ 〈∼i ∩ ≥i〉(¬φ ∧ 〈⇑ φ〉ψ)
φ ∧ 〈∼i ∩ ≥i〉(φ ∧ 〈⇑ φ〉ψ)

(8)

〈⇑ φ〉BK
i ψ ↔ 〈⇑ φ〉>∧

[(K̂i(φ ∧ 〈⇑ φ〉>) ∧ Ki(〈∼i ∩ ≥i〉((φ ∧ 〈⇑ φ〉>)∧
[∼i ∩ ≥i]((φ ∧ 〈⇑ φ〉>) → 〈⇑ φ〉ψ))))
∨ (Ki(φ → ¬〈⇑ φ〉>) ∧ Ki(〈∼i ∩ ≥i〉((〈⇑ φ〉>)∧

[∼i ∩ ≥i](〈⇑ φ〉> → 〈⇑ φ〉ψ))))]

(9)

7 Conclusion

Agents that update their knowledge and revise their beliefs can behave very
differently over time. We have determined the special constraints that cap-
ture agents operating with the ‘local updates’ of dynamic doxastic logic. This
took the form of some representation theorems that state just when a general
doxastic temporal model is equivalent to the forest model generated by suc-
cessive priority updates of an initial doxastic model by a protocol sequence of
event models. We have also shown how these conditions can be defined in an
appropriate extended modal language, making it possible to reason formally
about agents engaged in such updates and revisions. Finally we have devel-
oped a systematic “protocol logic” of axiomatic completeness for constrained
revision processes, analogous to the purely epistemic theory of observation and
conversation protocols initiated in Benthem et al. (2008),

Our methods are like those of existing epistemic work, but the doxastic case
came with some interesting new notions.

As for open problems, the paper has indicated several technical issues along
the way, e.g., concerning the expressive power of different languages over our
models and their complexity effects (cf. Benthem and Pacuit (2006) for the
epistemic case). In particular, we have completely omitted issues of common
knowledge and common belief, even though these are known to generate com-
plications Benthem et al. (2006).

But from where we are standing now, we see several larger directions to
pursue:

• A comparison of our ‘constructive’ DDL-inspired approach to DTL uni-
verses with the more abstract AGM-style postulational approach of Bo-
nanno (2006),
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• A theory of variation for different sorts of agents with different abilities
and tendencies, as initiated in Liu (2008),

• An analysis of knowledge and belief dynamics in games Benthem (2007),
Dégremont and Zvesper (2007), Baltag et al. (2008)

• Connections with formal learning theory over epistemic-doxastic tempo-
ral universes (cf. Kelly (2008)).
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Abstract
There are two important ingredients in describing multi-agent intelligent
interaction: one concerns how agents’ epistemic states change over infor-
mational events; the other concerns what informational events can take
place in the course of agents’ interaction. As a version of Dynamic Epistemic
Logic, Public Announcement Logic (PAL) is suitable for describing the former
but less so for capturing the later. On the other hand, Epistemic Temporal
Logic (ETL) is suitable for the second but less so for the first. The purpose
of this paper is to merge PAL and ETL to provide a framework that well
represents both of the two aspects. To achieve this goal, we assign to each
point of a given epistemic model a set of sequences of public announce-
ments, which we call a protocol. Then, by successively applying model
relativizations based on the assigned protocols, we generate tree structures
of ETL that represent all possible evolutions of the original epistemic model
under the constraints represented by the protocol. We will study the logic
of public announcement over the class of ETL-models generated by the
method and provide a complete axiomatization.

1 Introduction

There are two important ingredients in describing multi-agent intelligent inter-
action. One concerns how agents’ epistemic states change over informational
events. As we can observe in the literature, informational events of the simplest
kind could affect agents’ knowledge in a very sensitive manner. Thus it is cru-
cial to get a good grasp on informational events and their epistemic effects. The
other aspect concerns what informational events can take place in the course of
agents’ interaction. For instance, our everyday conversations are (supposedly)
governed by a certain kind of “courtesy protocols”, such as “Do not blurt out
everything at the beginning,” “Let the others speak in turn”, etc. Also, puz-
zles and games have concrete rules on how players should communicate their
information. It is important to capture the kind of communication constraints
in order to properly deal with some of the main questions in the literature, e.g.
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whether or how epistemic states of our interest can be reached, etc.
Among the variety of multi-agent systems, Dynamic Epistemic Logic (DEL,

e.g. Baltag et al. (1998), Gerbrandy (1999), van Ditmarsch et al. (2007)) is
suitable for describing the first aspect, but less so for the second. For instance,
Public Announcement Logic (PAL, e.g. Plaza (1989), van Benthem (2002)), the
prime example of DEL, describes the dynamics of agents’ epistemic states
when true information is publicly announced. In PAL, the public announcement
of a true statement ϕ is captured by the relativization of epistemic models
to the set of states where ϕ is true. With such a framework, PAL models
a general aspect of informational events that can be suitably interpreted as
model relativization, such as observation, learning, etc. On the other hand, PAL
is based on the assumption that whatever is true can be publicly announced.
Thus it does not give us a way to represent communication constraints beyond
truth on true information obtainable through public announcements. This
feature of PAL is a general feature of all systems in DEL: although DEL provides
systematic methods for performing model transformations in order to represent
informational events, it does not adequately capture the constraints on what
informational events can happen.

In contrast, Epistemic Temporal Logic (ETL, e.g. Parikh and Ramanujam
(2003)) is suitable for the second aspect but less so for the first. ETL represents
temporal evolutions of agents’ epistemic states by branching-time tree struc-
tures consisting of sequences of events. In ETL-models, each branch of a given
node represents what sequence of events can take place after the temporal point
represented by the node. Thus ETL can straightforwardly capture constraints
present in various communications. However, ETL does not specify the epis-
temic effect of each event independently from given ETL-models. Instead, the
epistemic effects of events must be specified in each ETL-model by imposing
desired properties on agents’ indistinguishability relations. Thus ETL does
not provide a systematic way of representing informational events and their
epistemic effects as in the case of DEL.

The purpose of this paper is to merge PAL and ETL to provide a system
that captures well both of the two important aspects of multi-agent intelligent
interaction. To put the two frameworks together, we assign to each state in a
given epistemic model a set of sequences of public announcements, which we
call a protocol. Then we successively apply to the epistemic model sequences of
public announcements based on the assigned protocols. This will generate ETL-
tree structures that represent all possible evolutions of the original epistemic
states under the constraints represented by the protocol. The basic ideas of this
construction have been provided in van Benthem et al. (2008) with the restriction
that public announcements in the protocols must be built only from epistemic
formulas. The current paper generalizes the original method to remove the
restriction.

After presenting the merged framework, we will study the logic of public
announcement over the class of ETL-models generated by the above method.
The language of our logic, which we call TAPAL,1 will include the operators
that quantify over public announcements, e.g. “There is some public announce-
ment after which. . . ”, “There is some sequence of public announcements after

1The name is given to indicate that the system merges Temporal Public Announcement Logic,
TPAL, in van Benthem et al. (2008) and Arbitrary Public Announcement Logic, APAL, in Balbiani et al.
(2008).
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which. . . ”, etc. as well as the standard public announcement operators, “The
public announcement that ϕ can be made after which. . . ”. We include these
“generalized” operators, since they enable us to express the question whether
there are some (sequence of) public announcements after which epistemic states
of interest will be reached. That is, with the generalized operators, we can
formulate such a reachability question, which motivated our protocol-based
semantic framework in the first place. Furthermore, the generalized operators
of the kind have been considered in the original setting of PAL by Balbiani et al.
(2008). Our study of TAPAL will show that the ideas in Balbiani et al. (2008)
can be combined with our new semantic framework.

We proceed as follows. We start out by briefly reviewing the systems, PAL
and ETL (§2). Next we present the method of generating ETL-models from
epistemic models by assigning a protocol to each state (§3) and define the logic
TAPAL over the class of ETL-models generated by the method (§4). Then after
studying semantic results in TAPAL (§5), we will provide the axiomatization
TAPAL (§6) and prove the soundness and completeness of TAPAL (§7, 8). We
conclude the paper by discussing some open problems (§9).

2 PAL and ETL

We start by reviewing PAL and ETL. We only give the bare necessities for
our presentation. For further technical details, the readers are referred to the
sources mentioned below. FixA as a finite set of agents and At, as a countable
set of propositional letters.

2.1 PAL

Definition 2.1. Language of PAL The language Lpal of PAL is inductively de-
fined as follows:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | 〈i〉ϕ | 〈!ϕ〉ϕ

where p ∈ At and i ∈ A. The duals, [i] and [!ϕ], of 〈i〉 and 〈!ϕ〉, and the other
boolean operators are defined in the standard way. Lel is the fragment of Lpal
without the operator 〈!ϕ〉.

The intended readings of 〈i〉ϕ and 〈!ψ〉ϕ are respectively “i considers ϕ possi-
ble” and “The public announcement that ψ can be made after which ϕ.” The
intended readings of [i]ϕ and [!ψ]ϕ are respectively “i knows thatϕ” and “After
the public announcement that ψ, ϕ.”

Definition 2.2. Epistemic Models An epistemic model is a triple (W,∼,V), where
(i) W is a nonempty set, (ii) ∼: A → ℘(W ×W), and (iii) V : At→ ℘(W). When
(w, v) ∈∼ (i), we write w ∼i v by convention.

Definition 2.3. Truth Let M = (W,∼,V) be an epistemic model. The truth of
ϕ ∈ Lpal at w in W is inductively defined as follows:



Tomohiro Hoshi 145

M,w |= p iff w ∈ V(p) (with p ∈ At)
M,w |= ¬ϕ iff M,w 6|= ϕ
M,w |= ϕ ∧ ψ iff M,w |= ϕ andM,w |= ψ
M,w |= 〈i〉ϕ iff ∃w′ ∈W : (w,w′) ∈ ∼ (i) andM,w′ |= ϕ
M,w |= 〈!ϕ〉ψ iff M,w |= ϕ andM|ϕ,w |= ψ

whereM|ϕ = (W|ϕ,∼ |ϕ,V|ϕ) is defined by:

W|ϕ = {v ∈W | M, v |= ϕ}
∼ |ϕ(i) = ∼ (i) ∩ (W|ϕ ×W|ϕ)
V|ϕ(p) = V(p) ∩W|ϕ.

In the framework of PAL, Balbiani et al. (2008) consider the operator ♦,
where the intended reading of ♦ϕ is “Some public announcement can be made
after which ϕ.” The semantics of the operator is given by:

M,w |= ♦ϕ iff ∃ψ ∈ Lpal :M,w |= 〈!ψ〉ϕ.

The extension of PAL with the operator is denoted by APAL. The language of
APAL is denoted by Lapal.

2.2 ETL

There are different languages for ETL (See e.g. Fagin et al. (1995)). We present
the minimal language that is needed for our presentation. Fix the set Σ of
events. The language Letl extends Lel (as defined in Definition 2.1) by the
operator 〈e〉 where e ∈ Σ, ♦, and ♦∗. The intended readings of 〈e〉ϕ, ♦ϕ, and
♦∗ϕ are respectively “The event e can happen after which ϕ.”, “Some event can
happen after which ϕ” and “Some sequence of events can happen after which
ϕ.” The duals are defined and read in the standard way.

We write Σ∗ for the set of finite sequences of elements in Σ. A history is an
element in Σ∗. Given h ∈ Σ∗ and e ∈ Σ, we write he for the history h followed
by the event e. Also given h, h′ ∈ Σ∗, we write h � h′ if h is a finite prefix of h′.
If h ≺ h′ and h , h′, we write h ≺ h′. We denote the length of a given sequence
σ by len(σ). Also we denote the empty sequence by λ.

Definition 2.4. ETL Models An ETL-model is a tuple (H,∼,V) where (i) H is a
subset of Σ∗ that is closed under finite prefixes,2 (ii) ∼: A → ℘(H × H), and
(iii) V : At→ ℘(H).

Definition 2.5. Truth LetH = (H,∼,V) be an ETL-model. The truth definitions
of the operators 〈e〉, ♦, and ♦∗ are given as follows. (The definitions of the other
operators are similar to the ones given in Definition 2.3.)

H , h |= 〈e〉ϕ iff he ∈ H andH , he |= ϕ
H , h |= ♦ϕ iff ∃e ∈ Σ : he ∈ H andH , he |= ϕ
H , h |= ♦∗ϕ iff ∃h′ ∈ Σ∗ : hh′ ∈ H andH , hh′ |= ϕ

2I.e. for every h, g, if h ∈ H and g ≺ h, then g ∈ H.
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3 PAL-Generated ETL-Modes

To provide the desired semantic framework, we first assign to each state in
a given epistemic model a set of sequences of public announcements, which
represents the set of “permissible” sequences of announcements. We call those
assigned sets protocols.

Definition 3.1. PAL-Protocols Let Σpal be the set of public announcements !ϕ
where ϕ ∈ Lpal. A protocol is a subset of the set of finite sequences of public
announcements in Σpal that is closed under finite prefix. We denote the set of
protocols by Ptcl. A state-dependent protocol (abbreviated as sd-protocol) p on
an epistemic modelM is a function from Dom(M) to Ptcl. We denote the class
of sd-protocols by PAL.

Given an epistemic model M and an sd-protocol p on M, we construct from
M the ETL-model that represents all the possible temporal evolutions of the
epistemic state given the protocol information encoded in p. The basic intuition
of the construction can be illustrated by the following example. LetM be an
epistemic model consisting of the three points, w, v,u, indistinguishable3 for an
agent i, where p is true only at w, v and q is true only at w. Let p be an sd-protocol
onM such that p(w) = {!p![i]q}, p(v) = {!p![i]q, !¬q}, p(u) = {!p, !¬q!>}. The ETL-
model we construct fromM and p can be visualized as in Figure 1. The basic
procedure to construct the model is to (i) check what is permitted by p as a
public announcement at each stage, (ii) create a new node if what is permitted
is in fact true at the stage and (iii) carry over the indistinguishability relation
in the previous stage for the new nodes. Thus, we start from the first stageM
(indicated by the solid line enclosing the three points). In all states inM, !p is
assigned by p. Since p is true at w, v, we create the nodes w!p and v!p, while we
do not create the node “u!p” since p is false at u. Also we connect w!p and v!p
by the indistinguishability relation (indicated by the horizontal dashed line),
since they are indistinguishable inM. Note that the created nodes constitute
the model obtained by applying !p to M, i.e. the model M|p. In this second
stage (indicated by the circle enclosing the two nodes), ![i]q is permitted and
true at both nodes. Thus we produces the third stage consisting of w!p![i]p and
v!p![i]p. Similarly the nodes v!¬q and u!¬q are created since ¬q are permitted
and true at v,u while w!¬q is not, since !¬q is neither permitted nor true at u.
Furthermore, the node u!¬q!> is created but the node “v!¬q!>” is not present,
since !> is only permitted at u!¬q though > is true.

Constructing such ETL-models from epistemic models by sd-protocols, we
now interpret the operators 〈!ϕ〉 as the ETL-operators. That is, given a public
announcement !ϕ, we consider it as an event in ETL and the operator 〈!ϕ〉 as an
ETL-operator. This will give us the following new semantic definition for the
public announcement operators:

TPAL H , h |= 〈!ϕ〉ψ iff h!ϕ is inH and H , h!ϕ |= ψ.

Thus, when we denote the above model by H , we will have, for instance,
H ,w |= 〈!p〉[i]p,H ,u!¬q |= 〈!>〉>, etc. The generalized operators, ♦ and ♦∗, will

3To simplify our explication, we assume that the indistinguishability relation is an equivalence
relation in the examples below. However, our framework does not assume this in general.
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Figure 1: Basic Construction of PAL-Generated ETL-Models

be also redefined accordingly.

However, this illustration gives only a partial story. Note that the sd-protocol
p in the above example does not contain formulas with public announcement
operators. Once we have such formulas in protocols, we cannot simply gen-
erate ETL-trees straight up from the bottom epistemic model, as we did in the
above example. To see the problem, suppose a protocol p allows the formula
〈!A〉〈!B〉> to be announced at w. To determine whether the formula is indeed
announceable, we need to know whether the formula is true at w. However,
to determine whether the formula is true at w, we need to know in advance
whether A is true at w and whether p allows !A at w. Moreover, we need to
know whether B is true at w!A and whether p allows !B after !A at w (if the
node w!A is generated). Otherwise, we cannot determine the announceability
of 〈!A〉〈!B〉>.

This example illustrates the following points. First, if ϕ contains announce-
ment operators, thus making !ϕ a “higher-order” public announcement about
the “lower-order” public announcements contained in !ϕ, then we need to
know in advance about the announceability of the lower-order announcements
in order to determine the announceability of !ϕ. Second, !ϕ may “refer” to
lower-order public announcements after some sequence of public announce-
ments. In such cases, we need to know in advance the announceability of the
relevant sequences of announcements in order to determine the announceabil-
ity of !ϕ. That is, we need to know the structure of the tree above the current
node at least concerning the lower-order announcements mentioned inϕ, while
we only needed to know the structure of the current stage in the above example
of tree constructions.

Therefore, we need to generalize our construction in the above example to
take into account higher order announcements. The key idea is to construct
ETL-structures by induction on the orders of announcements occurring in the
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announcement sequences. Having an epistemic modelM and a protocol p, we
first construct ETL-trees fromM by the above construction method, based on
the initial segments of the sequences given by p that consist only of epistemic
formulas. That is, we begin the construction by dealing with only the “first-
order” announcements. Then we add nodes to the resulted trees, based on
the second-order announcements that refer to the first-order announcements.
This second construction process can be carried out, since the truth values
of the formulas we need to know to make the second-order announcements,
i.e. the ones of first-order announcements, will have been determined at this
point after the first-order construction process. We then continue this way by
constructing nodes of second-order announcements after nodes for first-order
announcements, until all first- and second-order announcements are taken care
of. Then we next goes on to the third-order announcement process and continue
similarly. And so forth. Below we make this idea more precise.

Definition 3.2. Order of Formulas The order o(!ϕ) of a public announcement
!ϕ ∈ Σpal is defined inductively as follows:

• o(!p) = 1 with p ∈ At

• o(!(ϕ ∧ ψ)) = max(o(!ϕ), o(!ψ))

• o(!¬ϕ) = o(!ϕ)

• o(![i]ϕ) = o(!ϕ)

• o(!〈!ϕ〉ψ) = max(o(!ϕ) + 1, o(!ψ))

For example, o(!(〈!p〉>)) = 2, o(!(〈!q〉〈!〈!p〉>〉>)) = 3 etc.4 The order of a given
public announcement indicates the greatest number of nested “!” operators.
Given a sequence σ = ϕ0 . . . ϕn−1 ∈ Σpal, we define the order o(σ) of σ by

o(σ) = (o(!ϕ0), . . . o(!ϕn−1)).

We denote the set of the orders of sequences by O.

Definition 3.3. Lexicographic Ordering on Orders We define the ordering �
on the set of orders O lexicographically as follows. For every pair of sequences
in Σpal, σ = σ0 . . . σn−1 and τ = τ0 . . . τm−1, o(σ)� o(τ) if

1. σ ≺ τ (σ is a proper initial segment of τ as defined above) or

2. There is some i ∈N such that

• for all j ∈N, j < i→ o(σ j) = o(τ j)), and

• o(σi) < o(τi).

Definition 3.4. Union of Models Let F = {Hk}k∈I be a family of ETL-models
Hk = (Hk,∼k,Vk). The union

⋃
k∈IHk of ETL-models in F is a triple (H,∼,V):

• H =
⋃

k∈I Hk

• ∼ (i) =
⋃

k∈I ∼k (i)
4Parentheses are added for clarification here. We will use additional parentheses below when

we need clarification or emphasis.
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Figure 2: PAL-Generated ETL-Models

• For all p ∈ At, V(p) =
⋃

k∈I Vk(p).

Now, as we mentioned above, given an ETL-model, we interpret the truth of
formulas ofLpal in ETL by taking the operator 〈!ϕ〉 as the labeled future operator
in ETL. The semantic definition for the 〈!ϕ〉 is as given in TPAL above. The
definitions for other operators are as given in Definition 2.5.

Given a sequence σ, we denote by σ(k) (0 ≤ k ≤ m) the initial segment of σ of
length k and by σk (1 ≤ k ≤ m) the k-th element of σ.

Definition 3.5. σ-Generated Models LetM = (W,∼,V) and p be an epistemic
model and an sd-protocol onM respectively. For every sequence σ ∈ Σ∗pal and
every order x ∈ O, we define the σ-generated modelHσ,p = (Hσ,p,∼σ,p,Vσ,p) and the
order-x-fragment modelHp

x = (Hp
x ,∼

p
x ,V

p
x ) by simultaneous induction as follows:

1. Hλ,p =M,Hp
λ =M

2. Hp
o(τ) =

⋃
{H

τ′,p
| o(τ′)� o(τ)}

3. Hσ(n+1),p = Hp
o(σ(n+1))

∪ {wσ(n+1) | H
p
o(σ(n+1))

,wσ(n) |= σn+1 and σ(n+1) ∈ p(w)}

4. (wτ, vτ′) ∈ ∼σ(n+1),p (i) iff (w, v) ∈ ∼ (i) and τ = τ′

5. Vσ(n+1),p(p) = {wτ ∈ Hσ(n+1),p | w ∈ V(p)}

Definition 3.6. PAL-Generated ETL-Models An ETL-model Forest(M,p) gener-
ated from an epistemic modelM = (W,∼,V) based on a sd-protocol p is defined
by:

Forest(M,p) :=
⋃
w∈W

⋃
σ∈p(w)

H
σ,p

We call a PAL-generated ETL-model an ETL-model generated this way. We denote
by F(PAL) the class of PAL-generated ETL-models.

Example 1. Example Let M be an epistemic model consisting of two indis-
tinguishable points (for an agent) w, v, in which p is true at both w and v and
q is true only at w. Define a protocol p so that p(w) = {!p!q, !〈!p〉〈!q〉>} and
p(v) = {!p!q, !〈!p〉〈!q〉>}.

Figure 2 illustrate the construction process. The model on the left is obtained
by calculating the first-order public announcement. The model on the right is
obtained by calculating the second-order public announcements. The model
on the right is the ETL-model generated fromM by p as specified.
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4 Logic: TAPAL

Definition 4.1. Language of TAPAL The languageLtapal of TAPAL extendsLpal
with the operators ♦ and ♦∗. The formulas in Ltapal is inductively defined by:

ϕ ::= > | p | ¬ϕ | ϕ ∧ ϕ | 〈i〉ϕ | 〈!θ〉ϕ | ♦ϕ |♦∗ϕ

where p ∈ At, i ∈ A and θ ∈ Lpal. The duals of the modal operators, � and �∗,
are defined in the standard way. The other operators are defined as mentioned
in Definition 2.1. We call TPAL the fragment without ♦ and ♦∗, and denote the
language by Ltpal. Note that Ltpal = Lpal.

The intended interpretations of ♦ϕ and �ϕ are “Some public announcement
can be made after which ϕ is true” and “After every public announcement, ϕ
is true.” respectively. Also the intended interpretations of ♦∗ϕ and �∗ϕ are
“Some sequences of public announcement can be made after which ϕ is true.”
and “After every sequence of public announcement, ϕ is true.” respectively.
(Sequences here are possibly empty.)

Definition 4.2. Truth Given an ETL-model H = (H,∼,V) ∈ F(PAL) and a
history h ∈ H, the truth of a TAPAL-formula ϕ at h is inductively defined as
follows. We only give the definitions for 〈!ϕ〉, ♦, and ♦∗. The other definitions
are as given in Definition 2.5:

H , h |= 〈!ψ〉ϕ iff h!ψ ∈ H andH , h!ψ |= ϕ
H , h |= ♦ϕ iff ∃!ψ ∈ Σpal : h!ψ ∈ H andH , h!ψ |= ϕ
H , h |= ♦∗ϕ iff ∃σ ∈ Σ∗pal : hσ ∈ H andH , hσ |= ϕ

Consistency, satisfiability, validity etc. are defined in a familiar way.

Some remarks are in order concerning the language of TAPAL. First note that
sd-protocols defined in Definition 3.1 are restricted to the PAL-formulas. This is
to make the definition of the generalized operators ♦ and ♦∗ well-defined, as in
the case of APAL in Balbiani et al. (2008). For suppose all TAPAL formulas are
allowed in sd-protocols. Assume further that �ϕ ∈ p(w) for some w in a given
model. By the truth definition in Definition 4.2, to determine the truth value
of �ϕ, we need to know the truth value of �ϕ. Second, given this restriction
on sd-protocols, we also needed to defined the public announcement operators
(Definition 4.1) to be formed only from the formulas in PAL. By this, we do not
allow formulas such as 〈!♦ψ〉ϕ, which is in fact allowed in APAL.

5 Semantic Results

Next we see some semantic features of the system TAPAL. First, we see some
basic results of TAPAL in comparison with those in PAL and APAL. Then, we
consider the results concerning two kinds of model transformations, which we
call normalization and grafting.
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5.1 Semantic Comparison

The first result states that our semantics framework generalizes that of PAL. If
we permit all formulas to be publicly announced, then the truth of a formula
in our framework corresponds to that in the framework of PAL.

Proposition 1. LetM be an epistemic model. Let ppal be the sd-protocol onM such
that for every w inM, ppal(w) = Σ∗pal. Then, for any formula ϕ in Lapal,

M,w |= ϕ iff Forest(M,ppal),w |= ϕ

Proof. By a straightforward induction on ϕ. �

Next we give a semantic comparison between the public announcement
operators 〈!ϕ〉 in TPAL (or TAPAL) and that in PAL (or APAL).

Proposition 2 (Public Announcement Operators). The following properties hold
in PAL but not in TPAL.

(A) |= 〈!α〉〈!β〉ϕ↔ 〈!〈!α〉β〉ϕ.

(B) |= 〈!ϕ〉 ↔ ϕ

For PAL, A and B follows straightforwardly from the semantic definition of
〈!ϕ〉, as given Definition 2.3. The readers are invited to give counterexamples
against A and B in TAPAL.

The validity of A in PAL shows that sequences of public announcements
are identified with some single announcements in PAL. On the other hand,
it is invalid in TAPAL. Even if it allows given sequence of announcements,
protocols may not allow the corresponding single announcements. The validity
of B in PAL reflects the assumption that every true formula is announceable.
TAPAL removes this assumption and invalidates the principle, while it assumes
the truthfulness of announcements and validates the left-to-right direction.
Because the invalidity of the principle, the standard reduction axioms in PAL
do not hold. See the axiomatization of TAPAL in §6.

Next consider the following properties:

1. |= �ϕ→ ϕ 2. |= �ϕ→ ��ϕ
3. |= �♦ϕ→ ♦�ϕ 4. |= ♦�ϕ→ �♦ϕ

Proposition 3. Generalized Operators

(A) All of the properties 1-4 hold in APAL.

(B) None of the properties 1-4 holds in TAPAL.

(C) The properties 1-2 hold, but 3 and 4 don’t in TAPAL, when ♦ and � are replaced
with ♦∗ and �∗ respectively.

Proof. The proofs of the properties A1-4 in APAL are in Balbiani et al. (2008).
We only do B3-4 and C3-4. The counterexamples are as follows:
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B3 Let M,w |= p. Define p(w) = {!>, !>!>, !>!p, !>!p!>}. The model
H = Forest(M,p) can be represented by the figure below. Here we
have H ,w!>!p |= 〈!>〉>, but H ,w!>!> 6|= 〈!>〉>. Therefore, we have
H ,w |= �♦〈!>〉>, butH ,w |= �♦¬〈!>〉>, i.e. H ,w 6|= ♦�〈!>〉>.

w
...

...

w!>

w!>!>

w!>!p w!>!p!>

- �
�
���

@
@
@@R

-

B4 In the above model, H ,w!>!p |= �>, which yields H ,w!> |= ♦�>, but
H ,w!>!> 6|= ♦>, which yieldsH ,w!> 6|= �♦>.

C3 Let M,w |= p. Define p(w) = {!>, !>!p, !>!p!>, !>!p!>!p, ...}. Let H be
Forest(M,p). We claim that, for every h in H , there exists σ, σ′ ∈ p(w)
such thatH , hσ |= 〈!>〉> andH , hσ′ 6|= 〈!>〉>. To see this, note that every
h ends with either > or p. If h ends with !>, then put σ =!p and σ′ = ∅; if h
ends with !p, then put σ = ∅ and σ′ =!>. This fact impliesH ,w |= �♦〈!>〉>
andH ,w |= �♦¬〈!>〉>. Thus, this model is a counterexample against 3.

C4 The models for B4 similarly works. �

Even though formulas in TAPAL and APAL behave quite differently, there
is some property they share. That is, the truth of the formulas at most depend
on the current and future epistemic states, not on the past. We will state this fact
formally in TAPAL. Let p be an sd-protocol onM. Also letH = Forest(M,p) =
(H,∼,V) and σ ∈ Σ∗pal.

Definition 5.1. Epistemic Model after σ The epistemic model after σ inM based on
p,Mp,σ = (Wp,σ,∼p,σ,Vp,σ), is defined by:

• Wp,σ := {wσ | wσ ∈ H}

• ∼
p,σ (i) := ∼ (i) ∩ (Wp,σ

×Wp,σ)

• Vp,σ(p) := V(p) ∩Wp,σ

Definition 5.2. Protocol after σ The sd-protocol after σ onMp,σ, pσ<, so that, for
all wσ inMp,σ with w inM,

pσ<(wσ) = {τ | wστ in Forest(M,p)}.

Definition 5.3. ETL-Model after σ The ETL-model after σ in H = Forest(M,p),
H

σ≤, is defined by:
H

σ≤ := Forest(Mp,σ,pσ<)

Proposition 4. LetH = Forest(M,p) ∈ F(PAL). Also let w be inM and σ in Σpal.
Then, for every ϕ ∈ Ltapal,

H ,wσ |= ϕ ⇔ H
σ≤,wσ |= ϕ.

/
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Proof. Straightforward induction on ϕ. �

Furthermore, the expressive power of ♦ and ♦∗ renders the systems non-
compact, as in the case of APAL (see Balbiani et al. (2008)).

Proposition 5. TAPAL is not compact. /

Proof. Straightforward by considering the set Γ = {¬〈!θ〉p|θ ∈ Ltpal}∪{♦p} or the
set
⋃
∞

i=0 Γi ∪ {♦∗p}, where Γi = {¬〈!θ0〉...〈!θi〉p|θ j ∈ Ltpal (0 ≤ j ≤ i)}. �

5.2 Model Normalization

Next, we consider a model transformation, which we call normalization. Let
ϕ0, ϕ1, . . . and >0,>1, . . . be a pair of (possibly infinite) sequences of TPAL-
formulas such that (i) >i is a tautologous formula in TPAL and (ii) ϕi , ϕ j and
>i , > j for all i, j ≥ 0.

Definition 5.4. Normalization of Sequences Given a sequence σ ∈ Σ∗pal, we
define σ[!>0/!ϕ0, !>1/!ϕ1, . . . ] to be the result of replacing all occurrences of !ϕi
in σ with !>i for all i.

Definition 5.5. Normalization of Models Let p be an sd-protocol onM. Also
let H = Forest(M,p) = (H,∼,V). Define H[!>0/!ϕ0, !>1/!ϕ1, . . . ] = (H′,∼′,V′)
by:

• H′ := {h[!>0/!ϕ0, !>1/!ϕ1, . . . ] | h ∈ H}

• (h[!>0/!ϕ0, !>1/!ϕ1, . . . ], g[!>0/!ϕ0, !>1/!ϕ1, . . . ]) ∈∼′ (i) iff (h, g) ∈∼ (i)

• V′(p) := {h[!>0/!ϕ0, !>1/!ϕ1, . . . ], | h ∈ V(p)}

Now note that, given thatH is in F(PAL),H[!>0/!ϕ0, !>1/!ϕ1, . . . ] is also in
F(PAL). Indeed, when hϕi is inH , h!>i must be inH[!>0/!ϕ0, !>1/!ϕ1, . . . ] since
the tautologous formula !>i is guaranteed to be true at h. Also if (h, g) ∈∼ (i),
the corresponding nodes for h and g will be indistinguishable by construction.
We state this fact more precisely as follows.

Definition 5.6. Protocol above σ in H Let H = Forest(M,p) ∈ F(PAL). Let
σ ∈ Σ∗pal. Then define pH ,σ< onMp,σ so that

pH ,σ<(wσ) = {τ | wστ inH}

Observation 1. Let ϕ0, ϕ1, . . . be a sequence of formulas in Lpal and >0,>1, . . . ,
a sequence of tautologous formulas in Lpal. Suppose, for every i, j ≤ 0,
if i , j, then ϕi , ϕ j and >i , > j. Let H = Forest(M,p). Put G =
H[!ϕ0/!>0, !ϕ1/!>1, . . . ].

G = Forest(M,pG,λ)

where λ is the empty sequence. /

Now we prove a distinct property of PAL-generated ETL-models. Given a
formula ϕ ∈ Ltapal, even if we replace the announcements in a given sd-protocol
that do not occur in ϕ with “new” tautologous formulas, we can preserve the
truth of ϕ. To do this, we need some definitions.



154 Public Announcement Logic with Protocol Constraints

Definition 5.7. Announcement Occurrence Set The announcement occurrence set
AOC(ϕ) of a TAPAL-formula ϕ is defined inductively as follows:

• AOC(p) = ∅with p ∈ P

• AOC(¬ϕ) = AOC(ϕ)

• AOC(ϕ ∧ ψ) = AOC(ϕ) ∪ AOC(ψ)

• AOC([i]ϕ) = AOC(ϕ)

• AOC(〈!ψ〉ϕ) = {ψ} ∪ AOC(ψ) ∪ AOC(ϕ)

• AOC(♦ϕ) = AOC(ϕ)

• AOC(♦∗ϕ) = AOC(ϕ)

Given a sequence σ =!ϕ1 . . .!ϕn ∈ Σ
∗

pal, we define

AOC(σ) := AOC(ϕ1) ∪ · · · ∪ AOC(ϕn).

Furthermore, given an sd-PAL-protocol p onM = (W,∼,V), we define

AOC(p) :=
⋃

{σ|∃w∈W:σ∈p(w)}

AOC(σ).

Proposition 6 (Normalization). Let H = Forest(M,p) ∈ F(PAL). Let X be a
finite subset of Lpal. Furthermore, let ϕ0, ϕ1 . . . be an enumeration of the formulas in
Lpal\X without repetition, and >0,>1, . . . be an enumeration of tautologous formulas
in Lpal\X without repetition. Then, for every h and TAPAL-formula ϕ such that
AOC(ϕ) ⊆ X,

H , h |= ϕ ⇔ H[!>0/!ϕ0, !>1/!ϕ1, . . . ], h[!>0/!ϕ0, !>1/!ϕ1, . . . ] |= ϕ

/

Proof. By a straightforward induction on ϕ. We only do the case for 〈!A〉. Let
h = wσwith w inM and σ ∈ p(w). First, assume ϕ is of the form 〈!A〉ψ. Assume
LHS. Then we have Forest(M,p), h!A |= ψ. Since AOC(ψ) ⊆ AOC(〈!A〉ψ) ⊆ X,
we can by IH obtain

H[!>0/!ϕ0, !>1/!ϕ1, . . . ], h!A[!>0/!ϕ0, !>1/!ϕ1, . . . ] |= ψ.

Since A ∈ AOC(〈!A〉ψ), we have

H[!>0/!ϕ0, !>1/!ϕ1, . . . ], h[!>0/!ϕ0, !>1/!ϕ1, . . . ]!A |= ψ.

Therefore, we have H[!>0/!ϕ0, !>1/!ϕ1, . . . ], h[!>0/!ϕ0, !>1/!ϕ1, . . . ] |= 〈!A〉ψ.
�
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5.3 Grafting

Next, we introduce another model transformation, which we call grafting. We
will need the results concerning the model transformation, when we prove the
soundness of the axiomatic system for TAPAL. Let H = Forest(M,p) = (H,∼
,V) ∈ F(PAL). Let σ, τ be a pair of finite sequences in Σ∗pal and>0 a tautologous
formula in Lpal such that >0 < AOC(p).

Definition 5.8. Grafting The modelH [στ7→σ!>0] obtained by graftingH with respect
to στ 7→ σ!>0 is a triple (H[στ7→σ!>0],∼[στ7→σ!>0],V[στ7→σ!>0]) defined by:

• H[στ7→σ!>0] := H ∪ {wσ!>0υ | ∃υ ∈ PAL∗ : wστυ ∈ H and w inM}

• (h, h′) ∈∼[στ7→σ!>] (i) iff

– (h, h′) ∈∼ (i), or

– h = wσ!>0υ, h′ = vσ!>0υ′ and (στυ, vστυ′) ∈∼ (i).

• h ∈ V[στ7→σ!>0](p) iff

– h ∈ V(p)

– h = wσ!>0υ and wστυ ∈ V(p).

The idea of grafting is as follows. Given a sequence στ, we “take branches”
in the ETL-model above στ in H , i.e. Hστ≤. Then we concatenate the “new”
tautologous formula !>0 at the bottom of the branches and “graft” the branches
to the corresponding nodes of the form wσwith w in the base epistemic model.

Observation 2. Let G = H [στ7→σ!>0]. Then

G = Forest(M,pG,λ<)

where λ is the empty sequence. /

Proof. By the similar reasoning given to obtain Observation 1. �

Proposition 7 (Preservation at Grafted Branches). For every ϕ ∈ Ltapal,

H ,wστ |= ϕ ⇔ H
[στ7→σ!>0],wσ!>0 |= ϕ

/

Proof. The proof is straightforward by Proposition 4 and the construction of
H

[στ7→σ!>0]. �

The last result gives one truth-preservation result in grafted models, i.e. the
truth of formulas is preserved at the bottom of newly grafted branches. How-
ever, unfortunately, grafting does not in general preserve the truth of formulas.
We must be careful when transforming models by grafting to preserve the truth
of formulas of our interest. We will see more on this below when we prove the
soundness theorem of our axiomatization.
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6 Axiomatization

Now we present the complete axiomatization for TAPAL. Let ♦n and �n be the
sequences of n ♦’s and �’s respectively. When n = 0, ♦n and �n denote ϕ. Also
given σ = σ0 . . . σn−1 ∈ Σ

∗

pal, denote the sequences 〈σ0〉 . . . 〈σn−1〉 and [σ0] . . . [σn−1]
by 〈σ〉 and [σ] respectively. When n = 0, 〈σ〉ϕ and [σ]ϕ denote ϕ. Now we can
present the axiomatization of TAPAL. Finally, we define the complexity |ϕ| of a
TAPAL-formula ϕ by:

• |p| = 0 with p propositional.

• |¬ϕ| = |♦ϕ| = |♦∗ϕ| = |ϕ| + 1

• |ϕ ∧ ψ| = |〈!ϕ〉ψ| = |ϕ| + |ψ| + 1.

Definition 6.1. Axiomatization of TAPAL The axiomatization TAPAL of TAPAL
consists of the following axiom schemas and inference rules:

Axiom Schema

PC Propositional validities

M1 [i](ϕ→ ψ)→ ([i]ϕ→ [i]ψ)

M2 [!θ](ϕ→ ψ)→ ([!θ]ϕ→ [!θ]ψ)

R1 〈!ψ〉p↔ 〈!ψ〉> ∧ p

R2 〈!ψ〉¬ϕ↔ 〈!ψ〉> ∧ ¬〈!ψ〉ϕ

R3 〈!ψ〉[i]ϕ↔ 〈!ψ〉> ∧ [i](〈!ψ〉> → 〈!ψ〉ϕ)

A1 〈!ϕ〉> → ϕ

A2 〈!χ〉ϕ→ ♦ϕ for any χ ∈ Lpal

A3 ♦∗ϕ↔ ϕ ∨ ♦♦∗ϕ

Inference Rules

[i]-Nec If ` ϕ, then ` [i]ϕ.

[!A]-Nec If ` ϕ, then ` [!A]ϕ where !A ∈ Σpal

R(�) If ` ϕ→ [σ][!>0]ψ, then ` ϕ→ [σ]�ψ, where >0 is a tautologous formula
in Lpal such that >0 < AOC(ϕ) ∪ AOC(σ) ∪ AOC(ψ).

R(�∗) If ` ϕ → [σ]�kψ for every k such that 0 ≤ k ≤ |ϕ| + 1, then ` ϕ →
[!A1] . . . [!An]�∗ψ.

First, note that R1-3 are similar to the reduction axioms in PAL. The only
difference is that they have 〈!ψ〉> in the place of ψ in the reduction axioms (as
mentioned in Proposition 2). Second, A1 implies that public announcements
are truthful. Since our framework lifts the assumption in PAL that whatever
is true is announceable, the other direction of A1 does not obtain. Third, the
purpose of A2 is clear given the semantic definitions. Fourth, A3 plays the role
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of Fixed Point Axiom as in PDL (See e.g. Blackburn et al. (2001)), as can be seen
by their schematic similarity.

Fifth, we will be able to show below (Corollary 1) that R(�) is in fact equiv-
alent to the following sound rule:

R′(�) If ` ϕ→ [σ][!p]ψ where p does not occur in ϕ, σ, or ψ, then ` ϕ→ [σ]�ψ.

This form of the rule clarifies what the rule R(�) is for. Observe the similarity
between R′(�) and the first-order rule:

FOQ If ` ϕ→ ψ with no occurrence of x in ϕ, then ` ϕ→ ∀xψ.

In fact, as we will see below in the completeness proof of TAPAL, the use of R(�)
is very similar to the use of this first-order rule in the completeness proof of
first-order logic. Nonetheless, we chose R(�) instead of R′(�), since it extracts
from the property of PAL-generated ETL-models that they preserve truth over
model normalization. More on this in §7.1.

Finally, to see the role of R(�∗), consider the following rule:

R′(�∗) If ` ϕ→ [σ]�nψ for all n ≥ 0, then ` ϕ→ [σ]�∗ψ.

Given the semantic definition, it is straightforward to see that this infinitary
rule is sound. The idea of our rule R(�∗) is that we can extract a bound on n in
the infinitary rule from the complexity of the formula ϕ. (We will in fact use a
more complicated notion of complexity, but it is bounded by the above simple
notion of complexity. More on this in §7.2.)

7 Soundness

Now we show the soundness of TAPAL. The soundness of the axiom schemas
and the necessitation rules are straightforward. Thus leaving the details of
the proofs to the reader, we go on to show that R(�) and R(�∗) are sound.
For our proofs, the model transformations investigated in Section 5.2 and 5.3,
normalization and grafting will be used as essential tools.

7.1 The Soundness of R(�)

The idea of the proof can be sketched as follows. Suppose that ϕ∧〈σ〉♦ψ is true
at some h inH . Then, ϕ is true at h. Also there is some !θ such that hσ!θ is inH
and ψ is true at hσ!θ. This situation is visualized in the left figure in Figure 3.
We modify the modelH by (i) taking the subtree starting from hσ!θ (the node
labeled with ψ in the figure), (ii) obtaining the subtree with a new branch !>0
attached to its bottom, (iii) and grafting the new subtree to hσ and the nodes
connected to hσ by indistinguishability relations in which !θ can happen. Let
us denote the model obtained this way by H ′. H ′ is visualized in the right
figure in Figure3. We claim that the formula ϕ ∧ 〈σ〉♦ψ is true at h inH ′. First,
since TAPAL-formulas are ‘future-looking’, ψ is true at hσ!>0 by Proposition 4,
since the structure of the new subtree is the same as the old subtree. Therefore,
♦ψ is true at hσ, which implies that 〈σ〉♦ψ is true at h. Furthermore, the truth
of ϕ is preserved over this transformation, since ϕ cannot distinguish the new
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Figure 3: Grafting

and old subtrees by the assumption that !>0 does not occur in ϕ. Therefore,
ϕ ∧ 〈σ〉♦ψ is indeed satisfiable.

Below, we make the above idea precise. We start by observing the following
fact stating that grafting with respect to στ 7→ σ!>0 where len(τ) = 1 preserves
the truth of TAPAL-formulas.

Lemma 1 (Grafting with len(τ) = 1). Let p be an sd-protocol on M = (W,∼,V).
LetH = Forest(M,p) and wτσ!ψ inH where w ∈ W. For every ϕ, if a tautologous
formula > ∈ Lpal is not in AOC(ϕ) ∪ AOC(p), then

H ,wτ |= ϕ ⇔ H
[τσ!ψ 7→τσ!>0],wτ |= ϕ.

Proof. Straightforward by induction on ϕ. �

Theorem 1 (Soundness of R(�)). If ϕ ∧ 〈σ〉♦ψ is satisfiable in F(PAL), then
ϕ ∧ 〈σ〉〈!>0〉ψ with >0 < AOC(ϕ) ∪ AOC(σ) ∪ AOC(ψ) is satisfiable in F(PAL). /

Proof. Assume thatϕ∧〈σ〉♦ψ is satisfiable. Thus, let Forest(M,p), h |= ϕ∧〈σ〉♦ψ.
This implies Forest(M,p), h |= ϕ ∧ 〈σ〉〈α〉ψ for some α ∈ Σpal. Now take

X := AOC(ϕ ∧ 〈σ〉〈α〉ψ).

Also let Taut be the set of tautologous formulas in TPAL. Take Taut′ := Taut\X.
Then enumerate the elements in Taut′ and let >′0,>

′

1, . . . be the result of the
enumeration. Also take an enumeration ofLpal\X without repetition so that>′0
comes as the first element. We write the enumeration as >′0, ϕ

′

1, ϕ
′

2, . . . . Then
apply Proposition 6 by taking the following parameters:

• X := AOC(ϕ ∧ 〈α〉ψ)

• ϕ0 := >′0, ϕ1 := ϕ′1, . . . , ϕi := >′i , . . .

• >0 := >′1,>1 := >′2, . . . ,>i := >′i+1, . . . .
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Then, by this application of Proposition 6 together with Observation 1, we
obtain

Forest(M,p′), h′ |= ϕ ∧ 〈σ〉〈α〉ψ

for some p′ such that >′0 < AOC(p′). Now, since this implies
Forest(M,p′), h′σα |= ψ, we can apply Lemma 1 (or Proposition 7) to obtain

Forest(M,p′)[τσα 7→τσ!>′0], h′σ!>′0 |= ψ

Similarly, by applying Lemma 1 to Forest(M,p′), h′ |= ϕ, we can obtain

Forest(M,p′)[τσα7→τσ!>′0], h′ |= ϕ.

By Observation 2, the model Forest(M,p′)[τσα 7→τσ!>0] is in F(PAL) and, there-
fore, ϕ ∧ 〈σ〉〈!>0〉ψ is satisfiable in F(PAL). �

Corollary 1. Let all ϕ,ψ ∈ Ltapal and σ ∈ Σ∗pal. Also let p,>0 be respectively a
propositional letter and a tautologous formula in Lpal such that p,>0 < AOC(ϕ) ∪
AOC(ψ) ∪ AOC(σ). Then

` ϕ→ [σ][!p]ψ ⇔ ` ϕ→ [σ][!>0]ψ ⇔ ` ϕ→ [σ]�ϕ

/

Proof. This follows immediatlye from the soundness of the rule R′(�) given in
Hoshi (2008) and Theorem 1 via the semantic definition of �. �

7.2 The Soundness of R(�∗)

Now to deal with the soundness of R(�∗), let us start by observing the following
fact.

Proposition 8 (Reduction of ♦∗ to ♦). For every ϕ ∈ Ltapal, if ♦∗ϕ is satisfiable in
F(PAL), then ♦nϕ is satisfiable in F(PAL) for n = 0 or n = 1.

Proof. If H , h |= ♦∗ϕ with h = wτ, then there is some σ ∈ Σ∗pal such that H , h |=
〈σ〉ϕ. If σ is empty, we are done. Thus, assume that σ is not empty. By
the method used in the proof of Theorem 1, obtain a tautologous formula >0,
a model H ′, and a history h′ in H ′ such that >0 does not occur in H ′ and
H
′, h′ |= ♦∗ϕ. Then by a similar argument given in the proof of Theorem 1, we

obtain
(H ′)[τσ7→τ!>0], h′!>0 |= ϕ.

This implies the satisfiability of ♦ϕ. �

Corollary 2. For every ϕ ∈ Ltapal,

` �ϕ ⇔ ` �∗ϕ.

/

In the light of this result, it might be expected that the following claim holds:

Claim If ϕ ∧ 〈σ〉♦∗ψ is satisfiable in F(PAL), then ϕ ∧ 〈σ〉♦nψ is satisfiable in
F(PAL) for n = 0 or n = 1.
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Unfortunately this claim does not hold, due to the semantics of the �-operator.
For simplicity, consider the case where σ is empty. Take�θ∧♦∗ψ. If this formula
is satisfiable, then there will be a sequence τ after which ψ is satisfied. Here
even if we appeal to the grafting method as in Proposition 8, we may not obtain
the satisfiability of the whole formula �θ ∧ ♦∗ψ. For the new node added to
the model as a result of grafting must be quantified by � in �θ and there is no
guarantee that the node satisfies θ.

What this example illustrates is that, in general, the formula ϕ in ϕ∧ 〈σ〉♦∗ψ
may ‘refer’ to the nodes between the current node h and hτ, whereτ is a sequence
of announcements, whose existence is claimed by ♦∗ in the formula. When this
‘reference’ is made by �, we cannot safely graft as we did for Proposition 8.

However how ‘high up’ in the tree ϕ can ‘refer’ can be read off from the
complexity of ϕ. In particular, what is problematic is the occurrences of � in
ϕ and we need to know the highest number of nexted occurrences of � in ϕ.
Once we know such a number for ϕ, we can safely graft above the height that
ϕ can refer to, as we did for Proposition 8.

Thus we first introduce a measure to indicate the number of the occurrences
of the �-operator that must be taken care of in the relevant sense here.

Observation 3. Every TAPAL-formula is equivalent to some formula of TAPAL
built up by the following inductive definition:

ϕ ::= > | p | ¬p | ϕ ∧ ϕ | ϕ ∧ ϕ | 〈i〉ϕ | [i]ϕ | 〈!A〉ϕ | [!θ]ϕ | ♦ϕ | �ϕ |♦∗ϕ | �∗ϕ.

where p ∈ At, i ∈ A and θ ∈ Lpal.

Proof. Immediate by the definitions of the dual operators and the standard
boolean equivalences. �

Thus, we can interchangeably use the inductive definition in Definition 4.1 and
the one given here.

Definition 7.1. Initial Box Iteration
The initial box iteration ibi(ϕ) of a TAPAL-formula ϕ is defined inductively

as follows:

• ibi(p) = ibi(¬p) = 0 for p propositional

• ibi(ϕ ∧ ψ) = ibi(ϕ ∨ ψ) = max(ibi(ϕ), ibi(ψ))

• ibi(〈i〉ϕ) = ibi([i]ϕ) = ibi(ϕ)

• ibi(〈!A〉ϕ) = ibi([!A]ϕ) = 0

• ibi(♦ϕ) = 0

• ibi(�) = ibi(ϕ) + 1

• ibi(♦∗ϕ) = ibi(�∗ϕ) = ibi(ϕ)

Now we can explain the basic idea of the soundness proof for R(�∗) as
follows. Suppose ϕ ∧ 〈σ〉♦∗ψ is true at wτ inH (w in the base epistemic model
M). Then,ψ is true at wτσυ for some υ. Now we graft the modelH with respect
to τσυ0 7→ τσ!>0. This will preserve the truth of ϕ ∧ 〈σ〉♦∗ψ by Lemma 1. After
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this, we again graft with respect to τσ!>0υ1 7→ τσ!>1 similarly by preserving
the truth of ϕ ∧ 〈σ〉♦∗ψ. We repeat grafting this way as many times as ibi(ϕ),
i.e. the number of the �-operators that must be taken care of. Once we graft
ibi(ϕ) times and go high enough along the tree, we can safely apply the grafting
method for ♦∗-operator as we did in Proposition 8. This process of iterated
grafting preserves the truth of ϕ ∧ 〈σ〉♦∗ψ and thus we can put the desired
bound k for the satisfiability of the formula ϕ ∧ 〈σ〉♦kψ given the satisfiability
of the formula ϕ ∧ 〈σ〉♦∗ψ. Below we make this idea more precise.

Lemma 2 (Grafting for �). Let p be an sd-PAL-protocol on M = (W,∼,V) and
ϕ a TAPAL-formula. Let wσ ∈ p(w). Put H = Forest(H ,p) and ibi(ϕ) = m.
Also let τ be a sequence of TAPAL-formula such that len(τ) ≥ m. Finally let >0 <
AOC(ϕ) ∪ AOC(p). Then, for every υ ∈ Σ∗pal and w ∈W, if wστυ is inH ,

H ,wσ |= ϕ ⇒ H
[στυ 7→στ!>0],wσ |= ϕ.

Proof. The proof can be given by straightforward induction on ϕ in terms of
the equivalent formulation of the formulas in TAPAL as in Observation 3. �

Theorem 2. If ϕ ∧ 〈σ〉♦∗ψ is satisfiable in F(PAL), then ϕ ∧ 〈σ〉♦kψ is satisfiable
in F(PAL+) for some k such that 0 ≤ k ≤ ibi(ϕ)−̇len(σ) + 1, where a−̇b = a − b if
a − b > 0; a−̇b = 0 otherwise.

Proof. LetH = Forest(M,p) and wτ inH with w inM. Assume thatH ,wτ |=
ϕ ∧ 〈σ〉♦∗ψ. By the semantics of ♦∗, there is some υ = υ0 . . . υn−1 such that

H ,wτ |= ϕ ∧ 〈σ〉〈υ〉ψ. (1)

If ibi(ϕ)−̇len(σ) ≥ len(υ), we are done since we have H ,wτ |= ϕ ∧ 〈σ〉♦kψ for
some k ≤ ibi(ϕ)−̇len(σ) + 1.

Thus suppose ibi(ϕ)−̇len(σ) < len(υ). Let a = len(σ) and b = ibi(ϕ). Then
take a sequence of distinct tautologous formulas in Lpal, >0, . . . ,>[(b−a)−1]+1.
By a similar argument given in the proof of Theorem 1, we can assume that
>0, . . . ,>[(b−a)−1]+1 < AOC(p). Then, define

H
′ = (. . . (H [wτσυ0 7→wτσ!>0]) . . . )[wτσ!>0...!>(b−a)−2υ(b−a)−1 7→wτσ!>0...!>(b−a)−2!>(b−a)−1]

By repeatedly applying Lemma 1, we have

H
′,wτ |= ϕ (2)

Also since (1) implies

H
′,wτσυ0 . . . υ(b−a)−1 |= 〈υ(b−1) . . . υn−1〉ψ,

by repeatedly applying Lemma 7, we have

H
′,wτσ!>0 . . .!>(b−a)−1 |= 〈υ(b−a) . . . υn−1〉ψ.

and thusH ′,wτσ!>0 . . .!>(b−a)−1 |= ♦∗ψ. Here consider the model

H
′′ := (H ′)[wτ!>0...!>(b−a)−1υb−a...υn−1 7→wτ!>0...!>(b−a)−1!>b−a]
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By the argument given in the proof of Proposition 8, this implies

H
′′,wτ!>0 . . .!>(b−a)−1!>b−a |= ψ.

This gives us
H
′′,wτ |= ♦b−a+1ψ.

In addition, (2) together with Lemma 2 implies

H
′′,wτ |= ϕ.

Therefore, we have ϕ∧ ♦b−a+1 is satisfied inH ′′, which is clearly in F(PAL) by
construction (and Observation 1 and 2). �

Corollary 3. Soundness of R(�∗) R(�∗) is sound with respect to the class F(PAL).

Proof. Immediate from the above theorem and the fact that

ibi(ϕ)−̇len(σ) + 1 ≤ ibi(ϕ) + 1 ≤ |ϕ| + 1.

�

8 Completeness

Finally we prove the weak completeness of TAPAL. For this, we construct the
canonical model by following the method in van Benthem et al. (2008). The
completeness proof of TAPAL differs from that of the system given in van
Benthem et al. (2008), since the construction is not from the set of all the max-
imal consistent set, but from the set of the maximal consistent sets Σ with the
following special properties.

Definition 8.1. Saturation wrt ♦ A set Σ of formula is saturated with respect to
♦, if, for every sentence of the form 〈σ〉♦ϕ with σ ∈ Σ∗pal, 〈σ〉♦ϕ ∈ Σ implies that
there is some formula θ such that 〈σ〉〈!θ〉ϕ ∈ Σ.

Definition 8.2. Saturation wrt ♦∗ A set Σ of formulas is saturated with respect to
♦∗, if, for every formula of the form 〈σ〉♦∗ϕ with σ ∈ Σ∗pal, 〈σ〉♦

∗ϕ ∈ Σ implies
that there is some n such that 〈σ〉♦nϕ ∈ Σ.

The motivation for these properties is to make sure that there are formulas
that “witness” ♦ and ♦∗ in every formula in a given maximally consistent set.
Here the analogy mentioned in the above remark between R(�) and the first-
order rule comes back again. In the proof below, when we construct a maximal
consistent set from a consistent formula, we add witnessing formulas for the
formulas of the above form. The consistency of the resulting set with witnessing
formulas will be guaranteed by the rule R(�), and this is very similar to the way
that the first-order rule in question (or its equivalent) is used in the completeness
proof of first-order logic. Similarly, R(�∗) gives a witness for ♦∗ϕ by finding
an appropriate n for ♦nϕ to be added, consistently, to a set, when we construct
maximally consistent sets. These roles of the two rules are clear in the proof of
the following lemma.
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Lemma 3 (Lindenbaum Lemma). Every consistent TAPAL-formula ϕ can be ex-
panded to a maximal consistent set saturated with respect to ♦ and ♦∗.

Proof. Let α0, .α1... be an enumeration of the TAPAL-formulas such that α0 = ϕ.
We construct a sequence Σ0,Σ1, ... of sets as follows:

• Σ0 = ∅

• If Σn ∪ {αn} is inconsistent, then Σn+1 = Σn.

• If Σn ∪ {αn} is consistent and αn is neither of the form 〈σ〉♦ψ nor of the
form 〈σ〉♦∗ψ, then Σn+1 = Σn ∪ {αn}.

• If Σn ∪ {αn} is consistent and αn is of the form 〈σ〉♦ψ, then Σn+1 = Σn ∪

{〈σ〉♦ψ, 〈σ〉〈!>0〉ψ} for a tautologous formula >0 in Lpal such that >0 <
AOC(ψ) ∪ AOC(σ) ∪

⋃
θ∈Σn

AOC(θ). Such a tautologous formula exists
sinceΣn is finite and we have a countable number of tautologous formulas
in Lpal.

• If Σn∪ {αn} is consistent and αn is of the form 〈σ〉♦∗ψ, then take k such that
Σn ∪ {〈σ〉♦∗ψ, 〈σ〉♦kψ} is consistent and put Σn+1 = Σn ∪ {〈σ〉♦∗ψ, 〈σ〉♦kψ}.

We show by induction that Σn is consistent for n ≥ 1. The base case is given
by the assumption that ϕ is consistent. Assume that Σn is consistent for an
arbitrary n. Clearly it suffices to show the following claims:

Claim 1: Σn+1 is consistent, if αn is of the form 〈σ〉♦ψ.

Claim 2: If Σn ∪ {αn} is consistent and αn is of the form 〈σ〉♦∗ψ, there is some m
such that Σn ∪ {αn, 〈σ〉♦mψ} is consistent.

Proof of Claim 1 SupposeΣn+1 is inconsistent. Then, there must be some formulas
ψ1, ψ2, ..., ψl ∈ Σm ∪ {〈σ〉♦ψ} such that

` (ψ1 ∧ ... ∧ ψl)→ ¬〈σ〉〈!>0〉ψ.

However, this implies

` (ψ1 ∧ ... ∧ ψl)→ [σ][!>0]¬ψ.

Since>0 is chosen so that>0 < AOC(ψ)∪AOC(σ)∪
⋃
θ∈Σn

AOC(θ), we can apply
R(�) to obtain

` (ψ1 ∧ ... ∧ ψl)→ [σ]�¬ψ

This gives us Σm ` [σ]�¬ψ and Σm ` ¬〈σ〉♦ψ. However this contradicts the
assumption that Σn ∪ {αn} is consistent.

Proof of Claim 2: Suppose toward contradiction that there is no such m. Then,
for all m ≥ 0, we have:

`

∧
Σn → ¬〈σ〉♦

mψ.
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where
∧
Σn is a conjunction of the formulas in Σm−1. This implies that, for all

m,
`

∧
Σn ∪ {αn} → [σ]�m

¬ψ

and by R(�∗)
`

∧
Σn ∪ {αn} → [σ]�∗¬ψ.

Therefore, we have Σn ∪ {αn} ` [σ]�∗¬ψ and thus Σn ∪ {αn} ` ¬〈σ〉♦∗ψ. This
contradicts our assumption that Σn ∪ {〈σ〉♦∗ψ} is consistent.

Now take Σ′ =
⋃
∞

i=0 Σi. The maximality and saturation with respect to ♦
and ♦∗ is clear by the construction. The consistency is shown in the standard
way by the consistency of Σn for n ≥ 1. �

Definition 8.3. Base Epistemic Model We defineM0 = (W0,∼0,V0) as follows:

• W0 : the set of the maximal consistent sets in Ltapal saturated with respect
to ♦ and ♦∗.

• ∼0: A→ ℘(W0 ×W0) : for a, b ∈W0, (a, b) ∈∼0 (i) iff {ϕ|[i]ϕ ∈ a} ⊆ b.

• V0(p) = {w ∈W0 | p ∈ w}

Definition 8.4. Canonical Histories Let W0 be the set of the maximal consistent
sets of Ltapal. We define λn and Gn are defined as follows:

• Define G0 =W0 and for each w ∈ G0, λ0(w) = w.

• Let Gn+1 = {h!θ|h ∈ Gn and 〈!θ〉> ∈ λn(h)}. For every h = h′!θ ∈ Gn+1,
define λn+1(h) = {ϕ|〈!θ〉ϕ ∈ λn(h′)}.

Lemma 4. For each n ≥ 0, for each σ ∈ Gn, λn(σ) is a maximally consistent set that
is saturated with respect to ♦ and ♦∗.

Proof. Straightforward induction on n. �

We define the canonical history Gcan as ∪∞Gi and a function λ : Gcan →W0 as
λ(σ) = λn(σ) for each n = len(σ).

Definition 8.5. Canonical Model The canonical model of TAPAL is Gcan =
(Gcan,∼can,Vcan), where each element is defined as follows:

• Gcan := ∪∞Gi.

• ∼can: A 7→ Gcan×Gcan : for g, h ∈ Gcan where h = wσ and g = vτ, (h, g) ∈∼can
(i) iff (w, v) ∈∼0 (i) and σ = τ.

• For every p ∈ At, h ∈ Vcan(p) iff w ∈ V0(p) where h = wh′.

Proposition 9. Let σ ∈ Σ∗pal and len(σ) = n. Then,

1. ` 〈σ〉ϕ→ ♦nϕ.

2. ` ♦nϕ→ ♦∗ϕ.

Proof. Straightforward. The proof for the second appeals to the axiom A3. �
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Lemma 5. (Truth Lemma) For every formula ϕ ∈ Ltapal,

ϕ ∈ λ(h) iff Gcan, h |= ϕ.

Proof. : The proof is by induction on ϕ. For the cases other than ♦ and ♦∗, the
argument is the same as in van Benthem et al. (2008).

Assume that ϕ is of the form ♦ψ. First assume that ♦ψ ∈ λ(h). Since λ(h) is
saturated with respect to♦, we have 〈!θ〉ψ ∈ λ(h) for someθ. By the construction
of Gcan, we have ψ ∈ λ(h!θ). By IH, we obtain Gcan, h!θ |= ψ. Therefore, we have
Gcan, h |= ♦ψ by truth definition.

For the other direction, assume that Gcan, h |= ♦ψ. By definition, there is
some θ such that h!θ ∈ Gcan and Gcan, h!θ |= ψ. By IH, we have ψ ∈ λ(h!θ),
which, by the construction of Gcan, implies 〈!θ〉ϕ ∈ λ(h). This implies by A2
that ♦ϕ ∈ λ(h).

Next, assume that ♦∗ψ ∈ λ(h). Since λ(h) is a maximally consistent set
saturated with respect to ♦∗, there is some k ≥ 0 such that ♦kψ ∈ λ(h) Now, since
λ(h) is also saturated with respect to ♦, we have 〈!θ1〉 . . . 〈!θk〉ψ ∈ λ(h). Thus, by
the construction of canonical model, we have ψ ∈ λ(h!θ1 . . .!θk), which implies
by IH that Gcan, h!θ1 . . .!θk |= ψ. This gives us Gcan, σ |= ♦∗ψ.

Assume that Gcan, h |= ♦∗ψ. By definition, this is equivalent to saying that
there is some σ such that hσ ∈ Gcan and Gcan, hσ |= ψ. By IH, we have ψ ∈ λ(hσ),
which, by the construction of λ, implies 〈σ〉ψ ∈ λ(h). By Proposition 9, we have
that ♦∗ψ ∈ λ(h). �

To obtain completeness, we still need to show that the canonical model is in
the classF(PAL). For this, we need to prove some properties of PAL-generated
models. Given two sequences σ and τ, we denote by στ the sequence obtained
by concatenating σ and τ in order.

Proposition 10. Given an epistemic modelM and an sd-protocol p onM = (W,∼,V),
define Hp

x for every x ∈ N∗ as defined in 3.5. Let y, z ∈ O, n ≥ 1. Further, suppose
yn� z. For every h ∈ Hp

yn and every ϕ ∈ Lpal with o(ϕ) ≤ n,

H
p
yn, h |= ϕ⇔H

p
z , h |= ϕ.

Proof. First, observe that, by Definition 3.5, h ∈ Hp
yn implies that h ∈ Hp

z (by
the assumption that yn � z). Thus, on the assumption that h ∈ Hp

yn, we have
h ∈ Hp

yn ⇔ h ∈ Hp
z . Denote this fact by (i). We show the claim by induction on

ϕ. The base and boolean cases are clear. Suppose ϕ is of the form [i]ϕ. Assume
LHS. Let (h, h′) ∈∼p

yn (i). Then, by IH,Hp
z , h′ |= ψ. Here, by the construction in

Definition 3.5 and the fact (i), it follows that (h, h′) ∈ ∼p
yn (i) ⇔ (h, h′) ∈ ∼p

z (i).
Thus we haveHp

z , h |= [i]ψ. The other way is similar.
Next supposeϕ is of the form 〈!θ〉ψ. First, LHS is equivalent toHp

yn, h!θ |= ψ.
Furthermore, since o(!ϕ) ≤ n, we have o(!θ) ≤ n by the definition of o. By this fact
and the construction in Definition 3.5, h ∈ Hp

yn implies that h!θ ∈ Hp
yn ⇔ h!θ ∈ Hp

z
(by the same reasoning as for the fact (i)). Thus, we can apply IH and obtain
H

p
yn, h!θ |= ψ ⇔ Hp

z , h!θ |= ψ. This gives us the equivalence between LHS and
RHS. �

LetM0 = (W0,∼0,V0) be the base epistemic model, from which the canonical
ETL-model is constructed. Also, let G = (G,≈,U) be the canonical model.
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Define p0 on G so that p0(w) = {σ|wσ ∈ G} for all w ∈ W0. Given M0 and p0,
generate Hσ,p0 and Hp0

x for σ ∈ (Σpal)∗ and x ∈ O, as defined in Definition 3.5.
For simplicity, we write Hσ and Hx respectively for Hσ,p0 and Hp0

x . Also let
H = (H,∼,V) = Forest(M0,p0).

Proposition 11. Let w ∈ W0 and σ ∈ Σ∗pal. Assume vσ ∈ G ⇔ vσ ∈ Hσ for every
v ∈W0 (Denote by “Assumption 1”). Then, for every ϕ ∈ Lpal,

G,wσ |= ϕ⇔Ho(σ)o(ϕ),wσ |= ϕ.

Proof. We go by induction onϕ. The base and boolean cases are straightforward.
Suppose that ϕ is of the form [i]ψ. Assume G,wσ |= [i]ψ. Let w′ be such
that (w,w′) ∈∼0 (i). Then we have (wσ,w′σ) ∈≈ (i) by construction, and thus
G,w′σ |= ψ. Thus, by IH, Ho(σ)o(!ϕ),w′σ |= ψ. Put Ho(σ)o(!ψ) = H

′ = (H′,∼′,V′).
Here, note, for every u ∈ W0, uσ ∈ Hσ

⇔ uσ ∈ H′, by the construction in
Definition 3.5. Therefore, Assumption 1 implies that, for any u, (wσ,uσ) ∈∼′

(i) ⇔ (wσ,uσ) ∈≈ (i). This gives us H ′,wσ |= [i]ψ. Here H ′ = Ho(σ)o(ψ) =
Ho(σ)o([i]ψ), since o(ψ) = o([i]ψ) by the definition of o. Thus, we obtain the
LHS-RHS direction. The other direction is similar.

Next, suppose ϕ is of the form 〈!θ〉ψ. First, we claim that Assumption 1
implies vσ!θ ∈ G⇔ vσ!θ ∈ Hσ!θ for all v ∈W0.

Proof of the claim: vσ!θ ∈ G implies 〈!θ〉> ∈ λ(wσ), and by A1, θ ∈ λ(wσ). By
truth lemma, we have G, vσ |= θ. Thus, by IH,Ho(σ)o(!θ), vσ |= θ. Since we have
σ!θ ∈ p0(v) by the construction of p0, we have vσ!θ ∈ Hσ!θ. The other direction
is similar.

Now, assume the LHS of the biconditional. It implies that G,wσ!θ |= ψ.
By the claim, we can apply IH and obtain Ho(σ!θ)o(!ψ),wσ!θ |= ψ. Here, note
that o(σ!θ)o(!ψ) = o(σ)o(!θ)o(!ψ) � o(σ)o(!ϕ) since o(!θ), o(!ψ) < o(!〈!θ〉ψ). Thus,
applying Proposition 10, we obtain Ho(σ)o(!〈!θ〉ψ),wσ!θ |= ψ. Therefore, we have
Ho(σ)o(!〈!θ〉ψ),wσ |= 〈!θ〉ψ, as desired. The RHS-LHS direction is similar. �

Lemma 6 (Canonicity). The canonical model G is in F(PAL).

Proof. It suffices to show the following claim:

Claim 1: For every w ∈W0 and every σ ∈ (PAL+)∗, wσ ∈ G⇔ wσ ∈ Hσ.

For this implies G = H and then, by inspecting the constructions of PAL-
generated ETL-models and the canonical model, we see that G = H .

We go by complete induction on the order of σ. The base case (o(σ) = λ) is
clear by Definition 8.5 and 3.5. Assume that the claim holds for every τ such
that o(τ) � o(σ). Let σ = σ1 . . . σk. Suppose that wσ1 . . . σk ∈ G. This implies
G,wσ1 . . . σk−1 |= σk (by truth lemma) and σ1 . . . σk ∈ p0(w). Also IH implies that,
for every v ∈ W0, wσ1 . . . σk−1 ∈ G⇔ wσ1 . . . σk−1 ∈ Hσ1...σk−1 . By the construction
in Definition 3.5, this is equivalent to:

For every v ∈W0, wσ1 . . . σk−1 ∈ G⇔ wσ1 . . . σk−1 ∈ Ho(σ1...σk−1).
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Thus, we can apply Proposition 11 and obtain Ho(σ1...σk−1)o(σk),wσ1 . . . σk−1 |= σk.
Given σ1 . . . σk ∈ p0(w), we have wσ1 . . . σk ∈ Hσ1...σk by Definition 3.5. The other
way is similar. �

Theorem 3 (Completeness). TAPAL is weakly complete with respect to F(PAL).

Proof. By a standard argument with Lemma 5 and 6 �

9 Conclusion and Discussion

We have provided a framework for PAL that can represent protocol constraints
on what is announceable. We did this by assigning a protocol to each point of a
given epistemic model and constructing ETL-models by successively applying
the sequences of public announcements based on the assigned protocols. In the
resulting framework TAPAL, the public announcement operators 〈!ϕ〉, ♦, and♦∗,
exhibit semantic properties distinct from those in the framework of PAL. Also
by appealing to some distinct properties of our PAL-generated ETL-models,
we have provided the complete axiomatization of TAPAL.

We now conclude by discussing some open problems concerning our frame-
work for future research.

Complexity

We did not discuss the complexity of TAPAL. For the fragment TPAL, we can
finitize the completeness proof (by a method similar to the one in van Benthem
et al. (2008)) and show its decidability. In addition, we can prove that PAL is
faithfully embeddable to TPAL. Given that the satisfiability problem for PAL is
PSPACE-complete, this result tells us that the satisfiability problem for TPAL is
at least PSPACE hard. However, the decidability and complexity of TAPAL is
unknown.

Other Kinds of Operators

We can extend TAPAL by various interesting operators that have been consid-
ered in the literature. One important operator is the common knowledge operator.
However, in the presence of ♦∗, we expect that we obtain the undecidability
result by Miller and Moss (2005). Another kind of operators are past opera-
tors, such as “The public announcement of ϕ has been made before which. . . ”.
Operators of the kind have been considered in the framework of DEL by Yap
(2007). Tree structures of our framework seem to accommodate the semantic
intuition of those operators. See Hoshi and Yap (2009).

Extension to DEL

Our framework only deals with a specific kind of informational events, i.e.
public announcements. Thus it is natural to ask whether we can provide a
similar framework for the full class of informational events in DEL. In fact, we
can redefine protocols so that they consist of sequences of event models, and
provide a method to generate ETL-models. For such a class of ETL-models,
we can give a complete axiomatization in the language of DEL by making
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minor modifications to our proofs above. However, we have not obtained the
axiomatization for the language of DEL with the generalized operators, “There
is some single event after which. . . ” and “There is some sequence of events
after which. . . ”.

Acknowledgements I acknowledge my gratitude to Johan van Benthem,
Cédric Dégremont, Yu Junhua, and Eric Pacuit for their helpful comments
on earlier drafts of this paper.
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Abstract
We look at two fundamental logical processes, often intertwined in planning
and problem solving: inference and update. Inference is an internal process
with which we uncover what is implicit in the information we already have.
Update, on the other hand, is produced by external communication, usually
in the form of announcements and in general in the form of observations,
giving us information that might not have been available (even implicitly)
before. Both processes have received attention from the logic community,
usually separately. In this work, we develop a logical language that allows
us to describe them together. We present syntax, semantics and a complete
axiom system; we discuss similarities and differences with other approaches
and mention how the work can be extended.

1 Introduction

Consider the following situation, from van Benthem (2008a):

You are in a restaurant with your parents, and you have ordered
fish, meat, and vegetarian, for you, your father and your mother,
respectively. Now a new waiter comes from the kitchen with the
three dishes. What can he do to get to know which dish corresponds
to which person?

The waiter can ask “Who has the fish?”; then he can ask “Who has the meat?”.
Now he does not have to ask anymore: “two questions plus one inference are
all that is needed” (van Benthem 2008a).

The present work looks at these two fundamental logical processes, often
intertwined in real-life activities. Inference is an internal process: the agent
revises her own information in search of what can be derived from it. Update,
on the other hand, is produced by external communication: the agent gets
new information via observations. Both are logical processes, both describe
dynamics of information, both are used in every day situations and still, they
have been studied separately.
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Inference has been the main subject of study of logic, allowing us to extract
new information from what we already have. Among the most important
branches, we can mention Hilbert-style proof systems, natural deduction and
tableaux. Recent works, like Duc (Duc 1995; 1997) and Jago (Jago 2006a;b)
have incorporated modal logics to the field, representing inference as a non-
deterministic step-by-step process.

Update, on the other hand, has been the main subject of Dynamic Epis-
temic Logic (van Ditmarsch et al. 2007). Works like Plaza (1989) and Gerbrandy
(1999) turned attention to the effect public announcements have on the knowl-
edge of an agent. Many works have followed them, including the study of
more complex actions (Baltag et al. 1999, van Ditmarsch 2000) and the effect
of announcements on more propositional attitudes (the soft/hard facts of van
Benthem (2007); the knowledge/belief of Baltag and Smets (2008)).

In van Benthem (2008c), the author shows how these two phenomena fall
directly within the scope of modern logic. As he emphasizes, “asking a question
and giving an answer is just as ’logical’ as drawing a conclusion!”. Here, we
propose a merging of the two traditions. We consider that both processes are
equally important, but so is their interaction. In this work, we develop a logical
language that allows us to express inference and update together.

We start in Section 2 by providing a framework for representing implicit and
explicit information, and isolate the case where this information is true. Section 3
provides a representation of truth-preserving inference; moreover, we show how
dynamics of the inference process itself can be represented. Section 4 introduces
the other logical process: update. Then we compare our proposal with other
approaches (Section 5) and present a summary and further work (Section 6). We
focus in the single-agent case, leaving group-information concepts for future
work.

2 Implicit and explicit information

The Epistemic Logic (EL) framework with Kripke models (Hintikka 1962) is
one of the most widely used for representing and reasoning about an agent’s
information. Nevertheless, it is not fine enough to represent the restaurant
example above. Agents whose information is represented with this framework
suffer from what Hintikka called the logical omniscience problem1: they are
informed of all validities and their information is closed under truth-preserving
inference.

This feature, useful in some applications, is too much in some others. More
importantly for us, it hides the inference process. If we represent our example
within such framework, the answer to the second question tells the waiter not
only that your father will get the meat but also that your mother will get the
vegetarian dish. In this case, the inference is very simple, but in general this
is not the case: proving a theorem, for example, consists on applications of
deductive inference steps to show that the conclusion indeed follows from the
premises. Some theorems may be straightforward, but some are not.

As argued in van Benthem (2006), we can give the modal operator another
interpretation, reading the formula �ϕ as “the agent is implicitly informed about

1See Sim (1997) for a survey about the logical omniscience problem.
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ϕ”. We follow that idea, and we extend EL to also represent explicit information;
moreover, we also provide a mechanism with which the agent can increase
it. The work of this section resembles those presented in Fagin and Halpern
(1988), Duc (Duc 1995; 1997) and Jago (Jago 2006a;b); the precise relation will
be clarified in Section 5.

2.1 Formulas, rules and the explicit/implicit information lan-
guage

The agent’s explicit information is given by a set of formulas; the mechanism
that allows her to increase it is given by syntactic rules. We start by defining
the language to represent explicit information and by indicating what a rule in
that language is.

Definition 2.1 (Formulas and rules). Let P be a set of atomic propositions. The
internal language I is given by the propositional language over P. A rule based
on I is a pair (Γ, γ) (sometimes represented as Γ⇒ γ) where Γ is a finite set of
formulas and γ is a formula, all of them in I. Given a rule ρ = (Γ, γ), we call Γ
the set of premises of ρ (prem(ρ)) and γ the conclusion of ρ (conc(ρ)). We denote
by R the set of rules based on formulas of I.

With this internal language, the agent can have explicit information about
the real world but not about her own information. This is indeed a limitation,
but it makes the update definition of Section 4 possible. In Section 6 we briefly
discuss the reasons for this limitation, leaving a deep analysis for further work.

Our language extends that of EL by adding two kinds of formulas: one
for expressing the agent’s explicit information (I γ) and another expressing the
rules she can apply (Lρ).

Definition 2.2 (Explicit/implicit information language EI). Let P be a set of
atomic propositions. The formulas of the explicit/implicit information language
EI are given by

ϕ ::= > | p | I γ | Lρ | ¬ϕ | ϕ ∨ ψ | ^ϕ

with p ∈ P, γ ∈ I and ρ ∈ R. The boolean connectives ∧,→ and↔ as well as
the modal operator � are defined as usual.

The semantic model extends a Kripke model by assigning two new sets to
each possible world: one indicating the formulas the agent is explicitly informed
about, and other indicating the rules she can apply.

Definition 2.3 (Explicit/implicit information model). Let P be a set of atomic
propositions. An explicit/implicit information model is a tuple M = 〈W,R,V,Y,Z〉
where:

• 〈W,R,V〉 is a standard Kripke model with W the non-empty set of worlds,
R ⊆ W ×W the accessibility relation and V : W → ℘(P) the atomic valuation
function.

• Y : W → ℘(I) is the information set function, satisfying coherence for
formulas (if γ ∈ Y(w) and Rwu, then γ ∈ Y(u)).

• Z : W → ℘(R) is the rule set function satisfying coherence for rules (if
ρ ∈ Z(w) and Rwu, then ρ ∈ Z(u)).
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We denote by EI the class of all explicit/implicit information models.

Our restrictions reflect the following idea. The sets Y(w) and Z(w) represent
the formulas and rules the agent is explicitly informed about; if while staying
in w the agent considers u possible, it is natural to ask for u to preserve the
agent’s explicit information at w.

Definition 2.4 (Semantics for EI). Given a model M = 〈W,R,V,Y,Z〉 in EI and
a world w ∈W, the satisfaction relation 
 between (M,w) and formulas of EI is
given by:

(M,w) 
 p iff p ∈ V(w)
(M,w) 
 ¬ϕ iff (M,w) 1 ϕ
(M,w) 
 ϕ ∨ ψ iff (M,w) 
 ϕ or (M,w) 
 ψ
(M,w) 
 ^ϕ iff there is u ∈W such that Rwu and (M,u) 
 ϕ
(M,w) 
 I γ iff γ ∈ Y(w)
(M,w) 
 Lρ iff ρ ∈ Z(w)

Note how the operators I and L just look into the correspondent sets.

(P) All propositional tautologies (CohI) ` I γ→ �I γ
(K) ` �(ϕ→ ψ)→ (�ϕ→ �φ) (CohR) ` Lρ→ �Lρ
(Dual) ` ^ϕ↔ ¬�¬ϕ
(MP) From ` ϕ and ` ϕ→ ψ infer ` ψ (Gen) From ` ϕ infer ` �ϕ

Table 1: Axioms and inference rules for the logic EI.

We provide a syntactic characterization of formulas of EI that are valid in
the class of models EI.

Theorem 1 (Soundness and completeness of EI w.r.t. EI). The logic EI, built from
the axioms and rules shown in Table 1 is sound and strongly complete with respect to
the class EI.

Sketch. Soundness follows from the validity of the axioms and the validity-
preserving property of the rules. Completeness can be proved by defining
the canonical model in the standard way with the information set and rule set
functions given by YEI(w) := {γ ∈ I | I γ ∈ w} and ZEI(w) := {ρ ∈ R | Lρ ∈ w},
and by showing that it satisfies the two coherence properties. �

Note how the agent’s explicit information does not suffer from the logical
omniscience problem: the validity of γ does not imply the validity of I γ, and
I (γ→ δ)→ (I γ→ I δ) is not valid.

2.2 When information is knowledge

An explicit/implicit information model does not impose any restriction on the
information of the agent, but we can distinguish those models in EI where
implicit and explicit information are true and the rules are truth-preserving.
For implicit information, we consider models with equivalence accessibility
relations, as it is usually done in EL. For explicit information, we ask for every
formula in the information set to be true in the corresponding world. For the
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rules, we define a translation TR that maps each rule in R to an implication
whose antecedent is the conjunction of the premises and whose consequent is
the conclusion, and we ask for this translation to be true in the correspondent
world.

TR(ρ) :=
∧

prem(ρ)→ conc(ρ)

Definition 2.5 (The class EIK). We denote by EIK the class of explicit/implicit
information models satisfying equivalence (R is an equivalence relation), truth
for formulas (for every world w, if γ ∈ Y(w), then (M,w) 
 γ) and truth for rules
(for every world w, if ρ ∈ Z(w), then (M,w) 
 TR(ρ)).

(T) ` ϕ→ ^ϕ (TthI) ` I γ→ γ
(4) ` ^^ϕ→ ^ϕ (TthR) ` Lρ→ TR(ρ)
(B) ` ^�ϕ→ ϕ

Table 2: Extra axioms for the logic EIK.

Formulas valid in EIK models are characterized by the logic EIK.

Theorem 2 (Soundness and completeness of EIK w.r.t. EIK). The logic EIK,
extending EI by adding the axioms of Table 2, is sound and strongly complete with
respect to the class EIK.

Proof. Soundness follows from the validity of the new axioms. Completeness
follows from the fact that the canonical model for the logic EIK satisfies equiv-
alence (because of axioms T, 4, B), truth for formulas (because of TthI) and truth
for rules (because of TthR). �

For models in EIK, the coherence properties put the same information and
rule set in worlds belonging to the same equivalence class. Note also that in
these models, from axiom CohI (I γ → �I γ) and axiom TthI (I γ → γ) we get
I γ → �γ: whatever is part of the agent’s explicit information belongs to her
implicit information too.

It is now time to turn our attention into the dynamics of information. In the
following sections, we extend the language to describe inference and update.
With the first, the agent will extract information that is entailed by her explicit
information; with the second, she will get information that may not be available
(even implicitly) to her before.

3 Inference

The agent can extend her explicit knowledge by using rules. A rule (Γ, γ)
intuitively indicates that if every δ ∈ Γ is true, so it is γ. However, so far,
we have not stated any restriction on how the agent can use a rule. She can
use it to get the conclusion without having all the premises, or even deriving
the premises whenever she has the conclusion. In the previous section we
focused on true-information models; in the same spirit, this section deals with
truth-preserving inference.
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3.1 A particular case: truth-preserving inference

The inference process adds formulas to the information set. In order to preserve
truth, we restrict the way in which the rule can be applied. The deduction
operation over a model M is defined as follows.

Definition 3.1 (Deduction operation). Let M = 〈W,R,V,Y,Z〉 be a model in the
class EI, and let σ be a rule in R. The model Mσ = 〈W,R,V,Y′,Z〉 has the same
worlds, accessibility relation, valuation and rule set function as M. In the case
of information sets, we have

Y′(w) :=
{

Y(w) ∪ {conc(σ)} if prem(σ) ⊆ Y(w) and σ ∈ Z(w)
Y(w) otherwise

Note how the conclusion of the rule is added to a world just when all
the premises and the rule are already there. This allows us to prove that, in
particular, the deduction operation preserves models in EIK.

Proposition 1. Let σ be a rule. If M is a model in EIK, so is Mσ.

Proof. Equivalence and both properties of rules are immediate since neither the
accessibility relation nor the rule set function are modified. The properties of
formulas can be verified easily. �

The language EID extends EI by closing it under deduction modalities
〈Dσ〉 for σ a rule: if ϕ is a formula in EID, so is 〈Dσ〉ϕ. These new formulas are
read as “there is a way of deductively applying σ after which ϕ is the case”. Define
the abbreviation Preσ ≡ I prem(σ) ∧ L σ where, given Γ a finite set of formulas
in I, we write I Γ for

∧
γ∈Γ I γ. The semantics for deduction formulas is given

as follows.

Definition 3.2. Let M be a model in EI, and take a world w in it.

(M,w) 
 〈Dσ〉ϕ iff (M,w) 
 Preσ and (Mσ,w) 
 ϕ

The formula [Dσ]ϕ is given by [Dσ]ϕ↔ ¬〈Dσ〉 ¬ϕ, as usual.

For an axiom system, Proposition 1 tells us that the deduction operation
preserves models in EIK, so we can rely on the logic EIK: all we need to do is
give a set of reduction axioms for formulas of the form 〈Dσ〉ϕ, expressing how
the truth value of formulas after the deduction operation depends on the truth
value of formulas before it.

` 〈Dσ〉> ↔ Preσ ` 〈Dσ〉 p ↔ (Preσ ∧ p)
` 〈Dσ〉 ¬ϕ ↔ (Preσ ∧ ¬〈Dσ〉ϕ) ` 〈Dσ〉 (ϕ ∨ ψ) ↔ (〈Dσ〉ϕ ∨ 〈Dσ〉ψ)
` 〈Dσ〉^ϕ ↔ (Preσ ∧ ^〈Dσ〉ϕ)
` 〈Dσ〉 I conc(σ) ↔ Preσ ` 〈Dσ〉Lρ ↔ (Preσ ∧ Lρ)
` 〈Dσ〉 I γ ↔ (Preσ ∧ I γ) for γ , conc(σ)
From ` ϕ, infer ` [Dσ]ϕ

Table 3: Axioms and rules for deduction operation formulas.
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Theorem 3 (Soundness and completeness of EIKD w.r.t. EIK). The logic EIKD,
built from axioms and rules of EIK (Table 2) plus axioms and rules in Table 3, is sound
and strongly complete w.r.t. EIK.

Proof. Soundness comes from the validity of the new axioms and the validity-
preserving property of the new rule. Strong completeness comes from the fact
that, by a repetitive application of such axioms, any deduction formula can be
reduced to a formula in EI, for which EIK is strongly complete with respect to
EIK. �

Our model-operation treatment of inference gives us nice properties; for
example, inference preserves atomic valuation. But not only that; the formulas
(1) 〈Dσ〉> → Preσ, (2) I γ → [Dσ] I γ, (3) [Dσ] I conc(σ) and (4) 〈Dσ〉 I γ → I γ
(for γ , conc(σ)) are valid. The first expresses that in order to apply a rule
we need the premises and the rule; the second says that after applying a rule
we preserve the explicit information we had before; the third and the fourth
indicate that the explicit information is increased only by the rule’s conclusion.

3.2 Dynamics of deduction

Just as the agent’s explicit information changes, her inferential abilities can also
change. This may be because she is informed about another rule (as with the
updates of Section 4), but it may be also because she builds new rules from the
ones she already has. For example, from the rules {p} ⇒ q and {q} ⇒ r, we can
derive the rule {p} ⇒ r. It takes one step to derive it, but it will save intermediate
steps later.

In fact the example, a kind of transitivity, represents the application of Cut
over the mentioned rules. In general, inference relations can be characterized
by structural rules, indicating how to derive new rules from the ones already
present. In the case of deduction, we have

Reflexivity:
ϕ⇒ ϕ

Contraction:
ψ, χ, ξ, χ, φ⇒ ϕ
ψ, χ, ξ, φ⇒ ϕ

Permutation:
ψ, χ, ξ, φ⇒ ϕ
ψ, ξ, χ, φ⇒ ϕ

Monotonicity:
ψ,φ⇒ ϕ
ψ, χ, φ⇒ ϕ

Cut:
χ⇒ ξ ψ, ξ, φ⇒ ϕ

ψ, χ, φ⇒ ϕ

Each time a structural rule is applied, we get a new rule that can be added
to the rule set. Contraction and Permutation are not so interesting for us, since
we are already considering the premises of a rule as a set. On the other hand,
Reflexivity, Monotonicity and Cut can increase the agent’s inferential abilities.

Definition 3.3 (Structural operations). Let M = 〈W,R,V,Y,Z〉 be a model in EI.
The structural operations, (·)Ref(δ), (·)Mon(δ,ς) and (·)Cut(ς1,ς2), return a model that
differs from M just in the new rule set function Z′.

Reflexivity. Let δ be a formula of the internal language, and consider the rule
ςδ = ({δ}, δ). The new rule set function is given by

Z′(w) := Z(w) ∪ {ςδ}
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Monotonicity. Let δ be a formula in I, and let ς be a rule over I. Consider the
rule ς′ = (prem(ς)∪ {δ}, conc(ς)), extending ς by adding δ to its premises.
The new rule set function is given by

Z′(w) :=
{

Z(w) ∪ {ς′} if ς ∈ Z(w)
Z(w) otherwise

Cut. Let ς1, ς2 be rules over the internal language, such that the conclusion of
ς1 is contained in the premises of ς2. Consider the rule ς′ with (prem(ς2)−
{conc(ς1)}) ∪ prem(ς1) as premises and conc(ς2) as conclusion. The new
rule set function is given by

Z′(w) :=
{

Z(w) ∪ {ς′} if {ς1, ς2} ⊆ Z(w)
Z(w) otherwise

The three structural operations preserve models in EIK.

Proposition 2. If M is a model in EIK, then MRef(δ), MMon(δ,ς) and MCut(ς1,ς2) are also
in EIK.

Proof. Equivalence and both properties of formulas are immediate. Coherence
for rules follows from the definitions and coherence for rules of M, so we just
have to prove truth for rules property for the three operations. Note that in
the three cases it is enough to show that the rules are truth-preserving in M
because the truth-value of the translation depends just on the valuation, which
is preserved by the operations.

• Reflexivity. Recall that ςδ = ({δ}, δ) and pick any ρ ∈ Z′(w). If ρ is already
in Z(w), we have (M,w) 
 TR(ρ) since M is in EIK. Otherwise, ρ is ςδ, but
we obviously have (M,w) 
 δ→ δ.

• Monotonicity. Recall that ς′ = (prem(ς) ∪ {δ}, conc(ς)) and pick any ρ ∈
Z′(w). If ρ is already in Z(w), we have (M,w) 
 TR(ρ). Otherwise, ρ is ς′ and
we should have ς ∈ Z(w); therefore, we have (M,w) 


∧
prem(ς) → conc(ς)

and hence (M,w) 
 (
∧

prem(ς) ∧ δ)→ conc(ς).

• Cut. Recall that ς′ = ((prem(ς2)−{conc(ς1)})∪prem(ς1) , conc(ς2)) and pick any
ρ ∈ Z′(w). If ρ ∈ Z(w), we have (M,w) 
 TR(ρ) since M is in EIK. Otherwise,
ρ is ς′ and we have {ς1, ς2} ⊆ Z(w).
Suppose (M,w) 


∧
prem(ς′), so every premise of ς′ is true at w in M. This

includes every premise of ς1 and every premise of ς2 except conc(ς1). But
since every premise of ς1 is true at w in M and ς1 is in Z(w), truth for rules
of M tells us that conc(ς1) is true at w in M and hence every premise of ς2
is true at w in M. Now, since ς2 is in Z(w), truth for rules of M tell us that
conc(ς2), that is, conc(ς′), is true at w in M. Then we have (M,w) 
 TR(ς′).

�

The language EID∗ extends EID by making it closed under formulas
representing structural operations: if ϕ is in EID∗, so are 〈Ref δ〉ϕ, 〈Monδ,ς〉ϕ
and 〈Cutς1,ς2〉ϕ. Each one of the formulas are read as “there is a way of applying
the structural operation after which ϕ is the case”. With PreMon(δ,ς) ≡ L ς and
PreCut(ς1,ς2) ≡ L ς1 ∧ L ς2 ∧ (I prem(ς2) → I conc(ς1)), the semantics of the new
formulas is given as follows.
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Definition 3.4. Let M be a model in EI, and take a world w in it.

(M,w) 
 〈Ref δ〉ϕ iff (MRef(δ),w) 
 ϕ
(M,w) 
 〈Monδ,ς〉ϕ iff (M,w) 
 PreMon(δ,ς) and (MMon(δ,ς),w) 
 ϕ
(M,w) 
 〈Cutς1,ς2〉ϕ iff (M,w) 
 PreCut(ς1,ς2) and (MCut(ς1,ς2),w) 
 ϕ

Just as before, the boxed versions of the structural operation formulas is defined
as the dual of their correspondent diamond versions.

To provide axioms for the new formulas, Proposition 2 allows us to rely on
the logic EIK once again.

Theorem 4 (Soundness and completeness of EIKDS w.r.t. EIK). For uniformity,
define PreRef(δ) ≡ >. The logic EIKDS, extending EIKD with axioms and rule of Table 4
(where STR stands for either Re f , Mon or Cut and ς′ is the correspondent new rule),
is sound and strongly complete w.r.t. models in EIK.

` 〈STR〉> ↔ PreSTR ` 〈STR〉 p ↔ (PreSTR ∧ p)
` 〈STR〉 ¬ϕ ↔ (PreSTR ∧ ¬〈STR〉ϕ)
` 〈STR〉 (ϕ ∨ ψ) ↔ (〈STR〉ϕ ∨ 〈STR〉ψ)
` 〈STR〉^ϕ ↔ (PreSTR ∧ ^〈STR〉ϕ)
` 〈STR〉L ς′ ↔ PreSTR ` 〈STR〉 I γ ↔ (PreSTR ∧ I γ)
` 〈STR〉Lρ ↔ (PreSTR ∧ Lρ) for ρ , ς′

From ` ϕ, infer ` [STR]ϕ

Table 4: Axioms and rules for reflexivity, monotonicity and cut formulas.

We finish this section presenting some validities (Table 5), expressing how
deduction after structural operations is related to deduction before them at
models in EIK.

Theorem 5. The formulas in Table 5 are valid in EIK models.

Reflexivity with ςδ the rule ({δ}, δ)
• 〈Ref δ〉 〈Dσ〉ϕ ↔ 〈Dσ〉 〈Ref δ〉ϕ for σ , ςδ
• 〈Ref δ〉 〈Dςδ〉ϕ ↔ (〈Dςδ〉ϕ ∨ (I δ ∧ 〈Ref δ〉ϕ))
Monotonicity with ς′ the rule (prem(ς) ∪ {δ}, conc(ς))
• 〈Monδ,ς〉 〈Dσ〉ϕ ↔ 〈Dσ〉 〈Monδ,ς〉ϕ for σ , ς′

• 〈Monδ,ς〉 〈Dς′〉ϕ ↔ (〈Dς′〉ϕ ∨ (I δ ∧ L ς ∧ 〈Dς〉 〈Monδ,ς〉ϕ))
Cut with ς′ the rule ( (prem(ς2) − {conc(ς1)}) ∪ prem(ς1), conc(ς2) )
• 〈Cutς1 ,ς2〉 〈Dσ〉ϕ ↔ 〈Dσ〉 〈Cutς1 ,ς2〉ϕ for σ , ς′

• 〈Cutς1 ,ς2〉 〈Dς′〉ϕ ↔
(〈Dς′〉ϕ ∨ (I prem(ς1) ∧ L ς1 ∧ (I conc(ς1)→ 〈Dς2〉 〈Cutς1 ,ς2〉ϕ)))

Table 5: Formulas relating structural operations and deduction

Proof. The validity of the formulas follows from the bisimilarities between
models stated below. In our case, the bisimulation concept extends the standard
one by asking for related worlds to have the same information and rule set:
given two models M1 = 〈W1,R1,V1,Y1,Z1〉 and M2 = 〈W2,R2,V2,Y2,Z2〉, a non
empty relation B ⊆ (W1 × W2) is a bisimulation if and only if it is a standard
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bisimulation between 〈W1,R1,V1〉 and 〈W2,R2,V2〉 and, if Bw1w2, then Y1(w1) =
Y2(w2) and Z1(w1) = Z2(w2).

Let M = 〈W,R,V,Y,Z〉 be a model in EIK, and take w ∈W. Models of the form
MSTRσ are the result of applying first the structural operation STR and then the
deduction operation with rule σ, and analogously for models of the form MσSTR.
In all cases, the bisimulation is the identity relation over worlds reachable from
w.

Reflexivity. Let ςδ be the rule ({δ}, δ):
• If σ , ςδ, then (MRef(δ)σ,w) - (MσRef(δ),w).
• If ςδ ∈ Z(w), then (MRef(δ)ςδ

,w) - (Mςδ ,w).
• If δ ∈ Y(w), then (MRef(δ)ςδ

,w) - (MςδRef(δ),w).
Monotonicity. Let ς′ be the rule (prem(ς) ∪ {δ}, conc(ς)):
• If σ , ς′, then (MMon(δ,ς)σ,w) - (MσMon(δ,ς),w).
• If ς′ ∈ Z(w), then (MMon(δ,ς)ς′ ,w) - (Mς′ ,w).
• If δ ∈ Y(w) and ς ∈ Z(w), then (MMon(δ,ς)ς′ ,w) - (MςMon(δ,ς),w).
Cut. Let ς′ be the rule ( (prem(ς2) − {conc(ς1)}) ∪ prem(ς1), conc(ς2) ):
• If σ , ς′, then (MCut(ς1,ς2)σ,w) - (MσCut(ς1,ς2),w).
• If ς′ ∈ Z(w), then (MCut(ς1,ς2)ς′ ,w) - (Mς′ ,w).
• If (prem(ς1) ∪ {conc(ς1)}) ∈ Y(w) and ς1 ∈ Z(w), then

(MCut(ς1,ς2)ς′ ,w) - (Mς2 Cut(ς1,ς2),w).

The involved operations (structural ones and deduction) preserve worlds, ac-
cessibility relations and valuations. To show that the identity relation over
worlds reachable from w is a bisimulation, we just need to show that they have
the same information and rule set in both models.

Consider as an example the third bisimilarity for monotonicity. For infor-
mation sets, take any γ in the information set of w at MMon(δ,ς)ς′ ; by definition,
either it was already in that of w at MMon(δ,ς) or else it was added by the deduction
operation. In the first case, it is in w at M (structural operations do not modify
information sets); then it is also in w at Mς and hence it is in w at MςMon(δ,ς). In
the second case, γ should be conc(ς′), but then we have the premises of ς′ (and
hence those of ς) in w at MMon(δ,ς). Then, they are already in w at M and, by
hypothesis, we have ς in w at M, so conc(ς) = conc(ς′) is in w at Mς and hence it
is in w at MςMon(δ,ς).

For the other direction, take γ in w at MςMon(δ,ς). Then it is in w at Mς and
therefore either it was already in w at M or else it was added by the deduction
operation. In the first case, γ is preserved through the monotonicity and the
deduction operations, and therefore it is in w at MMon(δ,ς)ς′ . In the second case, γ
should be conc(ς), and then we should have prem(ς) and ς in the correspondent
sets of w at M. By hypothesis we have δ in w at M, so we have all the premises
of ς′ in w at M and therefore they are also in w at MMon(δ,ς). Since we have ς in
w at M, we have ς′ in w at MMon(δ,ς) too. Hence, we have conc(ς′) = conc(ς) in
w at MMon(δ,ς)ς′ . The case for rules is similar.

Now suppose a world u is reachable from w through the accessibility relation
at MMon(δ,ς)ς′ . Since neither the relations nor the worlds are modified by the
operations, u is reachable from w at M and therefore u is reachable from w
at MςMon(δ,ς), too. Now we use the coherence properties: since δ ∈ Y(w) and
ς ∈ Z(w), we have δ and ς in the corresponding sets of u, and then we can apply
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the argument used for w to show that u has the same information and rule set
on both models. �

4 Update

So far, our language can express the agent’s internal dynamics, but it cannot
express external ones. We can express how deductive steps modify explicit
knowledge, and even how structural operations extends the rules the agent
can apply, but we cannot express how both explicit and implicit knowledge are
affected by external observations. Here we add the other fundamental source
of information; in this section, we extend the language to express updates.

Updates are the result of the agent’s social nature. We get new information
because of the interaction with our environment, information that does not have
to follow from what we explicitly know. In Public Announcement Logic (PAL), an
announcement is interpreted as an operation that removes the worlds where the
announced formula does not hold, restricting the epistemic relation to those
that are not deleted. In our semantic model, we have a finer representation
of the agent’s knowledge: we have implicit one (given by the accessibility
relation) but we also have explicit knowledge (the information sets). We can
extend PAL by defining operations affecting explicit and implicit knowledge in
different forms, and therefore expressing different ways the agent processes the
incoming information. Here, we present one of the possible definitions, what
we have called explicit observations.

4.1 Explicit observations

The previously defined operations just add formulas or rules to the correspond-
ing sets, but do not modify the accessibility relation and therefore do not affect
implicit knowledge. Explicit observations, on the other hand, do modify the ac-
cessibility relation because they remove worlds where the observation does not
hold. With respect to explicit information, they add arbitrary true information
(a formula or a rule), no matter if it was implicitly available or not.

Definition 4.1 (Explicit observation operation). Let M = 〈W,R,V,Y,Z〉 be a
model in EI and let χ be a formula of (a rule based on) I. The model Mχ! =
〈W′,R′,V′,Y′,Z′〉 is given by

• W′ := {w ∈W | (M,w) 
 χ } (W′ := {w ∈W | (M,w) 
 TR(χ) }),

• R′ := R ∩ (W′
×W′),

• V′(w) := V(w) for every w ∈W′,

• Y′(w) := Y(w) ∪ {χ} (Y′(w) := Y(w)) for every w ∈W′,

• Z′(w) := Z(w) (Z′(w) := Z(w) ∪ {χ}) for every w ∈W′.

The operation preserves models in EIK too.

Proposition 3. Let M be a model in EIK and let χ be a formula (a rule). If M is in
EIK, so is Mχ!.
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Proof. Suppose χ is a formula. Equivalence follows immediately, as well as the
properties for rules since Z is not affected in the remaining worlds. Coherence
for formulas holds because χ is added uniformly, and truth for formulas holds
because of the definition of W′. Suppose χ is a rule. Equivalence and the
properties for formulas are just as before. Coherence for rules holds because
χ is added uniformly, and truth for rules holds because of the definition of
W′. �

The languageEID∗! extendsEID∗ by closing it under explicit observations:
ifϕ is inEID∗!, so is 〈χ!〉ϕ. These formulas are read as “there is a way of explicitly
observing χ after which ϕ is the case”. In case χ is a formula, define Preχ! ≡ χ; in
case χ is a rule, define Preχ! ≡ TR(χ). The semantics for the new formulas is
given as follows.

Definition 4.2. Let M be a model in EI, and take a world w in it.

(M,w) 
 〈χ!〉ϕ iff (M,w) 
 Preχ! and (Mχ!,w) 
 ϕ

The formula [χ!]ϕ is defined as the dual of 〈χ!〉ϕ, as usual.

Theorem 6 (Soundness and completeness of EIKDSO w.r.t. EIK). The logic EIKDSO,
built from EIKDS plus axioms and rule in Table 6, is sound and strongly complete w.r.t.
the class of models EIK.

` 〈χ!〉> ↔ Preχ! ` 〈χ!〉 p ↔ (Preχ! ∧ p)
` 〈χ!〉 ¬ϕ ↔ (Preχ! ∧ ¬〈χ!〉ϕ) ` 〈χ!〉 (ϕ ∨ ψ) ↔ (〈χ!〉ϕ ∨ 〈χ!〉ψ)
` 〈χ!〉^ϕ ↔ (Preχ! ∧ ^〈χ!〉ϕ)
If χ is a formula:
` 〈χ!〉 I χ ↔ Preχ! ` 〈χ!〉Lρ ↔ (Preχ! ∧ Lρ)
` 〈χ!〉 I γ ↔ (Preχ! ∧ I γ) for γ , χ
If χ is a rule:
` 〈χ!〉Lχ ↔ Preχ! ` 〈χ!〉 I γ ↔ (Preχ! ∧ I γ)
` 〈χ!〉Lρ ↔ (Preχ! ∧ Lρ) for ρ , χ
From ` ϕ, infer ` [χ!]ϕ

Table 6: Axioms and rules for explicit observation formulas.

We finish this section presenting some validities (Table 7) expressing inter-
action between explicit observations and deduction in models of EIK.

Theorem 7. The formulas in Table 5 are valid in EIK models.

If χ is a formula
• 〈χ!〉 〈Dσ〉ϕ ↔ 〈Dσ〉 〈χ!〉ϕ if χ < prem(σ)
• 〈χ!〉 〈Dσ〉ϕ ↔ (〈Dσ〉 〈χ!〉ϕ ∨ (I δ→ 〈Dσ〉 〈χ!〉ϕ)) if χ ∈ prem(σ)
If χ is a rule
• 〈χ!〉 〈Dσ〉ϕ ↔ 〈Dσ〉 〈χ!〉ϕ if χ , σ
• 〈χ!〉 〈Dχ〉ϕ ↔ (〈Dχ〉 〈χ!〉ϕ ∨ (Lχ→ 〈Dχ〉 〈χ!〉ϕ)) if χ = σ

Table 7: Formulas relating explicit observations and deduction
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Proof. Just as the case of structural operations and deduction, the validity of
the formulas follows from the bisimilarities stated below.

If χ is a formula:
• If χ < prem(σ), then (Mχ!σ,w) - (Mσχ!,w).
• If χ ∈ prem(σ) and χ ∈ Y(w), then (Mχ!σ,w) - (Mσχ!,w).
If χ is a rule:
• If χ , σ, then (Mχ!σ,w) - (Mσχ!,w).
• If χ = σ and χ ∈ Z(w), then (Mχ!σ,w) - (Mσχ!,w).

The proof is similar to the case of structural operations and deduction, keeping
in mind that observations remove worlds. �

5 Comparison with other works

The present work explores a representation of explicit/implicit information,
allowing us to describe the way different process affects them. Several other
works have proposed similar frameworks, and this section provides a brief
comparison between some of them and our proposal.

5.1 Fagin-Halpern’s logics of awareness

Fagin and Halpern presented in 1988 a logic of general awareness (LA). The
language is a set of atomic propositions P closed under negation, conjunction
and the operators Ai and Li (for an agent i). Formulas of the form Aiϕ are
read as “the agent i is aware of ϕ”, and formulas of the form Liϕ are read as “the
agent i implicitly believes that ϕ”. The operator Bi for explicit beliefs is defined as
Biϕ := Aiϕ ∧ Liϕ.

An structure for general awareness is a tuple M = (W,Ai,Li,V), where W , ∅
is the set of possible worlds, Ai : W → ℘(LA) is a function that assigns a set
of formulas of LA to agent i in each world (her awareness set), Li is a serial,
transitive and Euclidean relation over W for each agent i (LA deals with beliefs)
and V : P→ ℘(W) is a valuation. Semantics for atomic propositions, negations
and conjunctions are standard; for formulas of the form Ai ϕ we look into the
awareness set, and Li is a box modal operator.

The main difference between this logic of general awareness and our approach
is in the dynamics. First, we include in the semantic model our rule set function
Z, indicating the processes the agent can use to increase her explicit information.
She has not only facts about the world, but also rules that allow her to infer
new facts. It is not that the agent knows that after a rule application her
information set will change; it is that she knows the process that leads the
change. Second, the LA does not express changes in the agent’s awareness
set, though later in the same paper the authors add a binary relation over W
to represent steps in time. Our approach uses inference as the process that
transform explicit information, and this process is represented not as relation
between worlds, but as a model operation that adds formulas to information
sets. Moreover, we also consider dynamics of the inference process itself,
witness the Structural operations. Third, the language of our information sets
is less expressive than the awareness sets, but that allows us to define the update
operation for representing external dynamics, a process not considered in LA.
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5.2 Duc’s dynamic epistemic logic

Duc proposed in 1995, 1997, 2001 a dynamic epistemic logic to reason about
agents that are neither logically omniscient nor logically ignorant. He defined
the language LBDE, based on formulas of the form Kγ (for γ a propositional
formula) and closed under negation, conjunction and the modal operator 〈F〉.
Formulas of the form Kγ are read as “γ is known”, and formulas of the form
〈F〉ϕ are read as “ϕ is true after some course of thought”. The language does not
provide formulas to talk about the real world.

A BDE-model M is a tuple (W,R,Y), with R a transitive relation over W
and Y a function assigning a set of propositional formulas to each possible
world. The definition asks for properties guaranteeing that the set of formulas
will grow as the agent reasons, and that her information will be closed under
modus ponens and will contain all tautologies at some point. Semantics for
negation and conjunctions are standard. For formulas of the form Kγ we look
into Y(w) for w the correspondent world and the operator 〈F〉 is interpreted as
a diamond with R.

Duc’s framework does not consider implicit information and, while it does
express changes in the sets of formulas, this mechanism is represented as a
relation between worlds, different from our model operation approach. Also,
his language is restricted to express what the agent can infer through some
“course of thought”, but it does not express external dynamics, as our explicit
observations do.

5.3 Jago’s logic for resource-bounded agents

In 2006a, 2006b, Jago presented a logic for resource-bounded agents. He con-
sidered a semantic model similar to ours, extending Kripke models with a set
of formulas of some internal language for every agent in each possible world
to describe explicit information. He also considered rule-based inference as
the mechanism through which the agent can increase her information. Similar
to Duc’s work, inference is represented as a relation between worlds, with a
relation Rρ linking w and u iff w contains the rule ρ and its premises and u
extends w by ρ’s conclusions.

There are two main differences in the approaches. The first one is again the
treatment of the mechanism to increase explicit information. Extending what
we have said before, our model-operation representation facilitates the work by
giving us a functional treatment of inference, while the modal representation
forces us to ask for properties of the relation in order for inference to behave in
a functional way. Those properties may need a more powerful language to be
expressed (the uniqueness of the result of a rule application needs nominals)
and some of them may be not preserved after updates (the existence of a
world resulting from an available rule application is not preserved since new
information may turn applicable more rules). The second one is our updates,
not considered in Jago’s work.

5.4 van Benthem’s acts of realization

In van Benthem (2008b), the author considers a language based on atomic
propositions and formulas of the form Iγ (γ a factual formula), and closed
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under boolean connectives and the modal operator K. The semantic model is of
the form (W,Wacc,∼,V) where (W,∼,V) is a standard Kripke model and Wacc is a
set of access worlds: pairs (w,X) with w ∈W and X a set of factual formulas (the
access set). There are two restrictions: for every (w,X), all formulas in X should
be true at w and epistemically indistinguishable worlds should have the same
access set. Given a model and an access world (w,X), atomic propositions are
interpreted according to the valuation at w, boolean connectives and K (a box)
are interpreted as usual, and Iγ is true at (w,X) iff γ ∈ X.

Given a factual formula, he defines two model operations. An implicit
observation removes the worlds that do not satisfy the formula, just as an an-
nouncement in PAL. An explicit observation removes worlds but also adds the
formula to the access sets of the remaining ones. So far the setup is similar
to ours, except for the set of rules we consider at each world and its syntactic
counterpart Lρ.

But here van Benthem notices that the two operations overlap in their effects
on the model. He proposes two more “orthogonal” operations: one simply
removing worlds (a “bare observation”) and another one simply adding true
formulas to the access sets (an “act of realization”). An implicit observation is
then a bare observation while an explicit one composes a bare observation and an
act of realization.

Note that an act of realization is more general than our deduction. As it is
shown, any formula that is part of the implicit information can be added to the
access set; in particular, validities, can be added at any point. Our framework,
on the other hand, allows us to add a formula only if it is the conclusion of an
applicable rule, that is, we have the rule and its premises.

6 Final remarks and further work

Let us describe the restaurant example with our framework. The initial setting
can be given by a model M with six possible worlds, each one of them indicating
a possible distribution of the dishes, and all of them indistinguishable from each
other.

For explicit information, consider a set of atomic propositions of the form
pd where p stands for a person (father, mother or you) and d stands for some
dish (meat, fish or vegetarian). The waiter explicitly knows each person will
get only one dish, so we can put the rules

ρ1 : {yf} ⇒ ¬yv, ρ2 : {fm} ⇒ ¬fv

and similar ones in each world. Moreover, he explicitly knows that each dish
corresponds to one person, so the rule

σ : {¬yv,¬fv} ⇒ mv

can be also added, among many others. Let w be the real world, where yf, fm
and mv are true. The formula ¬I mv∧¬�mv, indicating that the waiter does not
know (neither explicitly nor implicitly) that your mother has the vegetarian, is
true at (M,w).

While approaching the table, the waiter can increase the rules he knows.
This does not give him new explicit facts, but it will allow him to infer faster
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later. From Cut over ρ1 and σ, he gets

ς1 : {yf,¬fv} ⇒ mv

Then, the formulas

〈Cutρ1,σ〉 ¬I mv 〈Cutρ1,σ〉L ς1

are also true at (M,w). Moreover, he can apply Cut again, this time with ρ2 and
ς1, obtaining the rule

ς2 : {yf, fm} ⇒ mv

and making

〈Cutρ1,σ〉 〈Cutρ2,ς1〉 ¬I mv 〈Cutρ1,σ〉 〈Cutρ2,ς1〉L ς2

true at (M,w).
After the answer to the question “Who has the fish?”, the waiter explicitly

knows that you have the fish. Four possible worlds are removed, but he still
does not know that your mother has the vegetarian. We have

(M,w) 
 〈Cutρ1,σ〉 〈Cutρ2,ς1〉 〈yf!〉 (¬I mv ∧ ¬�mv)

Then he asks “Who has the meat?”, and the answer removes one of the re-
maining worlds. Now he knows implicitly that your mother has the vegetarian
dish and, moreover, he is able to infer it and add it to his explicit information:

(M,w) 
 〈Cutρ1,σ〉 〈Cutρ2,ς1〉 〈yf!〉 〈fm!〉 (�mv ∧ 〈Dς2〉 I mv)

Two structural operations, two explicit observations and one inference are all
that the waiter needs.

The proposal can be extended in several ways. The first one is by extending
the internal language beyond the propositional one. As we mentioned, we
choose it because it makes the definition of updates of Section 4 possible. In
general, a true observation in the full explicit/implicit information language
cannot be simply added to an information set, since it may become false after
being observed (witness Moore sentences, like p∧¬�p). A first attempt would
be to keep in the new information set those formulas that are true in the new
model, but we would face circularity: we define the new information set by
keeping those formulas that are still true, but in order to decide whether an
explicit information formula I γ is true or not, we need this new information set.
A further analysis providing a solution to this limitation will greatly increase
the expressivity of the framework.

We have analyzed the case in which the information is true, but this is
not the general situation. By removing such restriction we can talk not only
about knowledge but also about beliefs. Some recent works combine these two
notions, giving us a nice way of studying these two propositional attitudes to-
gether. Moreover, we have analyzed the case where inference preserves truth,
but there are other inference processes, like default reasoning, abduction or belief
revision, which are widely used, particularly in incomplete information situa-
tions. Within the proposed framework, we can represent different inference
processes, and we can study how all of them work together.
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For the external dynamics, we mentioned that this finer representation of
knowledge allows us to define different kinds of observations. So far we can
represent observations that do not affect explicit information (like van Ben-
them’s bare observations) and our already defined explicit observations. With
a more expressive internal language, we could represent more kinds of obser-
vations, all differing between them in how introspective is the agent about the
observed fact.

In the context of agent diversity (Liu 2006, 2008), our framework allows us to
represent agents having different rules and therefore having different reasoning
abilities. The idea works also for external dynamics: agents may have different
observational powers. It will be interesting to explore how agents that differ in
their reasoning and observational abilities interact with each other.
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Abstract
In this paper we define a many-valued semantics for hybrid logic and we
give a sound and complete tableau system which is proof-theoretically
well-behaved, in particular, it gives rise to a decision procedure for the
logic. This shows that many-valued hybrid logics is a natural enterprise
and opens up the way for future applications.1

1 Introduction

Classical hybrid logic is obtained by adding to ordinary, classical modal logic
further expressive power in the form of a second sort of propositional symbols
called nominals, and moreover, by adding so-called satisfaction operators. A
nominal is assumed to be true at exactly one world, so a nominal can be con-
sidered the name of a world. Thus, in hybrid logic a name is a particular sort
of propositional symbol whereas in first-order logic it is an argument to a pred-
icate. If i is a nominal and φ is an arbitrary formula, then a new formula @iφ
called a satisfaction statement can be formed. The part @i of @iφ is called a sat-
isfaction operator. The satisfaction statement @iφ expresses that the formula φ
is true at one particular world, namely the world at which the nominal i is true.
Hybrid logic is proof-theoretically well-behaved, which is documented in the
forthcoming book Braüner (2008). Hybrid-logical proof-theory includes a long
line of work on tableau systems for hybrid logic, see Blackburn (2000), Black-
burn and Marx (2002), Bolander and Braüner (2006), Bolander and Blackburn
(2007a), Hansen (2007), Bolander and Blackburn (2007b).

Now, classical hybrid logic can be viewed as a combination of two logics,
namely classical, two-valued logic (where the standard propositional connec-
tives are interpreted in terms of the truth-values true and false) and hybrid
modal logic (where modal operators, nominals, and satisfaction operators are

1This article also appears in the proceeding of the workshop Advances in Modal Logic 2008, Nancy,
France.
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interpreted in terms of a set of possible worlds equipped with an accessibility
relation). The present paper concerns many-valued hybrid logic, that is, hybrid
logic where the two-valued logic basis has been generalized to a many-valued
logic basis. To be more precise, we shall define a many-valued semantics for
hybrid logic, and we shall give a tableau system that is sound and complete
with respect to the semantics. Not only is the many-valued semantics a gen-
eralization of the two-valued semantics, but if we chose a two-valued version
of the many-valued tableau system, then modulo minor reformulations and
the deletion of superfluous rules, the tableau system obtained is identical to an
already known tableau systems for hybrid logic. Our many-valued semantics
is a hybridized version of a many-valued semantics for modal logic given in
the papers Fitting (1992a;b; 1995). A notable feature of this semantics is that
it allows the accessibility relation as well as formulas to take on many truth-
values (in other many-valued modal logics it is only formulas that can take on
many truth-values).

A leading idea behind our work is that we distinguish between the way of
reasoning and what the reasoning is about, and in accordance with this idea,
we generalize the way of reasoning from two-valued logic to many-valued
logic such that we reason in a many-valued way about time, space, knowledge,
states in a computer, or whatever the subject-matter is. Given our distinction
between the way of reasoning and what the reasoning is about, we take it
that the concerns of hybrid logic basically are orthogonal to as whether the
logic basis is two-valued or many-valued. Thus, it is expectable that the al-
ready known proof-theoretically well-behaved tableau systems for two-valued
hybrid logic can be generalized to proof-theoretically well-behaved tableau sys-
tems for many-valued hybrid logic. Accordingly, if we define a many-valued
hybrid logic and give a tableau system that satisfies standard proof-theoretic
requirements (it is cut-free, it satisfies a version of the subformula property, and
it gives rise to a decision procedure), then we learn more about hybrid logic and
we provide more evidence that hybrid logic and hybrid-logical proof-theory is
a natural enterprise.

This paper is structured as follows. In the second section of the paper we
define the many-valued semantics for hybrid logic and we make some remarks
on the relation to intuitionistic hybrid logic. In the third section we introduce
a tableau system, in the fourth section we prove termination, and in the fifth
section we prove completeness.

2 A Many-Valued Hybrid Logic language

In this section a Many-Valued Hybrid Logic language (denoted by MVHL)
is presented and a semantics for the language is given. We have included
global modalities, one reason being that they are used in our motivation for our
choice of semantics for the nominals, but our termination and completeness
proofs later in the paper do not include global modalities. In the following let
T denote a fixed finite Heyting algebra. That is,T is a finite lattice such that for
all a and b inT there is a greatest element x ofT satisfying a∧x ≤ b. The element
x is called the relative pseudo-complement of a with respect to b (denoted a⇒ b).
To avoid notational ambiguity in relation to the syntax of our hybrid logic, we
will in the following use the symbol ⇒ for relative pseudo-complement, and
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t and u for meet and join, respectively. The largest and smallest elements of
T are denoted > and ⊥, respectively. The elements of the Heyting algebra T
are going to be used as truth values for our many-valued logic. Thus, in the
following, we will often refer to the elements of T as truth values.2

2.1 Syntax for MVHL

Let a countable infinite set of propositional variables PROP and a countable
infinite set of nominals NOM be given. In addition to the usual connectives of
propositional model logic, we include the global modalities E and A, and for
every i ∈ NOM, a satisfaction operator @i.

Definition 2.1 (MVHL-formulas). The set of MVHL-formulas is given by the
following grammar:

ϕ ::= p | a | i | (ψ1 ∧ ψ2) | (ψ1 ∨ ψ2) | (ψ1 → ψ2) | �ψ | ^ψ | @iψ | Eψ | Aψ ,

where p ∈ PROP, a ∈ T , and i ∈ NOM.

In general we will use i, j, k and so on for nominals and a, b, c for elements
of T .

2.2 Semantics for MVHL

The semantics for MVHL is a Kripke semantics in which the accessibility rela-
tion is allowed to take values in T . This is inspired by Fitting (1995). A model
M is a tupleM = 〈W,R,n, ν〉, where W is the set of worlds, and R a mapping
R : W ×W → T called the accessibility relation. n is a function interpreting the
nominals, i.e. n : NOM→W. Finally the valuation ν : W ×PROP→ T assigns
truth values to the propositional variables at each world.

Now given a modelM = 〈W,R,n, ν〉, we can extend the valuation ν to all
formulas in the following inductive way, where w ∈W:

2In order to give reasonable semantics for ∧ and ∨ a Lattice structure is needed. A complete
Lattice would be enough if the accessibility relation was only allowed to have two values, but since
we also allows for the accessibility relation to take values in T , the structure of a Heyting algebra
is needed. For further discussions of the choice of a finite Heyting algebra as the set of truth values
see Fitting (1992b; 1995).
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ν(w, a) := a for a ∈ T

ν(w, i) :=
{
> , if n(i) = w
⊥ , else

ν(w, ϕ ∧ ψ) := ν(w, ϕ) u ν(w, ψ)
ν(w, ϕ ∨ ψ) := ν(w, ϕ) t ν(w, ψ)
ν(w, ϕ→ ψ) := ν(w, ϕ)⇒ ν(w, ψ)

ν(w,�ϕ) :=
l
{R(w, v)⇒ ν(v, ϕ) | v ∈W}

ν(w,^ϕ) :=
⊔
{R(w, v) u ν(v, ϕ) | v ∈W}

ν(w,@iϕ) := ν(n(i), ϕ)

ν(w,Aϕ) :=
l
{ν(v, ϕ) | v ∈W}

ν(w,Eϕ) :=
⊔
{ν(v, ϕ) | v ∈W}

The semantics chosen for the hybrid logical constructions is discussed in
the following. The semantics for @iϕ is obvious, its truth value is simply the
truth value of ϕ at the world i denotes. The semantics chosen for the global
modalities A and E reflect the fact that these modalities are simply the global
versions of the modalities � and^. The choice of semantics for nominals is less
obvious. In this paper we have chosen to assign each nominal i the value >
in exactly one world, and ⊥ in all other worlds. This is in agreement with the
the standard semantics for hybrid logic in which a nominal “points to a unique
world”. It would probably also be possible to allow nominals to take values
outside the set {>,⊥}, but at least a nominal should receive the value > in one
and only one world in order for the semantics to be in accordance with classical,
two-valued, hybrid logic (and for nominals to be semantically different from
ordinary propositional symbols). Our decision of making the semantics of
nominals two-valued rests primarily on the fact that it allows us to preserve the
following well-known logical equivalence from classical, two-valued, hybrid
logic:

@iϕ↔ E(i ∧ ϕ)
@iϕ↔ A(i→ ϕ)

With the chosen semantics, these equivalences also hold in MVHL:

ν(w,@iϕ) = ν(n(i), ϕ) =
⊔
{ν(v, i) u ν(v, ϕ) | v ∈W} = ν(w,E(i ∧ ϕ))

ν(w,@iϕ) = ν(n(i), ϕ) =
l
{ν(v, i)⇒ ν(v, ϕ) | v ∈W} = ν(w,A(i→ ϕ)).

Here we have been using that the following holds in a Heyting algebra: >ua = a,
⊥ u a = ⊥, a t ⊥ = a, > ⇒ a = a and ⊥ ⇒ a = >. Another pleasant property
resulting from the choice of semantics for nominals is the following:

ν(w,@i^ j) = ν(n(i),^ j) =
⊔
{R(n(i), v) u ν(v, j) | v ∈W} = R(n(i),n( j)).

This identity expresses that the reachability of the world denoted by j from the
world denoted by i is described by the formula @i^ j. This property also holds
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in classical hybrid logic. Identity between worlds denoted by nominals can
also be expressed as usual, since we have:

ν(w,@i j) = > iff n(i) = n( j).

2.3 The relation to intuitionistic hybrid logic

As pointed out in the paper Fitting (1992b), there is a close relation between the
many-valued modal logic given in that paper and intuitionistic modal logic.
We shall in this subsection consider the relation between many-valued hybrid
logic and a variant of the intuitionistic hybrid logic given in the paper Braüner
and de Paiva (2006) (which in turn is a hybridization of an intuitionistic modal
logic introduced in a tense-logical version in Ewald (1986)). In the present
subsection we do not assume that a finite Heyting algebra has been fixed in
advance, so the only atomic formulas we consider are ordinary propositional
symbols, nominals, and the symbol ⊥. We first define an appropriate notion of
an intuitionistic model, which can be seen as a restricted variant of the notion
of a model given in Braüner and de Paiva (2006)3.

Definition 2.2. A restricted model for intuitionistic hybrid logic is a tuple

(W,≤,D, {Rw}w∈W , {νw}w∈W)

where

1. W is a non-empty finite set partially ordered by ≤;

2. D is a non-empty set;

3. for each w, Rw is a binary relation on D such that w ≤ v implies Rw ⊆ Rv;
and

4. for each w, νw is a function that to each ordinary propositional symbol p
assigns a subset of D such that w ≤ v implies νw(p) ⊆ νv(p).

The elements of the set W are states of knowledge and for any such state w,
the relation Rw is the set of known relationships between possible worlds and
the set νw(p) is the set of possible worlds at which p is known to be true. Note
that the definition requires that the epistemic partial order ≤ preserves these
kinds of knowledge, that is, if an advance to a greater state of knowledge is
made, then what is known is preserved.

Given a restricted model M = (W,≤,D, {Rw}w∈W , {νw}w∈W), an assignment
is a function n that to each nominal assigns an element of D. The relation

3Compare to Definition 2, p. 237, of the paper Braüner and de Paiva (2006). The differences are
the following: i) In Braüner and de Paiva (2006) the set W need not be finite. ii) Instead of D there
is a family {Dw}w∈W of non-empty sets such that w ≤ v implies Dw ⊆ Dv, Rw is a binary relation
on Dw, and νw(p) is a subset of Dw. iii) There is a family {∼w}w∈W where ∼w is an equivalence
relation on Dw such that w ≤ v implies ∼w⊆∼v and such that if d ∼w d′, e ∼w e′, and dRwe, then
d′Rwe′, and similarly, if d ∼w d′ and d ∈ νw(p), then d′ ∈ νw(p). The equivalence relations are used
for the interpretation of nominals. Such a model for intuitionistic hybrid logic corresponds to a
standard model for intuitionistic first-order logic with equality where equality is interpreted using
the equivalence relations, cf. Troelstra and van Dalen (1988).
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M,n,w, d |= φ is defined by induction, where w is an element of W, n is an
assignment, d is an element of D, and φ is a formula.

M,n,w, d |= p iff d ∈ νw(p)
M,n,w, d |= i iff d = n(i)

M,n,w, d |= φ ∧ ψ iff M,n,w, d |= φ andM,n,w, d |= ψ
M,n,w, d |= φ ∨ ψ iff M,n,w, d |= φ orM,n,w, d |= ψ
M,n,w, d |= φ→ ψ iff for all v ≥ w,

M,n, v, d |= φ impliesM,n, v, d |= ψ
M,n,w, d |= ⊥ iff falsum
M,n,w, d |= �φ iff for all v ≥ w, for all e ∈ D,

dRve impliesM,n, v, e |= φ
M,n,w, d |= ♦φ iff for some e ∈ D, dRwe andM,n,w, e |= φ
M,n,w, d |= @iφ iff M,n,w,n(i) |= φ
M,n,w, d |= Aφ iff for all v ≥ w, for all e ∈ D,M,n, v, e |= φ
M,n,w, d |= Eφ iff for some e ∈ D,M,n,w, e |= φ

This semantics can be looked upon in two different ways: As indicated above,
it can be seen as a restricted variant of the semantics given in Braüner and
de Paiva (2006), but it can also be seen as a hybridized version of a semantics
given in the paper Fitting (1992b). In the latter paper, the epistemic worlds
of the semantics are thought of as experts and the epistemic partial order is
thought of as a relation of dominance between experts: One expert dominates
another one if whatever the first expert says is true is also said to be true by the
second expert.

As pointed out in Fitting (1992b), the intuitionistic semantics for modal
logic is in a certain sense equivalent to the many-valued semantics. This also
holds in the hybrid-logical case. In what follows, we outline this equivalence.
It can be shown that given a restricted model M = (W,≤,D, {Rw}w∈W , {νw}w∈W),
cf. Definition 2.2, and an assignment n, the ≤-closed subsets of W ordered
by ⊆ constitute a finite Heyting algebra, and moreover, a many-valued model
(D,R∗,n, ν∗) can be defined by letting

• R∗(d, e) = {w ∈W | dRwe} and

• ν∗(d, p) = {w ∈W | d ∈ νw(p)}.

By a straightforward extension of the corresponding proof in Fitting (1992b),
it can be proved that for any formula φ, it is the case that ν∗(d, φ) = {w ∈
W | M,n,w, d |= φ}. Conversely, given a finite Heyting algebra T and a many-
valued model (D,R,n, ν), a restricted modelM = (W,⊆,D, {R∗w}w∈W , {ν∗w}w∈W) can
be defined by letting

• W = {w | w is a proper prime filter in T },

• dR∗we if and only if R(d, e) ∈ w, and

• d ∈ ν∗w(p) if and only if ν(d, p) ∈ w.

Details can be found in the paper Fitting (1992b). Again, by a straightforward
extension of the corresponding proof in that paper, it can be proved that for
any formula φ, it is the case thatM,n,w, d |= φ if and only if ν(d, φ) ∈ w.
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Thus, in the above sense the intuitionistic semantics for hybrid logic is
equivalent to the many-valued semantics for hybrid logic. It is an interesting
question whether there is such an equivalence if instead of the restricted models
of Definition 2.2 one considers the more general models for intuitionistic hybrid
logic given in the paper Braüner and de Paiva (2006)4. We shall leave this to
further work.

3 A tableau calculus for MVHL

In the following we will present a tableau calculus for MVHL. The basic no-
tions for tableaux are defined as usual (see e.g. Fitting (1983)). The formulas
occurring in our tableaux will all be of the form @i(a→ ϕ) or @i(ϕ→ a) prefixed
either a T or an F, where i ∈ NOM and a ∈ T . That is, the formulas occurring
in our tableaux will be signed formulas of hybrid logic. A signed formula of
the form T@i(a → ϕ) is used to express that the formula a → ϕ is true at i,
that is, receives the value > at i. If ν(n(i), a → ϕ) = > then, by definition of ν,
a ⇒ ν(n(i), ϕ) = >. By definition of relative pseudo-complement we then get
that > is the greatest element of T satisfying a∧> ≤ ν(n(i), ϕ). In other words,
we simply have a ≤ ν(n(i), ϕ). Thus what is expressed by a formula T@i(a→ ϕ)
is that the truth value of ϕ at i is greater than or equal to a. Symmetrically, a
signed formula of the formula T@i(ϕ → a) expresses that the truth value of ϕ
at i is less than or equal to a. Dually, a signed formula of the form F@i(a → ϕ)
(F@i(ϕ→ a)) expresses that the truth value of ϕ at i is not greater than or equal
to (less than or equal to) a.

The tableau rules are divided into four classes; Branch Closing Rules, Non-
modal Rules, Modal Rules and Hybrid Rules. The Branch Closing Rules and
Propositional Rules are direct translations of Fitting’s corresponding rules for
the pure modal case Fitting (1995).

Branch Closing Rules:

A tableau branch Θ is said to be closed if one of the following holds:

1. T@i(a→ b) ∈ Θ, for some a, b with a � b.

2. F@i(a→ b) ∈ Θ, for some a, b with a ≤ b, a , ⊥, and b , >.

3. F@i(⊥ → ϕ) ∈ Θ, for some formula ϕ.

4. F@i(ϕ→ >) ∈ Θ, for some formula ϕ.

5. T@i(b→ ϕ),F@i(a→ ϕ) ∈ Θ, for some a, b with a ≤ b.

6. T@ j(a→ i),F@i(b→ j) ∈ Θ, for some a, b , ⊥.

7. T@i(i→ a) ∈ Θ, for some nominal i and truth value a with a , >.

4As indicated in the previous footnote, in the intuitionistic semantics of Braüner and de Paiva
(2006), nominals are interpreted using a family {∼w}w∈W of equivalence relations, not identity. This
seems to imply that in an equivalent many-valued semantics, nominals should be allowed to take
on arbitrary truth-values, not just top and bottom.
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T@i(a→ (ϕ ∧ ψ))
(T∧)1

T@i(a→ ϕ)
T@i(a→ ψ)

F@i(a→ (ϕ ∧ ψ))
(F∧)1

F@i(a→ ϕ) F@i(a→ ψ)

T@i((ϕ ∨ ψ)→ a)
(T∨)2

T@i(ϕ→ a)
T@i(ψ→ a)

F@i((ϕ ∨ ψ)→ a)
(F∨)2

F@i(ϕ→ a) F@i(ψ→ a)

F@i(a→ (ϕ→ ψ))
(F→)3

T@i(b1 → ϕ) · · · T@i(bn → ϕ)
F@i(b1 → ψ) · · · F@i(bn → ψ)

T@i(a→ (ϕ→ ψ))
(T→)4

F@i(b→ ϕ) T@i(b→ ψ)

1 Where a , ⊥.
2 Where a , >.
3 Where a , ⊥ and b1, ..., bn are all the members of T with bi ≤ a except ⊥.
4 Where a , ⊥ and b is any member of T with b ≤ a except ⊥.

Figure 1: Propositional Rules for MVHL.

The two last conditions, 6 and 7, have no counterpart in Fitting’s system, but
are required in ours to deal with the semantics chosen for nominals. Note that
if a formula F@i(a→ i) with a , > occurs on a branch then the branch can also
be closed: In case a = ⊥, condition 3 immediately implies closure. If a , ⊥ then
using the reversal rule (F ≥) (see below), we can add a formula T@i(i → b) to
the branch, where b is one of the maximal members of T not above a. Because
b is not above a, b cannot be >. Thus condition 7 implies closure.

Non-modal Rules:

The tableau rules for the propositional connectives and the rules capturing the
properties of the Heyting algebra are given in Figure 1 and Figure 2, respectively.
The rules of Figure 2 are called reversal rules, as in Fitting (1995). The reversal
rules together with the closure rules ensure that no formula can be assigned
more than one truth value (relative to a given world and a given branch).

Modal Rules:

These modal rules, presented in Figure 3, differ from the ones of Fitting and
heavily employs the hybrid logic machinery. Note that the tableau rules contain
formulas of the form T@i(a↔ ^ j). Such formulas are simply used as shorthand
notation for the occurrence of both the formulas T@i(a→ ^ j) and T@i(^ j→ a).
In each of the rules of our calculus, the leftmost premise is called the principal
premise. If α is a signed formula on one of the forms T@i(a → ϕ), T@i(ϕ → a),
F@i(a→ ϕ) or F@i(ϕ→ a), we call ϕ the body of α and i its prefix. If α and β are
two signed formulas such that the body of α is a subformula of the body of β,
then α is said to be a quasi-subformula of β.
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F@i(a→ ϕ)
(F≥)1,2

T@i(ϕ→ b1) · · · T@i(ϕ→ bn)

T@i(a→ ϕ)
(T≥)1,3

F@i(ϕ→ b)

F@i(ϕ→ a)
(F≤)1,4

T@i(b1 → ϕ) · · · T@i(bn → ϕ)

T@i(ϕ→ a)
(T≤)1,5

F@i(b→ ϕ)

1 ϕ is a formula other than a propositional constant from T .
2 Where b1, ..., bn are all maximal members of T with a � bi and a , ⊥.
3 Where b is any maximal member of T with a � b and a , ⊥.
4 Where b1, ..., bn are all minimal members of T with bi � a and a , >.
5 Where b is any minimal member of T with b � a and a , >.

Figure 2: Reversal Rules for MVHL.

F@i(a→ �ϕ)
(F�)1

T@i(b1 ↔ ^ j) · · · T@i(bn ↔ ^ j)
F@ j((a u b1)→ ϕ) · · · F@ j((a u bn)→ ϕ)

T@i(a→ �ϕ) T@i(b→ ^ j)
(T�)

T@ j((a u b)→ ϕ)

F@i(^ϕ→ a)
(F^)1,2

T@i(b1 ↔ ^ j) · · · T@i(bn ↔ ^ j)
F@ j(ϕ→ (b1 ⇒ a)) · · · F@ j(ϕ→ (bn ⇒ a))

T@i(^ϕ→ a) T@i(b→ ^ j)
(T^)2

T@ j(ϕ→ (b⇒ a))

F@i(Eϕ→ a)
(FE)3

F@ j(ϕ→ a)

T@i(Eϕ→ a)
(TE)4

T@ j(ϕ→ a)

T@i(a→ Aϕ)
(TA)4

T@ j(a→ ϕ)

F@i(a→ Aϕ)
(FA)3

F@ j(a→ ϕ)

1 Where T = {b1, ..., bn} and j is a nominal new to the branch.
2 Where the principal premise is a quasi-subformula of the root formula.
3 Where j is a nominal new to the branch.
4 Where j is a nominal already occurring on the branch.

Figure 3: Modal Rules for MVHL.
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T@i(@ jϕ→ a)
(@L)

T@ j(ϕ→ a)

T@i(a→ @ jϕ)
(@R)

T@ j(a→ ϕ)

F@iϕ T@i(a→ j)
(F-NOM)1,2

F@ jϕ

T@iϕ T@i(a→ j)
(T-NOM)1,2

T@ jϕ

T@k(^i→ b) T@i(a→ j)
(BRIDGEL)1

T@k(^ j→ b)

T@k(b→ ^i) T@i(a→ j)
(BRIDGER)1

T@k(b→ ^ j)

T@i(> → j) T@ j(> → k)
(TRANS)

T@i(> → k)

T@i(a→ j)
(NOM EQ)1

T@i(> → j)

1 Where a , ⊥.
2 Where the principal premise is a quasi-subformula of the root formula.

Figure 4: Hybrid Rules for MVHL.

Hybrid Rules:

These hybrid rules, presented in Figure 4, are inspired by the standard rules
from classical hybrid logic (see Blackburn (2000), Bolander and Braüner (2006),
Bolander and Blackburn (2007a)). Note that for the (NOM) rule, two versions
are needed. Furthermore a new rule is needed due to the fact that we are in a
many-valued setting, this is the rule (NOM EQ), which ensures our semantic
definition of nominals as being > in exactly one world.

A tableau proof of a formula φ is a closed tableau with root F@i(> → φ),
where i is an arbitrary nominal not occurring in φ. The intuition here is that
the root formula F@i(> → φ) asserts that φ does not have the value >, and if
the tableau closes, this assertion is refuted. If i is a nominal occurring in the
root formula of a tableau then i is called a root nominal of the tableau. Other
nominals occurring on the tableau are called non-root nominals.

4 Termination

The tableau calculus presented above is not terminating. This is due to the rules
(TA) and (FA) for the global modality A. If the rules for the global modalities—
(FE), (TE), (TA) and (FA)—are all removed, we obtain a tableau calculus for the
many-valued hybrid logic with these modalities removed. We will refer to this
calculus as the basic calculus, and refer to its tableaux as basic tableaux. In the
following we will prove that the basic calculus terminates. The proof closely
follows the method introduced in Bolander and Blackburn (2007a).

If α and β are signed formulas on a tableau branch, then β is said to be
produced by α if β is one of the conclusions of a rule application with principal
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premise α. The signed formula β is said to be indirectly produced by α if there
exists a sequence of signed formulas α, α1, α2, . . . , αn, β in which each formula
is produced by its predecessor. We now have the following result.

Lemma 1 (Quasi-subformula Property). Let T be a basic tableau. For any signed
formula α occurring on T , one of the following holds:

1. α is a quasi-subformula of the root formula of T .

2. α is a formula of one of the forms T@i(a→ ^ j), T@i(^ j→ a), F@i(a→ ^ j) or
F@i(^ j→ a), for which one of the following holds:

(a) j is a root nominal.

(b) α is indirectly produced by (F�) or (F^) by a number of applications of the
reversal rules.

Proof. The proof goes by induction on the construction of T . In the basic case
α is just the root formula, which of course is of type 1. Now assume that α
have been introduced by one of the propositional rules. These rules does not
take premises of type 2 and thus by induction they must be of type 1. But then
the conclusions produced by these rules must also be of type 1, thus α must be
of type 1. If α have been produced by once of the reversal rules by a formula
of type 1, then α will also by of type 1 and if α is produced by a formula of
type 2, α is also of type 2. Now the modal rules. If α have been produced by
the rule (T�) then the principal premise can not be a formula of type 2 and
thus by induction it must be of type 1. But then so is α. Similar for the rule
(T^) where the side condition insures that the principal premise is of type 1.
If α is introduced by on of the rules (F�) or (F^) again the premise must be
of type 1. These rules produce two formulas, the first one is by definition of
type 2b and the second must be of type 1 since the premise is. Thus in this
case α is either of type 1 or type 2b. Finally for the hybrid rules. In the rules
(TRANS), (NOM EQ), (@L) or (@R) the premises can not be of type 2 and thus
by induction they must be of type 1. But then the conclusions will also be of
type 1. Now if the rule used is (T-NOM) or (F-NOM) then the side condition
insures that the principal premise are of type 1. But then the conclusion will
also be of type 1. Now assume that one of the rules (BRIDGEL) or (BRIDGER)
have been applied to produce α. Then the non-principal premise can not be of
type 1 and thus must be of type 2, which implies that j is a root nominal. Thus
the conclusion α must be of type 2a. This completes the proof. �

Note that in the basic calculus the only rules that can introduce new nominals
to a tableau are (F�) and (F^).

Definition 4.1. Let Θ be a branch of a basic tableau. If a nominal j has been
introduced to the branch by applying either (F�) or (F^) to a premise with
prefix i then we say that j is generated by i on Θ, and we write i ≺Θ j.

Lemma 2. Let Θ be a branch of a basic tableau. The graph G = (NΘ,≺Θ), where NΘ

is the set of nominals occurring on Θ, is a finite set of wellfounded, finitely branching
trees.
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Proof. That G is wellfounded follows from the observation that if i ≺Θ j, then
the first occurrence of i onΘ is before the first occurrence of j. That G is finitely
branching is shown as follows. For any given nominal i the number of nominals
j satisfying i ≺Θ j is bounded by the number of applications of (F�) and (F^)
to premises of the form F@i(a → �ϕ) and F@i(^ϕ → a). So to prove that G is
finitely branching, we only need to prove that for any given i the number of
such premises is finite. However, this follows immediately from the fact that
all such premises must be quasi-subformulas of the root formula (cf. Lemma 1
and the condition on applications of (F^)). What is left is to prove that G is a
finite set of trees. This follows from the fact that each nominal in NΘ can be
generated by at most one other nominal, and the fact that each nominal in NΘ

must have one of the finitely many root nominals of Θ as an ancestor. �

Lemma 3. Let Θ be a branch of a basic tableau. Then Θ is infinite if and only if there
exists an infinite chain of nominals

i1 ≺Θ i2 ≺Θ i3 ≺Θ · · · .

Proof. The ‘if’ direction is trivial. To prove the ‘only if’ direction, let Θ be
any infinite tableau branch. Θmust contain infinitely many distinct nominals,
since it follows immediately from Lemma 1 that a tableau with finitely many
nominals can only contain finitely many distinct formulas. This implies that the
graph G = (NΘ,≺Θ) defined as in Lemma 2 must be infinite. Since by Lemma 2,
G is a finite set of wellfounded, finitely branching trees, G must then contain an
infinite path (i1, i2, i3, . . . ). Thus we get an infinite chain i1 ≺Θ i2 ≺Θ i3 ≺Θ · · · . �

Definition 4.2. Let Θ be a branch of a basic tableau, and let i be a nominal
occurring on Θ. We define mΘ(i) to be the maximal length of any formula with
prefix i occurring on Θ.

Lemma 4 (Decreasing length). Let Θ be a branch of a basic tableau. If i ≺Θ j then
mΘ(i) > mΘ( j).

Proof. For any signed formula α, we will use |α| to denote the length of α.
Assume i ≺Θ j. Let α be a signed formula satisfying: 1) α has maximal length
among the formulas on Θ with prefix j; 2) α is the earliest occurring formula
on Θ with this property. We need to prove mΘ(i) > |α|. The formula α can
not have been introduced on Θ by applying any of the propositional rules
(Figure 1), since this would contradict maximality of α. It can not have been
directly produced by any of the reversal rules (Figure 2) either, since this would
contradict the choice of α as the earliest possible on Θ of maximal length with
prefix j. By the same argument, α can not have been directly produced by
any of the rules (BRIDGEL), (BRIDGER), (TRANS) or (NOM EQ). Assume
now α has been introduced by applying (@L) or (@R) to a premise of the form
T@k(@ jϕ → a) or T@k(a → @ jϕ). By Lemma 1, the premise must be a quasi-
subformula of the root formula. Thus j must be a root nominal. However, this
is a contradiction, since by assumption j is generated by i, and can thus not be
a root nominal. Thus neither (@L) nor (@R) can have been the rule producing
α. Now assume that α has been produced by an application of either (F-NOM)
or (T-NOM). Since α has index j, the non-principal premise used in this rule
application must have the form T@i(a → j). By Lemma 1, this premise must
be a quasi-subformula of the root formula, and thus j is again a root nominal,
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which is a contradiction. Thus α can not have been produced by (F-NOM) or
(T-NOM) either. Thus α must have been introduced by one of the rules (F�),
(T�), (F^) or (T^). Consider first the case of the (F�) and (F^) rules. If an
instance of one of these produced α, then this instance must have been applied
to a premise βwith prefix i, since we have assumed i ≺Θ j and by Lemma 2 there
cannot be an i′ , i satisfying i′ ≺Θ j. (Note that if α is of the form T@ j(b→ ^k)
or T@ j(^k → b) produced by a formula F@ j(a → �ϕ) or F@ j(^ϕ → a), this
would lead to a contradiction with the assumption that α has maximal length
with prefix j and is the earliest occurring formula with this property.) Since
the rules in question always produce conclusions that are shorter than their
premises, β must be longer than α. Since β is a formula with prefix i we then
get:

mΘ(i) ≥
∣∣∣β∣∣∣ > |α| , (1)

as required. Now consider finally the case where α has been produced by either
(T�) or (T^). Then α has been produced by a rule instance with non-principal
premise of the form T@k(b → ^ j). Since j is not a root nominal, this premise
can not be a quasi-subformula of the root formula. Neither can it be of the
tybe (2a) mentioned in lemma 1. It must thus be of type (2b), that is, it must be
indirectly produced by formulas of the form T@k(bm → ^ j′) or T@k(^ j′ → bm)
obtained as conclusion by applications of (F�) or (F^). Since only reversal rules
have been applied in the indirect production from these conclusions, we must
have j = j′ and thus k ≺Θ j. Since we already have i ≺Θ j we get k = i, using
Lemma 2. We can conclude that the non-principal premise of the rule instance
producing α must have the form T@i(b → ^ j), and thus the principal premise
must be a formula β with index i. Since the rules in question always produce
conclusions that are shorter than their premises, βmust be longer than α. Since
β is a formula with prefix i we then again get the sequence of inequalities (1),
as required. �

We can now finally prove termination of the basic calculus.

Theorem 1 (Termination of the basic calculus). Any tableau in the basic calculus
is finite.

Proof. Assume there exists an infinite basic tableau. Then it must have an
infinite branch Θ. By Lemma 3, there exists an infinite chain

i1 ≺Θ i2 ≺Θ i3 ≺Θ · · · .

Now by Lemma 4 we have

mΘ(i1) > mΘ(i2) > mΘ(i3) > · · ·

which is a contradiction, since mΘ(i) is a non-negative number for any nominal
i. �

5 Completeness of the basic calculus

In this section we prove completeness of the basic calculus, that is, the calculus
without the global modalities. In this connection we remark that we have
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proved completeness for a calculus including the global modalities similar
to the calculus of the present paper. Let Θ be an open saturated branch in
the tableau calculus. We will use this branch to construct a model MΘ =
〈WΘ,RΘ,nΘ, νΘ〉. The set of worlds, WΘ is simply defined to be the set of
nominals occurring on Θ. The definition of the other elements of the model
requires a bit more work. First we define the mapping nΘ.

Fix a choice function σ that for any given set of nominals on Θ returns one
of these nominals. We now define the mapping nΘ in the following way:

nΘ(i) =

σ{ j | T@i(> → j) ∈ Θ} if { j | T@i(> → j) ∈ Θ} , ∅
i otherwise.

A nominal i is called an urfather on Θ if i = nΘ( j) for some nominal j.

Lemma 5. LetΘ be a saturated tableau branch. Then we have the following properties:

1. If T@iϕ ∈ Θ is a quasi-subformula of the root formula then T@nΘ(i)ϕ ∈ Θ.
Similarly, if F@iϕ ∈ Θ is a quasi-subformula of the root formula then F@nΘ(i)ϕ ∈
Θ.

2. If T@i(> → j) ∈ Θ then nΘ(i) = nΘ( j).

3. If i is an urfather on Θ then nΘ(i) = i.

Proof. First we prove (i). Assume T@iϕ ∈ Θ is a quasi-subformula of the root
formula. If nΘ(i) = i then there is nothing to prove. So assume nΘ(i) = σ{ j |
T@i(> → j) ∈ Θ}. Then T@i(> → nΘ(i)) ∈ Θ, and by applying (T-NOM) to
premises T@iϕ and T@i(> → nΘ(i)) we get T@nΘ(i)ϕ, as needed. The case of
F@iϕ ∈ Θ is proved similarly, using (F-NOM) instead of (T-NOM). We now
prove (ii). Assume T@i(> → j) ∈ Θ. To prove nΘ(i) = nΘ( j) it suffices to
prove that for all nominals k, T@i(> → k) ∈ Θ ⇔ T@ j(> → k) ∈ Θ. So let
k be an arbitrary nominal. If T@i(> → k) ∈ Θ then we can apply (T-NOM)
(since T@i(> → k) is a quasi-subformula of the root formula by Lemma 1) to
premises T@i(> → k) and T@i(> → j) to obtain the conclusion T@ j(> → k),
as required. If conversely T@ j(> → k) ∈ Θ then we can apply (TRANS) to
premises T@i(> → j) and T@ j(> → k) to obtain the conclusion T@i(> → k), as
required. We finally prove (iii). Assume i is an urfather. Then i = nΘ( j) for some
j. If j = i we are done. Otherwise we have i = nΘ( j) = σ{k | T@ j(> → k) ∈ Θ}
and thus T@ j(> → i) ∈ Θ. This implies i = nΘ( j) = nΘ(i), using item (ii). �

We now turn to the definition of νΘ. As in Fitting (1995) we will not define
a particular valuation ν of the propositional variables occuring on the branch,
but only show that any valuation assigning values between a certain lower and
upper bound (both given by the branch Θ) will do. Let us first define these
bounds.

Definition 5.1. For a formula ϕ in the language of MVHL and a nominal i,
define:

boundΘ,i(ϕ) =
l
{a | T@i(ϕ→ a) ∈ Θ}

boundΘ,i(ϕ) =
⊔
{a | T@i(a→ ϕ) ∈ Θ}
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The intuition is that boundΘ,i(ϕ) is an upper bound for the truth value of ϕ
at the world i decided by the branchΘ and boundΘ,i(ϕ) is a lower bound for this
truth value.

The following lemma corresponds to Lemma 6.4 of Fitting (1995) and can be
proved in the same way. It ensures that we can actually always chose a value
between the lower and the upper bounds.

Lemma 6. For all i on Θ and all formulas ϕ of MVHL

boundΘ,i(ϕ) ≤ boundΘ,i(ϕ).

Later we will show that any valuation assigning a value to p between
boundΘ,i(p) and boundΘ,i(p) at the world nΘ(i) will do for the truth value of
p at this world.

The following lemma corresponds to Proposition 6.5 in Fitting (1995) and is
proven in the same way.

Lemma 7. Let ϕ be any formula in the MVHL language other than a propositional
constant from T , and let a ∈ T , then:

• (i) If T@i(a→ ϕ) ∈ Θ, then a ≤ boundΘ,i(ϕ).

• (ii) If T@i(ϕ→ a) ∈ Θ, then boundΘ,i(ϕ) ≤ a.

• (iii) If F@i(a→ ϕ) ∈ Θ, then a � boundΘ,i(ϕ).

• (iv) If F@i(ϕ→ a) ∈ Θ, then boundΘ,i(ϕ) � a.

The accessibility relation RΘ is defined as follows:

RΘ(i, j) =
⊔
{b | T@i(b→ ^k) ∈ Θ,nΘ(k) = j}.

We have the following result, which we are going to use in proving com-
pleteness.

Lemma 8. If T@i(c↔ ^ j) ∈ Θ then RΘ(i,nΘ( j)) = c.

Proof. We will prove RΘ(i,nΘ( j)) ≥ c and RΘ(i,nΘ( j)) ≤ c. First we prove
RΘ(i,nΘ( j)) ≥ c. Since T@i(c↔ ^ j) ∈ Θwe have T@i(c→ ^ j) ∈ Θ, and thus

RΘ(i,nΘ( j)) =
⊔
{b | T@i(b→ ^k) ∈ Θ,nΘ(k) = nΘ( j)}

≥

⊔
{b | T@i(b→ ^ j) ∈ Θ}

≥ c.

We now prove RΘ(i,nΘ( j)) ≤ c. By definition of nΘ we have either nΘ( j) = j or
T@ j(> → nΘ( j)) ∈ Θ. If T@ j(> → nΘ( j)) ∈ Θ then since T@i(^ j→ c) ∈ Θwe get
T@i(^nΘ( j) → c) ∈ Θ, using (BRIDGEL). If nΘ( j) = j we obviously also have
T@i(^nΘ( j)→ c) ∈ Θ. Applying Lemma 7 (ii) we then get boundΘ,i(^nΘ( j)) ≤ c.
Thus

RΘ(i,nΘ( j)) =
⊔
{b | T@i(b→ ^k) ∈ Θ,nΘ(k) = nΘ( j)}

≤

⊔
{b | T@i(b→ ^nΘ( j)) ∈ Θ} (using (BRIDGER))

= boundΘ,i(^nΘ( j))
≤ boundΘ,i(^nΘ( j)) (using Lemma 6)
≤ c,
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as required. �

The theorem we need for completeness now may be stated in the following
way:

Theorem 2. Let ν be a valuation such that for all propositional variables p and all
urfather nominals i

boundΘ,i(p) ≤ ν(i, p) ≤ boundΘ,i(p).

Then for all subformulas ϕ of the body of root formula of Θ

boundΘ,i(ϕ) ≤ ν(i, ϕ) ≤ boundΘ,i(ϕ).

Proof. By induction onϕ. The base cases are whereϕ is a propositional variable
p, a value c ∈ T or a nominal j. The case where ϕ is p follows directly by the
assumption. The case where ϕ is c is easy: First note that for any truth values
a, b, if T@i(a→ b) ∈ Θ then a ≤ b. This follows from closure rule 1 presented in
Section 3. Thus we get:

boundΘ,i(c) =
⊔
{a | T@i(a→ c) ∈ Θ} ≤ c ≤

l
{a | T@i(c→ a) ∈ Θ} = boundΘ,i(c).

Now assume ϕ is a nominal j. By definition of ν, ν(i, j) is > if nΘ( j) = i and
⊥ otherwise. Assume first nΘ( j) = i. Then ν(i, j) is >, so trivially we have
boundΘ,i( j) ≤ ν(i, j). We thus only need to prove ν(i, j) ≤ boundΘ,i( j), that is,
we need to prove > = boundΘ,i( j) =

d
{a | T@i( j → a) ∈ Θ}. This amounts

to showing that, for all a ∈ T , T@i( j → a) ∈ Θ implies a = >. Assume
towards a contradiction that, for some a, T@i( j → a) ∈ Θ and a , >. Since
we have assumed nΘ( j) = i, by definition of nΘ we get that either j = i or
T@ j(> → i) ∈ Θ. If j = i then we have that Θ contains a formula of the
form T@i(i → a) where a , >. This immediately contradicts closure rule 7.
Assume instead T@ j(> → i) ∈ Θ. Since we also have T@i( j → a) ∈ Θ where
a , >, we can apply (T ≤) to conclude that that Θ must contain a formula
of the form F@i(t → j) where t is some truth value different from ⊥. Since
Θ then contains both T@ j(> → i) and F@i(t → j) where t , ⊥, we get a
contradiction by closure rule 6. Assume now nΘ( j) , i. Then ν(i, j) = ⊥, and the
inequality ν(i, j) ≤ boundΘ,i( j) thus holds trivially. To prove the other inequality,
boundΘ,i( j) ≤ ν(i, j), we need to show that if T@i(a → j) ∈ Θ then a = ⊥. Thus
assume toward a contradiction that T@i(a → j) ∈ Θ and a , ⊥. Then rule
(NOM EQ) implies T@i(> → j) ∈ Θ. Thus, by item 2 of Lemma 5, we get
nΘ(i) = nΘ( j). Since i is assumed to be an urfather, item 3 of Lemma 5 implies
nΘ(i) = i. Thus we get nΘ( j) = nΘ(i) = i, contradiction the assumption.

Now for the induction step. First the case where ϕ is @ jψ: Note that
ν(i,@ jψ) = ν(nΘ( j), ψ) and by induction hypothesis, since nΘ( j) is an urfather,

boundΘ,nΘ( j)(ψ) ≤ ν(nΘ( j), ψ) ≤ boundΘ,nΘ( j)(ψ).

Now by the rule (@R), if T@i(a→ @ jψ) ∈ Θ then T@ j(a→ ψ) ∈ Θ, for all a ∈ T .
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Thus we get that

boundΘ,i(@ jψ) =
⊔
{a | T@i(a→ @ jψ) ∈ Θ}

≤

⊔
{a | T@ j(a→ ψ) ∈ Θ}

≤

⊔
{a | T@nΘ( j)(a→ ψ) ∈ Θ} (using 1 of Lemma 5)

= boundΘ,nΘ( j)(ψ)
≤ ν(nΘ( j), ψ)
= ν(i,@ jψ).

Similar by the (@L) rule, T@i(@ jψ→ a) ∈ Θ implies that T@ j(ψ→ a) ∈ Θ, for all
a ∈ T . Hence

ν(i,@ jψ) = ν(nΘ( j), ψ)

≤ boundΘ,nΘ( j)(ψ)

=
l
{a | T@nΘ( j)(ψ→ a) ∈ Θ}

≤

l
{a | T@ j(ψ→ a) ∈ Θ} (using 1 of Lemma 5)

≤

l
{a | T@i(@ jψ→ a) ∈ Θ}

= boundΘ,i(@ jψ),

and the @-case is done.
In case ϕ is ^ψ, we need to prove that

boundΘ,i(^ψ) ≤ ν(i,^ψ) ≤ boundΘ,i(^ψ),

which by definition amounts to showing that⊔
{a | T@i(a→ ^ψ) ∈ Θ} ≤

⊔
{RΘ(i, j) u ν( j, ψ) | j ∈ Θ} ≤

l
{a | T@i(^ψ→ a) ∈ Θ}.

Proving the first inequality amounts to showing that if T@i(a→ ^ψ) ∈ Θ then

a ≤
⊔
{RΘ(i, j) u ν( j, ψ) | j ∈ Θ}.

To prove this assume toward a contradiction that

T@i(a→ ^ψ) ∈ Θ and a �
⊔
{RΘ(i, j) u ν( j, ψ) | j ∈ Θ},

for an a ∈ T . Then choose a b ∈ T such that b ≥
⊔
{RΘ(i, j) u ν( j, ψ) | j ∈ Θ}

and b is a maximal member of T with a � b. Then by the reversal rule (T≥),
F@i(^ψ → b) ∈ Θ. Then using the (F^) rule there is a c ∈ T and a j ∈ Θ such
that T@i(c ↔ ^ j) ∈ Θ and F@ j(ϕ → (c ⇒ b)) ∈ Θ. Since T@i(c ↔ ^ j) ∈ Θ,
Lemma 8 implies RΘ(i,nΘ( j)) = c. Applying 1 of Lemma 5 to the formula
F@ j(ϕ → (c ⇒ b)) ∈ Θ we get F@nΘ( j)(ϕ → (c ⇒ b)) ∈ Θ. Now (iv) of Lemma 7
implies boundΘ,nΘ( j)(ψ) � c⇒ b. This further implies that (boundΘ,nΘ( j)(ψ)uc) � b.
But by the induction hypothesis boundΘ,nΘ( j)(ψ) ≤ ν(nΘ( j), ψ) and thus

boundΘ,nΘ( j)(ψ) u c = boundΘ,nΘ( j)(ψ) u RΘ(i,nΘ( j))
≤ ν(nΘ( j), ψ) u RΘ(i,nΘ( j))

≤

⊔
{RΘ(i,nΘ( j)) u ν(nΘ( j), ψ) | j ∈ Θ}

≤

⊔
{RΘ(i, j) u ν( j, ψ) | j ∈ Θ} ≤ b,
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which of course is a contradiction.
In order to prove that⊔

{RΘ(i, j) u ν( j, ψ) | j ∈ Θ} ≤
l
{a | T@i(^ψ→ a) ∈ Θ},

we must show that if T@i(^ψ → a) ∈ Θ, then RΘ(i, j) u ν( j, ψ) ≤ a for all j ∈ Θ.
Thus assume that T@i(^ψ→ a) ∈ Θ and that RΘ(i, j) , ⊥ (or else it’s trivial) for
an arbitrary j ∈ Θ. Since RΘ(i, j) , ⊥, the definition of R implies that j must be
an urfather. Furthermore,

RΘ(i, j) =
⊔
{b | T@i(b→ ^k) ∈ Θ,nΘ(k) = j}.

Let b and k be chosen arbitrarily such that T@i(b → ^k) ∈ Θ and nΘ(k) = j.
Then by the (T^) rule, T@k(ψ → (b ⇒ a)) ∈ Θ. Using 1 of Lemma 5 we get
T@nΘ(k)(ψ → (b ⇒ a)) ∈ Θ, that is, T@ j(ψ → (b ⇒ a)) ∈ Θ. Now, by induction
hypothesis, since j is an urfather,

ν( j, ψ) ≤ boundΘ, j(ψ) ≤ b⇒ a.

Since k and b were chosen arbitrarily with T@i(b → ^k) ∈ Θ and nΘ(k) = j, we
get

ν( j, ψ) ≤
l
{b⇒ a | T@i(b→ ^k) ∈ Θ,nΘ(k) = j}.

We now get

RΘ(i, j) u ν( j, ψ) ≤

⊔
{b | T@i(b→ ^k) ∈ Θ,nΘ(k) = j}

u

l
{b⇒ a | T@i(b→ ^k) ∈ Θ,nΘ(k) = j}

≤

⊔
{b u (b⇒ a) | T@i(b→ ^k) ∈ Θ,nΘ(k) = j}

≤

⊔
{a | T@i(b→ ^k) ∈ Θ,nΘ(k) = j}

≤ a.

Because j ∈ Θ was arbitrary it follows that it holds for all j ∈ Θ and the proof
of this case is completed.

In case ϕ is �ψ, we need to prove that⊔
{a | T@i(a→ �ψ) ∈ Θ} ≤

l
{RΘ(i, j)⇒ ν( j, ψ) | j ∈ Θ} ≤

l
{a | T@i(�ψ→ a) ∈ Θ}.

To prove the first inequality we need to prove that if j ∈ Θ, then

a ≤ RΘ(i, j)⇒ ν( j, ψ), (2)

for all a ∈ T with T@i(a→ �ψ) ∈ Θ. So let a ∈ T be given arbitrarily such that
T@i(a→ �ψ) ∈ Θ. Note that (2) is equivalent to

a u RΘ(i, j) ≤ ν( j, ψ).

By definition of RΘ we have

RΘ(i, j) =
⊔
{b | T@i(b→ ^k) ∈ Θ,nΘ(k) = j}.
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Let b and k be chosen arbitrarily such that T@i(b→ ^k) ∈ Θ and nΘ(k) = j. Then
by the (T�)-rule it follows that T@k((a u b) → ψ) ∈ Θ. By 1 of Lemma 5 this
implies T@ j((a u b)→ ψ) ∈ Θ. Thus we get boundΘ, j(ψ) ≥ (a u b). Since b and k
were chosen arbitrarily with the properties T@i(b→ ^k) ∈ Θ and nΘ(k) = j we
then get

boundΘ, j(ψ) ≥
⊔
{a u b | T@i(b→ ^k) ∈ Θ,nΘ(k) = j}.

Using this inequality and the induction hypothesis we now get

a u RΘ(i, j) = a u
⊔
{b | T@i(b→ ^k) ∈ Θ,nΘ(k) = j}

= {a u b | T@i(b→ ^k) ∈ Θ,nΘ(k) = j}
≤ boundΘ, j(ψ) ≤ ν( j, ψ).

Since a was arbitrary this holds for all a ∈ T and the inequality have been
proven.

To show the other inequality we need to show that

if T@i(�ψ→ a) ∈ Θ then
l
{RΘ(i, j)⇒ ν( j, ψ) | j ∈ Θ} ≤ a.

If a = > then this is trivial. Thus assume towards a contradiction that there is
an a , > with T@i(�ψ → a) ∈ Θ and

d
{RΘ(i, j) ⇒ ν( j, ψ) | j ∈ Θ} � a. Now let

b ≤
d
{RΘ(i, j)⇒ ν( j, ψ) | j ∈ Θ} be a minimal member ofT such that b � a. Then

by the reversal rule (T≤), F@i(b → �ψ) ∈ Θ. Hence by the (F�)-rule there is a
nominal k ∈ Θ and a c ∈ T such that T@i(c↔ ^k) ∈ Θ and F@k((buc)→ ψ) ∈ Θ.
From the first it follows that RΘ(i,nΘ(k)) = c, using Lemma 8. From the second
it follows that F@nΘ(k)((b u c) → ψ) ∈ Θ, using 1 of Lemma 5, and thus, by (iii)
of Lemma 7, b u c � boundΘ,nΘ(k)(ψ). But then from the induction hypothesis it
follows that

b u c � ν(nΘ(k), ψ) ≤ boundΘ,nΘ(k)(ψ).

Hence

b � c⇒ ν(nΘ(k), ψ) = RΘ(i,nΘ(k))⇒ ν(nΘ(k), ψ).

But by the assumption on b we also have that

b ≤
l
{RΘ(i, j)⇒ ν( j, ψ) | j ∈ Θ} ≤ RΘ(i,nΘ(k))⇒ ν(nΘ(k), ψ),

and a contradiction have been reached. This concludes the � case and thus the
entire proof of the theorem. �

Now completeness can easily be proven, in the following sense.

Theorem 3. If there is no tableau proof of the formula ϕ, then there is a model
M = 〈W,R,n, ν〉 and a w ∈W such that ν(w, ϕ) , >.

Proof. Assume that there is no tableau proof of the formula ϕ. Then there is an
saturated tableau with a open branch Θ starting with the formula F@i(> → ϕ)
for a nominal i not in ϕ. By item 1 of Lemma 5 it follows that also F@nΘ(i)(> →
ϕ) ∈ Θ.
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The model MΘ = 〈WΘ,RΘ,nΘ, νΘ〉 can now be constructed such that νΘ
satisfies the assumption of Theorem 2. Since F@nΘ(i)(> → ϕ) ∈ Θ it fol-
lows by Lemma 7 that > � boundΘ,nΘ(i)(ϕ). But by Theorem 2, since ϕ is
a subformula of the root formula and nΘ(i) is an urfather, we know that
νΘ(nΘ(i), ϕ) ≤ boundΘ,nΘ(i)(ϕ) and it thus follows that > � νΘ(nΘ(i), ϕ) and
the proof is completed. �
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Abstract
Counting information states in the process of information flow is treated
in this paper. Both public announcement logic, and dynamic epistemic
logic of production update over event models, are merged with graded
modalities which play the role of counting. Recursion axioms are given.
And basic model theory of these logics is investigated. The dynamic logic
based on epistemic graded S5 modal logic is also explored.

1 Introduction

In the logical dynamics of information flow, some modes of information up-
date are specified in terms of precise logical notions. The public announcement
of a proposition φ plays the role of moving away all those information states
where φ is not true. It often happens that the agent knows φ after the public
announcement of φ.1 One general approach to explore logical dynamics of
information flow is presented in the book van Ditmarsch et al. (2007).2 Baltag
et al. (1998) and van Benthem (2008) present another approach to explore dy-
namic epistemic logic (DEL). The technical point of the approach is to combine
epistemic models with event models, and determine how to interpret dynamic
operators in a mathematically precise way. Dynamics in action is analyzed in
terms of some logical notions while the static epistemic logic is inherited. In
this paper, logical dynamics are investigated in the following two lines.

• Add graded modalities into the basic epistemic multi-S5 modal logic, and
work out the recursion axioms for graded modalities prefixed by dynamic
operators.

• Grade the knowledge operator, and take the epistemic graded S5 modal
logic as the basic static part of logical dynamics.

1See Plaza (1998) and van Benthem (2001) for details of public announcement logic.
2It is a text book on dynamics of knowledge and belief. The approach is to explore logical

dynamics by propositional dynamic logic.
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In the first line, one special ingredient is revealed in both statics and dynamics
of information flow: counting information states. Statically, epistemic logic can
be combined with counting modalities in such a way that the number of infor-
mation states in the current range of agent’s knowledge can be made explicit.
Dynamically, counting behaviors substantially paly a important role in agent’s
actions. Moreover, in the process of information update, numbers of informa-
tion states in different stages change dramatically. There may be less states after
occurrences of some events. A typical example is public announcement that
reduces information states. But this is not always the case. There may be more
states after some occurrences of a certain event in certain scenarios. And finally,
actions in certain scenarios even may not change the number of information
states.

In the second line, we have graded knowledge operators like Kn which
says that the agent reckons less than n exceptions. Under the new notions of
knowledge, logical dynamics may be reconstructed. In van der Hoek and Meyer
(1992), graded epistemic logic has been greatly explored, but no dynamics are
considered there.

2 Counting information states

In this section, three examples are taken to show that the number of information
states may decrease, increase, or keep stable in the information flows, and that
one may reason by counting information states in certain scenarios. All of those
examples can be found in van Benthem (2008).

2.1 Semantic information in logical consequence

The traditional slogan about the nature of logic that claimed by most logicians
is the following: Logic studies valid forms of inference. The conclusion followed
from premises does not increase the content or information. This problem
has been called the scandal of deduction. Given a set of sentences Σ, if Σ |= φ
then the semantic content of φ or the information conveyed by φ is already
in the premises Σ. But we certainly obtain something new when we conclude
φ semantically from Σ by logical consequence. What kind of information
is involved in the process of logical inference? The paper van Benthem and
Martinez (2008) has discussed some solutions. One answer is information as code.
The conclusion φ is logically encoded in the premises, and the role of inference
is to make the conclusion explicit. From the view point of logical dynamics,
the conclusion may be achieved by public announcements in some finite steps.
For instance, consider the logical consequence relation {p→ q, p} � q. There are
4 semantic information states or truth-value possibilities: pq, pq, pq, pq, where
a bar stands for the truth value FALSE and the lack of a bar means the truth
value TRUE.

• After !(p→ q), the state pq disappear, and three possibilities remain.

• After !p, states pq and pq are moved away. Only does the possibility pq
remain. Here we achieve the conclusion q.
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• After arbitrary finite many times of !q, the final state pq cannot be removed,
and the number of possibilities does not change.

This process matches exactly with the notion of logical consequence: if the
premises are true then the conclusion is also true. The public announcements match
with the assumption that all premises are true, and the conclusion is achieved
in the final stable stage.

In each stage, we get a range of information states. Then the question arises:
how many states are there in each range? The initial stage has 4 states; after
!(p→ q), the range has 3 states; after !p, the range has only one state. By using
some logical language, we may express those numerical or quantitative facts
about those ranges.

2.2 Increasing model size by production update

The production of an epistemic model and an event model can increase infor-
mation states. Consider the following simple model M: M consists of two states
• and ◦, where p is true at • and false at ◦, and both two agents 1 and 2 cannot
distinguish the two states.

Take an event model for the scenario that agent 1 hears !p but agent 2 doubts
very much about what has happened. Then we have the following event model
E = (E,∼i,Pre)i∈{1,2}: E = {!p, Id} where Id is the trivial event that can happen
everywhere; ∼1=∼2= {(!p, Id), (Id, !p)}; Pre(!p) = p and Pre(Id) = >.

Then how many states are there in the product model M ⊗ E? Three states:
(•, !p), (•, Id), and (◦, Id). After the event !p, agent one can distinguish (•, !p)
from other two states, but he still cannot distinguish (•, Id) and (◦, Id) since
no informational events happen there. Agent 2 cannot distinguish all of those
three states.

2.3 Reasoning by counting

Imagine the following scenario. Three persons A, B, and C go to a restaurant
for dinner. A has ordered fish, B has meat and C has vegetable. Then a new
person D comes out of the kitchen with three plates. First of all, D asks: who
has the meat?. He gets the answer and puts the plate on the table. And then he
asks: who has the fish? He puts the plate on the table again after he hears the
answer. Finally, D puts the plate on the table without asking any question! D
makes a logical inference here. There are exactly 6 possibilities before he asks
any question. After the first answer, D counts the possibilities and finds that
there are remaining 2 possibilities. Then he should ask a question. After the
second answer, D knows that there are only one possibility left.

2.4 What’s the role of counting in action?

Counting information states in action plays two roles:

• It gives us the quantitative knowledge about the current stage in the
process of information flow while dynamic operations only provide us
with qualitative knowledge of the information update;

• Agents often take actions on counting information states.
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Counting is involved in the statics of logic, and we can introduce appropriate
operators to talk about numbers of information states in different ranges. Thus
the quantitative aspect of agents’ epistemic ranges can be described. But ob-
servations about numbers of states cannot be described by using only the basic
epistemic modal language. The expressive power of standard modal logic has
limits. Simple numerical statement cannot be expressed in it. The property that
there are two successor states constitutes such a counter example. This prop-
erty is not invariant for standard bisimulation. On the other hand, counting is
involved in the logical dynamics. Note again that the number of information
states may change after some certain events. The interaction between counting
modalities and dynamic operators emerge in the logical investigations. More-
over, we also glimpse at the role of counting in logical inference in action.

The crucial logical matter here is to find out appropriate formal language
to express numerical facts in logical dynamics of information flow. Graded
modalities serves the purpose of counting information states. The technical task
is to interpret the role of counting modalities prefixed by dynamic operators.

3 Merge graded modal logic and epistemic logic

In this section, we explain graded modal logic (GML) and epistemic logic (EL)
separately, and then merge them together. Let’s start from GML. The decidable
language Ω = {S, 0,+} of Presburger additive arithmetic is needed to form
the graded modal language, where S is the successor function symbol, 0 is a
constant which designate the natural number 0, and + is the addition symbol.
Ω-terms are given by the following rule:

n := 0 | Sn | n +m

All of the Ω-terms are interpreted in the arithmetic structure (ω, 0,S,+). In
the following, we use number n as the designation of the term n, n + 1 the
designation of the term Sn, and m + n the designation of the term m + n.

The graded modal language ML(τ,Φ) consists of graded modal similarity
τ = {〈n〉 : n ∈ Term(Ω) & 〈n〉 unary} and a set Φ of propositional letters. Graded
modal formulas are given by the following rule:

φ ::= p | ⊥ | φ→ ψ | 〈n〉φ

Define some more operators as follows: ^φ := 〈1〉φ, �φ := ¬^¬φ, [n]φ :=
¬〈n〉¬φ, and 〈n〉!φ := 〈n〉φ ∧ ¬〈Sn〉φ.

In a Kripke model M = (W,R,V), where w ∈ W, the following notations are
used throughout this paper: let R[w] := {u ∈ W : Rwu}; Let Card(X) denote the
cardinality of a set X ⊆W; and let V(φ) := {u ∈W : φ is true at u in M}.

Definition 3.1. Given a model M = (W,R,V) and w ∈W, define truth M,w |= φ
recursively as follows:

M,w |= p iff w ∈ V(p);
M,w 2 ⊥;
M,w |= φ→ ψ iffM,w |= φ implies M,w |= ψ;
M,w |= 〈n〉φ iff Card(R[w] ∩ V(φ)) ≥ n.
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The formula [n]φ says that there are less than n successor states where φ
is not true. The formula 〈n〉!> is true at state w in a model iff w has exactly n
successor states in that model.

Theorem 1. (Fattorosi-Barnaba and Cerrato (1988)) The minimal normal graded
modal logic GK is completely axiomatized by the following schemata and inferential
rules:

(a) All instances of propositional tautologies;
(b) 〈Sn〉φ→ 〈n〉φ;
(c) �(φ→ ψ)→ (〈n〉φ→ 〈n〉ψ);
(d) ¬^(φ ∧ ψ)→ (〈m〉!φ ∧ 〈n〉!ψ→ 〈m + n〉!(φ ∨ ψ));
MP: from φ and φ→ ψ infer ψ;
Gen: from φ infer �φ.

The basic epistemic logic EL is just multi-S5 modal logic. When graded
modalities are introduced into EL, we should combine EL with GML. Extend
GK with the following two axiomatic schemata and we obtain the graded
modal logic GS5: (T) φ→ ^φ; (E) ^[n]φ→ [n]φ. Note that the set of formulas
{^[n]φ → [n]φ : n ∈ ω} corresponds to the Euclidean property on frames:
∀x∀y∀z(xRy ∧ xRz→ yRz).

Theorem 2. (Cerrato (1990)) GS5 is complete with respect to the class Ξ of frames
with equivalence accessibility relations.

Proof. Let MCS be the set of all maximal GS5-consistent sets of formulas. Define
two functions µ : MCS ×MCS→ ω + 1 and δ : MCS→ ω + 1 as follows:

• µ(u, v) = ω, if 〈n〉φ ∈ u for all φ in v for all n ∈ ω.
µ(u, v) = min{n ∈ ω : 〈n〉!φ ∈ u f or some φ ∈ v}, otherwise.

• δ(u) = sup{µ(w,u) : w ∈MCS}.

Let c(u) = {u} × ω. Define the canonical model M = (W,R,V) for GS5 as
follows: consider an ordering of type ω ⊗ µ(u,u) on c(u), and let

• W =
⋃

u∈MCS c(u);

• if µ(u, v) , 0 then (uni, vnj) ∈ R for each n ∈ ω, i ∈ µ(u,u), j ∈ µ(v, v).

• if µ(u, v) = 0, (c(u) × c(u)) ∩ R = ∅.

Note thatµ(u,u) , 0 for each u ∈MCS. �

Model theory for GML has not yet been greatly developed.3 Completeness
theorems like above are important results. The point of the construction of
canonical models is that it provides a general method to find enough states
in a model. Another important model-theoretic result is the notion of graded
bisimulation given in de Rijke (2000). Standard definition of bisimulation for
basic modal logic doesn’t fit for GML. With the new notion of graded bisim-
ulation, GML is isomorphic to first order logic with identity module graded
bisimulation. Thus graded modal model theory may be explored much more.
Here we present another notion of bisimulation.

3For details of model theory of standard modal logic, see Blackburn et al. (2001) and de Rijke
(1995). Many results may be extended to GML.
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Definition 3.2. A graded bisimulation Z between two models M = (W,R,V) and
M′ = (W′,R′,V′) (written: Z : M � M′)) is a non-empty relations Z ⊆ W ×W′

satisfying the following conditions:

• (atomic) If wZw′ then w and w′ satisfy the same propositional letters.

• For each number k ∈ ω, if wZw′ then the following forth and back condi-
tions hold:

(1) (forth) if {u1, . . . ,uk} ⊆ R[w] then there are k-different points v1, . . . , vk
in W′ such that {v1, . . . , vk} ⊆ R′[w′] and uiZvi for all 1 ≤ i ≤ k.

(2) (back) if {v1, . . . , vk} ⊆ R′[w′] then there are k-different points u1, . . . ,uk
in W such that {u1, . . . ,uk} ⊆ R[w] and uiZvi for all 1 ≤ i ≤ k.

We write M,w� M′,w′, if there exists a graded bisimulation relation Z : M�
M′ with wZw′.

The above definition is more closed to the ordinary notion of bisimulation
although it is equivalent to de Rijke’s notion which is defined on finite subsets.
All graded formulas are invariant for graded bisimulation. With this obser-
vation, some model-theoretic definability results on certain classes of pointed
models are presented in de Rijke (2000).

Next we combine epistemic logic with graded modal logic. Here is a prob-
lem: shall we grade the basic EL? How can we interpret epistemic formulas
with graded knowledge operators? This problem is a little bit complex, and we
detect it in section 6. Another more conservative approach is to keep EL, add
graded modalities, and make the fusion of EL and GS5.

Definition 3.3. Fix a set of agents I. The language for EL with graded modalities
has propositional letters and boolean operators, plus knowledge operators
Ki(i ∈ I) and graded modalities 〈n〉. The inductive syntactic rule is the following:

φ ::= p | ¬φ | φ ∨ ψ | Kiφ | 〈n〉φ

Both EL and GS5 are complete with respect to the class Ξ of all frames
with equivalence accessibility relations. Then the following technical question
arises: is EL ⊕ GS5 (the minimal graded modal logic with laws of EL and
GS5) complete with respect to Ξ? Here we go to the fusion of modal logics.
Fortunately, the paper Kracht and Wolter (1991) has the following theorem:
two consistent disjoint logics L and M are complete if and only if L ⊕ M is
complete. With this elegant results, Kurucz (2007) shows the following theorem:
if modal logics L1 and L2 are characterized by classes of frames C1 and C2
respectively, and if C1 and C2 are closed under the formation of disjoint union
and isomorphic copies, then the fusion L1⊕L2 is characterized by the class C1⊕C2 =
{(W,R1, . . . ,Rn,O1, . . . ,Om) : (W,R1, . . . ,Rn) ∈ C1 and (W,O1, . . . ,Om) ∈ C2}. Then
we have the following theorem for EL ⊕ GS5.

Theorem 3. EL ⊕ GS5 is complete with respect to Ξ.

We have obtained a nice basis for the logical dynamics of information flow
here. The fusion logic has the power to express numerical facts about models.
Moreover, dynamic epistemic logics over the fusion may also prove to be com-
plete by using reduction and the above completeness result. In next section, the
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role of graded modalities will be presented in the combination of a very simple
dynamic epistemic logic and graded modal logic: the public announcement
logic (PAL) with graded modalities. The basic static part of PAL with graded
modalities is the fusion EL ⊕ GS5.

4 PAL with graded modalities

The language for PAL with graded modalities (GPAL) has all primitive sym-
bols of epistemic language with graded modalities plus public announcement
operators. The formulas of GPAL are given by the following inductive rule:

φ ::= p | ¬φ | φ ∨ ψ | Kiφ | 〈n〉φ | 〈!φ〉ψ

Define [!φ]ψ := ¬〈!φ〉¬ψ.
The language is interpreted as EL and GML, and the semantic clause for

〈!φ〉ψ is defined as follows:

M,w |= 〈!φ〉ψ if and only if M,w |= φ and M|φ,w |= ψ

where M|φ is the submodel of M produced by set {u ∈ dom(M) : M,u |= φ}.
To find a complete axiomatization of GPAL needs to analyze the dynamic

recursion equation in the process of information flow. Those axioms put the
outer public announcement operators into the scope of modal operators, and
the completeness for the new logic reduces to the basic part.

Theorem 4. The recursion axiom 〈!φ〉〈n〉ψ↔ φ ∧ 〈n〉〈!φ〉ψ is valid.

Proof. Assume that M,w |= 〈!φ〉〈n〉ψ. Then M,w |= φ and M|φ,w |= 〈n〉ψ. There
exists u1, . . . ,un in M|φ with M,ui |= φ and M|φ,ui |= ψ for 1 ≤ i ≤ n. Hence
there are n successor states of w in M where 〈!φ〉ψ is true. Conversely, assume
that M,w |= φ ∧ 〈n〉〈!φ〉ψ. Then M,w |= φ and there are n successor states of w
in M where 〈!φ〉ψ is true. Hence all of those successors are in M|φ. �

Theorem 5. GPAL is completely axiomatized by the axiomatic schemata of EL⊕GS5
plus the following recursion axioms:

(a) 〈!φ〉p↔ φ ∧ p;
(b) 〈!φ〉¬ψ↔ φ ∧ ¬〈!φ〉ψ;
(c) 〈!φ〉(ψ ∨ χ)↔ 〈!φ〉ψ ∨ 〈!φ〉χ;
(d) 〈!φ〉Kiψ↔ φ ∧ Ki〈!φ〉ψ;
(e) 〈!φ〉〈n〉ψ↔ φ ∧ 〈n〉〈!φ〉ψ;
(f) 〈!φ〉〈!ψ〉χ↔ 〈!〈!φ〉ψ〉χ.

In the following, one model-theoretic aspect of GPAL is explored. By an
informative observation on the change of models under public announce-
ment update, those public announcement operators 〈!φ〉 induce operations
on models. An operation # on models is called to respect graded bisimulation, if
#(M,w) � #(M′,w′) whenever M,w � M′,w′ for any two models (M,w) and
(M′,w′).

Theorem 6. All public announcement updates |φ over models respect graded bisimu-
lation.
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Proof. Assume that M,w � M′,w′. Then there exists a graded bisimulation
relation Z with wZw′. We need to show (M|φ,w)� (M′|φ,w′). The point is that
the relation sequence Z′ = Z∩(dom(M|φ))×(dom(M′|φ)) is a graded bisimulation
between (M|φ,w) and (M′|φ,w′). We only prove the forth condition. Assume
that {x1 . . . , xk} ⊆ R[w], then, for each 1 ≤ i ≤ k, Rwxi and M, xi |= φ. Thus, by
using graded bisimulation Z, we find y1, . . . , yk ∈ dom(M′), and by bisimulation
invariance, M′, yi |= φ for each 1 ≤ i ≤ k. Hence {y1, . . . , yk} ⊆ (dom(M′|φ)). �

Theorem 7. All formulas of GPAL are invariant for graded bisimulation.

Proof. Assume that Z : M,w� M′,w′. It suffices to show that M,w |= ψ if and
only if M′,w′ |= ψ for any formula ψ. Only prove it for the case ψ := 〈!φ〉χ.
Assume that M,w |= 〈!φ〉χ. Then M,w |= φ and M|φ,w |= χ. By theorem 6,
let Z′ : M|φ,w � M′|φ,w′. Thus, by inductive hypothesis, M′|φ,w′ |= χ, and
M′,w′ |= φ. Hence M′,w′ |= 〈!φ〉χ. The other direction is also similar. �

5 DEL with graded modalities

A natural generalization of PAL is to input more events other than only a single
public announcement in each update. The resulting system DEL offers a sharp
view of update in epistemic actions. Given more events, agents may or may not
distinguish occurrences of different events. Thus event models are introduced
and the production of epistemic models and event models is considered. In
this section, we explore DEL with graded modalities (GDEL) on the basis of
EL ⊕ GS5.

Definition 5.1. An event model is a structureE = (E,∼i,Pre) with a set of events
E, epistemic uncertainty relation ∼i for each agent i, and a function Pre from
E to formulas in basic epistemic language with graded modalities, which give
the precondition for the occurrence of a event at a information state.

The restriction of preconditions of events to basic epistemic formulas is just
a tick for convenience. An immediate corollary of this restriction is that all
preconditions are invariant for graded bisimulation.

Definition 5.2. For any epistemic model M = (W,∼i,V) and event model E =
(E,∼i,Pre), the product model M ⊗ E = (W+,∼i,V+) is an epistemic model
defined as follows: W+ = {(w, e) : M,w |= Pre(e)}; (w, e) ∼i (v, f ) iff w ∼i v and
e ∼i f ; V+(p) = {(w, e) : w ∈ V(p)}.

DEL differs from PAL in two features: (1) DEL uses event structures to form
syntactic operators while PAL only uses individual events; (2) product models
are used to interpret formulas with event structure. Now, there is a natural
question in developing dynamic epistemic logic with graded modalities: how
can we interpret graded modalities properly in the product models? A formula
〈n〉φ true in a product model requires that there exist at least n different pairs
where φ is true. In set theory, (w, e) , (v, f ) iff w , v or e , f . The complex
situation about n different pairs arises here.

Definition 5.3. The GDEL has the following inductive syntactic rule:

φ ::= p | ¬φ | φ ∨ ψ | Kiφ | 〈n〉φ | 〈E, e〉φ
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where (E, e) is an event model. The semantic clauses for GDEL are those clauses
for GPAL except for the dynamic operators. Given any model (M,w), define
M,w |= 〈E, e〉φ iffM,w |= Pre(e) and M ⊗ E, (w, e) |= φ.

The complete axiomatization for GDEL will be achieved by using recursion
axioms. The recursion axioms are just like those for GPAL except the recursion
axiom for 〈E, e〉φ. First, we see some special cases.

Case 1. n = 0. We have 〈0〉φ ↔ >. Hence 〈E, e〉〈0〉φ ↔ 〈E, e〉>. Thus
〈E, e〉〈0〉φ↔ Pre(e).

Case 2. n = 1. We have 〈S0〉φ ↔ ^φ. Hence 〈E, e〉〈S0〉φ ↔ 〈E, e〉^φ. In
this case, 〈E, e〉^φ ↔ Pre(e) ∧ ^

∨
e∼ f 〈E, f 〉φ. This recursion axiom is valid.

For any model (M,w), assume that M,w |= 〈E, e〉^φ. Then M,w |= Pre(e) and
M ⊗ E, (w, e) |= ^φ. Thus there exists (v, f ) in M ⊗ E such that (w, e) ∼ (v, f )
and M ⊗ E, (v, f ) |= φ. Conversely, assume that M,w |= Pre(e) and there exists v
in M and f in E such that w ∼ v and e ∼ f and M, v |= Pre( f ) ∧ 〈E, f 〉φ. Thus
M ⊗ E, (v, f ) |= φ. Hence M,w |= 〈E, e〉^φ.

Case 3. n = 2. We have the following recursion axiom:

〈E, e〉〈2〉φ↔ Pre(e) ∧ (^
∨

e∼ f1,e∼ f2, f1, f2

∧
i∈{1,2}

〈E, fi〉φ ∨ 〈2〉
∨
e∼g

〈E, g〉φ)

Claim. The above recursion axiom is valid.

Proof. Let ξ := ^
∨

e∼ f1,e∼ f2, f1, f2
∧

i∈{1,2}〈E, fi〉φ, and ζ := 〈2〉
∨

e∼g〈E, g〉φ. Assume
that M,w |= 〈E, e〉〈2〉φ. Then M,w |= Pre(e) and M ⊗ E, (w, e) |= 〈2〉φ. Thus there
exists (v1, f1) , (v2, f2) with (w, e) ∼ (vi, fi) and M ⊗ E, (vi, fi) |= φ for i ∈ {1, 2}. If
v1 = v2 = v, then there exists v in M with w ∼ v, and M, v |=

∧
i∈{1,2}〈E, fi〉φ. If v1 ,

v2, then M,w |= 〈2〉
∨

e∼g〈E, g〉φ. Conversely, assume that M,w |= Pre(e)∧ (ξ∨ζ).
There are two cases. In the case M,w |= ξ, there are v, f1 and f2 with e ∼ f1 and
e ∼ f2 and f1 , f2 such that M, v |= 〈E, fi〉φ for i ∈ {1, 2}. Thus M, v |= Pre( fi) and
M ⊗ E, (v, fi) |= φ for i ∈ {1, 2}. Hence M,w |= 〈E, e〉〈2〉φ. In the case M,w |= ζ,
there are v1 , v2 in M such that w ∼ vi and M, vi |=

∨
e∼g φ for i ∈ {1, 2}. Let

M, v1 |= 〈E, g1〉φ and M, v2 |= 〈E, g2〉φ. Thus M, v1 |= Pre(g1), M, v2 |= Pre(g2),
(w, e) ∼ (v1, g1), (w, e) ∼ (v2, g2), M ⊗ E, (w, e) |= 〈2〉φ. �

It can be observed that we use a trick here: fix the event model 〈E, e〉 and
consider different states in the epistemic model. The conditions on events can
be changed for our purpose. We also have the following general recursion
axiom for 〈n〉φ.

Theorem 8. The following recursion axiom is valid:

〈E, e〉〈n〉φ↔ Pre(e) ∧ [^
∨

e∼ f1,...,e∼ fn, fi, f j f or 1≤i≤n
∧

1≤i≤n〈E, fi〉φ
∨(^
∨

e∼ f1,...,e∼ fn−1, fi, f j f or 1≤i< j<n
∧

0<i<n〈E, fi〉φ ∧ 〈2〉
∨

e∼g〈E, g〉φ)
· · ·

∨(^
∨

e∼ f1,e∼ f2, f1, f2
∧

i∈{1,2}〈E, fi〉φ ∧ 〈n − 1〉
∨

e∼g〈E, g〉φ)
∨〈n〉

∨
e∼g〈E, g〉φ].

Theorem 9. GDEL is completely axiomatized by axiom schemata of EL ⊕ GS5 plus
the recursion axiom for 〈E, e〉〈n〉φ in theorem 8 and the following axioms:

(a) 〈E, e〉p↔ Pre(e) ∧ p;
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(b) 〈E, e〉¬φ↔ Pre(e) ∧ ¬〈E, e〉φ;
(c) 〈E, e〉(φ ∨ ψ)↔ 〈E, e〉φ ∨ 〈E, e〉ψ;
(d) 〈E, e〉Kiφ↔ Pre(e) ∧

∧
e∼ f Ki〈E, f 〉φ.

Just like what we do for GPAL, we look further at the graded bisimulation
invariance for GDEL-formulas. One proof of bisimulation invariance is by using
recursion axioms to reduce GDEL-formulas to the basic epistemic formulas with
graded modalities. But here we speculate on the update product.

Theorem 10. The production update ⊗ respects graded bisimulation.

Proof. Assume that Z : M,w � M′,w′ is a graded bisimulation. Given any
event model (E, e), we show that M ⊗ E, (w, e) � M′ ⊗ E, (w′, e). Define Z′ as
follows: (1) (w, e)Z(w′, e); (2) for X = {(w1, e1), . . . , (wk, ek)}, M,wi |= Pre(ei) for
1 ≤ i ≤ k. By the graded bisimulation Z, select a set {v1, . . . , vk} such that
M′, vi |= Pre(ei) for 1 ≤ i ≤ k. Let Y = {(v1, e1), . . . , (vk, ek)}, and (wi, ei)Z(vi, ei) for
all 1 ≤ i ≤ k; (3) conversely, also select states by using bisimulation relation Z.
It is easy to check that Z′ : M ⊗ E, (w, e)�M′ ⊗ E, (w′, e). �

Theorem 11. All formulas in GDEL are invariant for graded bisimulation.

6 Dynamic graded epistemic logic

The epistemic logic usually used above and in most literatures is the standard
multi-S5 modal epistemic logic. The road we take in above two sections is to
enrich it with graded modalities. This road doesn’t seem to catch the genuine
meaning of grading. By graded necessity operators, we denote different sorts
of necessity. The difference between operators �i and � j is indicated by num-
bers of successors states that needed to compute the truth values of formulas.
Knowledge operators also can be graded in the similar way. In this section, we
explore the logical dynamics based on graded epistemic logic which deal with
knowledge that is not absolutely true in all worlds but may have exceptions in
some possible worlds.

The Plato-formula “Knowledge= Justified True Belief ” may allow uncertainties
in our knowledge. Put aside the story about true beliefs here. Knowledge of a
proposition φ also depends on the justification of φ. Even we have very strong
justification for a proposition, the knowledge may have uncertainties. One
example is the following:

• The degrees to which a proposition is verified also shows the uncer-
tainties. The notion of verification has been widely discussed by logical
empiricists. The proposition Crowns are black will become knowledge as
more and more black crowns are discovered. But the knowledge of this
proposition does not exclude exceptional cases. Actually, the knowledge
became that most crowns are black when white crowns were discovered in
Australia.

With graded modalities, notions like uncertain, almost true knowledge or
belief can be treated appropriately in principle. Those modalities can be used
to reason with degrees of acceptance. Now, the graded epistemic logic is just
the logic GS5. We use Kn and its dual Mn to replace [n] and 〈n〉 respectively.
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Knφ is true at a state w in a model M iff there are less than n accessible states of
w where φ is false, namely, the agent reckons with less than n exceptions for φ.
The the dual Mnφ means that the agent considers at least n alternatives where
φ is true. These graded epistemic operators can be used to make some implicit
knowledge explicit. Moreover, the graded epistemic logic GS5 is complete. So
we may explore logical dynamics on the basis of graded epistemic logic.

It is easy to observe that public announcement logic and dynamic epistemic
logic can take the epistemic GS5 as a basis. The key recursion axioms in theorem
4 and theorem 8 also work very well.

Theorem 12. The public announcement logic on epistemic GS5 is axiomatized com-
pletely by the laws of epistemic GS5 and the following recursion axioms:

(1) recursion axioms (a), (b), (c) and (f) in theorem 5;
(2) 〈!φ〉Mnφ↔ φ ∧Mn〈!φ〉ψ.

Theorem 13. Dynamic epistemic logic on epistemic GS5 is axiomatized completely
by the laws of epistemic GS5 and the following recursion axiom:

(1) recursion axioms (a), (b) and (c) in theorem 9;
(2) the recursion axiom in theorem 8 with replacing 〈n〉 by Mn.

With epistemic GS5, life seems to be easier for us to understand some
philosophical issues. (See van der Hoek and Meyer (1992).) The KK-thesis
Kφ → KKφ may be replaced by the more plausible version Knφ → KKnφ
which says: if the agent considers that it is possible that there are n alternative
possibilities for φ’s being true then he considers that there are n alternative
possibilities forφ’s being true. Moreover, the notion of knowledge in the logical
omniscience formula K(φ→ ψ)→ (Kφ→ Kψ) is too strong or idealistic. But the
following formula is more realistic and plausible: K(φ→ ψ)→ (Kmφ→ Km+nψ).
The epistemic GS5 seems to provide the notion of knowledge which is more
approximate to our real one in ordinary life. We also observe that the dynamic
logics of information update which base on the epistemic graded modal logic
can also be developed smoothly. A crucial point arises here: it seems to be the
case that logical dynamics of information flow are irrelevant to choose which
basic static epistemic logic of knowledge. Information update has its own logic!
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Abstract
Formulaic events are introduced into the field of dynamic epistemic logic
in this paper. We consider a general class of syntactical methods to employ
dynamic modalities into the precondition language without self-references.
Within this class of methods, we take the “formulaic event” method, which
is in some sense the “minimal” one, as an illustration of “reconstructing”
DEL. The resulting system, i.e., feDEL, is showed to be a nice rewriting
of DEL by verifying “event model correspondence” results. Having in-
troduced formulas into events, we could define “local product model” by
employing knowledge-dependent uncertainty relations between events. It
is possible to carry out this on feDEL, but we introduce L-pfeDEL, which
is also in the syntactical repair class, with a view of a natural semantic.

1 Reviews and Motivations

Dynamic Epistemic Logic DEL (cf. van Benthem (2008), also Baltag et al.
(1998) and van Ditmarsch et al. (2007)) is a logical tool of reasoning about
knowledge of agents in informational communications. At first,we give a brief
review of some basic concepts of DEL, with most of our terminologies being
inherited from van Benthem (2008).

Definition 1.1 (Language of EL). Suppose that we have a finite number(e.g.,
m ∈ N) of agents, which are denoted by 1, 2, · · · ,m, then the language of EL is
defined by the following inductive rules:

φ ::= ⊥|p|¬φ|φ ∨ φ ∨ · · · |Kiφ

with ‘p’ standing for any propositional letter.
Note that we employ countably infinite disjunctions here.

Definition 1.2 (Pointed epistemic model). Suppose that we have a set I of
agents, then a pointed epistemic model is (M, s) or (W, {Ri}i∈I,V, s), where W is a set
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of states, with s as the current state, Ri is an uncertainty relation between states
for the agent i, V is an evaluation function.

This offers the truth definition of Epistemic Logic (EL), van Benthem (2008):

Definition 1.3 (Truth Definition of EL). For any pointed epistemic model
(M, s) = (W, {Ri}i∈I,V, s),

M, s 
 p iff s ∈ V(p)
M, s 
 ¬η iffM, s 1 η
M, s 
 ξ1 ∨ ξ2 ∨ · · · iffM, s 
 ξi for some i
M, s 
 Kiη iff for all t ∈W s.t. (s, t) ∈ Ri, we haveM, t 
 η

The logic EL simulates static epistemic activities of a group of agents. For
dynamic epistemic activities, such as public announcements, EL is no longer
capable enough. To express dynamic activities, we need Dynamic Epistemic
Logic, which is initialed in Baltag et al. (1998).

For a pointed Kripke frame over the agent set I, any function which is from
the domain of the frame to a language L is called a precondition function, with
notation Pre. The language L is then called the precondition language of DEL.

Other than pointed epistemic models, we also have pointed event models in
DEL.

Definition 1.4 (Pointed event model). Suppose that we have a set I of agents,
then a pointed event model is (E, e), or (E, {∼i}i∈I, {Pree}e∈E, e), where E is an at
most countable set of events, with e as the current event, ∼i is an uncertainty
relation between events of the agent i, and Pre is a precondition function which
has E as its domain.

In a pointed event model, the value of e by the precondition function, which
is denoted by Pree , is called the precondition of e.

Having defined pointed event models, we could state the definition of DEL-
language now.

Definition 1.5 (Language of DEL). Suppose that we have a finite number(e.g.,
m ∈ N) of agents, which are denoted by 1, 2, · · · ,m, then the language of DEL
is defined by the following inductive rules:

φ ::= ⊥|p|¬φ|φ ∨ φ ∨ · · · |Kiφ|[E, e]φ

with ‘p’ standing for any propositional letter, and ‘E, e’ standing for any pointed
event model.

Note that we include countably infinite disjunctions1.

We have the dynamic modality, i.e., [E, e], in our language. Before the
corresponding truth definition is given, we state the definition of pointed product
model.

Definition 1.6 (Pointed product model). For any pointed epistemic model
(M, s) = (W, {Ri}i∈I,V, s) and any pointed event model (E, e) = (E, {∼i
}i∈I, {Pree}e∈E, e), the pointed product model M × E, (s, e) is a pointed epistemic
model (W′, {R′i }i∈I,V

′, (s, e)), where

1In van Benthem (2008), we have reduction axioms for DEL(cf. (1) in this paper), which indicate
that we need to employ countably infinite disjunctions(asLω1ω in Ebbinghaus et al. (1994)) to deal
with the case that { f ∈ E | e ∼i f } is infinite.



222 Formulaic Events and Local Product Models in DEL

W′ = { (t, f ) ∈W×E |M, t 
Pre f }

R′i = {((t1, f1), (t2, f2)) ∈W′
×W′

| (t1, t2) ∈ Ri and ( f1, f2) ∈∼i}

V′ = { (t, f ) ∈W′
| t ∈V }

Definition 1.7 (Truth Definition of DEL). The truth definition of DEL is that of
EL, enriched by the following clause:

M, s 
 [E, e]ξ iff
ifM, s 
 Pree thenM × E, (s, e) 
 ξ.

With this, we have reduction axioms of DEL, which enable van Benthem
(2008) to get the completeness theorem of DEL in an easy way. As an instance,
we state the reduction axiom for knowledge modalities here. That is:

[E, e]Kiξ↔ (Pree →
∧

f∈E and e∼i f

Ki[E, f ]ξ) (1)

It should be emphasized that, we have not specified the precondition lan-
guage of DEL here. In some papers, e.g. Baltag et al. (1998) and van Benthem
et al. (2008), it is specified to be EL−language2. In some other papers, e.g.
Baltag and Moss (2004) and Renne (2008), the precondition language of DEL is
specified to be DEL itself.

Note that if we want to have dynamic modalities in precondition language,
we must define the syntax carefully, and treat Pre as a defined symbol, as in
Baltag and Moss (2004). Otherwise, the attempt of employing the full DEL to
be the precondition language may result self-referential semantics, hence is not
suitable. What follows is an easy instance for this:

Example 1. For any pointed event model E = (E, {∼i}i∈I, {Pree}e∈E, e). If we take
the full DEL to be the precondition language, then a self-referential paradox
may rise.

For instance, if Pree = [E, e]⊥ , then we have:
M, s 
 Pree iff
M, s 
 [E, e]⊥ iff
M, s 
 Pree ⇒M × E, (s, e) 
 ⊥ iff
M, s 
 Pree ⇒ ⊥ iff
M, s 1 Pree

That is, Pree is satisfied by a model iff it is not satisfied by the same model.

The observation above shows that, to allow the precondition language to
contain dynamic update modalities, we should avoid self-reference at least.

In this paper, we will discuss a class of methods to avoid self-reference in
general, and also a by-product of the class of methods.

2 Possible Methods of Avoiding Self-Reference

In this section, two different ideas of avoiding self-reference are considered.
Due to the author’s interests, we will focus on the second idea in later sections.
However, the first idea is also enlighten.

2In (Baltag et al. 1999, Section 2.1), it is stated that “PRE is a map PRE : K → L”, while the
“logical language with epistemic actions” being denoted by L([α]). In van Benthem et al. (2008),
we have “pre : S→ LEL is the pre-condition function” directly. Note that the strings PRE,Pre, pre
may have different meanings in different papers.
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2.1 A Semantical Idea

An nature way of avoiding self-reference is to employ an order on events3.
That is, each pointed event model has the form of E = (E, {∼i}i∈I, {Pree}e∈E,6, e),
where 6 is a linear ordering on E, and for each event e, Pree does not contain
f , provided e 6 f . Obviously, in a fixed pointed event model, self-referential
problems are avoided successfully.

However, this is not sufficient for avoiding referential loop between two or
more pointed event models.

Example 2. e ∈ E, f ∈ F and g ∈ G, together with Pree = [F , f ]⊥, Pre f = [G, g]⊥
and Preg = [E, e]⊥, results a self-referential paradox.

To remedy this, we may assume that the DEL language has an ordered set
of pointed event model symbols, which enables us to set a similar clause for
pointed event models. That is, for each pointed event model (E, e), Pree can
refer to (F , f ), only if (E, e) > (F , f ).

If we let the order to be empty, then any events can refer to no events. The
result is, we only let EL−language to be our precondition language.

2.2 A Syntactical Idea in General

Since most of our classical logics do not have self-referential problems,
it might be helpful to consider some of them. In this subsection, a general
observation is given.

We take basic epistemic modal logic EL, cf. Definition 1.3, for instance.
To interpret Kη, what we need to do is to care about a model condition, i.e.,
uncertainty relation, together with the interpretation of a subformula. For
other kind of formulas, situations are similar. That is, all we need to observe
are model conditions and interpretations of subformulas.

In other logics, such as first-order logic, temporal logic and PDL Blackburn
et al. (2001), we encounter similar situations when interpreting formulas. In
Janssen (1997), this is called “the principle of compositionality”, i.e., The meaning
of a compound expression is a function of the meanings of its parts.

With employing L to denote the set of syntactical strings,M to denote the
set of models, we could express these situations as following:

Λ(η) := Π(Λ(Θ1(η)),Λ(Θ2(η)), · · · ) (2)

with Λ : L→℘(M), Θ : L→L, which select a proper substring of the inputted
string as the output, Π : ℘(M)n(or ω)

→℘(M) being a “model operation”, which
may contain operations corresponding to accessibility relations, Boolean con-
nectives, product updates, and so on. HenceΛ is a syntax→semantic−operation,
while Θ’s being syntax−operations, and Π being a semantic−operation. In the
illustration of Kη above, n = 1 with the only Θ exporting η if the inputted
string has the form of Kη, while Π checking whether all states(in fact, pointed
epistemic models4) accessible from the current one are in Λ(Θ(Kη)).

Since all of classical logics have “regularly” syntaxes, that is, no string could
be a proper substring of itself, when interpreting a formula, the operations

3This is suggested by Prof. Johan van Benthem during a discussion.
4Suppose that sRt in M. Then when we interpret Kη at s, we refer to whether or not M, t 
 η.

Thus, we consider not only states, but also pointed epistemic models.
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above will never refer to the interpretation of the formula itself5. If we can
accomplish this on DEL(with dynamic modalities in precondition languages),
we may also avoid self-referential problems. As we will see in the rest of this
section, what we need to do is a syntactical repair.

In DEL van Benthem (2008), the precondition of an event e is denoted by
Pree. Recall that in the truth definition of DEL(cf. Definition 1.7), we have:

M, s 
 [E, e]ξ i f f M, s 
 Pree ⇒ M × E, (s, e) 
 ξ

It should be emphasized that when interpreting [E, e]ξ, we refer to the
interpretation of Pree, which is of course not a proper substring of [E, e]ξ. In
the notation above, the output of a Θ operation is always a proper substring of
the inputted string. Hence, we can not express this in the way we used above.
Instead, we use:

Λ(η) := Π(Λ(Ω(Θ1(η))),Λ(Θ2(η))) (3)

whereΘ1 yields e when [E, e]ξ is inputted, Θ2 yields ξwhen [E, e]ξ is inputted,
Π takes the two sets of pointed models(which are also inputs), while caring
about the “product update” relation between pointed models. The only new
operation, i.e., Ω : L→L, is an syntactical operation which yields Pree

6 when e
is inputted.

From (2) to (3), the only alteration is the appearance of Ω operation. This
indicates that DEL is in some sense special, provided we employ Pre as an
initial symbol.

If we set no restrictions on Ω, then Ω could be any operation from L to L.
In Example 1,Ω yields [E, e]⊥when e is inputted, which enablesΠ to touch the
interpretation of [E, e] when we are interpreting [E, e]. The observation above
shows how self-reference is involved in Example 1. It is a more complex, but
also similar case in Example 2.

When proper restrictions are attached to Ω, we can transform the special
situation (3) to the standard situation (2), and hence, avoid self-referential
problems. Θ1 : L→L, yields a proper substring of the inputted string. Hence
if Ω : L → L yields a substring(proper or improper) of the inputted string,
then we could combine them to one operation, say, ΘZ1 : L→L, which yields
a proper substring of the inputted string. In this way, we could express the
situation by:

Λ(η) := Π(Λ(ΘZ1 (η)),Λ(Θ2(η))) (4)

which shares the form of (2). By the observation about (2) in previous para-
graphs, we know that self-referential problems have been avoided. To do this,
what we have done is a syntactical repair, i.e., to add a restriction onΩ, require
it to produce a substring of the inputted string as output. In the terminology of
DEL, that is:

Put preconditions explicitly in events.

5Here might be a point to be made clear. Assume that we want to interpret ¬φ, we can select
Θ as we do in propositional logic. But this time, instead of complement, we choose identity for Π.
Then the resulting truth-definition clause would be: u 
 ¬φ iff u 
 φ. Is that a paradox? No. It is
of course a strange interpretation of ¬, but still acceptable. Recall that in Example 1, what we have
is u 
 η iff u 1 η !

6“Pree” is also a string.
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Since preconditions are formulas, when we define an event7, we have to
involve at least one formula, i.e., the precondition of the event. This could be
expressed by:

Event := Γ(κ) (5)

where κ is the precondition of the event, Γ is a “non-decreasing” operation,
which sets the inputted string as a substring(proper or improper) of the output.
Note that Γ packs a precondition formula to be an event, while in (3),Ω opening
the package and fetching the precondition formula out. Obviously, Γ andΩ are
inversions of each other.

In summary, our syntactical idea is:

Define events by (5), where Γ is a “non-decreasing” operation.

We already have an instance of applying such a restriction. That is, Public
Announcement Logic(PAL), which is treated as a special case of DEL by van
Benthem (2008), Renne (2008), and also some other papers. All events in PAL
share the form of !φ, while the precondition of !φ being φ. In the expression of
(5), that is, Γ yields !ε, if ε is inputted.

The key clause of PAL’s truth definition is:

M, s 
 [!φ]ξ i f f M, s 
 φ⇒M|φ, s 
 ξ

We could express this in the form of (3), where Θ1 yields !φ when [!φ]ξ is
inputted,Θ2 yieldsξwhen [!φ]ξ is inputted,Ω is the syntactical operation which
yields φ when !φ is inputted, Π takes the two sets of pointed models(which
are also inputs), while caring about the “hard information update” relation
between pointed models. Obviously, we could take ΘZ1 to be the combination
Θ1◦Ω. Since Θ1◦Ω is also an operation which yields a proper substring of the
inputted string, we can transfer the form of (3) to the form of (4), i.e., (2). Since
the situation of PAL meets the form of (2), PAL does not have self-referential
problems.

Remark 1. In Baltag et al. (1998) and van Benthem et al. (2008), we have an unstan-
dard restriction on the operation Ω, i.e., the range of the operation is limited to the set
of strings of EL-language. This restriction does not follow the general idea discussed
above, but also works. Since event symbol e is not in EL, the string Ω(e) contains
no e. Hence Λ(Ω(Θ1([E, e]ξ))) does not refer to the interpretation of [E, e]. In this
way, we avoid self-referential problems in DEL, while paying a cost. That is, in the
terminology of DEL, we take EL, which does not contain dynamic update modalities,
as our precondition language. As we have showed in Example 1, this restriction is
dropped when we employ dynamic into precondition language. Hence we will only
focus on the general idea discussed above.

From the observation above, it is clear that what we could do is to repair the
syntax of DEL from van Benthem (2008), define events by (5), and make sure
that the operation Γ is a “non-decreasing” operation.

Obviously, there are lots of capable Γ’s, corresponding to lots of capable
repairs. For instance, we could choose the “minimal” Γ, i.e., identity operation.
We will consider this special case in Section 3 as an illustration, while observing
another case in Section 4.2, for other motivations.

7Note that in the language of DEL, events are initial symbols, not defined symbols.
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3 The “Minimal” Method: Formulaic Events

3.1 A Preliminary Discussion

As we have stated above, in this section, we will take the minimal “non-
decreasing” Γ operation: Identity.

We have expressed the situation of DEL by (3), whileΩ has Γ, which yields
an event when a formula is inputted, as its inversion. Thus, in the truth defini-
tion of DEL, the Γ operation is in charge of “packing precondition formulas in
events”. Since we have taken the identity operation as Γ, then

Each event is just its precondition f ormula.

Before introducing the resulting system, it might be helpful to make one
point clear now. That is:

Remark 2. Once events are defined to be their precondition formulas, they are de-
termined by their preconditions. It might be interesting to consider whether events
are determined by their preconditions, physically or philosophically. However, instead
of caring about these discussions, what we will do is to present an illustration of our
“minimal” syntactical method.

3.2 The System feDEL

We define the language of feDEL8 and pointed formulaic event models
simultaneously at first. Since events are defined to be formulas, domains of
event models are then sets of formulas, while uncertainty relations between
events being relations between formulas. Thus, we will not only mention
formulas when we define pointed formulaic event models, but also mention
pointed formulaic event models when we define the language.

Definition 3.1 (Language of feDEL and Pointed formulaic event model). Sup-
pose that we have a finite number(e.g., m ∈N) of agents, which are denoted by
1, 2, · · · ,m, then the language of feDEL is defined by the following inductive
rules:

φ ::= ⊥|p|¬φ|φ ∨ φ ∨ · · · |Kiφ|[E]φ

with ‘p’ standing for any propositional letter, and ‘E’ standing for any pointed
formulaic event model9 which is defined as:

E ::= φ, (φ, · · ·︸︷︷︸
n(or ω)

), (( φ, · · ·︸︷︷︸
µ6n(or ∈ω+)

), · · ·

︸           ︷︷           ︸
m

), · · ·

︸                  ︷︷                  ︸
n(or ω)

while each φ in the pointed formulaic event model occuring in the second part
of it, i.e.: in (φ, · · ·︸︷︷︸

n(or ω)

).

8fe stands for “formulaic event” here.
9The pointed formulaic event model is still a syntactical object, though we call it as a “model”.
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Note that we employ countably infinite disjunctions, and we allow pointed
formulaic event models to have countably infinite many formulaic events.

From logical constant till knowledge modality, the above definition is usual,
though we have noted that infinite disjunctions are involved. The reason why
infinite disjunctions are allowed is that we want to manage infinite “event
models” (cf. the reduction axioms for DEL, i.e.: (1)). The only clause which
needs more explanation might be the one for dynamic modality.

The idea is simple10: Put a pointed-graph into the language. To make it clear, it
might be helpful to write each component explicitly. Suppose that we have m
agents and the following pointed formulaic event model:

η j, (η1, · · · , η j, · · ·︸          ︷︷          ︸
n(or ω)

), ((η1.1.1, η1.1.2, · · ·︸           ︷︷           ︸
µ1.16n(or ∈ω+)

), ( η1.2.1, · · ·︸   ︷︷   ︸
µ1.26n(or ∈ω+)

), · · ·

︸                                    ︷︷                                    ︸
m

), (( η2.1.1, · · ·︸   ︷︷   ︸
µ2.16n(or ∈ω+)

), · · ·

︸             ︷︷             ︸
m

), · · ·

︸                                                                    ︷︷                                                                    ︸
n(or ω)

(6)

Then (the precondition of) the current formulaic event is η j, with η1, · · · , η j, · · ·
being the n (or ω−many) formulaic events in the same pointed formulaic event
model. For any x s.t. 0 < x 6 n(or 0 < x ∈ ω), any y s.t. 0 < y 6 m and any z
s.t. 0 < z 6 n(or 0 < z ∈ ω), ηx.y.z is the z-th formulaic event which is accessible
for agent y from ηx. µx.y is employed to denote the number of formulaic events
which are accessible for agent y from ηx

11.
We present an easy example here:

Example 3. In the following pointed formulaic event model:

η1, (η1, η2, η3), ((η3), ()), ((), (η1, η3)), ((), ())

The first part, i.e. η1, presents that the current formulaic event is η1.
The second part, i.e. (η1, η2, η3), presents that these three are the only
three formulaic events in the formulaic event model. The third part, i.e.
((η3), ()), ((), (η1, η3)), ((), ()) presents the accessibility relation. There are three
pieces in this part, corresponding to the three formulaic events respectively.
For instance, the second piece, i.e. ((), (η1, η3)), indicates that from η2, there are
no accessible formulaic events for agent 1, with η1, η3 being the two formulaic
events accessible for agent 2.

Diagrammatically, this can be shown by:
η1

1

  A
AA

AA
AA

η2

2
>>~~~~~~~~ 2 // η3

10This idea is inspired by Professor Johan van Benthem in one of his lectures in Tsinghua Univ.
Beijing, Oct. 2008.

11We explain the reason why we put µx.y 6 n(or ∈ ω+) in (6). If the pointed formulaic event
model is finite, then it has a finite number, say n, of formulaic events. Hence for any formulaic
event ηx, any agent y, there are at most n accessible formulaic events. In this case, µx.y 6 n. If the
pointed formulaic event model is infinite, then by Definition 3.1, it has ω−many formulaic events.
Hence, for each formulaic event and each agent, there are at most ω accessible formulaic events. In
this case, µx.y ∈ ω+, while ω+ = ω ∪ {ω}.
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In the notation of (6), we have: η1.1.1 = η3, η2.2.1 = η1, η2.2.2 = η3, and
µ1.1 = 1, µ2.2 = 2, µ1.2 = µ2.1 = µ3.1 = µ3.2 = 0.

By the example above, it is clear that what we have employed is a formal
description of pointed graphs. Since the general notation is not convenient, in
the following text, we will use:

η to denote {η1, · · · , η j, · · ·︸          ︷︷          ︸
n(or ω)

}, the domain of the pointed formulaic event

model,
−→η to denote (η1, · · · , η j, · · ·︸          ︷︷          ︸

n(or ω)

), the list of all formulaic events in that model,

ηx.i to denote {ηx.i.1, ηx.i.2, · · ·︸          ︷︷          ︸
µx.i6n(or ∈ω+)

}, the set of formulaic events which are ac-

cessible by agent i from ηx, and
η̃ to denote (( η1.1.1, · · ·︸   ︷︷   ︸

µ1.16n(or ∈ω+)

), · · ·

︸             ︷︷             ︸
m

), · · ·

︸                    ︷︷                    ︸
n(or ω)

, the accessibility relations of that

model.
Hence a general pointed formulaic event model would be denoted as:

η,−→η , η̃ (7)

while “ ηy is accessible from ηx by agent i ” being denoted by

ηy ∈ ηx.i (8)

Like in DEL, we also start the discussion of semantic of feDEL with the
definition of pointed product model.

Definition 3.2 (Pointed Product Model). For any pointed epistemic model
(M, s) = (W, {Ri|i ∈ I},V, s) and any pointed formulaic event model E = η,−→η , η̃,
ifM, s 
 η, then the pointed product model (M◦E, s◦η) is
(W◦E, {(R◦E)i|i ∈ I},V◦E, s◦η), where:

W◦E = {u ◦ τ |u ∈W and τ ∈ η andM,u 
 τ }
(R◦E)i = { (u◦ηx, v◦ηy) ∈ (W◦E) × (W◦E) |uRiv and ηy ∈ ηx.i }, for each

i ∈ I
V◦E = {u ◦ τ ∈W◦E |u ∈ V }

The way we define pointed product model here is very similar with the way
we used in DEL12 (cf. Definition 1.6). Firstly, we calculate the cross product of
an pointed epistemic model and a pointed (formulaic) event model. Secondly,
we eliminate all the states (u ◦ τ), ifM,u fails to satisfy (the precondition of) τ.

12We have altered some notations, e.g., using s◦η instead of (s, η). This new notation may help
us to reduce the number of parentheses. In Definition 3.2, we have the notation ofM◦E, s◦η. If we
write the pointed formulaic event model explicitly, it is: M◦η,−→η , η̃, s◦η. Note that by (7), η̃ has the
form of (· · · ), · · · , (· · · ). In this case, it may be difficult to distinguish the original notation, i.e. (s, η)
from η̃.
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Thirdly, we construct accessibility relations by pairs (u ◦ ηx, v ◦ ηy), if (u, v) and
(ηx, ηy) are in corresponding accessibility relations of M and E13, respectively.
Lastly, the valuation is transferred as we did in DEL.

With the definition of pointed product model, we can state the truth defini-
tion of feDEL.

Definition 3.3 (Truth Definition of feDEL). With employing corresponding
clauses from epistemic logic van Benthem (2008) and the propositional fragment
of Lω1ω Ebbinghaus et al. (1994), we only need to state the clause for dynamic
modality: for any pointed epistemic model M, s and any pointed formulaic
event model E(with η as its current formulaic event):

M, s 
 [E]ξ i f f M, s 
 η⇒M◦E, s◦η 
 ξ

It is not surprising that the truth definition of feDEL is similar with that of
DEL. But this time, we have feDEL as the “precondition language” of itself.

The following reduction axioms, may also be acquaintances.

Theorem 1 (Reduction Axioms of feDEL). The following wffs are valid in feDEL:14

(1) [η,−→η , η̃]q↔ (η→ q)
(2) [η,−→η , η̃]¬ξ↔ (η→ ¬[η,−→η , η̃]ξ)

(3) [η,−→η , η̃]
∧ ~ξ↔

∧−−−−−−−→
[η,−→η , η̃]ξ

(4) [ηx,
−→η , η̃]Kiξ↔ (ηx →

∧
ηy∈ηx.i

(Ki[ηy,
−→η , η̃]ξ))

Proof. These validities could be shown by an analogue of the verification we
used in DEL. The only difference is: what we have as “preconditions” here
are not EL-formulas, but feDEL-formulas. Nevertheless, this difference does
not matter since in the reduction axioms above, we treat “preconditions” as
Boolean components without caring about structures inside them.

Here come the details. For any pointed epistemic model (M, s) =
(W, {Ri}i∈I,V, s) and any pointed formulaic event model E = η,−→η , η̃, we have:

(1)M, s 
 [η,−→η , η̃]q iff
M, s 
 η⇒M◦E, s◦η 
 q iff
M, s 
 η⇒ s◦η ∈ (V◦E)(q) iff
M, s 
 η⇒ s ∈ V(q) iff
M, s 
 η⇒M, s 
 q iff
M, s 
 η→ q

(2)M, s 
 [η,−→η , η̃]¬ξ iff
M, s 
 η⇒M◦E, s◦η 
 ¬ξ iff
M, s 
 η⇒ {M, s 
 η &&M◦E, s◦η 
 ¬ξ } iff
M, s 
 η⇒M, s 
 ¬[η,−→η , η̃]ξ iff
M, s 
 η→ ¬[η,−→η , η̃]ξ

(3)M, s 
 [η,−→η , η̃]
∧ ~ξ iff

M, s 
 η⇒M◦E, s◦η 

∧ ~ξ iff

M, s 
 η⇒ && (
−−−−−−−−−−−−→
M◦E, s◦η 
 ξ) iff

&& (
−−−−−−−−−−−−−−−−−−−−−−−→
M, s 
 η⇒M◦E, s◦η 
 ξ) iff

13The accessibility relations in formulaic event models are given in special notations, cf. (8).
14With employing ¬ in our language, we could define one of ∧(including infinite case) and
∨(including infinite case) on the other. Hence it is sufficient to give the reduction axiom for ∧. We
denote finite conjunction ξ1 ∧ · · · ∧ ξn or infinite conjunction ξ1 ∧ ξ2 ∧ · · · by

∧ ~ξ.
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&& (
−−−−−−−−−−−−−−→
M, s 
 [η,−→η , η̃]ξ) iff

M, s 

∧−−−−−−−→

[η,−→η , η̃]ξ
(4)M, s 
 [ηx,

−→η , η̃]Kiξ iff
M, s 
 ηx ⇒M◦E, s◦ηx 
 Kiξ iff
M, s 
 ηx ⇒ ( f or any t◦ηy s.t. (s◦ηx, t◦ηy) ∈ (R◦E)i)
M◦E, t◦ηy 
 ξ iff

M, s 
 ηx ⇒ ( f or any ηy ∈ ηx.i) ( f or any t s.t. sRit)
{M, t 
 ηy ⇒M◦E, t◦ηy 
 ξ) } iff

M, s 
 ηx ⇒ ( f or any ηy ∈ ηx.i) ( f or any t s.t. sRit)
M, t 
 [ηy,

−→η , η̃]ξ iff
M, s 
 ηx ⇒ ( f or any ηy ∈ ηx.i)M, s 
 Ki[ηy,

−→η , η̃]ξ iff
M, s 
 ηx ⇒M, s 


∧
ηy∈ηx.i

Ki[ηy,
−→η , η̃]ξ iff

M, s 
 ηx →
∧
ηy∈ηx.i

Ki[ηy,
−→η , η̃]ξ �

Note that we do not need the reduction axiom for iteration case, since we
can deal with these wffs from the innermost modality to the outermost one15.

With these reduction axioms, we have similar completeness result as in DEL
van Benthem (2008):

Corollary 1 (Completeness of feDEL). feDEL is axiomatized by EL(with infinitely
disjunction)-axioms together with the reduction axioms stated in Theorem 1.

3.3 Event model correspondence of feDEL and DEL

A pair of interesting questions might be: Could all pointed event models w.r.t.
DEL be stated in feDEL? and Could all pointed formulaic event models w.r.t. feDEL
be stated in DEL?

In feDEL, events are determined by their preconditions(cf. Remark 2). Thus
if a DEL event model has two events with the same precondition, then the event
model seems to be out of the range of feDEL. Also, we have formulaic events
which have dynamic modalities in their precondition formulas, which seem
difficult to be expressed by DEL event models. Nevertheless, by employing
some tricks, we can get positive results.

Definition 3.4 (Event model correspondence between feDEL and DEL). For
any (DEL) pointed event model E, e and any (feDEL) pointed formulaic event
model η,−→η , η̃:
E, e and η,−→η , η̃ are said to be correspond if

M, s 
DEL [E, e]ξ i f f M, s 
feDEL [η,−→η , η̃]ξ

for any pointed epistemic modelM, s and any EL−formula ξ.

A similar notion have appeared in van Eijck and Ruan (2004), with the
name of “Same update effect”. Since our discussion relates two class of event
models(i.e., DEL event models and feDEL formulaic event models), and hence,

15It should be emphasized that: what we have employed are pointed formulaic event models
which may have countably infinite many formulaic events. Still, we insisted on applying the
wff-building operations for only finite many times(infinitely disjunctions are built by applying the
corresponding operation just ones). Thus, we do not have infinitely iteration of dynamic modalities
in feDEL.
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cares about two kinds of updates together, we take the name “correspondence”
instead.

Definition 3.5 (Formula correspondence between feDEL and DEL). For any
DEL−formula φ and any feDEL−formula ψ: φ and ψ are said to be correspond
if

M, s 
DEL φ i f f M, s 
feDEL ψ

for any pointed epistemic modelM, s.

Theorem 2 (Existence of corresponding event model). (1) For any (DEL) pointed
event model, there is a (feDEL) pointed formulaic event model corresponding to it.

(2) For any (feDEL) pointed formulaic event model, there is a (DEL) pointed event
model corresponding to it.

Proof. (1) Suppose that a pointed event model (E, e) = (E, {∼i}i∈I, {Pree}e∈E, e) is
given. Now we construct the corresponding pointed formulaic event model.

Firstly, we define −→η . Since E is at most countable(cf. Definition 1.4), we can
enumerate its elements, say, e1, e2, · · · . Let:

η j := Pree j ∨⊥ · · · ∨ ⊥︸      ︷︷      ︸
z j times

where
z j := µz. Pree j ∨⊥ · · · ∨ ⊥︸      ︷︷      ︸

z times

< { η1, · · · , η j−1 }

Since Pree j is an EL−formula, η j is also an EL−formula. Hence we have:


DEL Pree j ↔ η j

and

feDEL Pree j ↔ η j (9)

In this way, we transfer events with same preconditions to different, but equiv-
alent formulas.
−→η is defined to be (η1, η2, · · · ), while η being the collection of formulas in −→η .
Secondly, we take the current formulaic event η to be Pree.
Thirdly, let ηx.i to be { ηy | ex ∼i ey }. Since we have numbered all e j’s and all

η j’s, we can specify ηx.i.1, ηx.i.2, · · · from ηx.i. Then we can let η̃ to be

((η1.1.1, η1.1.2, · · · ), (η1.2.1, · · · ), · · · ), ((η2.1.1 · · · ), · · · ), · · ·

This finishes our construction of the pointed formulaic event model, i.e.,
η,−→η , η̃.

Now it is sufficient to verify the correspondence relation.
We employ an induction on the formula ξ, and use reduction axioms of DEL

and feDEL.
B M, s 
DEL [E, e]q iff (reduction axioms of DEL)
M, s 
DEL Pree → q iff (Pree is an EL−formula)
M, s 
feDEL Pree → q iff (by (9))
M, s 
feDEL η→ q iff (reduction axioms of feDEL)
M, s 
feDEL [η,−→η , η̃]q
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B M, s 
DEL [E, e]¬ξ iff (reduction axioms of DEL)
M, s 
DEL Pree → ¬[E, e]ξ

iff (i.h., Pree is an EL−formula, together with (9))
M, s 
feDEL η→ ¬[η,−→η , η̃]ξ iff (reduction axioms of feDEL)
M, s 
feDEL [η,−→η , η̃]¬ξ

B M, s 
DEL [E, e]
∧−→
ξ iff (reduction axioms of DEL)

M, s 
DEL
∧−−−−→

[E, e]ξ iff (i.h.(many times))

M, s 
feDEL
∧−−−−−−−→

[η,−→η , η̃]ξ iff (reduction axioms of feDEL)
M, s 
feDEL [η,−→η , η̃]

∧−→
ξ

B M, s 
DEL [E, ex]Kiξ iff (reduction axioms of DEL)
M, s 
DEL Preex →

∧
ex∼iey

Ki[E, ey]ξ
iff (i.h.16, Preex is an EL−formula, together with (9))

M, s 
feDEL ηx →
∧
ηy∈ηx.i

Ki[ηy,
−→η , η̃]ξ

iff (reduction axioms of feDEL)
M, s 
feDEL [ηx,

−→η , η̃]Kiξ
(2) The construction of corresponding DEL pointed event model and the

verification of correspondence are almost just the inverse procedure of what
we presented in (1). For formulaic event η j with dynamic modalities, we can
take the feDEL−equivalent EL−formula to be Pree j . The reduction axioms of
feDEL guarantee that there is such a formula. �

Note that in Definition 3.4, ξ is required to be an EL−formula. By reduction
axioms of DEL and feDEL, for formulas with dynamic modalities, we can apply
Theorem 2 on the inner most modality. Thus, this requirement is sufficient for
us to get the following corollary:

Corollary 2 (Existence of corresponding formula). (1) For any DEL−formula φ,
there is an feDEL−formula f (φ) corresponding to it.

(2) For any feDEL−formula ψ, there is a DEL−formula g(ψ) corresponding to it.

Proof. For notational convenience, DEL dynamic modalities are denoted by
Σ1,Σ2, · · · , while feDEL dynamic modalities are denoted by∆1,∆2, · · · . Besides,
for any DEL−formula α, by the reduction axioms of DEL, we can make the
DEL−equivalent EL−formula of α, which is denoted by VαW. Similarly, the
feDEL−equivalent EL−formula of a feDEL−formula β is denoted by TβU.

We only proof (1) here, the proof of (2) is quite similar.
Suppose that φ has dynamic modalities, say, Σ1,Σ2, · · · . By Theorem 2, we

can construct corresponding formulaic event models, say, ∆1,∆2, · · · .
Then f (φ) := φ(Σ1 7→ ∆1,Σ2 7→ ∆2, · · · ). That is, we substitute all Σ’s by

corresponding ∆’s.
Now we proof two claims together by an induction, i.e.:

M, s 
DEL φ i f f M, s 
feDEL f (φ) (10)

which is our target, and

M, s 
DEL VφW i f f M, s 
DEL T f (φ)U (11)

16By this induction, we are showing that our construction stated above can generate correspond-
ing pointed formulaic event models, no matter which pointed event model is given in hand. Thus,
we can also apply i.h. here, though it is w.r.t. (E, ey), instead of (E, ex).
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as a by-product.
B M, s 
DEL q iff M, s 
feDEL q iff M, s 
feDEL f (q) .
M, s 
DEL VqW iff M, s 
DEL q

iff M, s 
DEL TqU iff M, s 
DEL T f (q)U .
B M, s 
DEL V¬φW iff M, s 
DEL ¬VφW iff (i.h. (11))
M, s 
DEL ¬T f (φ)U iff M, s 
DEL T¬ f (φ)U

iff M, s 
DEL T f (¬φ)U.
M, s 
DEL ¬φ iff M, s 
DEL V¬φW

iff (since we have proved (11) for this case above)
M, s 
DEL T f (¬φ)U iff M, s 
feDEL T f (¬φ)U

iff M, s 
feDEL f (¬φ) .
B The inductive steps for

∧
and Ki are similar.

We also prove (11) firstly, and then prove (10) as a consequence.
B M, s 
DEL Σiφ iff M, s 
DEL ΣiVφW iff (i.h. (11))
M, s 
DEL ΣiT f (φ)U iff (Theorem 2,

together with the fact that T f (φ)U is an EL−formula)
M, s 
feDEL ∆iT f (φ)U iff M, s 
feDEL ∆i f (φ)

iff M, s 
feDEL f (Σiφ) .
M, s 
DEL VΣiφW iff M, s 
DEL Σiφ

iff (since we have proved (10) for this case above)
M, s 
feDEL f (Σiφ) iff M, s 
feDEL T f (Σiφ)U

iff M, s 
DEL T f (Σiφ)U �

Remark 3. The results of Corollary 2 are trivial. For instance, we could let f (φ) to be
VφW. However, the method of the proof is an illustration of generating corresponding
formulas with “similar profiles” by employing Theorem 2.

In the rest of this section, we consider the relationship between feDEL and
the “special case” of DEL, namely, PAL. It was stated in van Benthem (2008)
that the event model for a public announcement !η has only one event with
precondition η, and reflexive accessibility relations for all agents. By Theorem
2, we could state this pointed event model by the following pointed formulaic
event model in feDEL :

η, (η), ((η), · · · , (η)︸       ︷︷       ︸
m

)

where m is the number of agents.

4 Local Product Models

In Section 2.2, we state our syntactical repairing method in general. Recall
that the key-point is to put preconditions explicitly in events. This repair improves
the degree of formulas, and enables us to explore new notions. We will take
“local product model” in this section as an example.
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4.1 Knowledge-dependent Uncertainty Relations Between
Events

In (Baltag and Moss 2004, Section 3.1), it is stated that the “actions”17 there
are “simple”, since the appearances of actions to agents are uniform, that is, no
matter which state an agent is in, he has the same uncertainty about events18.

By the idea of Section 2.2, formulas are explicitly placed in events. Since
satisfiabilities of formulas are sensitive to epistemic states, a nature question
would be:

Can we de f ine knowledge−dependent uncertainty relations between events?

Suppose that we have two events e1 and e2, withχ1.1, χ1.2, · · · andχ2.1, χ2.2, · · ·
as series of formulas respectively given in e1 and e2

19. Then we could let20:

e ∼i f i f f M, s 

∧

k

−−−−−−−−−−−−→
^i(χ1.k ↔ χ2.k) (12)

by which, an agent may have different uncertainties about events at different
epistemic states. It is clear that in (12), each event should have a same number
of formulas. Besides, if we employ (12) in an event model, then it is no longer
an independent model. Fortunately, we can omit uncertainty relations in the
definition of event model, and put our remedy at the definition of product
model. Since the resulting product models are sensitive to epistemic states,
which indicates that the events are no longer “simple” in the sense of Baltag
and Moss (2004), we will call them local product models.

In the next subsection, we construct a system to illustrate how local product
models behavior.

Remark 4. We have defined feDEL, which is our minimal method, in Section 3. Since
formulas have been put into events, we can introduce local product model, instead of
Definition 3.2. We may call the resulting system L-feDEL21. But in that case, the
idea of (12), i.e., an agent can tell two events iff he knows the preconditions of these
two events are different, is not plausible. Suppose that we have an event “it rains” and
an identity event “nothing happens”. I may not be able to tell the precondition of “it
rains”, e.g., some atmospheric condition, but I can tell that it rains or not.

4.2 The System L-pfeDEL

In this section, we play a method different from feDEL. In this method, we
do not require events to be determined by their preconditions, and makes the
semantic more plausible.

17The notion “action” in Baltag and Moss (2004) corresponds to “events” in this paper.
18It is the same case in van Benthem (2008), cf. Definition 1.4 in this paper.
19In Section 3, we have feDEL in which there is only one formula, i.e.: the precondition formula,

in each event. But we can put more formulas in, provided we still meet the requirement of our
syntactical idea.

20We use ^i as an abbreviation of ¬Ki¬.
21L stands for “local” here.
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In the following definition of L-pfeDEL22, each event is defined to be a pair
of formulas, i.e.23:

event := (precondition, postcondition)

Definition 4.1 (Language of L-pfeDEL). Suppose that we have an at most
countable set of agents, which are denoted by 1, 2, · · · , then the language of
L-pfeDEL is defined by the following inductive rules:

φ ::= ⊥|p|¬φ|φ ∨ φ ∨ · · · |Kiφ|[E]φ

with ‘p’ standing for any propositional letter, and ‘E’ standing for any pointed
pairwise formulaic event model which is defined as:

E ::= φ − φ, (φ − φ, · · ·︸    ︷︷    ︸
n(orω)

)

Note that in the language of L-pfeDEL, we do not include the uncertainty re-
lations between pairwise formulaic events. The reason is we desire knowledge-
dependent uncertainty relations between events, to be generated in Definition
4.2.

As in the case of feDEL, we have the following abbreviations:
−−−→
ε − δ denotes (ε1 − δ1, · · ·︸      ︷︷      ︸

n(orω)

),

ε − δ denotes {ε1 − δ1, · · ·︸      ︷︷      ︸
n(orω)

}.

Definition 4.2 (Pointed Local Product Model). For each pointed epistemic
model (M, s) = (W, {Ri|i ∈ I},V, s), and each pointed pairwise formulaic event
model E = ε − δ,

−−−→
ε − δ, the pointed local product model (M◦sE, s◦ε − δ) is:

(W◦E, {(R◦sE)i | i ∈ I},V◦E, s◦ε − δ) where:
W◦E = {t◦ε − δ | t ∈W and ε − δ ∈ ε − δ andM, t 
 ε}
(R◦sE)i = {(t1◦ε1−δ1, t2◦ε2−δ2) ∈ (W◦E)×(W◦E) | t1Rit2 andM, s 
 ^i(ε1↔

ε2) ∧^i(δ1↔δ2)}
V◦E = {t◦ε − δ ∈W◦E | t ∈ V}

The notion defined above is “local” since it is dependent to knowledge, i.e.,
dependent to the epistemic state where it occurs. The only clause which is
sensitive to states is the one for uncertainty relations, which says that, an agent
can tell two events iff either he knows the preconditions of these two events are
different, or he knows the postconditions of these two events are different.

Now we can give the truth definition of L-pfeDEL as a routine.

22As fe in feDEL, pfe here means “pairwise-formulaic event”, while L means “local”.
23Postconditions are employed here to make the semantic of our instance more natural. This

employ is not necessary. We can have local product models in any system which has formulas
explicitly in events, cf. Remark 4. In one word, we treat postcondition as a tool, without caring
about the meaning of it. Besides, van Benthem et al. (2006) has discussions about postcondition
itself in detail.
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Definition 4.3 (Truth Definition of L-pfeDEL). With employing corresponding
clauses from epistemic logic van Benthem (2008) and propositional fragment
of Lω1ω Ebbinghaus et al. (1994), we only need to state the clause for dynamic
modality: for any pointed epistemic model M, s and any pointed pairwise
formulaic event model E (with ε − δ as its current pairwise formulaic event):

M, s 
 [E]ξ i f f M, s 
 ε⇒M◦sE, s◦ε − δ 
 ξ

The sensitivities of uncertainty relations between events to epistemic states
bring something new into the field of DEL. However, these sensitivities also
brings a technical difficulty, i.e., the reduction axioms. By an usual way, we may
get a list of valid “reduction axioms”. But in this time, the one for knowledge
modality would have the form of

[ε − δ,
−−−→
ε − δ]Kiξ↔ (ε→

∧
M,s
^i(ε↔ε′)∧^i(δ↔δ′)

ν)

for some formula ν, where 
, M are not syntactical symbols. This fact makes
the above expression no longer a wff24, unless we could find some way to
determine that satisfiability syntactically.

There is a positive result that, we could still state PAL as a special “case” of
L-pfeDEL, where the pointed pairwise formulaic event model corresponding
to !P is:

P − >, (P − >)

In fact, with our definition, any pairwise formulaic events are reflexive,
provided our pointed epistemic model is reflexive, since ^i(ε↔ ε)∧^i(δ↔ δ)
is globally true in reflexive models.

5 Conclusion

In this paper, formulaic events in the filed of DEL were discussed. At first,
we stated a class of syntactical methods of avoiding self-referential problems in
general. In a word, it was: put preconditions explicitly in events. Then the “mini-
mal” method, i.e. feDEL, was founded and showed to be a suitable rewriting
of DEL. After that, we went further to introduce local product models, while
founding L-pfeDEL, which was also an instance of our syntactical methods, as
a tiny step of exploring non-“simple”25 events(or actions).

The work could be carried on in different ways. For instance, semantical
methods (cf. Section 2.1) also worth exploring. During an e-mail discussion,
Tomohiro Hoshi pointed out that while the semantical idea constructing an
order in the set of pointed event models, the syntactical idea also constructs
an order in the same set. Hence, it seems possible to join these two ideas.
Also, it might be a challenging work to find out suitable reduction axioms for
L-pfeDEL. Besides, we could check other methods in our syntactical-repair
class.

24In feDEL, uncertainty relations are given syntactically. Similar for DEL, though in an implicit
version.

25We use the word “simple” in the sense of (Baltag and Moss 2004, Section 3.1).
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Abstract
This paper presents two systems of temporal logic, ΛCPT and ΛCPT@, with
ceteris paribus modalities. The principal aim is to show how this approach
can be useful to give an ockhamist solution to the future contingents problem
along the same lines of A. Prior in Prior (1967). The interest of this work
lies also in the fact that ΛCPT@ represents an alternative modal account of
supervaluationist and post-semantics approaches to temporal reasoning.

1 Introduction

The notion of ceteris paribus plays a fundamental role in the definition of many
key concepts in different areas. For example, it is often suggested that economic
and psychologic laws, but also scientific laws tout court, hold only ceteris paribus,
i.e. if we consider only cases where a set of standard conditions is satisfied.
In van Benthem et al. (2009) a fundamental distinction is made among two
important senses in which we can use the notion of ceteris paribus. In the first
sense, something holds ceteris paribus if it holds whenever a fixed set of normal
conditions is satisfied. In the second sense, something holds ceteris paribus if it
holds “everything else being equal”, i.e. in all cases that are equivalent to the
actual situation w.r.t. a given set of conditions.1 The modal logic elaborated in
van Benthem et al. (2009) for dealing with ceteris paribus preferences2 represents
a very useful logical tool for modeling other notions where ceteris paribus, in
the sense of “everything else being equal”, plays a central role.

In temporal reasoning we can find many notions of this second kind. In
Proietti and Sandu (2008), we investigated possible solutions to the temporal
version of Fitch’s paradox, i.e. the argument against the principle of discovery, by

1See van Benthem et al. (2009) pp.98-101.
2This work re-elaborates and extends the seminal approach of G. H. von Wright in von Wright

(1963).
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employing an epistemic operator K defined as a ceteris paribus one. The satis-
faction conditions for this operator were inspired and closely related to those
of ceteris paribus preference operators. The central idea in Proietti and Sandu
(2008) can be applied in modeling other important modal notions, e.g. modal-
ities involved in the future contingents problem or in counterfactual conditionals.

In this paper, I will focus on the first topic and show how ceteris paribus tem-
poral logic can represent an important alternative approach, w.r.t. mainstream
ones, for solving this problem and the issues related to temporal reasoning
with an open future. What is important is that, unlike many other philosophi-
cal solutions, we can provide an axiomatization for our ceteris paribus-temporal
approach.

Nevertheless, I will also show that the language of simple propositional
temporal logic is not expressive enough to deal with some issues presented
by the future contingents problem and I will then recur to a more powerful
modal language and semantics with satisfaction operators in order to settle this
problem.

2 Discriminating among “similar” worlds and his-
tories

The central idea of a modal logic for ceteris paribus preference is to introduce
new modalities [Γ] and 〈Γ〉, where Γ is some set of “basic formulas” of the
language. The accessibility relation by which these modalities are defined
is modal equivalence, between two points, on the set Γ. In other words, this
condition tells that, when evaluating a formula [Γ]φ or 〈Γ〉φ at a point w,
we should restrict our attention only to points being equivalent with w on a
particular set of conditions dictated by the formulas in Γ.

The idea of considering sets of conditions discriminating with different
sharpness among alternative states lies implicitly also in many other areas of
reasoning where modalities may be applied. Consider for example the case
of counterfactual conditionals such as “If elephants had wings they couldn’t
fly anyway”. In the usual Lewis-Stalnaker semantics (LSS), the truth of such
a conditional with a false antecedent is evaluated by considering the “most
similar worlds” where the antecedent holds. In LSS, similarity is a previously
given metric relation between worlds. Considering equivalence between points
w.r.t. a set of formulas represents an alternative way to account for similarity
between worlds. Moreover, two different sets Γ and ∆ define similarity under
two different respects that we may want to take into account. Thus, the kind of
modalities introduced in van Benthem et al. (2009) has a potential advantage,
over LSS, of considering not only one fixed similarity relation, but a large
(potentially infinite) set.

In the next sections I will show how the very same intuition lies hidden
behind a well known solution, due to Ockham, of the problem of future con-
tingents.
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2.1 The future contingents problem

The discussion about the future contingents problem dates back to Aristotle
and Diodorus Chronus and has been a widely debated topic during the whole
history of western philosophy. This was due to the fact that this problem
is formulated as an argument whose conclusion consists in the negation of
fortuitous events and, even more important, of free-will, as one can gather
from the most famous presentation of it by Aristotle:

In the case of that which is or which has taken place, propositions, whether
positive or negative, must be true or false [. . . ]
When the subject, however, is individual, and that which is predicated of
it relates to the future, the case is altered. For if all propositions whether
positive or negative are either true or false, then any given predicate must
either belong to the subject or not [. . . ]
Now if this be so, nothing is or takes place fortuitously, either in the present
or in the future, and there are no real alternatives; everything takes place
of necessity and is fixed. ( see Aristotle (1941) )

As the reader should have noticed, the absence of fortuitous events is a con-
sequence, according to Aristotle, of the fact that statements concerning future
events become, if true, necessary. Modal notions such as necessity and possibility
were employed more explicitly by Diodorus in his famous Master Argument.3

Medieval logicians called necessity per accidens the specific modal notion oc-
curring in this context. Indeed, we are face to a particular temporal kind of
necessity: the one that can be ascribed to past events since they are considered
as immutable.

Nowadays, the ought-to-be diodorean argument is often presented step by
step in a way that makes explicit a specific assumption on necessity per accidens,
that is the Principle of the Necessity of the Past (PNP), as well as other fundamental
assumptions in the argument, i.e. the Principle of Necessity Transfer (PNT) and
an assumption on Temporal Dependence (TD). The argument runs as follows.

(1) If φ is the case at time T, then is necessary after T that it was the case that φ.
(PNP)

(2) If it is necessary that φ and φ⇒ ψ,4 then it is necessary that ψ. (PNT)

(3) It is true at t1 that Peter will do X at t3. (premise)

(4) It is necessary at t2 (with t1 < t2 < t3) that it was the case (at t1) that Peter
will do X at t3. (by (1) and (3))

(5) It was the case (at t1) that Peter will do X at t3. ⇒ Peter will do X at t3 (TD)

(6) It is necessary at t2 that Peter will do X at t3. (by (4),(5) and (PNT))

3This last was actually an argument against free-will and indeterminism. The premises of this
argument, according to the report of Epictetus, were:

(P1) Every true proposition concerning the past is necessary.

(P1) The impossible does not follow from the possible.

and the conclusion was

(C) Possible is only what is or will be the case.

4Here⇒ stands for the strict conditional.
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(7) Peter can’t avoid at t2 to do X at t3 (by (6) and the implication from
necessity to unavoidability)

(8) Peter is not free at t2 not to do X at t3 (by (7) and the implication from
unavoidability to absence of freedom)

Mainstream logico-philosophical solutions of this problem deny that all
future-tensed statements about a future moment in time might have a definite
truth value before this moment. In other words, they do not consider premises
like (3), or others of the same form, as admissible.5 However, there are many
reasons of dissatisfaction with those approaches (two of them are mentioned
in footnote 5) and, by this reason, a modal solution in a bivalent framework is
also desirable.

2.2 The Ockham-Prior solution

William of Ockham brought forward the principal alternative solution6, that
consists in bringing into question the general applicability of (PNP) to premises
like (3). Indeed, according to Ockham, the problem lies in the step from (3) to
(4), which is made possible by the overly general formulation of the Principle
of Necessity of the Past given with (1).

The crucial consideration made by Ockham is that, even if at a certain time,
say t2, it is true that φ = “it was the case at t1 that Peter will do X at t3”,
with t1 < t2 < t3, φ should by no means be also necessary per accidens at t2,
and this because it concerns a future (w.r.t. t2) point in time t3. Thus, at t2, φ
is not purely about the past or, following the terminology introduced by M.
Adams Adams (1967), does not concern a hard past fact7. Ockham’s solution
was firstly investigated with formal methods by Prior (see Prior (1967) chap.
7) in a system of temporal logic with an additional operator � representing
necessity per accidens.

Given a set Φ = {p, q, r, . . . } of propositional letters, we define the language
L recursively as follows:

L = Φ | ⊥ | ¬φ | φ ∧ ψ | Fφ | Pφ | �φ

We define also G as ¬F¬, H as ¬P¬ and ^ (possibility per accidens) as ¬�¬.
Since the past and present were considered by Ockham as immutable or fixed,

whereas the future is open, it was natural for Prior to interpret this language in

5This line of thought gathers at least two different logical approaches, such as many-valued logics
on the one hand and gappy semantics, including J. MacFarlane’s postsemantics (see MacFarlane
(2003) and MacFarlane (2007)), on the other hand. However, this very natural move of rejecting truth
ante rem comes with many disadvantages. For example, a well-known problem with many-valued
logics is that one should assign counterintuitive truth-values to some future-tensed statements, e.g.
some future-tensed tautologies are not evaluated with truth-value 1. On the other side, a major
inconvenient of gappy semantics (like supervaluationist approaches and their refinements), lies in
the fact that no clear notion is available of what should be a logical calculus or a semantic notion of
logical consequence for them. See Varzi (2007) for an exhaustive discussion on this point.

6There is actually a third possible line of answering the argument, that would consist in blocking
the steps from (6) to (7), and then (8), i.e. the jump from necessity to the absence of freedom. This
move is based on a conceptual distinction among logical determinism (based on necessity) and
causal determinism (based on the impossibility of acting otherwise). An example of this answer to
the diodorean argument was, in my view, given by Cicero in De Fato.

7Statements like the one in the example are instead called soft past facts.
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tree-like frames. Frames of this kind are couples F = (T , <), where T is a set
with elements m1,m2, . . . , intuitively moments, and < is a strict ordering relation
on T (i.e. transitive, asymmetric and irreflexive). F has a tree-like form when it
fulfills the following condition8:

∀m1∀m2∀m3((m1 < m3 ∧m2 < m3)→ (m1 < m2 ∨m2 < m1 ∨m1 = m2))

Let us define a history as a maximal chain in T for the relation <. The set of the
histories h1, h2, . . . in T will beH(T ). Given a moment m, Hm stands for the set
of the histories containing m.

A modelM based on a frameF is a coupleM = (F ,V) where V is a function
V : Φ −→ P(T ×H(T )) satisfying the following dependence condition:

(m, h) ∈ V(p)⇒ ∀h′ ∈ Hm(m, h′) ∈ V(p)

This condition means that every atomic sentence p, which we can suppose to
represent an immediate or purely present fact, should be evaluated only relative
to a moment m and not to a particular history. Nevertheless, satisfaction in the
general case is defined with respect to a couple (m, h) of a moment and a history
in a recursive way:

M, (m, h) |= p iff (m, h) ∈ V(p)
M, (m, h) |= ¬φ iff M, (m, h) 6|= φ

M, (m, h) |= φ ∧ ψ iff M, (m, h) |= φ andM, (m, h) |= ψ
M, (m, h) |= φ ∨ ψ iff M, (m, h) |= φ orM, (m, h) |= ψ
M, (m, h) |= Pφ iff for some m′ < m,M, (m′, h) |= φ
M, (m, h) |= Fφ iff for some m′ > m,M, (m′, h) |= φ
M, (m, h) |= �φ iff for all h′, (h′ ∈ Hm ⇒M, (m, h′) |= φ)

The recursive clause for � is easy to understand. If we look to a specific m as
a node where many future courses of events (histories) branch, then we can
say that a particular φ is necessary per accidens (or determined), at a particular
moment m, only if φ is true at m relative to every possible future course of
events, i.e. it is not something that depends on what is the future history.

In this language, the general version of (PNP) occurring in the diodorean
argument can be easily rendered as the schema:

(PNP) Pφ→ �Pφ

Here, formulas representing hard past facts are typically those of the form
Pφ, where φ does not contains any future-tense operator like F or G, whereas
formulas such as PFφ or PGφmay sometimes represent soft past facts9 In Prior’s
semantics it is a straightforward task to falsify (PNP) in the case of these last
formulas, as it was requested by Ockham. This is showed in the model of
Figure 1(a), where (m, h1) |= PFp but (m, h1) 6|= �PFp.

8Another natural condition, but which doesn’t play any role in Prior’s construction, is that every
two points in F should have a common root:

∀m1∀m2∃m0(m0 ≤ m1 ∨m0 ≤ m2)

9An exact distinction between formulas representing hard past and soft past facts cannot be
traced in this context, due to the limited expressivity of the language.
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Figure 1: Ockhamist models

Despite all that, a controversial point about Prior’s interpretation of Ockham
is the absence, in tree-like models, of the actual future: many future histories are
possible at a moment m, but no one of them is really the future history.10 Many
criticisms were addressed against this view, claiming that the actual future plays
indeed an important role in Ockham’s system of thought (at least because God
knows it!). Observations of this kind, as well as other motivations, independent
from Ockham’s exegesis, motivated the search of so-called actualist solutions to
the problem of future contingents11. These solutions are often based on tree-like
models12.

According to my view, in order to understand the essence of necessity per
accidens and similar modalities, we should move from a slightly different per-
spective, making a kind of gestalt switch, that I will illustrate in the next section.

10Indeed, according to Prior, an evaluation w.r.t. a particular history is only prima facie.
11D. Lewis formulated many strong arguments for the indispensability of referring to the actual

future in (Lewis (1986) pp. 203-209). Other arguments are given in Freddoso (1983).
12See for example Barcellan and Zanardo (1999), or Roy (2004) for an overview.
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2.3 Multi-linear frames

It is important, for the points I want to stress, to notice that the tree-like structure
of models is not essential for the ockhamist solution13. Indeed, an equivalent
alternative way to represent the same tree in Figure 1(a) is to display it in a
multi-linear frame as it is done in Figure 1(b).

Models of this kind are based on frames F = (T , <), where < is a strict
partial order (SPO) with no branching on the right and no branching on the left (but
it is not a total one). The set Φ is evaluated, as before, on subsets of T ×H(T)
and the satisfaction clauses for boolean and temporal operators are the same.
The main difference is that we can let fall the dependence condition, and have
different histories containing the same moment m but diverging at m or even at
moments prior to it.

If we let fall the dependence condition, then the operator � should be defined
in an alternative way. Indeed, we need to consider as the same all histories
sharing the same initial segment up to a certain m. This can be done via the
following notion of equivalence between histories.

Definition 2.1 (Equivalence up to m). Two histories h and h′ are equivalent up
to m, h ∼m h′, if and only if for all m′ ≤ m and for all p ∈ Φwe have (m′, h) ∈ V(p)
iff (m′, h′) ∈ V(p)

We can then give the following satisfaction clause for �.

M, (m, h) |= �φ iff for all h′, (h′ ∼m h⇒M, (m, h′) |= φ)

and this has the same effect of falsifying (PNP) (see Figure 1(b)).
Multi-linear displaying is not just an alternative equivalent way to represent

a priorean tree. Indeed, looking things from the multi-linear perspective, we
can notice that � (resp. ^) is only one among many necessity (resp. possibility)
operators that can be defined via different notions of equivalence between
histories. We often make use of present-tensed notions of possibility which
do not exclude histories diverging in the past. We can see it in the following
example:

• Maybe someone entered in this caveau last night, but everything has been
left untouched

where the “maybe” expresses a present alternative with a different past history,
i.e. where someone entered the caveau (supposed that actually no one did).14

We can define modal operators like this one just by taking a different equiva-
lence relation: in this case one that does not discriminate between histories in
which someone entered the caveau and histories in which no one did15.

13This point was made also by R. Thomason and by A. J. Freddoso (Freddoso (1983)), who firstly
proposed a linear solution of the kind that I am going to illustrate.

14This particular sentence could perhaps be paraphrased via an equivalent formula in Prior’s
language, but this is not so important: examples of this kind can be multiplied and it is unlikely to
be the case that using the necessity per accidens operator we can capture all of them.

15More close to our topic, the debate on future contingents among medieval logicians is another
example of the utility of discriminating among histories in many different ways. Contrary to
Ockham, for whom the present is fixed, like the hard past, Duns Scotus’ system admitted many
alternative possible presents. We can interpret this difference via two alternative equivalence
relations between histories: Ockham’s equivalence relation should include the present moment in
time, while Scotus’ one should not.
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The purpose of the next section is to introduce a logic for dealing with all
these modalities at once. Achieving this general goal will also provide us with a
logical framework for an ockhamist solution of the future contingents problem.
This is even more important due to the fact that, as I mentioned before (see
p. 4 footnote 5), a major trouble of mainstream open-future approaches to this
problem, is that they lack an underlying calculus. Indeed, also in his tree-like
ockhamist semantics in (Prior (1967) chap. 7), Prior gives only some of the valid
schemes governing the necessity per accidens operator.

3 Ceteris paribus temporal language and logic.

Let us build a multi-modal language LCPT , by replacing � and � with new
modalities [Γ] (a necessity operator) and 〈Γ〉 (a possibility operator). The new
language is defined as follows:

LCPT ::= Φ | ¬φ | φ ∧ ψ | Fφ | Pφ | 〈Γ〉φ

where Γ is any (possibly infinite) set of temporal formulas, let us call this
fragment LT , i.e. formulas built only by using boolean constructions and
temporal operators such as P and F (or their duals H and G). We also define, in
the usual way, [Γ] as ¬〈Γ〉¬.

In order to have a more general approach to temporal semantics, we can
abstract from moments and histories and consider, more generally, the class
CCPT of frames of kind F = (W,RF,RP), where W is any set of points, RF and
RP are strict partial orders and RP is the converse relation of RF

16. Satisfaction is
defined in the usual way for boolean and temporal constructions.

As we hinted before, the satisfaction clauses for [Γ] and 〈Γ〉will be based on
modal equivalence ≡Γ between two points.

Definition 3.1 (≡Γ). w ≡Γ v if and only if for all φ ∈ Γ

w |= φ iff v |= φ

Definition 3.2 (Models). A model M is a tuple (W,RF,RP, {≡Γ}Γ∈LT ,V), where
(W,RF,RP) belongs to CCPT, V is a valuation and ≡Γ is as in 3.1.

Satisfaction is defined in a natural way for the new necessity operators

M,w |= [Γ]φ iff for all v, (w ≡Γ v⇒M, v |= φ)

and the corresponding possibility operator 〈Γ〉will have the following clause.

M,w |= 〈Γ〉φ iff for some v, (w ≡Γ v andM, v |= φ)

A sound and complete axiomatization is given in the Appendix.
Now the question is how to apply the ockhamist multi-linear solution in

this framework. In order to do that, we should find a Γ such that ≡Γ mimics the
notion of equivalence up to a certain moment. Let us consider the following
fragment O (for Ockham) of LCPT

O = Φ | ⊥ | ¬φ | φ ∧ ψ | Pφ
16We will maintain the symbol < as a shorthand for RF (and > for RP) in cases where this doesn’t

create any problem.
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Indeed,≡O is a relation of equivalence up to the present, since it takes into account
only present and past-tensed formulas, which is analogous to the relations of
type∼m introduced in the preceding section. It is then very natural, on this basis,
to interpret the operator [O] as a necessity per accidens operator. Nevertheless,
this is exact only under some conditions. Indeed, by a closer examination,
we can observe that the relation ∼m induces a partial isomorphism between
the points of two different histories. But modal equivalence cannot guarantee
isomorphism: at best it can impose, under some specific conditions, bisimilarity.
Let us introduce some definitions and results in order to explain better this
limitation and its consequences.

Definition 3.3 (RP-bisimulation). Consider two models M = (W,RF,RP, {≡Γ
}Γ∈LT ,V) andM′ = (W′,R′F,R

′

P, {≡Γ}Γ∈LT ,V′). A non-empty relation Z ⊆W ×W′

is a RP-bisimulation betweenM etM′ iff the following conditions are satisfied :

(i) If wZw′ then w ∈ V(p) iff w′ ∈ V(p).

(ii) If wZw′ and wRPv then for some v′ inM′, vZv′ and w′R′Pv′ (forth condition).

(iii) If wZw′ and w′R′Pv′ then for some v inM, vZv′ and wRPv (back condition).

Two points w and w′ are RP-bisimilar, we write w ≈P w′, if there is an
RP-bisimulation Z such that wZw′. It is not difficult to show, by standard
techniques, that if w ≈P w′, then w ≡O w′. This can be proved by the same
proceeding employed in Blackburn et al. (2001) sect. 2.2, theorem 2.20. The
converse holds under the condition of the Hennessy-Milner theorem (Blackburn
et al. (2001) p. 69). We say that a modelM is image-finite w.r.t. to a relation R
if and only if for each state w the set {v | wRv} is finite. We can then prove the
following result:

Theorem 1 (Corollary of Hennessy-Milner theorem). LetM andM′ be two models
that are image-finite w.r.t. RP. Then, for every w ∈ W and w′ ∈ W′, w ≈P w′ iff
w ≡O w′.

Proof. The difficult direction, from right to left, can be proved by showing that
≡O is indeed an RP-bisimulation. The proceeding is the same employed in
Blackburn et al. (2001) (p. 69, thm. 2.24), but restricted to formulas in O. �

A function f from M to M′ satisfying (i)-(iii) is a special case of a RP-
bisimulation, which should be called, using the standard terminology, a RP-
bounded morphism. It is easy to observe that the relation ∼m obtains between
two histories h and h′ if and only if there is a function fm between their points
such that (m, h′) = fm(m, h) and fm is a RP-bounded morphism which is also
a bijection between the predecessors of (m, h) and (m, h′). Actually, we can
employ the Hennessy-Milner result to give a sufficient condition for ≡O to force
an RP-bounded morphism fulfilling such condition. In the following result
RP(w) = {v ∈W | wRPv}.

Theorem 2 (Conditions for similarity). Let M and M′ be two models based on
CCPT-frames. If RP is conversely well-founded, then, for every w ∈ W and w′ ∈ W′,
w ≡O w′ if and only if there is a function f such that w′ = f (w), it is a RP-bounded
morphism and it is a bijection among RP(w) and RP(w′).
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Proof. The direction from right to left is immediate. For the opposite direction,
suppose that w ≡O w′. We want to show that ≡O determines the function
f fulfilling the above conditions. We start by defining f (w) = w′ and with
the remark that, given the conditions on frames and the relation RP, RP(w) and
RP(w′) are indeed two finite sets strictly and totally ordered by RP. We can show
that RP(w) and RP(w′) have the same cardinality. Suppose that w has exactly n
RP-predecessors. In the class of frames we are considering, this fact is captured
by the formula ψ :=

∧
0≤ j≤n P j

> ∧ PnH⊥. We have that w |= ψ and, since ψ ∈ O
and w ≡O w′, then w′ |= ψ and thus w′ has n predecessors. Moreover, both w
and w′ should have an immediate predecessor, say v and v′, and it is easy to
show that v ≡O v′. Suppose it was not the case; then there would be a ψ1 ∈ O
such that v |= ψ1 and v′ 6|= ψ1. Moreover, for φ := ψ1 ∧

∧
0≤ j≤n−1 P j

> ∧ Pn−1H⊥,
we have that v |= φ. No one among v′ and its predecessors could satisfy this
formula. Thus, w |= Pφ and w′ 6|= Pφ. But this contradicts w ≡O w′, since
Pφ ∈ O. Thus, v ≡O v′ and we can take f (v) = v′. We can iterate this process
by considering succively all the couples of immediate predecessors. It is not
difficult to show that the correspondence thus established fulfills the required
conditions. �

This result has a precise meaning for our topic: if time is discrete and has
a beginning, then modal equivalence guarantees the desired conditions; oth-
erwise there might be counterexamples: one of them is illustrated in figure 2.
This is a problem if we suppose time as being a dense order and/or with no
beginning.

. . . −5 −4 −3 −2 −1 0 . . .

. . . oo •p oo •p oo • oo • oo •p oo •p oo . . . h1

. . . oo • oo •p oo • oo •p oo • oo •p oo . . . h2

Figure 2: Two RP-bisimilar non isomorphic histories

It seems then that we cannot fully reproduce, via our language, the no-
tion of equivalence up to m which is required to define necessity per accidens.
Isomorphism is indeed a very strong condition which presumably cannot be
reproduced by our basic linguistic means17.

Nevertheless, we can do better than that by using a much expressive lan-
guage and semantics, as we did in Proietti and Sandu (2008). Before doing
that, we will illustrate another important motivation for proceeding this way.
A reason for enriching the expressive power of our language is provided by
an important puzzle in the discussion about future contingents: the so-called
argument de praesenti ad praeteritum, which deserves an accurate presentation
and discussion.

17Indeed, it is known that even in the richer language of first order logic elementary equivalence
is not enough to guarantee isomorphism
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4 The argument de praesenti ad praeteritum

The basic intuition according to which a sentence like “there will be a sea-
battle tomorrow”, uttered now by Jake, is neither true nor false seems to give
an overwhelming argument against bivalence. According to J. MacFarlane
(MacFarlane (2003)), this so-called indeterminacy intuition is counterbalanced
by another kind of consideration, amounting to a determinacy intuition, that he
introduces by the following example.

But now what about someone who is assessing Jake’s utterance
from some point in the future ? Sally is hanging onto the mast,
deafened by the roar of the cannon. She turns to Jake and says
‘your assertion yesterday turned out to be true’. Sally’s reasoning
seems to be unimpeachable :

Jake asserted yesterday that there would be a sea-battle today.
There is a sea-battle today.
So Jake’s assertion was true.

When we take this retrospective view, we are driven to assign a
determinate truth-value to Jake’s utterance. This is the determinacy
intuition. ( MacFarlane (2003) p. 322)

Arguments of this form are also called de praesenti ad praeteritum, i.e. rea-
sonings from present to past. MacFarlane’s principal effort is to reconcile these
two opposed intuitions in a special semantic framework with truth-value gaps,
that he calls post-semantics. His most important move consists in discriminating
not only among different contexts of utterance, but also among different contexts
of assessment: a particular sentence, like the one we are considering, can be
nor true nor false, if assessed when Jake is uttering it. But it can also be true,
if assessed in the context described in the quotation above, or either false, if
assessed the day after when no sea-battle happened.

One of the motivations for this move is to account for determinacy by
avoiding at the same time actualist solutions about truth. The main question
is now if truth is always to be considered as a property of utterances in a given
context. In the more recent MacFarlane (2007), MacFarlane admits that this is
not always the case, indeed:

. . . in ordinary speech, truth and falsity are almost invariably
predicated of propositions, as in the following:

(30) What he said is false

(31) Nothing George asserted in his talk is true

(32) I know you believe he’s dishonest, but that’s false

(33) It’s true that it has been a hot summer

(34) That was a false claim

Aside from a few, relatively isolated examples, like

(35) A truer sentence was never spoken
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people do not apply the predicate “true” and “false” to sentences or
utterances, except in areas of philosophical incursion. It surprised
me a bit when I realized this, because it is very common in philosoph-
ical prose to predicate “true” and “false” of sentences and utterances.
These uses, however, must be understood as technical. (MacFarlane
(2007) p. 16)

Propositions, in the sense illustrated by MacFarlane, have a fixed truth-value
that is not context dependent. In our case, context independence means simply
atemporality. In standard propositional temporal languages and semantics the
word ‘proposition’ has not this meaning: a propositional letter p is “sometimes
true, sometimes false”. Nevertheless, a typical mean for context disambigua-
tion consists in using some rigidifying operators, like satisfaction operators in
hybrid logics. This is the main motivation for introducing, as it is done in the
next section, a language with rigidifying operators and a model-theoretic inter-
pretation for it. This step will be useful also for answering the other problems
of expressivity hinted before.

5 The language LCPT@ and its semantics

The extended language LCPT@ is based, in addition to a set of propositional
variables Φ, on another set T ∗, disjoint with respect to Φ. We will call it the set
of temporal indexes. In addition we have, for every index m∗, a new satisfaction
operator @m∗ . The language is built as follows:

LCPT@ ::= m∗ | p | ⊥ | ¬φ | φ ∧ ψ | Pφ | Fφ | @m∗φ | 〈Γ〉φ

Here Γ is, as before, any (possibly infinite) set of temporal formulas, including
the constructions with temporal indexes and satisfaction operators.

Our language is always interpreted on strictly and partially ordered models
of typeM = (W,RF,RP, {≡Γ}Γ∈LT ,V), but with a further specification concerning
V. In standard hybrid logics, where indexes behave like names, we should
restrict the interpretation of every index i to a single point: V(i) is a singleton.
Here, every index should instead denote a single point in every chain, i.e. in
every history.

Consider the relations RF, RP and their reflexive and transitive closures R∗F
and R∗P. The relation R∗F ∪ R∗P, is an equivalence relation which determines a
partition of W in many equivalence classes C1,C2, . . . . For every point w, we
will denote by Cw the equivalence class of w. The valuation V should assign a
single point in every class Cw to every index m∗. This point will be indicated as
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dCw (m), i.e. the denotation of m in Cw. We can then give the following definition:

M,w |= p iff w ∈ V(p)
M,w |= m iff w ∈ V(m)

M,w |= ¬φ iff M,w 6|= φ
M,w |= φ ∧ ψ iff M,w |= φ and M,w |= ψ

M,w |= Fφ iff ∃t′(tRFt′ and M, t′ |= φ)
M,w |= Pφ iff ∃t′(tRPt′ and M, t′ |= φ)

M,w |= @mφ iff M, dCw (m) |= φ
M,w |= [Γ]φ iff for all v, (w ≡Γ v⇒M, v |= φ)

Axioms of hybrid logic are still sound for this revised semantics (see Appendix).
We suspect that completeness should be provable by adding these axioms to
those of ceteris paribus logics, but this result is still to be proved.

What is the benefit of expanding the language in this way? First of all,
we can fulfill MacFarlane’s requirement of referring to atemporal contents (or
propositions) in a very simple way: given any formula φ, @mφ is the temporal
disambiguation, referring to a particular moment, of φ. Indeed, atemporality
of propositions is expressed by the following validity, in our models, of the
following schema:

@mφ↔ H@mφ ∧@mφ ∧ G@mφ

Nevertheless, it is no difficult to verify that we can avoid the modal collapse
@mφ↔ [Γ]@mφ in the same way we avoided the collapse Pφ↔ �Pφ.

Indeed, suppose that we have a strict ordering <T on the set of temporal
indexes. We can then define new necessity per accidens operators. Given any
temporal index m, let us define

Om = {±@m∗p | p ∈ Φ and m∗ ≤ Tm} ∪ {±m′ | m′ ∈ T ∗}

We can then define an equivalence relation ≡Om in the same way we did in
section 6. Intuitively, two points are Om-equivalent if they are named by the
same temporal index, say m, and they satisfy the same atomic propositions in
points named by indexes lower or equal than m.

In cases where we can attribute a name to every single point this condition
is equivalent with isomorphism: for example in the case of models T ×H(T ),
where every moment is named.

Let us now consider MacFarlane’s account of the sea-battle example via the
model in Figure 3, where p stands for “there is a sea battle”, w is the moment in
time, named by m, when Jake made the assertion and w′ is the moment, named
by m′, when Sally considers that what Jake’s asserted yesterday not only is but
also was true. Sally’s reasoning here is unimpeachable because of the logical
equivalence of @m′p with P@m′p or also with @m@m′p. Nevertheless, there
is still the possibility of accounting for MacFarlane’s multiple contextuality by
differentiating among simple truth and determination (or necessity per accidens):
this last represents the notion of super-truth that a post-semanticist takes to
be the genuine one. The difference among simple truth and necessity of a
propositional content @m′p at two different points in time is represented by the
different truth value, at points in the model of Figure 3 of (1) and (2). Indeed (1)
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Figure 3:

is satisfied at w, where the content of Jake’s assertion is simply true, whereas (2)
is satisfied at w′, meaning that the same propositional content is now necessary
or super-true. (4) is instead satisfied at v′, named by m, i.e the situation where
@m′p is determinately not true.

w |= @m′p ∧ ¬[Om]@m′p (1)
w′ |= @m′p ∧ [Om]@m′p (2)
v |= ¬@m′p ∧ 〈Om〉@m′p (3)

v′′ |= ¬@m′p ∧ ¬〈Om〉@m′p (4)

The operators [Om] can thus serve, in this context, to reproduce the difference
among truth and super-truth and account for the determinacy and the indeter-
minacy intuitions.

As we said before, the relation ≡Om forces the semantic condition required
by∼m in models where every point is named and in every history the points are
named in the same order. This last condition can be fulfilled, in hybrid logics,
by axioms like m→ Pm′ or m→ Fm′.

6 Conclusions

The aim of this paper was to show how the ceteris paribus modal approach
can be useful also in temporal puzzles like the future contingents problem. Not
only it can account for the ockhamist solution, but it can also represent a basis
for a modal translation of supervaluationist and postsemantical approaches to
temporal reasoning. The main philosophical perplexity against the semantics
I presented and, more generally, against the actualist semantics is that truth
of future statements is, since bivalent, determined ante rem. This seems to be,
after all, yet a bad point for free-will. But it is important for me to point out
again that the truth predicate may be employed in different senses in natural
reasoning and that identifying the “genuine” notion of truth with that of super-
truth or determination could be problematic in many contexts: one of them is



252 Ceteris paribus modalities and the future contingents problem

the argument de praesenti ad praeteritum, but many other convincing arguments
in this sense were given in Lewis (1986) (see pp. 192-209). For this reason I find
important to distinguish among simple truth and other notions and I think that
modal logic can still be useful in this sense.

Appendix: ΛCPT

Ceteris paribus temporal logic ΛCPT is built over the following schemata:

(P) All tautologies of propositional calculus
(KF) G(p→ q)→ (Gp→ Gq)
(KP) H(p→ q)→ (Hp→ Hq)

(Conv) (p→ HFp) ∧ (p→ GPp)
(4F) Gp→ GGp
(4P) Hp→ HHp
(3F) Fp ∧ Fq→ F(p ∧ Fq) ∨ F(p ∧ q) ∨ F(Fp ∧ q)
(3P) Pp ∧ Pq→ P(p ∧ Pq) ∨ P(p ∧ q) ∨ P(Pp ∧ q)

(K[Γ]) [Γ](p→ q)→ ([Γ]p→ [Γ]q)
(T[Γ]) [Γ]p→ p
(4[Γ]) [Γ]p→ [Γ][Γ]p
(5[Γ]) 〈Γ〉p→ [Γ]〈Γ〉p
(A1) 〈Γ〉φ→ φ

(A2) 〈Γ〉¬φ→ ¬φ

(A3) 〈Γ′〉φ→ 〈Γ〉φ

In axioms (A1)-(A3) φ ∈ Γ and Γ ⊆ Γ′. Inference rules are the following:

(MP) If ` φ→ ψ and ` φ then ` ψ
(G-gen) If ` φ then ` Gφ
(H-gen) If ` φ then ` Hφ

([Γ]-gen) If ` φ then ` [Γ]φ
(Subst) If ` φ then ` φσ

It is possible to prove, by the same techniques used in van Benthem et al.
(2009), the following completeness result.

Theorem 3 (Completeness for ΛCPT). For any set of formulas ∆ and any formula φ

∆ |=CCPT φ if and only if ∆ `ΛCPT φ

Proof. (P)-(3P) are usual axioms for temporal logics with transitive non branch-
ing time. Axioms (K[Γ])-(5[Γ]) are the S5 axioms for [Γ]; they are sound since
≡Γ is an equivalence relation. Soundness of axioms (A1)-(A3) is easy to prove
(see also van Benthem et al. (2009) pp. 104-105). The completeness direction
is a more difficult task that works, as for preference logic, by bulldozing the
canonical model, as I did in Proietti (2008). �
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Appendix: ΛCPT@

It is not a difficult task to verify, by usual methods, that axioms and rules
employed in hybrid logics (see Blackburn et al. (2001) sect 7.3 or Blackburn and
ten Cate (2006)) are still sound in our semantics. Another advantage of hybrid
logics, which is preserved in this framework, is the possibility of defining frame
properties, like asymmetry or irreflexivity, that are not definable with a simple
modal propositional language. This means also that we need not to transform
the canonical model via bulldozing in order to prove completeness. We have a
set of K-axioms:

(P) All propositional tautologies
(KF) G(p→ q)→ (Gp→ Gq)
(KP) H(p→ q)→ (Hp→ Hq)

(K@m ) @m(p→ q)→ (@mp→ @mq)
(Conv) @mFm′ ↔ @m′Pm

A set of axioms specific for operators @m

(Selfdual) @mp↔ ¬@m¬p
(Ref) @mm

(Agree) @m@m′p↔ @m′p
(Intro) m→ (p↔ @mp)

(BackF) F@mp→ @mp
(BackP) P@mp→ @mp

a set of temporal axioms

(irreflexivity of RF) m→ ¬Fm
(irreflexivity of RP) m→ ¬Pm

(transitivity of RF) FFm→ Fm
(transitivity of RP) PPm→ Pm

(Non branching) @mFm′ ∨@mm′ ∨@m′Fm

and the axioms for ceteris paribus modalities, with the same restrictions of ΛCPT
for axioms (A1)-(A3).

(K[Γ]) [Γ](p→ q)→ ([Γ]p→ [Γ]q)
(T[Γ]) [Γ]p→ p
(4[Γ]) [Γ]p→ [Γ][Γ]p
(5[Γ]) 〈Γ〉p→ [Γ]〈Γ〉p
(A1) 〈Γ〉φ→ φ

(A2) 〈Γ〉¬φ→ ¬φ

(A3) 〈Γ′〉φ→ 〈Γ〉φ
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With the following inference rules:

(MP) If ` φ→ ψ and ` φ then ` ψ
(@m-gen) If ` φ then ` @mψ

(G-gen) If ` φ then ` Gψ
(H-gen) If ` φ then ` Hψ
(Name) If ` @mφ and m hasn’t any occurrence in φ, then ` ψ

(BGF) If ` @mFm′ → @m′φ and m′ , m hasn’t any occurrence
in φ, then ` @mGφ

(BGP) If ` @mPm′ → @m′φ and m′ , m hasn’t any occurrence
in φ, then ` @mHφ

(Subst) If ` φ then ` φσ
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