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Abstract
The notion of short sight, introduced by Grossi and Turrini, weakens the unrealistic
assumption in traditional extensive games that every player is able to perceive the
entire game structure. We develop new solution concepts for games with short
sight and propose a new logic language for reasoning in such games. We then
present an axiomatization for this logic. In addition, we show that the logic can
formally characterize the solution concepts in games with short sight.

1 Introduction

The research direction to integrate logic and game theory has received considerable
interest in recent years. Works in this line not only provide logical tools for reasoning
about rationality and decision making, but also import game-theoretic notions into the
realm of logic. Extensive games are those games allowing for sequencing players’ pos-
sible moves, and their choices at every decision point. To characterize the structures
and reason about the solution concepts of extensive games, much work has been done
to provide the logical systems for such games. These logic systems focus on various
perspectives of extensive games: Harrenstein et al. (2003) concentrated on describing
equilibrium concepts and strategic reasoning. Lorini and Moisan (2011) proposed an
epistemic logic to deal with epistemic aspects of extensive games. Van Otterloo et al.
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(2004) introduced a logic reasoning about how information or assumptions about the
preferences of other players can be used by agents in order to realize their own pref-
erences. The work of Parikh (1985) on propositional game logic initiated the study of
game structure using algebraic properties. Van Benthem(2002) used dynamic logic to
describe games as well as strategies. Ramanujam and Simon (2008) studied a logic in
which not only are games structured, but so also are strategies. Bonanno et al. (2003)
worked on the relationship of branching time logic to extensive form games. However,
these logics all work on traditional extensive game models, which explicitly assume
that the entire structure of a game is common knowledge to all players.

The assumption of common knowledge on game structures in traditional extensive
games is sometimes too strong and unrealistic. For instance, in a game like chess, the
actual game space is exponential in the size of the game configuration, and may have a
computation path too long to be effectively handled by most existing computers. So we
often seek sub-optimal solutions by considering only limited information or bounded
steps foreseeable by a player that has relatively small amount of computation resources.
Grossi and Turrini proposed the concept of games with short sight (Grossi and Turrini
2012), in which players can only see part of the game tree. However, there is no work
on the logical reasoning of the strategies and solution concepts in this game model.

Inspired by the previous logics for extensive games, this paper is devoted to the
logical analysis of game-theoretical notions of the solutions concepts in games with
short sight. In (Harrenstein et al. 2003), a logic for strategic reasoning and equilibrium
concepts was developed, which is closest to ours in spirit. Whereas, what we present
here is a new logical system LS for games with short sight. This logic deploy the addi-
tional modalities [^], [(σi)], [σ̊s], etc. to capture several new features such as restricted
sight and limited steps. We also give an axiomatization for the logic. Further, we show
that this logic can be used to characterize some properties of games with short sight.

The structure is as follows: The next section introduces the definition of tradi-
tional extensive games and solution concepts in such games. Then we study the model
of games with short sight and analyze its solution concepts corresponding to that of
general extensive games. After that, we present the logical system LS. Finally, we
concludes the paper with further research issues.

2 Extensive games and the solution concepts

In this section, we introduce finite games in extensive form with perfect information,
and three solution concepts including best response, Nash equilibrium and subgame
perfect equilibrium. First, we recall the definition of extensive games with perfect
information.
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Definition 2.1 (Extensive game (with perfect information)). A finite extensive game
(with perfect information) is a tuple G=(N,V, A, t,Σi,�i), where (V, A) is a tree with
V , a set of nodes or vertices including a root v0, and A ⊆ V2 a set of arcs. N is a
non-empty set of the players, and �i represents preference relation for each player i,
which is a partial order over V . For any two nodes v and v′, if (v, v′) ∈ A, we call
v′ a successor of v, thus A is also regarded as the successor relation. Leaves are the
nodes that have no successors, denoted by Z. t is turn function assigning a member of
N to each non-terminal node. Σi is a non-empty set of strategies. A strategy of player
i is a function σi : {v ∈ V\Z| t(v) = i} → V which assigns a successor of v to each
non-terminal node when it is i’s turn to move.

As usual, σ = (σi)i∈N represents a strategy profile which is a combination of strate-
gies from all players and Σ represents the set of all strategy profiles. For any M ⊆ N,
σ−M denotes the collection of strategies in σ excluding those for players in M. We
define an outcome function O : Σ → Z assigning leaf nodes to strategy profiles, i.e.,
O(σ) is the outcome if the strategy profile σ is followed by all players. O(σ−M) is the
set of outcomes players in M can enforce provided that the other players strictly follow
σ. O(σ′i , σ−i) is the outcome if player i use strategy σ′ while all other players employ
σ.

Preference relation here is different from the conventional ones: In the literature
the notion of preference is assumed to be a linear order over leaves, while in this paper
it is a partial order over all nodes in V . We assume that players may not be able to
precisely determine entire computation paths leading to leave nodes, and allow them
to make estimations or even conjecture a preference between non-terminal nodes. This
assumption also provides technical convenience for discussing games with short sight
later.

Example 1. Consider the Tic-Tac-Toe game shown by Figure 1 (Part of the game tree
is omitted). There are two players: player 1(×) and player 2(◦). The initial state is
v0. v1,v2,v3 are all successors of v0. v10,v11,v12 are the terminal nodes (leaves). The
solid arrows show the moves of player 1 and dotted arrows for player 2. Formally,
N = {1, 2}; V = {v0, v1, v2 · · · }; (v0, v1), (v0, v2),(v0, v3) ∈ A; v10, v11, v12 ∈ Z; t(v4) =

t(v5) = t(v6) = 2. Since player 1 wins the game in v12, loses it in v10, and gains a draw
in v11, it naturally follows that v12 �1 v11 �1 v10 for her. There are different strategies
for each player. For instance, a σ1 such that σ1(v0) = v2, σ1(v5) = v8, etc. And a σ′1
such that σ′1(v0) = v3, etc. And thus there is a strategy profile σ = (σ1, σ2) such that
O(σ) = v11.

Solution concept is a significant notion in game theory. Concerning different as-
pects, there are various solution concepts for extensive games. The following definition
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Figure 1: A Tic-Tac-Toe game
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presents two of them: best response and Nash equilibrium, which are adapted from tra-
ditional notions (Fudenberg and Tirole 1991, Nash 1950). These two solutions ignore
the sequential structure of games.

Definition 2.2 (Best response and Nash equilibrium). A best response for player i of
an extensive game is a strategy profile σ∗ such that O(σ∗i , σ

∗
−i) �i O(σi, σ

∗
−i) for every

strategy σi of player i. A strategy profile σ∗ is a Nash equilibrium of an extensive game
if it is a best response for every player i.

Another solution concepts for extensive games is the one taking the sequential
structure of the game into account, i.e., subgame perfect equilibrium.

Definition 2.3 (Subgame perfect equilibrium). Take a finite extensive game G. A
strategy profile σ∗ is a subgame perfect equilibrium (SPE) if for every player i, node
v for which t(v) = i, it holds that O|v(σ∗i |v, σ

∗
−i|v) �i O|v(σi, σ

∗
−i|v), for every strategy σi

available to i in the subgame G|v of G that follows node v.

3 Games with Short Sight

In this section, we introduce games with short sight proposed by Grossi and Turrini
(2012). In these games, players’ sight is limited in the sense that they are not able
to see the nodes in some branches of the game tree or have no access to some of the
terminal nodes.

3.1 Short Sight

The following definition makes the notion of short sight mathematically precise.

Definition 3.1 (Sight function). Let G = (N,V, A, t,Σi,�i) be an extensive game. A
short sight function for G is a function s : V\Z → 2V |v\∅, associating to each non-
terminal node v a finite subset of all the available nodes at v, and satisfying:

v′ ∈ s(v) implies that v′′ ∈ s(v) for every v′′ C v′ with v′′ ∈ V |v, i.e. players’ sight is
closed under prefixes.

Intuitively, function s associates any choice point with vertices that each player can
see.

Example 2. Consider the game in Example 1, one possible sight at v0 is s(v0) =

{v0, v1, v2, v3, v4, v5}.

Definition 3.2 (Extensive game with short sight). An extensive game with short sight
(Egss) is a tuple S = (G, s) where G is a finite extensive game and s a sight function
for G.
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3.2 Sight filtration and solution concepts of Egss

Each game with short sight yields a family of finite extensive games, one for each
non-terminal node v ∈ V \ Z:

Definition 3.3 (Sight-filtrated extensive game). Let S be an Egss given by (G, s) with
G=(N,V, A, t,Σi,�i). Given any non-terminal node v, a tuple S dv is a finite extensive
game by sight-filtration: S dv= (Ndv,Vdv, Adv, tdv,Σidv),�idv) where

• Ndv= N;

• Vdv= st(v)(v), which is the set of nodes within the sight of t(v) from node v. The
terminal nodes in Vdv are the nodes in Vdv of maximal distance, denoted by Zdv;

• Adv= A ∩ (Vdv)2;

• tdv= Vdv\Zdv→ N so that tdv(v′) = t(v, v′);

• Σidv is the set of strategies for each player available at v and restricted to s(v).
It consists of elements σidv such that σidv(v′) = σi(v, v′) for each v′ ∈ Vdv with
tdv(v′) = i;

• �idv= �i ∩ (Vdv)2.

Accordingly, we define the outcome function Odv: Σdv→ Zdv assigning leaf nodes
of S dv to strategy profiles.

Example 3. For the case of Example 2, the sight-filtrated extensive game S dv0 could
be shown in Figure 2. The set of players remain unchanged; Vdv0= {v0, v1,
v2, v3, v4, v5}, Zdv0= {v4, v5}; (v2, v4) ∈ Adv0 , (v2, v5) ∈ Adv0 ; tdv0 (v) is consistent with t
for any v ∈ Vdv0 ; Σidv0 and �idv0 are all restricted to the states that are within sight s(v0).
E.g., for the strategy profile σ (defined in Example 1), σdv0= (σ1dv0 , σ2dv0 ) such that
Odv0 (σdv0 ) = v5, with σ1dv0 (v0) = v2 and σ2dv0 (v2) = v5.

Corresponding to the solution concepts in extensive games, we define sight-
compatible solutions for games with short sight.

Definition 3.4 (Sight-compatible best response and Nash equilibrium). Let S = (G, s)
be an Egss and S dv be the sight-filtrated extensive game at v. A strategy profile σ∗

is a sight-compatible best response for i if for every nonterminal node v, it holds that
Odv(σ∗i dv, σ

∗
−idv) �idv Odv(σidv, σ

∗
−idv) for any strategy σidv available to i. σ∗ is a sight-

compatible Nash equilibrium(SCNE) of S if it is a sight-compatible best response for
every player i ∈ N.
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Figure 2: Sight-filtrated extensive game S dv0

A sight-compatible best response for player i (Nash equilibrium) in Egss S is con-
sistent with a best response for player i (Nash equilibrium) in each sight-filtrated ex-
tensive game S dv. Here is one aspect worth illustrating: at any point v, current player
i is facing with a game S dv determined by her sight. She attributes to her opponents
the ability to see as much as she can see, supposing they are playing the same game
S dv. Considering the actual process of playing games, this might be a conservative but
realistic way for i to make decisions.

There is another solution for Egss, matching the notion of SPE for extensive games
in Definition 2.3. The main idea lies in the following analysis: Given a Egss S , at each
decision point v, player t(v) is facing a sight-filtrated extensive game S dv. What he can
achieve the best is to find a successor node of v maximizing his own profit within his
current sight, which is the subgame perfect equilibrium of S dv. The players play in
turns, choosing a best successor node at each point, until reaching a terminal node of
S . Thus the crucial task for solving games with short-sighted players is in searching
for the SPE of S dv at each intermediate node v. The definition below is adapted from
(Grossi and Turrini 2012).

Definition 3.5 (Sight-compatible subgame perfect equilibrium). Let S = (G, s) be an
Egss and S dv be the sight-filtrated extensive game at v. A strategy profile σ∗ is a sight-
compatible SPE of S if for every nonterminal node v, there exists a strategy profile σdv
that is a subgame perfect equilibrium of S dv and σt(v)dv(v) = σ∗t(v)(v).
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Intuitively, sight-compatible SPE is the strategy profile that is in accordance with
the SPE of the sight-filtrated game S dv at each decision point v.

The lemma below paves the way for the result in Section 5, indicating that each
sight-filtrated extensive game is a special extensive game with short sight, in which
players can see the whole subtree that follows the current node.

Lemma 1. Let G′=(N′,V ′, t′,Σ′i ,�
′
i)

1 be a sight-filtrated extensive game of S de-
fined as (N,V, t,Σi,�i, s). Then G′ can be seen as a game with short sight
G′s′=(N′,V ′, t′,Σ′i ,�

′
i , s
′) with G′s′du= G′|u for any u ∈ V ′.

4 A logic of extensive games with Short Sight

In this section we present a modal logic LS (Logic of Extensive Games with Short
sight) in three steps. This logic supports reasoning about strategies and solutions in
extensive games with short sight.

4.1 L: The first step

A language for general extensive games is proposed in (Harrenstein et al. 2003), in
which a strategy profile is taken as a modal operator, corresponding to an accessibility
relation connecting a non-terminal node to leaf nodes. This language makes strategic
reasoning simple, since one only needs to consider the outcome of this strategy without
getting confused with all the actions at every choice point. To characterize what players
can see in extensive games with short sight, we extend their language mainly by adding
the modality [^]. Let P be the set of propositional variables, and Σ be the set of strategy
profiles. The language L is given by the following BNF:

ϕ ::= p| ¬ϕ| ϕ0 ∧ ϕ1| 〈≤i〉ϕ| 〈σ̊〉ϕ| 〈σ̊−i〉ϕ| 〈^〉ϕ

where p ∈ P, σ ∈ Σ. As usual, The dual of 〈.〉ϕ is [.]ϕ. We begin with a brief
explanation of the intuition behind the logic.

• The label ≤i denotes player i’s preference relation.

• The label σ̊ stands for the outcomes of strategy profiles. (v, v′) ∈ Rσ̊ iff v′ is the
terminal node reached from v by following σ.

• (v, v′) ∈ Rσ̊−i iff v′ is one of the leaf nodes extending v that player i can enforce
provided that the other players strictly follow their strategies in σ.

1Here we use G′ to denote sight-filtrated extensive game S dv, to avoid the complicated symbol S dv |u.
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• The label ^ is sight function for the current player, and 〈^〉ϕ means “ϕ holds in
some node within the player t(v)’s sight at the present node v.”

Let S = (N,V, A, t,Σi,�i, s) be an Egss. The tuple of (V,R≤i ,Rσ̊,Rσ̊−i ,R^) is defined
as the frame FS for L, where for each player i, strategy profile σ, nodes v, v′, the
accessibility relations are given as follows.

vR≤i v
′ iff v′ �i v

vRσ̊v′ iff v′ = O|v(σ|v)
vRσ̊−i v

′ iff v′ ∈ O|v(σ−i|v)
vR^v′ iff v′ ∈ st(v)(v)

A model M forL is a pair (F, π) where F is a frame forL and π a function assigning
to each proposition p in P a subset of V , i.e., π : P → 2V . The interpretation for L
formulas in model M are defined as follows:

M, v p iff v ∈ π(p).
M, v ¬ϕ iff not M, v ϕ.
M, v ϕ ∧ ψ iff M, v ϕ and M, v ψ.
M, v 〈≤i〉ϕ iff M, u ϕ for some u ∈V with vR≤i u.
M, v 〈σ̊〉ϕ iff M, u ϕ for some u ∈V with vRσ̊u.
M, v 〈σ̊−i〉ϕ iff M, u ϕ for some u ∈V with vRσ̊−i u.
M, v 〈^〉ϕ iff M, u ϕ for some u ∈V with vR^u.

Example 4. To illustrate the language, take S as the game in Example 2. Sup-
pose O(σ) = v11 and O(σ−1, σ

∗
1) = v10. Let M be the model for S in which

π(p) = {v4, v11, v12}. Then we have the following:
• M, v8 〈σ̊−1〉¬p. I.e., p is false at one of the outcomes O(σ−1) (namely v10)

that extends v8 .
• M, v5 〈σ̊〉〈≤1〉p. I.e., p is true at some node (namely, v12) which is preferred

by player 1 to the terminal node O(σ) (namely, v11) that extends v5.
• M, v0 〈^〉〈σ̊〉p. I.e., there is a node v (exactly, v2), that can be seen at v0 and

the terminal node O(σ) (namely, v11) that extends v satisfies p.

The validities of a formula ϕ in models and frames are the same as the standard
definitions (van Benthem 2010, Blackburn et al. 2001).

We now present the valid principles of the logic L. First, we have the following
standard axioms.

(A0) Taut, any classical tautology.
(A1) K axiom for modalities [≤i], [σ̊], [σ̊−i], [^].
Table 1 lists the other valid principles of L. The first column (N) is the name of the

principle. The second column denotes the modalities that each principle is applied to.
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The third column shows the formula schema. The fourth column describes the property
of the corresponding accessibility relation R.

N Modality Schema Property

T
[≤i] [≤i]ϕ→ ϕ

reflexivity
[^] [^]ϕ→ ϕ

4 ≤i] [≤i]ϕ→ [≤i][≤i]ϕ transtivity

D [σ̊] [σ̊]ϕ↔ 〈σ̊〉ϕ determinism

I ([σ̊], [σ̊−i]) [σ̊−i]ϕ→ [σ̊]ϕ inclusiveness

M
[σ̊] [σ̊]([σ̊′]ϕ↔ ϕ)

terminating
[σ̊−i] [σ̊−i]([σ̊

′

−i]ϕ↔ ϕ)

Table 1: Valid principles of L

K is used in all variants of the standard modal logic. T and 4 determine the pref-
erence of players to be reflexive and transitive. The sight of a player is reflexive. D
ensures that a node reachable by a strategy profile σ from a node v is determined. I
says that every outcome of strategy σ is included in the sets of outcomes by letting i
free, and the other players sticking to σ. M guarantees the final outcome vertices to be
terminated.

The inference rules for L are Modus Ponens (MP) and Necessitation (Nec) for
operators σ̊, σ̊−i, ^ and ≤i.

4.2 L(σ̊s, σ̊s
−i): further extension

Now we enrich language L to also describe the outcomes in sight-filtrated extensive
games. We add two modalities into the language L. Intuitively, 〈σ̊s

〉ϕ means “ϕ holds
in some state v′ in S dv, which is the terminal node of S dv that is reachable from the
starting point v when all players adopt the strategy profile σ, i.e., v′ = Odv(σdv).” The
interpretation for 〈σ̊s

−i〉ϕ is similar. To show the reason of introducing these two modal-
ities as new operators, we prove that they are undefinable by L through bisimulation:

Example 5. Consider the following (Figure 3) two games S 1, S 2, and L-models
M1,M2 for them respectively (Solid arrow represents Rs, while dotted arrow repre-
sents Rσ̊). p is true at w. Then obviously, M1 and M2 are bisimilar with respect to
the L-models.2 Suppose we could define 〈σ̊s

〉. Then we could write down an expres-
2We can easily extend the standard definition of bisimulation (van Benthem 2010) for the case of L-

models. In this example, dotted lines show the links between two bisimilar states in M1 and M2.
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sion α(p) containing symbols from L such that for every model M, M, v α(p) iff
M, v′ p with v′ = Odv(σdv). Then assume s(u) = {u,w, x}, s(w) = {w}, s(x) = {x}, it
holds that M2, u α(p). Then by bisimulation, it follows that M1, u α(p). Then we
have M1, x p. Contradicts with the fact that p is only true at w.

w

u

w

x
y

u

xyx

u w

y

u

w
x

y

1S 2S

1M 2M

Figure 3: Undefinable modality

Accordingly, the frame structure for L(σ̊s, σ̊s
−i) is obtained by incorporating the

two accessibility relations into the frames for L. That is:
vRσ̊s v′ iff v′ = Odv(σdv)
vRσ̊s

−i
v′ iff v′ ∈ Odv(σ−idv)

The truth conditions are:
M, v 〈σ̊s

〉ϕ iff M, u ϕ for some u ∈V with vRσ̊s u.
M, v 〈σ̊−i

s
〉ϕ iff M, u ϕ for some u ∈V with vRσ̊s

−i
u.

Example 6. In the context of Example 4. We have the following:
• M, v0 〈σ̊s

−2〉p. I.e., there is a terminal node (actually, v4) in S dv0 that satisfies p,
and that can be reached from v0 when player 2 being free while other players adhere to
σ.
• M, v0 〈σ̊s

〉¬p. I.e., p does not hold at the terminal node (actually, at v5) of S dv0

that can be arrived at when all players adopt strategy profile σ.

K axiom naturally holds for σ̊s, σ̊s
−i. Other valid principles concerning the two

modalities are listed in Table 2:
Y shows the visibility of all the nodes that can be reached from the current node v

in sight-filtrated game S dv. D and I are the same as that for σ̊ and σ̊−i.
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N Modality Schema Property

D [σ̊s] [.]ϕ↔ 〈.〉ϕ determinism

I ([σ̊s], [σ̊s
−i]) [σ̊−i]ϕ→ [σ̊]ϕ inclusiveness

Y
([^], [σ̊s]) [^]ϕ→ [σ̊s]ϕ

visibility
([^], [σ̊s

−i]) [^]ϕ→ [σ̊s
−i]ϕ

Table 2: Valid principles of L(σ̊s, σ̊s
−i)

4.3 L(σ̊s, σ̊s
−i, σi): the complete language

The existing modalities can not justify the intermediate nodes before reaching a leaf
node. We add another modality 〈σi〉 to L(σ̊s, σ̊s

−i). Rσi determines the node that is
reachable from the current node v after player i carrying on strategy σi. Formula 〈σi〉ϕ
indicates that “ϕ holds in the successor node determined by strategy σi”.

Thus, the frames for L(σ̊s, σ̊s
−i, σi) are defined by extending the frames for

L(σ̊s, σ̊s
−i) with Rσi . That is,

vRσi v
′ iff v′ = σi(v)

And the truth condition is:
M, v 〈σi〉ϕ iff M, u ϕ for some u ∈V with vRσi u.

Example 7. Consider the case in Example 4. We have the following:
• M, v0 〈^〉〈σ′2〉p. I.e., there is a node (actually, v4) that satisfies p, and that can

be reached by following σ′2 from a node (actually, v2) that is within players sight at v0.
• M, v0 〈σ2〉¬p ∧ 〈σ̊s

〉¬p. I.e., there is a node (exactly, v5) falsifies p and can be
reached from v0 by following σ2. Moreover, there is also a terminal node (actually, v5)
of Odv0 (σdv0 ) in S dv0 that falsifies p.

With the approach in Example 5, we can also prove the reason of introducing 〈σi〉

as new operator by showing that σi is undefinable in L(σ̊s, σ̊s
−i).

K axiom holds for [σi].
For convenience, we use LS to represent the language L(σ̊s, σ̊s

−i, σi). Then logic
LS is a set of formulas that contains all tautologies, K,T, 4,D, I,M, and Y introduced
in the above three steps and that is closed under Modus Ponens and Necessitation for
the modalities in LS .
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5 Expressing properties of games with Short Sight

Language LS can be used to characterize the solution concepts of extensive games
with short sight. To show this, we first define the subframes of FS .

Given an extensive game with short sight S , and any non-terminal node v in S , we
can obtain from a frame FS a subframe FS dv, where S dv=(Ndv,Vdv, Adv,
tdv,Σidv,�idv) is the sight-filtrated extensive game of S at v:

The tuple (Vdv,R≤idv ,Rχdv ,R^dv ,Rχsdv ,Rσidv) is defined as a sight-filtrated subframe
FS dv of FS , where χ= {σ̊, σ̊−i}.

For any two nodes u, u′ in the game S dv, i.e., u, u′ ∈ Vdv, the accessibility relations
in FS dv are defined as follows (recall Definition 3.3 and Lemma 1), where Odv(σdv)(u)
represents the terminal node that can be reached from u by adopting σ in the game S dv:

uR≤idv u
′ iff uR≤i u

′.

uRχdv u
′ iff

{
u′ = Odv(σdv)(u), χ = σ̊
u′ ∈ Odv(σ−idv)(u), χ = σ̊−i

uR^dv u
′ iff u C u′.

uRχsdv u
′ iff

{
(u, u′) ∈ Rχdv , χ = σ̊
(u, u′) ∈ Rχdv , χ = σ̊−i

uRσidv u
′ iff (u, u′) ∈ Rσi .

A model MS dv is a pair (FS dv, π) where FS dv is a sight-filtrated subframe forLS and
π an assignment function π : P→ 2Vdv .

The truth conditions of formulas in MS dv are :
MS dv, u p iff u ∈ π(p).
MS dv, u ¬ϕ iff not MS dv, u ϕ.
MS dv, u ϕ ∧ ψ iff MS dv, u ϕ and MS dv, u ψ.
MS dv, u 〈α〉ϕ iff MS dv,w ϕ for some w with uRαw.

(α represents any modal opertor in LS)

Theorem 1. Let S be an Egss given by (N,V, A, t,Σi,�i, s). Then for any player i, any
strategy profiles σ in S and any formulas ϕ of LS:

(a) σ is a sight-compatible best response (SCBR) of S for i iff FS [σ̊s]ϕ →
[σ̊s
−i]〈≤i〉ϕ.

(b) σ is a sight-compatible Nash equilibrium (SCNE) of S iff FS
∧

i∈N([σ̊s]ϕ →
[σ̊s
−i]〈≤i〉ϕ).

(c) σ is a subgame perfect equilibrium (SPE) of S dv iff for any u ∈ Vdv\Zdv,
FS dv , u

∧
i∈N([σ̊]ϕ→ [σ̊−i]〈≤i〉ϕ).
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(d) A strategy profile σ is a sight-compatible SPE of S iff for all v ∈ V\Z,
FS dv , v [^](

∧
i∈N([σ̊]ϕ→ [σ̊−i]〈≤i〉ϕ)).

Proof. (a) For the direction (⇒) , assume [σ̊s]ϕ → [σ̊s
−i]〈≤i〉ϕ is invalid in FS .

Then there exist nodes v, v′, v′′, s.t. vRσ̊s v′, vRσ̊s
−i

v′′ and (v′′, v′) < R≤i . By the
Definition of FS , we have: v′ ∈ Odv(σdv), v′′ ∈ Odv(σ−idv) and v′′ >i v′. By
Definition 3.4, we can get that σdv is not a SCBR of S dv for i.

For (⇐), assume σ is not a sight-compatible best response (SCBR) of S for
i. Then there exist a nonterminal node v, a strategy σ∗i dv available to i, such
that Odv(σ∗i dv, σ

∗
−idv) �idv Odv(σidv, σ

∗
−idv). This is to say that there exist nodes

v′, v′′, s.t. vRσ̊s v′, vRσ̊s
−i

v′′ and v′′ �i v′, I.e., ¬(v′′prefi v′). Then it follows that
FS 2 [σ̊s]ϕ→ [σ̊s

−i]〈≤i〉ϕ.

(b) Proof of (b) would be trivial given (a) (by definition 3.4).

(c) For (⇒), assume
∧

i∈N([σ̊]ϕ→[σ̊−i]〈≤i〉ϕ) is invalid at some state u in FS dv . Then
for some player i, [σ̊]ϕ → [σ̊−i]〈≤i〉ϕ is invalid at u in FS dv . Consequently,
[σ̊]ϕ ∧ 〈σ̊−i〉[≤i]¬ϕ is valid at u. It follows that σ is not a subgame perfect
equilibrium of S dv (by Definition 2.3). (⇐) can be proved similarly.

(d) For (⇒), assume [^](
∧

i∈N([σ̊]ϕ → [σ̊−i]〈≤i〉ϕ)) is invalid at the starting point
v of FS dv . Then there exists a node v′ such that (1) v′ ∈ s(v) and (2)
FS dv , v

′ 2
∧

i∈N([σ̊]ϕ → [σ̊−i]〈≤i〉ϕ)). By (2) and (c), we have that σ is not
a SPE of S dv. Then by (1) it follows that σ is not a sight-compatible sub-
game perfect equilibrium of S . For (⇐), assume σ is not a sight-compatible
subgame perfect equilibrium of S . Then there exists a state v ∈ V such that
for any SPE σ∗ of S dv, σ , σ∗. Then σ is not a SPE of S dv. By (c), we
have: ∃u ∈ Vdv such that FS dv , u ¬

∧
i∈N([σ̊]ϕ → [σ̊−i]〈≤i〉ϕ). It follows that

FS dv , v 〈^〉¬
∧

i∈N([σ̊]ϕ → [σ̊−i]〈≤i〉ϕ). By Dual, FS dv , v 2 [^](
∧

i∈N([σ̊]ϕ →
[σ̊−i]〈≤i〉ϕ)).

�

By now, we hope we have illustrated the expressive power of the new language by
formally characterizing the solution concepts for Egss.

6 Conclusions

We proposed a new logic for strategic reasoning about games with short sight. We
then presented an axiomatization for the logic. Finally, we showed that the logic can
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formally characterize the solution concepts, e.g. sight-compatible best response, in
Egss.

Since our focus has been to capture the strategies and solution concepts in games,
our logic took strategy profiles as primitive modality in this paper. Yet in case the
internal structure of strategies is required, a logic considering players’ moves (rather
than strategy profiles consisting of a sequence of moves) as atomic actions (like PDL)
may be appropriate. We would like to incorporate such a perspective and extend our
current results. Halpern and Rêgo (2006) studied games with awareness, and Grossi
and Turrini (2012) then proved a representation of games with awareness by games
with short sight. Our language can be easily extended with awareness modality, then
we can provide similar representation results and study other interesting phenomena
in games. Finally, we would like to look into the model checking problem, especially,
comparing the complexity of the problem in the standard game model and that in games
with short sight.
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Abstract

Probabilistic and stochastic methods have been fruitfully applied to a wide vari-
ety of problems in grammar induction, natural language processing, and cognitive
modeling. In this paper we explore the possibility of developing a class of combi-
natorial semantic representations for natural languages that compute the semantic
value of a (declarative) sentence as a probability value which expresses the like-
lihood of competent speakers of the language accepting the sentence as true in a
given model, relative to a specification of the world. Such an approach to semantic
representation treats the pervasive gradience of semantic properties as intrinsic to
speakers’ linguistic knowledge, rather than the result of the interference of perfor-
mance factors in processing and interpretation. In order for this research program
to succeed, it must solve three central problems. First, it needs to formulate a type
system that computes the probability value of a sentence from the semantic val-
ues of its syntactic constituents. Second, it must incorporate a viable probabilistic
logic into the representation of semantic knowledge in order to model meaning en-
tailment. Finally, it must show how the specified class of semantic representations
can be efficiently learned. We construct a probabilistic semantic fragment and con-
sider how the approach that the fragment instantiates addresses each of these three
issues.
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1 Introduction

A formal semantic theory recursively defines the denotation of an expression in terms
of the denotations of its syntactic constituents. It computes the semantic values of a
sentence as a function of the values of its syntactic constituents. Within such a theory
the meaning of an expression is identified with a function from indices (the expressions
themselves, worlds, situations, times, etc.), to denotations in a model. The meaning of
a sentence is a function from indices to truth-values.

Formal semantic theories model both lexical and phrasal meaning through cate-
gorical rules and algebraic systems that cannot accommodate gradience effects. This
approach is common to theories which sustain compositionality and those with employ
underspecified representations.1 It effectively invokes the same strong version of the
competence-performance distinction that categorical models of syntax assume. This
view of linguistic knowledge has dominated linguistic theory for the past fifty years.

Gradient effects in representation are ubiquitous throughout linguistic and other
cognitive domains. Appeal to performance factors to explain gradience has no explana-
tory content unless it is supported by a precise account of how the interaction of com-
petence and performance generates these effects in each case. By contrast, gradience
is intrinsic to the formal models that information theoretic methods use to represent
events and processes.

Bach (1986) identifies two theses on the character of natural language.

(a) Chomsky’s thesis: Natural languages can be described as formal systems.

(b) Montague’s thesis: Natural languages can be described as interpreted formal
systems.

Recent work in computational linguistics and cognitive modeling suggests a third
proposal.

(c) The Harris-Jelinek thesis: Natural languages can be described as information
theoretic systems, using stochastic models that express the distributional proper-
ties of their elements.

The Harris-Jelinek thesis implies the The Language Model Hypothesis (LMH)
for syntax, which holds that grammatical knowledge is represented as a stochas-
tic language model.2 On the LMH, a speaker acquires a probability distribution

1See, inter alia, Reyle 1993, Bos 1995, Blackburn and Bos 2005, Copestake et al. 2006, Koller et al.
2008, Fox and Lappin 2010 for discussions of underspecified semantics.

2See (Clark and Lappin 2011) for a discussions of the merits and problems of the LMH. An obvious dif-
ficulty with the LMH is that in the primary linguistic data for language acquisition short, ill formed sentences
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D : Σ∗ → [0, 1], over the strings s ∈ Σ∗, where Σ is a set of words (morphemes,
etc.) of the language, and

∑
pD(s) = 1. This distribution is generated by a probabilis-

tic automaton or a probabilistic grammar, which assigns a structure to a string with a
probability that is the product of the rules applied in the derivation of that string. The
probability of the string itself is the sum of the parses that the grammar generates for
it. This probability represents the likelihood of a sentence’s occurrence in a corpus.3

Representing linguistic knowledge stochastically does not eliminate the compe-
tence – performance distinction. It is still necessary to distinguish between a probabilis-
tic grammar or automaton that generates a language model, and the parsing algorithm
that implements it. However, a probabilistic characterization of linguistic knowledge
does alter the nature of this distinction. The gradience of linguistic judgements and
the defeasibility of grammatical constraints are now intrinsic to linguistic competence,
rather than distorting factors contributed by performance mechanisms.

Lexically mediated relations like synonymy, antinomy, polysemy, and hyponymy
are notoriously prone to clustering and overlap effects. They hold for pairs of expres-
sions over a continuum of degrees [0,1], rather than Boolean values {1,0}. Moreover,
the denotations of major semantic types, like the predicates corresponding to CNs, Ad-
jPs, and VPs, can rarely, if ever, be identified as sets with determinate membership. The
case for abandoning the categorical view of competence and adopting a probabilistic
model is at least as strong in semantics as it is in syntax (as well as in other parts of the
grammar)

A probabilistic semantics needs to express the probability of a different property
than occurrence in a corpus. Knowing the meaning of a declarative sentence consists
largely in being able to estimate the probability that competent speakers of the language
would take it to be true across different states of the world (different worlds). This
view is a probabilistic extension of a classical truth-conditional view of meaning. It
can be extended to non-declarative sentences by formulating fulfillment conditions for

consisting of high frequency lexical items may have higher probability than longer, complex, well formed
sentences containing low frequency words. A possible solution to this problem is to model grammatical
acceptability in stochastic terms by imposing a lower bound on the probability of an acceptable string s that
is dependent on properties of s, like its length, and features of the distribution for Σ∗. So, for example, a
three word string like You is here is likely to have lower probability than the average probability of three
word strings consisting of the word class sequence 〈N,V, ADV〉. By contrast, the string Trading in com-
plex instruments like mortgage backed derivatives and credit default swaps remains opaque and inexplicably
under-regulated, which continues to be a major cause of instability in the financial markets can be expected
to have at least the average probability of strings of the same length and word class sequence. This approach
to modeling acceptability uses the idea that one’s expectation for the likelihood of occurrence of a string in
a corpus depends, in part, on its properties and those of the distribution for its string set. It is derived from
the stochastic model of indirect negative evidence that Clark and Lappin (2011) propose.

3See Manning and Schütze 1999, Collins 2003, Jurafsky and Martin 2009, Chelba 2010, Clark and
Lappin 2010, Clark 2010 for discussions of statistical parsing and probabilistic grammars.
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them and identifying the meaning of a sentence with the function that determines the
probability that speakers of the language construe it as fulfilled (a question answered,
an imperative obeyed, a request satisfied, etc.) in any given state of affairs.4

As in the case of parsing, adopting a probabilistic view of semantic knowledge does
not entail the eradication of the distinction between competence and performance. We
still need to separate the semantic representation that generates a probability distri-
bution for sentences in relation to states of affairs from the application of this rep-
resentation in interpreting sentences. But like probabilistic grammars, these models
incorporate gradience as an intrinsic feature of the objects that they characterize.

In this paper we argue that by replacing truth-conditions with probability conditions
we can capture at least some of the pervasive gradience effects in semantic judgements.
This allows us to reduce a number of important varieties of vagueness to the sort of un-
certainty of belief (in this case, semantic belief) that probabilistic theories are designed
to model. We are also able to account for several important kinds of semantic learning
as a process of updating a learner’s probability distributions over the worlds (which en-
code possible knowledge states) in which he/she evaluates the predicates whose mean-
ings he/she is acquiring. This approach is consistent with the Harris-Jelinek thesis in
that it represents semantic knowledge as a probability distribution over worlds that is
generated by a probabilistic model for interpreting expressions of a language.

In Section 2 we present definitions of a model, a basic type theory, and a recursive
definition of an interpretation function for a fragment of a formal representation lan-
guage. In Section 3 we propose the outline of an account of semantic learning in which
learners acquire the interpretation of new predicates, treated as probabilistic classifiers,
in their language. We compare our approach to distributional treatments of meaning,
particularly vector space models (VSMs), in Section 4. VSMs have emerged as highly
efficient procedures for learning semantic relations among lexical items in corpora.
Recent work has focussed on extending these methods to sentences. We discuss the
complex connections among probability, gradience, and semantic vagueness in Section
5. Finally, in Section 6 we draw conclusions from our proposals and indicate directions
for future work.

2 Probabilistic models for a semantic fragment

Classical probabilistic logic (Carnap 1950, Nilsson 1986, Fagin and Halpern 1991,
Paris 2010) models uncertainty in our knowledge of the facts about the world. Prob-
ability distributions are specified over a set of possible states of the world (possible

4Lappin (1982) offers an early proposal for characterizing truth conditions as an instance of fulfillment
conditions.
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worlds), and the probabilities for the elements of this set sum to 1. A proposition ϕ is
assigned truth-values across worlds, and ϕ’s probability is computed as

∑
w∈W p(w) for

{w : |ϕ|w = t}.
In characterizing meaning probabilistically, we can talk of uncertainty about the

truth-value of a sentence, given some probability distribution over possible states of
affairs. The probability of a sentence expresses the likelihood that (semantically) com-
petent speakers of the language assign to the truth of the sentence, given the state of
their knowledge about the world. We can then represent the meaning of a sentence
as a function that maps intensions to functions from knowledge states to probabilities
(probability conditions). The semantic value of a sentence S is of type I → K → [0, 1],
where I is the set of intensions, K is the set of knowledge representations, and [0, 1] is
the set of reals p with 0 ≤ p ≤ 1.

Let a propositional language over a set of basic predications be given, as follows:

t ::= x | a1 | a2 | · · · | am

Q ::= Q1 | Q2 | · · · | Qn

ϕ ::= Qt | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ.

Here we assume a single variable x, a finite number of proper names a1, a2, . . . , am and
a finite number of basic unary predicates Q1,Q2, . . . ,Qn.

Any ϕ that contains occurrences of x is called a predication. Use ϕ(x) for predica-
tions, and ϕ(a/x) for the result of replacing x by a everywhere in a predication.

Call this language Lm
n . If we extend Lm

n with one name am+1, the new language is
called Lm+1

n . If we extend Lm
n with one new predicate Qn+1, the new language is called

Lm
n+1

For convenience, we identify names and objects, so we assume a domain Dm =

{a1, a2, . . . , am}. The type of a (restricted) world w is given by w : {Q1, . . . ,Qn} →

P(Dm). w(Qi) is the interpretation of Qi in w.
A probabilistic model M is a tuple 〈D,W, P〉 with D a domain, W a set of worlds

for that domain (predicate interpretations in that domain), and P a probability function
over W, i.e., for all w ∈ W, p(w) ∈ [0, 1], and

∑
w∈W p(w) = 1.

An interpretation of Lm
n in an Lm

n -model M = 〈D,W, P〉 is given in terms of the
standard notion w ϕ, as follows:

[[ϕ]]M :=
∑
{P(w) | w ∈ W,w ϕ}.

It is straightforward to verify that this yields [[¬ϕ]]M = 1 − [[ϕ]]M . Also, if ϕ ¬ψ,
i.e., if Wϕ ∩Wψ = ∅, then [[ϕ ∨ ψ]]M =

∑
w∈Wϕ∨ψ

P(w) =
∑

w∈Wϕ
P(w) +

∑
w∈Wψ

P(w) =

[[ϕ]]M + [[ψ]]M , as required by the axioms of Kolmogorov (1950)’s probability calculus.
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2.1 A toy fragment

Basic types are e (entities), s (worlds), t (truth values), d (domains) and [0, 1] (the space
of probabilities). Abbreviate d → s→ t as i (intensions). Types for S, N, VP, NP, DET
are lifted to the level of intensions, by substituting i for t in all types. This gives, e.g.,
DET = (e→ i)→ (e→ i)→ i.

The lifting rules for the interpretation functions are completely straightforward:

I(S ome) = λpλqλdomλw.some(λx.p x dom w)(λy.q y dom w).

Here some is the familiar constant function for existential quantification, of type
(e→ t)→ (e→ t)→ t.

This type system gives sentences an interpretation of type i, i.e., d → s → t.
Such intensions can be mapped to probabilities by means of a function prob of type
i → m → [0, 1], where m is the type of models with their domains, i.e., objects of the
shape 〈D,W, P〉.

The function prob on sentences f and models M = 〈D,W, P〉 is given by:

prob f 〈D,W, P〉 =
∑
{P(w) | w ∈ W, f D w}.

This function assigns to every sentence of the fragment a probability, on the
basis of the prior probabilities encoded by 〈D,W, P〉.

2.2 Semantic priors

The probabilities in a model M are the prior of a target semantic representation. We
can take this prior to encode the knowledge representation that competent speakers
converge upon as they acquire the meanings of the predicates of their language. Learn-
ers start out with different priors (probability distributions over models) than mature
speakers, and update them through semantic learning. The prior that a learner brings
to the learning task constitutes his/her initial assumptions about the state of the world,
and, in a sense, it is the basis for semantic learning

Kemp et al. (2007) propose a hierarchical Bayesian learning framework in which
observational classifiers and the learning priors that express expectations concerning
the distribution of observations categorized by these classifiers can be acquired simul-
taneously from the same data. The priors are themselves derived from more general
higher-order priors.
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3 Semantic learning

Classical semantic theories characterize a class of representations for the set of mean-
ings of expressions in natural language. However, it is unclear how these representa-
tions could be learned from the primary linguistic data (PLD) of language acquisition.
The problem of developing a plausible account of efficient learnability of appropriate
target representations is as important for semantics as it is for other types of linguistic
knowledge. Most work in formal learning for natural languages has focussed on syntax
(grammar induction), morphology, and phonology.

3.1 Simple cases of learning

Example 1

Assume there are just two predicates Q1 and Q2, and two objects a, b. Complete igno-
rance about how the predicates are applied is represented by a model with 16 worlds,
because for each object x and each predicate Q there are two cases: Q applies to x or
not. If the likelihood of each of the cases is completely unknown, each of these worlds
has probability 1

16 .

Example 2

Suppose again there are two objects a, b and two predicates Q1,Q2. Assume that it is
known that a has Q1, and the probability that b has Q1 is taken to be 2

3 . Suppose it is
known that no object has Q2. Then W = {w1,w2} with w1(Q1) = {a, b}, w2(Q1) = {a},
w1(Q2) = ∅, w2(Q2) = ∅. P is given by P(w1) = 2

3 , P(w2) = 1
3 . In this example ¬Q1(b)

is true in w2 and not in w1. Therefore [[¬Q1(b)]] = 1
3 .

Learning new definable predicates

Learning a new semantic concept Qn+1 is learning how (or to what extent) predicate
Qn+1 applies to the objects one knows about. The simplest way to model such a learning
event is as a pair 〈Qn+1, ϕ(x)〉where ϕ(x) is an Lm

n predication. The effect of the learning
event could then be modeled in a way that is very similar to the manner in which factual
change is modeled in an epistemic update logic.

The result of updating a model M = 〈D,W, P〉 with concept learning event
〈Qn+1, ϕ(x)〉 is the model that is like M except for the fact that the interpretation in
each world of Qn+1 is given by

w(Qn+1) := {a | a ∈ Dm,w ϕ(a/x)}
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Note that the probability function P of the model does not change in this case.
Let’s return to example 1. This is the model where there are two objects and two

predicates, and nothing is known about the properties of the objects. Take the learning
event (Q3,Q1x∧¬Q2x). This defines Q3 as the difference of Q1 and Q2. The resulting
model will again have 16 worlds, and in each world wi,wi(Q3) is given by wi(Q1) ∩
(D − wi(Q2)). Again, the probabilities of the worlds remain unchanged.

3.2 Adjusting the meaning of a predicate

To allow adjustment of the meaning of a classifier by means of a learning event, we can
use probabilistic updating (following van Benthem et al. (2009)). A classifier learning
event now is a tuple 〈Q, ϕ, ψ(x), q〉 where ϕ is a sentence, ψ(x) is a predication, and q is
a probability. ϕ expresses the observational circumstances of the revision. q expresses
the observational certainty of the new information.

The result of updating M = 〈D,W, P〉 with 〈Q, ϕ, ψ(x), q〉 is a new model M =

〈D,W ′, P′〉. W ′ is given by changing the interpretation of Q in members w of Wϕ to
{a | w ψ(a/x)}, while leaving the interpretation of Q in members of W¬ϕ unchanged.

P′ is given by P′(w) =
P(w)×q

X for members of Wϕ, and by P′(w) =
P(w)×(1−q)

X for
members of W¬ϕ. 1

X (the normalization factor) is given by

X =
∑

w∈Wϕ
P(w) × q +

∑
w∈W¬ϕ P(w) × (1 − q).

Learning classifiers by example

Consider again the example with the two objects and the two properties, where new
information concerning the application of the predicates to objects in the domain is
acquired. A learning event for this could be 〈Q2,¬Q1b,Q1x ∨ Q2x, 2

3 〉. Then the re-
sulting model has again 2 worlds, but now the probability of w2 has gone up from 1

3 to
2
3×

1
3

1
3×

2
3 + 2

3×
1
3

= 1
2 . The probability of w1 has gone down from 2

3 to
1
3×

2
3

4
9

= 1
2 .

You are given something of which you are told that it is called a “rose”, and you
observe that it is thorny, red and a flower. A learning example is an encounter with a
new object am+1. Suppose you learn that predicate Q applies to am+1. The properties
you observe of am+1 are given by θ(am+1), where θ(am+1) is a conjunction of ±Qi(am+1)
for all known predicates. The update event is 〈am+1,Q, θ(am+1)〉. You learn that am+1 is
called a Q, and you observe that am+1 satisfies the properties θ(am+1).

Updating a model M = 〈D,W, P〉 for Lm
n with this event creates a new model M′ =

〈D ∪ {am+1},W ′, P〉 for Lm+1
n . The new model has domain {a1, . . . , am+1}. W ′ is given
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by assigning, in each w, to am+1 the properties specified by θ(am+1). The interpretation
of Q is given by setting w(Q) = {a | w θ(a/am+1)}. This resets the interpretation Q on
the basis of the new observation. The probability distribution remains unchanged.

We can refine this account of learning to accommodate cases where an observation
is less precise. Let the learning event be:

〈am+1,Q, {(θ1(am+1), q1), . . . , (θk(am+1), qk)}〉.

Here qi gives the observational probability that the new object satisfies θi. The
probabilities should satisfy

∑k
i=1 qi = 1. The update can be defined so that the

probability of the new predicate applying to the old objects will be recomputed.

3.3 Semantic knowledge and knowledge of the world

Our specification of the class of probabilistic models and our treatment of learning
raise the question of how to distinguish between semantic knowledge and knowledge
of the world. It might seem that the distinction disappears entirely in our framework,
and we are simply modeling epistemic update. In fact this is not the case. In a proba-
bilistic account of epistemic update one seeks to express the effect of new information
about the actual world on a belief agent’s probability distribution over possible worlds.
In our system of semantic representation we specify the meaning of a sentence as the
likelihood that competent speakers of the language will assess it as true, given the
distribution over worlds that sustains the interpretation of the expressions of their lan-
guage. We are, then, seeking to model the probability that speakers assign to sentences
across possible states of affairs, where these probability conditions are derived from
the prior that speakers specify for worlds as a condition for sharing the meanings of
their predicates. Semantic learning is a process of converging on the target model that
generates this distribution by forming hypotheses on the intensions of predicates (the
classifiers that they encode) on the basis of the PLD.

The notion of a semantic prior in terms of which the probability value of a sentence
is computed allows us to identify semantic knowledge as distinct from general epis-
temic commitment. It is, however, the case that the distinction between semantic and
extra-linguistic knowledge is not absolute. In learning a predicate one is acquiring a
classifier that sorts objects on the basis of their properties. One could not apply such a
classifier without recognizing these properties and making predictions concerning the
likelihood that unobserved objects with similar properties satisfy (fail to satisfy) the
classifier. It seems reasonable to assume that learners starting out with a semantic prior
that is radically divergent from the target representation in most respects may find it
difficult or impossible to acquire this representation from the PLD. If this does, in fact,
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context 1 context 2 context 3 context 4
financial 0 6 4 8
market 1 0 15 9
share 5 0 0 4
economic 0 1 26 12
chip 7 8 0 0
distributed 11 15 0 0
sequential 10 31 0 1
algorithm 14 22 2 1

Figure 1: Word Type-Context Matrix

turn out to be the case, then we can conclude that semantic learning depends on a core
of shared beliefs about the nature of the world.

4 Distributional treatments of meaning

4.1 Lexical Vector Space Models

Vector Space Models (VSMs, Turney and Pantel 2010) offer a fine-grained distribu-
tional method for identifying a range of semantic relations among words and phrases.
They are constructed from matrices in which words are listed vertically on the left, and
the environments in which they appear are given horizontally along the top. These en-
vironments specify the dimensions of the model, corresponding to words, phrases, doc-
uments, units of discourse, or any other objects for tracking the occurrence of words.
They can also include data structures encoding extra-linguistic elements, like visual
scenes and events.

The integers in the cells of the matrix give the frequency of the word in an envi-
ronment. A vector for a word is the row of values across the dimension columns of the
matrix. Figure 1 gives a schematic example of such a word-context matrix, with made
up vector values. In this matrix the vectors for chip and algorithm are [7 8 0 0] and [14
22 2 1], respectively.

A pair of vectors from a matrix can be projected as lines from a common point on a
plane. The smaller the angle between the lines, the greater the similarity of the terms,
as measured by their co-occurrence across the dimensions of the matrix. Computing
the cosine of this angle is a convenient way of measuring the angles between vector
pairs. If ~x = 〈x1, x2, ..., xn〉 and ~y = 〈y1, y2, ..., yn〉 are two vectors, then:
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cos(~x, ~y) =

∑n
i=1 xi·yi√∑n

i=1 x2
i ·
∑n

i=1 y2
i

.

The cosine of ~x and ~y is their internal product, formed by summing the prod-
ucts of the corresponding elements of the two vectors, and normalizing the result
relative to the lengths of the vectors. In computing cos(~x, ~y) it may be desirable to
apply a smoothing function to the raw frequency counts in each vector to compensate
for sparse data, or to filter out the effects of high frequency terms. A higher value for
cos(~x, ~y) correlates with greater semantic relatedness of the terms associated with the
~x and ~y vectors.

VSMs provide highly successful methods for identifying a variety of lexical seman-
tic relations, including synonymy, antinomy, polysemy, and hypernym classes. They
also perform very well in unsupervised sense disambiguation tasks. VSMs offer a dis-
tributional view of lexical semantic learning. On this approach speakers acquire lexical
meaning by estimating the environments (linguistic and non-linguistic) in which the
words of their language appear.

4.2 Compositional VSMs

Lexical VSMs measure semantic distances and relations among words independently
of syntactic structure. They apply a ”bag of words” approach to meaning. Recent
work has sought both to integrate syntactic information into the dimensions of the
vector matrices (Padó and Lapata 2007), and to extend VSM semantic spaces to the
compositional meanings of sentences. Mitchell and Lapata (2008) compare additive
and multiplicative models for computing the vectors of complex syntactic constituents,
and they demonstrate better results (as measured by human annotator judgements) with
the latter for sentential semantic similarity tasks. These models use simple functions for
combining constituent vectors, and they do not represent the dependence of composite
vectors on syntactic structure.

Coecke et al. (2010), Grefenstette et al. (2011) propose a procedure for computing
vector values for sentences that specifies a correspondence between the vectors and
the syntactic structures of their constituents. This procedure relies upon a category
theoretic representation of the types of a pregroup grammar (PGG, Lambek 2008a;b),
which builds up complex syntactic categories through direction-marked function appli-
cation in a manner similar to a basic categorial grammar. All sentences receive vectors
in the same vector space, and so they can be compared for semantic similarity using
measures like cosine.
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A PGG compositional VSM (CVSM) determines the values of a complex syntac-
tic structure through a function that computes the tensor product of the vectors of its
constituents, while encoding the correspondence between their grammatical types and
their semantic vectors. For two (finite) vector spaces A, B, their tensor product A ⊗ B
is constructed from the Cartesian product of the vectors in A and B. For any two vec-
tors v ∈ A, w ∈ B, v ⊗ w is the vector consisting of all possible products vi∈v × w j∈w.
Smolensky (1990) uses tensor products of vector spaces to construct representations of
complex structures (strings and trees) from the distributed variables and values of the
units in a connectionist network.

PGGs are modeled as compact closed categories. A sentence vector is computed
by a linear map f on the tensor product for the vectors of its main constituents,
where f stores the type categorial structure of the string determined by its PGG
representation. The vector for a sentence headed by a transitive verb, for example, is
computed according to the equation

−−−−−−−−−−→
sub j Vtr ob j = f (

−−−→
sub j ⊗

−→
Vtr ⊗

−−→
ob j).

The vector of a transitive verb Vtr could be taken to be an element of the tensor
product of the vector spaces for the two noun bases corresponding to its possible
subject and object arguments

−→
Vtr ∈ N ⊗ N. Then the vector for a sentence headed by a

transitive verb could be computed as the point-wise product of the verb’s vector, and
the tensor product of its subject and its object

−−−−−−−−−−→
sub j Vtr ob j =

−→
Vtr � (

−−−→
sub j ⊗

−−→
ob j).

PGG CVSMs offer a formally grounded and computationally efficient method
for obtaining vectors for complex expressions from their syntactic constituents. They
permit the same kind of measurement for relations of semantic similarity among
sentences that lexical VSMs give for word pairs. They can be trained on a (PGG
parsed) corpus, and their performance evaluated against human annotators’ semantic
judgements for phrases and sentences. Grefenstette and Sadrzadeh (2011) report that
their system outperforms Mitchell and Lapata (2008)’s multiplicative CVSM in a
small scale corpus experiment on predicting semantic distance for pairs of simple
transitive VP sentences.

The PGG CVSM raises at least two major difficulties First, while the vector of a
complex expression is the value of a linear map on the vectors of its parts, it is not
obvious what independent property this vector represents. Sentential vectors do not
correspond to the distributional properties of these sentences, as the data in the primary
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linguistic data (PLD) from which children learn their language is too sparse to estimate
distributional vectors for all but a few sentences, across most dimensions.

Coecke et al. (2010) show that it is possible to encode a classical model theoretic
semantics in their system by using vectors to express sets, relations, and truth-values.
But this simply demonstrates the formal power of PGG CVSMs as semantic coding
devices. CVSMs are empirically interesting to the extent that the sentential vectors
that they assign are derived from lexical vectors that represent the actual distributional
properties of these expressions.

In classical formal semantic theories the functions that drive semantic composition
are supplied by the type theory, where the type of each expression specifies the formal
character of its denotation in a model. The sequence of functions that determines the
semantic value of a sentence exhibits at each point a value that directly corresponds
to an independently motivated semantic property of the expression to which it is as-
signed. Types of denotation provide non-arbitrary formal relations between types of
expressions and classes of entities specified relative to a model. The sentential vec-
tors obtained from distributional vectors of lexical items lack this sort of independent
status. In our fragment we have specified a conservative extension of a classical type
system for computing probabilistic values for sentences and predicates. An important
advantage of our approach is that we sustain the independently motivated denotations
that a classical type system assigns to syntactically complex expressions within a prob-
abilistic framework designed to capture the gradience and relative uncertainty of lexical
semantic relations.

The second major problem is as follows. An important part of the interpretation
of a sentence involves knowing its truth (more generally, its satisfaction or fulfillment)
conditions. We have exchanged truth conditions for probability conditions formulated
in terms of the likelihood of a sentence being accepted by competent speakers of the
language as true, given certain states of affairs in the world. It is not obvious how we
can extract either classical truth conditions, expressed in Boolean terms, or probability
conditions, from sentential vector values, when these are computed from vectors ex-
pressing the distributional properties of their constituent lexical items. By contrast, our
fragment offers a recursive specification of the meaning of a sentence which yields its
probability conditions.

5 Probability, gradience, and vagueness

5.1 Two views of semantic vagueness

The fact that sentences receive probability conditions that express the likelihood that
competent speakers would accept them as true relative to states of affairs permits us
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to model the uncertainty that characterizes some of these speakers’ judgements con-
cerning the semantic relations and predications that hold for their language. This sort
of uncertainty accounts for an important element of gradience in semantic knowledge.
It captures the defeasibility of implications, and the graded nature of synonymy (co-
intensionality) and meaning intersection. However, it remains unclear whether all
species of semantic vagueness can be subsumed by the uncertainty that probabilistic
judgements express. Consider, in particular, the case of degree adjectives and adverbs.
If a door is slightly ajar, there is a sense in which it fully satisfies neither open nor
closed.5

Two views (inter alia) have been proposed for determining the relation between
probability and semantic vagueness. On one of these, vagueness can be characterized
in terms of the truth of judgements that predicates apply to objects, modifiers to states
or events, etc. The epistemicist account of vagueness (Williamson 1994) provides a
prominent instance of this approach. It takes vagueness to consist in the same sort of
uncertainty that attaches to epistemic claims about the world. This view is attractive
to the extent that it can be used to support the idea that one models the gradience of
semantic properties as a probability distribution over the applicability of expressions
of different functional types to their arguments. However, it has the unattractive con-
sequence that it assumes the existence of sharp boundaries on the extensions of predi-
cates, but takes these to be epistemically opaque (essentially unknowable) to speakers
of the language. Applying a predicate to an entity is, in many cases then, analogous to
making a bet on the existence of a state of affairs, where one cannot identify the situa-
tion that decides the outcome of the wager. There appears to be no independent motiva-
tion for such unknowable limits on the extensions of terms. Therefore, it looks like an
ad hoc device which the theory requires in order to explain the fact that vagueness, un-
like epistemic uncertainty, cannot be eliminated by additional information about either
language or the world.

Lassiter (2011) offers a refined alternative version of the view that vagueness is
the expression of probability judgements. He avoids the epistemicist assumption of
unknowable determinate predicate extensions, by replacing these with a set of possible
languages all of whose expressions receive non-vague interpretations. Vagueness is the
result of a probability distribution over these languages (their predicates) in different
worlds. Speakers assign probabilities to language-world pairs, seeking to maximize the
probability of pairs that converge on the observed linguistic and non-linguistic facts.
This analysis characterizes a vague predicate as ambiguous among a large disjunction
of semantically determinate variants over which probability is distributed. In order to
express the gradient nature of vagueness it would seem to be necessary to proliferate

5We are grateful to Peter Sutton for helpful discussion of the issues that we deal with in this section.
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a large (possibly unbounded) number of determinate readings for vague predicates to
range over. This looks like an awkward result. Vagueness is naturally thought of an
alternative to ambiguity rather than a consequence of it.

Edgington (1997) proposes the second view. She uses a Bayesian probability logic
to model semantic vagueness, but she argues that vagueness and epistemic uncertainty
are distinct. The problem with this approach is that it leaves the formal isomorphism
between the two phenomena unexplained. If they really are different in the way that she
suggests, then why should a calculus for computing the probability of statements under
uncertainty provide a more accurate system for representing the vagueness of predi-
cates than fuzzy or supervaluational logics, as she shows to be the case? The success
of probabilistic models in expressing vagueness suggests that there is, in fact, a non-
accidental connection between reasoning under conditions of epistemic uncertainty and
the vagueness of predication. However, it may not be as direct or straightforward as
the epistemicists hold it to be.

5.2 Semantic vagueness as an effect of learning

It might be possible to develop a third view by mediating the relation between proba-
bility and vagueness through learning. Speakers learn predicates by generalizing from
paradigm instances where their applications to an object are valued as 0 or 1 in worlds
of high probability. Extending the application of these predicates to new objects with
different property sets will produce an update in the probability function of the model
that estimates the likelihood of competent speakers assenting to the predications as in-
termediary or low. In the absence of additional disambiguating evidence, this probabil-
ity distribution over worlds for a range of predicate applications will survive learning to
be incorporated into the model of mature speakers. In this way uncertainty in learning
becomes vagueness in the intensions of predicates in the target representation.

This approach treats epistemic uncertainty as a central element of semantic learn-
ing. The concern to converge on the classifiers that competent speakers apply drives
the learner to update his/her probability distributions for the application of predicates
(and other terms) in light of new linguistic and extra-linguistic evidence. But once the
target representation is (more or less) achieved, many terms of the language remain
under determined for objects in their domain. Vagueness is, then, the residue of proba-
bilistic learning. It cannot be resolved by additional facts, linguistic or extra-linguistic,
as it has been incorporated into the adult language itself. Therefore, it has its origin in
probabilistic judgements on the truth of predication during the learning process, but it
becomes an independent feature of the semantics of the language.

We offer this suggestion as the sketch of an alternative account of vagueness that
seeks to account for it in probabilistic terms, but does not reduce it to epistemic uncer-
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tainty in the competent speakers of the language. In order to be viable it is necessary to
work out a detailed formal theory of semantic learning and the target language that it
converges on. This is a research project that this paper is intended to introduce, rather
than complete.

6 Conclusions and future work

Compositional VSMs can represent gradience in semantic relations among words,
phrases, and sentences, and they offer a viable account of lexical semantic learning.
However, the vectors that CVSMs assign to complex syntactic structures do not have
clear interpretations, and they do not express sentential meaning as probability condi-
tions.

We propose a fragment of a probabilistic semantic theory that uses a conservative
extension of classical type theory to compute the probability value of a sentence on
the basis of a model for the knowledge of a semantic learner. Our approach offers a
framework for developing a probabilistic account of semantic learning that is consonant
with current Bayesian approaches to classifier acquisition.

We suggest a view of vagueness that treats it as originating in the probabilis-
tic judgements of semantic learning, but which develops into an independent non-
epistemic variety of uncertainty in the mature target representation language.
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Abstract

We propose an expressive but decidable logic for reasoning about quantum sys-
tems. The logic is endowed with tensor operators to capture properties of com-
posite systems, and with probabilistic predication formulas P≥r(s), saying that a
quantum system in state s will yield the answer ‘yes’ (i.e. it will collapse to a state
satisfying property P) with a probability at least r whenever a binary measurement
of property P is performed. Besides first-order quantifiers ranging over quantum
states, we have two second-order quantifiers, one ranging over quantum-testable
properties, the other over quantum “actions”. We use this formalism to express the
correctness of some quantum programs. We prove decidability, via translation into
the first-order logic of real numbers.

1 Introduction

This paper introduces a powerful new logic for reasoning about quantum computa-
tion. Our Quantum Probabilistic Dyadic Second-Order Logic (QPDSOL) is expres-
sive enough to capture superpositions, entanglements, measurements, quantum-logical
gates and probabilistic features; it can express the correctness of a wide range of com-
plex quantum protocols and algorithms; but at the same time it is logically tractable, in
the sense of being decidable.
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It is well-known that “classical” First-Order Logic is undecidable, and moreover
that “classical” Second-Order Logic, as well as its monadic and dyadic fragments1

are not even axiomatizable. By moving to the quantum world, it is natural to extend
the range of first-order quantifiers to quantum “states” (i.e. superpositions of classical
states), while at the same time it is natural to restrict the range of monadic second-
order quantifiers to quantum-testable properties (closed linear subspaces of the state
space), and to similarly restrict the range of dyadic second-order quantifiers to quantum
“actions” (linear maps between state spaces). Indeed, it is widely accepted in the
literature on Quantum Logic and on Foundations of Quantum Mechanics that quantum-
testable properties are the only experimentally meaningful properties of a quantum
system: any other (non-testable, non-linear) properties have no physical/experimental
meaning in a quantum setting. Similarly, it is widely accepted in quantum computation
that all meaningful quantum programs are obtainable by composing quantum gates
(unitary maps) and quantum tests (measurements), and thus are quantum “actions” in
the above sense.2 So restricting the interpretations of the unary and binary predicates
as above is a natural thing to do in a quantum setting: it only restricts the second-order
quantifiers to properties/actions that are physically meaningful. The resulting logic is
indeed the natural “quantum analogue” of classical (dyadic) second-order logic!

Surprisingly, this quantum analogue turns out to be much more tractable than its
classical counterpart: the above well-justified and natural restrictions of range are
enough to restore full decidability, even after the addition of “exotic” features such
as probabilistic predication and tensors!

In a sense, this is not as surprising as it may first appear. Our semantics for second-
order logic is “non-standard”: not all sets of states (whose existence is guaranteed by
the standard axioms of Set Theory) are accepted as “predicates”. The second-order
quantifiers are thus restricted to a limited range of predicates. Such non-standard vari-
ations of second-order logic have been studied before. Henkin’s weak semantics for
second-order logic (Henkin 1950) involves a restriction on the range of the second-
order quantifiers (to some model-dependent class of admissible predicates), that re-

1Monadic Second-Order Logic is the fragment allowing quantification only over unary predicates, while
the Dyadic fragment allows quantification only over unary and binary predicates.

2The converse is not obvious, and may even fail in practice. But from a theoretical perspective, one can
argue that the converse is true in a sense: for any quantum action (linear map) f between systems H and
H ′ there exists an entangled state s f in H ⊗ H ′ with the property that, if a local measurement performed
on the H-subsystem of (a system in state) s f yields state x, then after that a local measurement on the H ′-
subsystem will yield the result f (x). In this way, any such action f can be physically computed, in principle:
first, prepare a large number of entangled states s f ; then perform local measurements on the H-subsystem
until one of them yields the desired input value x; and then perform a measurement on the H ′-subsystem,
yielding the output-value f (x).
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stores the axiomatizability of the logic. Some variants of monadic second-order logic
(for very restricted models) are even decidable (Rabin 1969).

But these classical results are conceptually very different from ours: none of these
weaker logics can be considered to be a genuine and natural variant of second-order
logic. In particular, Henkin’s semantics (restricting second-order quantifiers to some
arbitrary collections of subsets of the state space) is not a independently-justifiable re-
striction. It does not even provide a unique, canonical way to restrict the quantifiers
(but a model-dependent one). In contrast, our restriction of quantifiers to quantum-
testable properties (and quantum-performable operations) is natural, canonical (pro-
viding a unique collection for each dimension) and amply justified on independent
grounds by a whole body of literature in Quantum Logic, Foundations of Quantum
Mechanics and Quantum Computation.

Indeed, seen from the perspective of the quantum world, our “non-standard” se-
mantics looks like the “true” semantics of second-order logic: it only eliminates the
predicates that are “physically meaningless”. Moreover, while in a sense being a re-
striction of the classical (standard) semantics, in a different sense this can be thought of
as an extension of the classical semantics! Indeed, one can argue that, if we restrict our-
selves to classical states (i.e., n-long tuples of bits |0〉 or |1〉, for any dimension n) then
all the standard predicates of such classical states are realized as quantum-testable
predicates (and hence fall within the range of our second-order quantifiers): for every
set A ⊆ {|0〉 , |1〉}n, there exists a unique quantum-testable predicate (linear subspace3)
PA ⊆ H

⊗n
2 such that a classical n-state s ∈ {|0〉 , |1〉}n satisfies PA iff it belongs to the set

A. So, insofar as classical states are concerned, our range restriction for second-order
quantifiers is not a restriction at all: their range really includes (quantum counterparts
of) every set of classical states. It is only when we look at non-classical (superposed)
states that we see that the quantifier range is restricted (though in a natural way).

In conclusion, regardless of whether one considers it as a natural restriction of the
classical semantics for (predicates of) quantum states, or as a huge extension of the
classical semantics for (predicates of) classical states, we can still safely claim that
our logic really is the correct quantum (and probabilistic) counterpart of the classical
(dyadic) second-order logic.

As a consequence, we think that our decidability result is a significant contribution
to the logical understanding of quantum mechanics: it shows in essence that, whereas
the natural formulation of (dyadic) second-order logic in the classical world is unde-
cidable, the natural formulation of (dyadic) second-order logic for the quantum world
is decidable.

3In fact, this is the linear subspace PA generated by A.
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The fundamental reason for this tractability is the one severe constraint put by quan-
tum mechanics on the “meaningful” properties and actions: linearity.4 Once again,
this does not really restrict the predicates/actions as far as classical states are con-
cerned (since any two classical states of the same space are orthogonal to each other, a
classical state cannot be written as a linear combination of other classical states). But
linearity does constrain the behavior of “meaningful” predicates/actions on superposed
states. And, in the end, linearity allows the reduction of all the “meaningful” second-
order objects (predicates/actions) to their underlying linear expressions: matrices of
(complex) numbers.

So this natural (and physically-imposed) linearity constraint reduces thus our quan-
tum version of second-order logic to the first-order theory of complex numbers. And
now, a classical result comes to our help: while first-order logic is in general undecid-
able (and the first-order theories of many useful structures, such as the ring of natural
numbers, are not even axiomatizable), the first-order theory of complex numbers is de-
cidable. This was pointed out by Alfred Tarski (1948) as a corollary to the analogue
result for the field of real numbers (proved in the same paper by quantifier-elimination).

Our decidability proof makes essential use of Tarski’s decidability result, as well
as of the finite dimensionality; it translates effectively the probabilistic dyadic second-
order logic of finite-dimensional quantum systems into the decidable first-order theory
of reals. This proof method is inspired by the one given in (Dunn et al. 2005), where
the traditional (propositional) quantum logic of any finite-dimensional Hilbert space
was proved to be decidable. However, the result in (Dunn et al. 2005) required that we
first fix a particular Hilbert space (model of a quantum system) of a finite dimension,
so as to translate the logic of the space into the finitary language of reals, thus limiting
the scope of application by fixing a finite dimension (and hence the number of quantum
bits or qubits) throughout the discourse. In contrast, our logic overcomes this limitation
by using types and tensors in the language, thus accommodating an unbounded number
of qubits, while preserving the logical tractability.

Our results in this paper can be seen as part of a wider on-going effort towards
bridging the gap between traditional quantum logic and the theory of quantum com-
putation. On the one hand, traditional quantum logic (as originated in Birkhoff and
von Neumann 1936) has focused on axiomatics and logical properties of the lattice of
closed linear subspaces of an infinite-dimensional Hilbert space, with the goal being
“to discover the logical structure one may hope to find in physical theories which, like
QM, do not conform to classical logic” (Birkhoff and von Neumann 1936). Quan-
tum computation, on the other hand, concerns encoding and describing computations

4For unary predicates: having a linear subspace (not an arbitrary subset) as their extension; for actions:
being induced by a linear map.
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on the basis of quantum systems, and involves quantum ingredients such as super-
position and entanglement, in order to perform certain tasks much faster than clas-
sical computers. The underlying theoretical framework for quantum computation is
given by finite-dimensional Hilbert spaces. Among the few treatments of such finite-
dimensional quantum logics and their decidability are the work of Chadha et al. (2009),
Dunn et al. (2005).

Another contrast between quantum logic and quantum computation lies in the treat-
ment of “quantum entanglement”. In traditional quantum logic, entanglement has been
viewed as a problem-child, posing difficulties to the lattice-theoretic setting (Aerts
1981, Randall and Foulis 1979) (though naturally treatable in a category-theoretical
setting (Abramsky and Coecke 2004, Selinger 2004)). In quantum computing, how-
ever, entanglement is viewed as a computational resource, that allows us to go beyond
the world of classical computing. Among the papers that address this part of the gap
between quantum logic and quantum computation are (Baltag et al. 2013, Chadha et al.
2009), and (Dalla Chiara et al. 2004, Chapter 17). Our work strengthens the connection
further. The logic we propose in the following sections—dyadic second-order quan-
tum logic—is fit to deal with multi-partite systems that exhibit quantum entanglement.
Equipped with an explicitly typed language, with types for states, predicates, and ac-
tions, with tensor operators connecting them, as well as with probabilistic predication,
our logic allows us to capture all the essential computational properties of composite
quantum systems, and in particular it can encode the correctness of a wide range of
quantum algorithms.

The design of dyadic second-order quantum logic in this paper builds further on
the earlier work of Baltag and Smets (2005; 2006) on propositional dynamic quantum
logics. It is well known that standard Propositional Dynamic Logic (PDL), as well as
its fragment called the Hoare Logic, plays an important role in classical computing and
programming. In particular, PDL and Hoare Logic are among the main logical for-
malisms used for classical program verification. The quantum version of PDL extends
the area of applicability to the verification of quantum programs and quantum proto-
cols. In (Baltag and Smets 2006), a quantum dynamic logic was designed that was
expressive enough to prove the correctness of basic non-probabilistic quantum proto-
cols such as teleportation and quantum secret sharing. The work of Baltag et al. (2012)
used the tools of Dunn et al. (2005) to prove the decidability of such a propositional
dynamic quantum logical system. While these results are important, note that the logic
in (Baltag et al. 2012) was unable yet to capture the correctness of any probabilistic
quantum protocols. In this paper, we overcome this limitation and equip our logic with
a probabilistic predication operator, indicating that a state of a quantum system will
collapse to a state having property P with probability at least r whenever a measure-
ment of property P is performed. This operator allows us to express the correctness of
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those quantum algorithms (such as quantum search) that make essential use of quantum
probabilities.

A remark is in order regarding the fact that each given program in our syntax,
and so each given sentence, uses only a given number of qubits (and thus it refers to
a Hilbert space with a given finite number of dimensions). We would like to stress
that our result is much more significant than, say, the decidability of checking the
correctness of a classical circuit of a given size applied to a problem of given input
size. This is because we do not fix the size of the input, but only the dimension. This
point is important, since for a given fixed dimension (greater than 1) there are infinitely
(in fact uncountably) many non-equivalent quantum states of that dimension (while
typically there are only finitely many inputs of a given size). Hence, the algorithm for
deciding satisfiability (on states of a space of given dimension) cannot simply proceed
by exhaustive search over a finite domain (as in the case of models of bounded size).
The correctness statements presented in this paper really capture the correctness of a
program for uncountably many non-equivalent inputs!5

2 Preliminaries

According to quantum theory (see, e.g. Nielsen and Chuang 2011), any quantum sys-
tem can be described by a Hilbert space H of appropriate dimension. Similar to the
tradition of Piron (1976), we identify (pure) states of the system with the “rays” in
H (i.e. the one-dimensional linear subspaces of H) and the “impossible state” (zero-
dimensional subspace, which we include as it allows us to discuss only total functions
without loss of generality). Given a vector |ψ〉 ∈ H , we will write |̂ψ〉 for the state
generated by |ψ〉. Given a state space H of some quantum system, we write ΣH for
the set of all states, i.e. the set of all one-dimensional linear subspaces of H and 0̂H
(where 0H is the zero vector).

Any change of the state of a quantum system can be described by a linear map on
H . There are two important kinds of linear maps: unitary operators and projectors. A
unitary operator U is such that both U†U and UU† are the identity operator, where (·)†

is the adjoint operation on linear maps. In quantum computation, unitary operators are
the counterpart of logical gates in classical computation. An operator A is a projector,
if it is bounded, idempotent, i.e. AA = A, and self-adjoint, i.e A† = A. Projectors

5Moreover, these correctness statements, even when translated back into the arithmetic of real numbers,
do not boil down to simple equations involving addition and multiplication of specific real numbers and/or
matrices. Instead, they reduce to complex first-order statements in the theory of real numbers, that involve in
an essential way quantification over uncountably many objects. It just happens that (due to Tarski’s theorem)
this theory is still decidable!
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are essential in describing quantum measurements, which are the only way we extract
information from a quantum system. In this paper, our level of abstraction allows us
to consider not only linear maps on a Hilbert space but also those between different
Hilbert spaces. Every linear map A : H → H ′ from a quantum systemH to a possibly
different system H ′ naturally induces a unique function (also denoted by A) from the
set of states ΣH to the set of set of states ΣH ′ , given by A(|̂ψ〉) := Â(|ψ〉) for every
|ψ〉 ∈ H . An action is any such function A : H → H ′ induced on state spaces by some
linear map A : ΣH → ΣH ′ . We can also define composition, tensor product and adjoint
of actions in a natural way via composition, tensor product and adjoint of linear maps
which induce the actions6. We will use the same symbols for operations on actions as
those for linear maps.

In this paper, a property of a quantum system with state spaceH is just a subset of
ΣH . However, according to quantum theory, not any subset of ΣH represents a property
of the system that can be tested. A property is testable iff it corresponds to a closed
linear subspace W of H in such a way that the states in the property are exactly those
generated by vectors in W. Since this correspondence is one-to-one and natural, we
will always use the same symbol to denote a testable property and its corresponding
closed linear subspace. Moreover, according to linear algebra, closed linear subspaces
lie in one-to-one correspondence with projectors in the following sense:

1. For every projector A on H , ran(A) (the range of A) is a closed linear subspace
ofH , and for every vector |ψ〉 ∈ H , |ψ〉 ∈ ran(A) iff A(|ψ〉) = |ψ〉.

2. For every closed linear subspace W ofH , there is a unique projector onH , called
the projector onto W and denoted by ?H (W), such that for every vector |ψ〉 ∈ H ,
|ψ〉 ∈ W iff ?H (W)(|ψ〉) = |ψ〉.

The state space of a qubit, the unit of quantum information, is of dimension 2.
Given a fixed orthonormal basis {|0〉 , |1〉} of the state space of a qubit, the two states
generated by |0〉 and |1〉, respectively, correspond to the values 0 and 1 of a classical
bit. Given several qubits indexed by elements in a finite set I, they form a compound
quantum system, and the state space for I is the tensor product

⊗
i∈IHi of the state

space Hi for each qubit i ∈ I. A standard way of obtaining an orthonormal basis of
this state space is to take tensor products of vectors in the fixed orthonormal bases of
each Hi. It is easy to see that there are 2|I| vectors in this basis, and we will index
them by elements in I2, the set of all functions from I to 2 = {0, 1}, in such a way that
| f 〉 = ⊗i∈I | f (i)〉i, for each f ∈ I2. We call a state of a compound system classical if it
is generated by a vector in this basis. Moreover, we write |0〉I for ⊗i∈I |0〉i.

6Note that different linear maps could induce the same action, but the operations on actions are still
well-defined according to linear algebra.
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It is well known that an n-dimensional Hilbert space is isomorphic to Cn. In this
case, every linear subspace is closed and every operator is bounded. Moreover, every
state can be represented by n complex numbers if we pick a vector in the state as
its representative. Every property, identified with its corresponding projector, can be
represented by an n × n matrix of complex numbers. Every linear map from an n-
dimensional Hilbert space to an m-dimensional one can be represented by an m × n
matrix of complex numbers.

In this paper, for generality, we assume that we are supplied with countably in-
finitely many qubits indexed by elements in ω, the set of all natural numbers, which
we take to be non-negative integers. We further assume that an orthonormal basis has
been fixed for each qubit, and we obtain an orthonormal basis for compound systems
consisting of a finite number of qubits by applying the tensor product in the way just
described. Finally, we use Pfin(ω) to denote the set of all finite, non-empty subsets of
ω. For each τ ∈ Pfin(ω), by τ-system we mean the quantum system consisting of qubits
indexed by elements of τ. Whenever Hτ, the state space of the τ-system, appears as a
superscript or subscript in a symbol, we simply write τ; for example, we write simply
Στ for ΣHτ

.
Moreover, for each τ, ρ ∈ Pfin(ω) s.t. τ ⊆ ρ, we know from linear algebra that Hτ

can be canonically embedded into Hρ, by “padding” all the vectors with |0〉’s for all
the extra dimensions. Hence in this paper we write Θτ→ρ : Hτ → Hρ for this canonical
embedding

Θτ→ρ =
∑

f∈τ2(| f 〉 ⊗ |0〉ρ\τ) 〈 f |.

We also write Θρ→τ : Hρ → Hτ for the canonical projection that reverses the above
embedding:

Θρ→τ =
∑

f∈τ2 | f 〉 (〈 f | ⊗ 〈0|ρ\τ).

Using the canonical embeddings and projections, one can generalize projectors to ar-
bitrary dimensions: For every space Hτ and every closed linear subspace Wρ of some
other space Hρ, we can define the generalized projector of Hτ onto Wρ, denoted by
?τ(Wρ), by putting:

?τ(Wρ) = Θρ∪τ→ρ ◦
(
?ρ(Wρ) ⊗ |0〉τ\ρ 〈0|τ\ρ

)
◦ Θτ→ρ∪τ

This is a linear map that takes a vector in Hτ and “projects” it onto Wρ. Physically,
this action corresponds to a successful measurement of a ρ-property performed on a
τ-system.

We introduce some notation. Given a binary relation R and a set A ⊆ dom(R) = {x |
∃y. (x, y) ∈ R}, let R[A] def

= {b | ∃a∈A. (a, b)∈R} be the direct image of A under R. Given
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a set B ⊆ ran(R) = {y | ∃x. (x, y) ∈ R}, we let [R]B def
= {a | ∀b. (a, b) ∈ R ⇒ b ∈ B}

be the so-called weakest precondition of B under R. Note that when R is a function
instead of a relation in general, [R]B is sometimes called the inverse image of B under
R. In general, given two sets A and B, we write AB for the set of functions from A to B.
Given a positive number N, let N = {0, 1, . . . ,N − 1}. Given a linear map T , let T be its
matrix representation under the fixed bases.

3 Quantum Probabilistic Dyadic Second-Order Logic

Syntax of QPDSOL Our language consists of terms (for quantum states), predicates
symbols (for quantum testable properties), and function symbols (for actions). The
language is typed: each of these symbols comes with a type, which is an element of
Pfin(ω), indicating the underlying set of qubits involved in that state, property or ac-
tion. E.g. terms of type τ refer to the possible (pure) states of the τ-system; predicate
symbols of type τ are unary predicates referring to quantum-testable properties of the
τ-system; function symbols of type τ → ρ are dyadic predicates (restricted to func-
tions) referring to actions. As the types range over all of Pfin(ω), the entire domain of
discourse involves infinitely many qubits; but each formula involves only finitely many
types, each involving only finitely many qubits, so that a formula can only talk about
finitely many qubits.

For each pair of elements τ, ρ ∈ Pfin(ω), we include in the language a countable
set of state variables xτ of type τ, a countable set of state constants cτ of type τ, a
countable set of predicate variables pτ of type τ, a countable set of predicate constants
Tτ of type τ, a countable set of action variables aτ→ρ of type τ → ρ, and a countable
set of action constants Cτ→ρ of type τ → ρ. It is assumed that these sets are pairwise
disjoint, and that each of them is indexed by elements in ω without repetition.

Definition 3.1. For any τ, ρ ∈ Pfin(ω), we define by (triple) mutual recursion the fol-
lowing sets of syntactic expressions: the set Te∇mτ of terms of type τ

tτ ::= xτ | cτ | tτ1 ⊗ tτ2 | αρ→τ(tρ)

where τ1, τ2 ∈ Pfin(ω) are such that τ1 ∪ τ2 = τ, τ1 ∩ τ2 = ∅), the set Pτ of (unary)
predicate symbols of type τ

Pτ ::= pτ | Tτ | tτ | ∼Pτ | Pτ ∩ Pτ | Pτ1 ⊗ Pτ2 | αρ→τ[Pρ] | [ατ→ρ]Pρ

where τ1, τ2 ∈ Pfin(ω) are such that τ1 ∪ τ2 = τ, τ1 ∩ τ2 = ∅, and the set Aτ→ρ of
function symbols of type τ→ ρ

ατ→ρ ::= aτ→ρ | Cτ→ρ|?τPρ | α
†
ρ→τ | ατ→µ;αµ→ρ | ατ1→ρ1 ⊗ ατ2→ρ2
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where µ, τ1, ρ1, τ2, ρ2 ∈ Pfin(ω) are such that τ1 ∪ τ2 = τ, ρ1 ∪ ρ2 = ρ and τ1 ∩ τ2 =

ρ1 ∩ ρ2 = ∅.

We write Te∇m for the set
⋃
τ∈Pfin(ω) Te∇mτ of all terms, P for the set

⋃
τ∈Pfin(ω) Pτ

of all predicate symbols, and A for the set
⋃
τ,ρ∈Pfin(ω)Aτ→ρ of all function symbols.

When τ = ρ, we simply write Pρ? for the function symbol ?τPρ.

Definition 3.2. We now define by induction the set L of formulas of our logic:

ϕ ::= P≥r
τ (tτ) | ¬ϕ | ϕ ∧ ϕ | ∀xτϕ | ∀pτϕ | ∀aρ→τϕ

where τ ∈ Pfin(ω), tτ ∈ Termτ, Pτ ∈ Pτ and r ∈ [0, 1] is a definable real number
(described below before Definition 3.3).

The intended meaning of our basic formula P≥r
τ (tτ) is that a quantum system in state

tτ will yield the answer ‘yes’ (i.e. it will collapse to a state satisfying property Pτ) with a
probability at least r whenever a binary measurement of property Pτ is performed. The
rest of our logical formulas are built from such basic formulas using standard Boolean
connectives, as well as three types of quantifiers: first-order quantifiers ∀xτ ranging
over quantum states, second-order quantifiers ∀pτ over quantum (testable) predicates,
and second-order quantifiers ∀aτ→ρ ranging over quantum actions.

The notions of free variables, bound variables, etc. are defined in the standard way.
As usual, a formula ϕ ∈ L is called closed if it has no free (state, predicate or action)
variables. A pure formula is a closed formula containing no (state, predicate or action)
constants.

Semantics of QPDSOL Following standard practice, we introduce the notion of frame
(also known as structure in the semantics of first-order logic), by which we mean a
structure that fixes the (state, predicate and action) constants. Then, given a frame, we
define a model on it (also known as an interpretation in the semantics of first-order
logic), which can determine the denotation of each remaining term, predicate symbol
and function symbol. Finally, we define the satisfaction relation.

Recall that we say that a real number r is definable if there is a formula ϕ(x) in the
first-order language of (R,+, ·, 0, 1) such that (R,+, ·, 0, 1) ϕ[r] ∧ ∀x(ϕ(x) → x = r).
We also say that a complex number z is simple if z = a + bi for definable real numbers
a and b. Extending the terminology, we say that a state of the τ-system, a testable
property of the τ-system and an action from the τ-system to ρ-system are definable
if they can be represented under the fixed basis respectively by a 2|τ|-tuple (with the
state identified with the representative of it), a 2|τ| × 2|τ|-matrix (with the closed linear
subspace identified with the corresponding projector), and a 2|ρ| × 2|τ|-matrix (with the
action identified with a linear map that induces it) of simple complex numbers.
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Definition 3.3. AnH-valuation is a function V defined on a subset of P ∪A∪ Te∇m
and satisfying the following conditions:

• V(tτ) ∈ Στ if tτ ∈ T e∇mτ;

• V(Pτ) is a testable property of τ-system, if Pτ ∈ Pτ;

• V(ατ→ρ) is an action from Στ to Σρ if ατ→ρ ∈ Aτ→ρ.

Definition 3.4. A frame F is an H-valuation whose domain is the set of all (state,
predicate and action) constants and whose values are all definable.

Actually, for the decidability result to hold, a frame must be a computable function
in some sense. We neglect this technicality here.

Definition 3.5. A modelM on a frame F is anH-valuation whose domain is P ∪A∪
Te∇m, that extends F and that satisfies the following, for any terms tτ, tτ1 , tτ2 , function
symbols ατ→ρ, βρ→µ, ατ1→ρ1 , ατ2→ρ2 , and predicate symbols Pτ,Qτ, Pρ, Pτ1 ,Qτ2 such
that τ1 ∩ τ2 = ∅ and ρ1 ∩ ρ2 = ∅:

M(tτ1 ⊗ tτ2 ) = M(tτ1 ) ⊗M(tτ2 )
M(ατ→ρ(tτ)) = M(ατ→ρ)(M(tτ))
M(ατ→ρ; βρ→µ) = M(βρ→µ) ◦M(ατ→ρ)
M(α†τ→ρ) = (M(ατ→ρ))†

M(ατ1→ρ1 ⊗ ατ2→ρ2 ) = M(ατ1→ρ1 ) ⊗M(ατ2→ρ2 )
M(?τPρ) = ?τ(M(Pρ))
M(∼Pτ) = ∼M(Pτ)
M(Pτ ∩ Qτ) = M(Pτ) ∩M(Qτ)
M(Pτ1 ⊗ Qτ2 ) = M(Pτ1 ) ⊗M(Qτ2 )
M(ατ→ρ[Pτ]) = M(ατ→ρ)[M(Pτ)]
M([ατ→ρ]Pρ) = [M(ατ→ρ)]M(Pρ)

To interpret quantifiers, for each (state, predicate, or action) variable v we introduce
an equivalence relation ∼v among models on the same frame such that M ∼v M

′ iff
M(v′) = M′(v′) for all variables v′ except possibly v.

Definition 3.6. The satisfaction relation between a modelM and a formula is defined
recursively, where v is any (state, predicate, or action) variable,

M P≥r
τ (tτ) ⇐⇒

| 〈ψ| ?τ(M(Pτ)) |ψ〉 |2 ≥ r‖ |ψ〉 ‖2‖?τ(M(Pτ)) |ψ〉 ‖2,
for any vector |ψ〉 ∈ M(tτ)

M ¬ϕ ⇐⇒ M 6 ϕ,
M ϕ ∧ ψ ⇐⇒ M ϕ andM ψ,
M ∀vϕ ⇐⇒ M′ ϕ, for allM′ ∼v M.
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Obviously, other Boolean connectives such as ∨, → and ↔ can be defined in the
usual manner. Existential quantifiers over states, predicates and actions can also be
defined in the usual manner. Moreover, this logic is at least as expressive as the first-
order language of the lattice L(C2n

), which is discussed in (Dunn et al. 2005).
Now we introduce some useful abbreviations:

P≤r
τ (tτ)

def
= (∼P)≥(1−r)

τ (tτ) P=r
τ (tτ)

def
= P≥r

τ (tτ) ∧ P≤r
τ (tτ)

P<r
τ (tτ)

def
= ¬P≥r

τ (tτ) P>r
τ (tτ)

def
= ¬P≤r

τ (tτ)

sτ ⊥ tτ
def
= s≤0

τ (tτ)

sτ � tτ
def
=

[
s=1
τ (tτ) ∧ ¬(sτ ⊥ tτ)

]
∨

[
(sτ ⊥ sτ) ∧ (tτ ⊥ tτ)

]
Essentially, the meaning of P≤r

τ (tτ) (or respectively P=r
τ (tτ), P<r

τ (tτ), P>r
τ (tτ)) is that a

quantum system in state tτ will yield the answer ‘yes’ (i.e. it will collapse to a state
satisfying property Pτ) with a probability ≤ r (or respectively = r, < r, > r) whenever
a binary measurement of property Pτ is performed. Moreover,M sτ ⊥ tτ iff sτ and tτ
denote two orthogonal states. (Note that the impossible state 0̂τ is the only state that is
orthogonal to itself.) Finally, we haveM sτ � tτ iff sτ and tτ refer to the same state:
the first disjunct ensures that sτ and tτ are equal but neither denotes 0̂τ (note that s=1

τ (tτ)
and sτ ⊥ tτ are together satisfiable where either sτ or tτ is interpreted by 0̂τ), while the
second disjunct ensures that both sτ and tτ denote 0̂τ.

We now define the notion of validity.

Definition 3.7. A formula ϕ of L is said to be valid in a frame F, written F ϕ, if
M ϕ for every model M on F. A formula ϕ of L is said to be valid, written ϕ, if
F ϕ for every frame F.

As in classical predicate logic, we have

Lemma 1. For every closed formula ϕ in L and every frame F, F ϕ iff there is a
modelM on F such thatM ϕ. For every pure formula ϕ in L, ϕ iff there is a frame
F such that F ϕ.

4 Examples

Here we show how our language can be used to express many properties of quantum
algorithms. We start with introducing some notation that will be commonly used in the
following examples.
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First, for each qubit i, we introduce state constants 0i and 1i to denote the state
generated by |0〉i and |1〉i, respectively.

We furthermore have the following action constants for a single qubit i, and for
some, we provide the matrix representation (in the fixed bases) of linear maps which
are usually used to induce the actions interpreting these constants:

• Ii interpreted as the identity action,

• Hi the action induced by the Hadamard gate with matrix 1
√

2

[
1 1
1 −1

]
,

• Xi the action induced by the Pauli X gate
[

0 1
1 0

]
,

• Zi the action induced by the Pauli Z gate
[

1 0
0 −1

]
.

We furthermore have an action symbol CNOT i j (i , j) for the controlled-NOT
action with control qubit i and target qubit j usually induced by a linear map with the
matrix 

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


For any distinct i and j, we also define an abbreviation for an action that inter-

changes the states of qubits i and j:

FPi j
def
= CNOT i j;CNOT ji;CNOT i j.

We introduce an abbreviation CSτ(tτ) for the formula saying that a state tτ is a
classical state:

CSτ(tτ)
def
= ∃{xi | i ∈ τ}

(
tτ � ⊗i∈τxi ∧

∧
i∈τ

(xi � 0i ∨ xi � 1i)
)
,

where ∃{xi | i ∈ τ} means a sequence of existential quantifiers on state variables of type
i ∈ τ. Similarly, we introduce an abbreviationU\〉t(ατ→τ) for the formula saying that
the variable ατ→τ denotes (an action induced by) a unitary operator on a τ-system:

U\〉t(ατ→τ)
def
= ∀xτ(ατ→τ;α†τ→τ(xτ) � xτ).
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Next, we write H⊗τ for ⊗i∈τHi and I⊗τ for ⊗i∈τIi. Finally, we recursively introduce
an abbreviation αn

τ→τ for the action obtained by iterating the action ατ→τ for n times:

α0
τ→τ = I⊗τ (the identity map on τ-system);

αn+1
τ→τ = αn

τ→τ;ατ→τ (for n ≥ 1).

4.1 Quantum teleportation

In quantum teleportation, Alice and Bob, who are separated by a long distance, share
a pair of qubits in Bell state 1

√
2
(|0〉2 |0〉3 + |1〉2 |1〉3) (qubit 2 being with Alice, and 3

being with Bob). Alice would like to let Bob have a qubit whose state is the same as
the state q of her qubit 1 (which we represent as a state variable of type {1}). She first
interacts the qubit with her end of the Bell state. Define

PRE(q) def
= (CNOT 12; (H1 ⊗ I2)) ⊗ I3

(
q ⊗

(
CNOT 23; (H2 ⊗ I3)(02 ⊗ 03)

))
.

She then measures her qubits 1 and 2, and depending on the result sends Bob instruc-
tions as to any further operation that must be performed on his qubit 3.

The standard frame for Teleportation is the frame that interprets as intended all
the constants occurring in the Teleportation protocol: the constants 0i and 1i for each
i ∈ {1, 2, 3} as well as I2, I3, H1, H2 CNOT 12, CNOT 23 and FP13.

The correctness of the Teleportation protocol is equivalent to the validity in its
standard frame of the formula

∀q
[
(q ⊗ 02 ⊗ 03) � (01? ⊗ 02? ⊗ I3); (FP13 ⊗ I2)(PRE(q))
∧ (q ⊗ 12 ⊗ 03) � (01? ⊗ 12? ⊗ I3); (I1 ⊗ I2 ⊗ X3); (FP13 ⊗ I2)(PRE(q))
∧ (q ⊗ 02 ⊗ 13) � (11? ⊗ 02? ⊗ I3); (I1 ⊗ I2 ⊗ Z3); (FP13 ⊗ I2)(PRE(q))
∧ (q ⊗ 12 ⊗ 13) � (11? ⊗ 12? ⊗ I3); (I1 ⊗ I2 ⊗ (X3; Z3)); (FP13 ⊗ I2)(PRE(q))

]
.

4.2 Quantum search algorithm

In the search problem, we are given a unitary operator O, which is usually called an
oracle, acting on N + 1 qubits (we assume them to be indexed by elements in N + 1),
such that there is a classical state | f0〉 with the property that, for each classical state | f 〉
and b ∈ 2,

O(| f 〉 ⊗ |b〉N) =

{
| f 〉 ⊗ |1 − b〉N , if f = f0,
| f 〉 ⊗ |b〉N , if f ∈ N2 \ { f0}

(1)

The aim of the algorithm is to find out the classical state | f0〉.
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To formalize the correctness of this algorithm, we use an action variable O of type
N + 1 → N + 1 to denote the oracle. Moreover, we assume that we have an action
constant PS N of type N→ N for the action induced by the conditional phase shift gate
on the first N qubits, whose matrix under the fixed basis is the following:[

Z O2×(N−2)
O(N−2)×2 −I(N−2)×(N−2)

]
.

Here O2×(N−2) is the 2 by N −2 matrix of only 0 entries, and similarly for O(N−2)×2, and
I(N−2)×(N−2) is the N − 2 by N − 2 identity matrix.

As before, the standard frame for the (N + 1)-qubit quantum search algorithm is
the one that interprets as intended all the above constants, as well as all the constants
0i and 1i. For convenience, we make the following abbreviation

OracleN+1(O) def
= U\〉t(O) ∧ ∃xN

[
CSN(xN) ∧ ∀yN

(
CSN(yN)

→ (xN � yN → O(yN⊗0N+1) � yN⊗1N+1 ∧ O(yN ⊗ 1N+1) � yN⊗0N+1)

∧ (xN ⊥ yN → O(yN⊗0N+1) � yN⊗0N+1 ∧ O(yN⊗1N+1) � yN⊗1N+1)
)]

for the formula saying that O is an action induced by an oracle acting on the (N + 1)-
system satisfying Eq.(1).

The correctness of (N + 1)-qubit Quantum Search Algorithm (with N > 2) is equiv-
alent to the validity in its standard frame of the following formula:

∀O∀xN
{
OracleN+1(O) ∧ CSN(xN) ∧ O(xN⊗0N) � xN⊗1N ∧ O(xN⊗1N) �

xN⊗0N → (xN⊗HN(1N))>0.5
(
H⊗(N+1); (O; ((H⊗N; PS N; H⊗N)⊗IN))K(0N⊗1N)

)}
,

where K is the largest natural number less than π
4

√
2N .

4.3 Deutsch-Josza algorithm

In the Deutsch-Josza problem, we are given a unitary operator O (usually called an
oracle) acting on N + 1 qubits (we assume them to be indexed by elements in N + 1),
which is known to satisfy one of the following properties:

(i) The oracle is constant (having the same value for all inputs): there is i ∈ {0, 1}
s.t. O(| f 〉 ⊗ |b〉N) = | f 〉 ⊗ |b ⊕ i〉N for all b ∈ 2 and classical state | f 〉, with f ∈ N2;

(ii) The oracle is balanced (equal to 1 for exactly half of all the possible inputs,
and 0 for the other half): there is X ⊆ N2 s.t. |X| = 2N−1 and O(| f 〉 ⊗ |b〉N) is
| f 〉 ⊗ |1 − b〉N if f ∈ X, and is | f 〉 ⊗ |b〉N , otherwise, for all b ∈ 2.
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The goal of the algorithm is to determine which of the two properties holds for O.
To formalize the correctness of this algorithm, we use an action variable O of type

N + 1 → N + 1 to denote the oracle. For convenience, we introduce some abbrevia-
tions: first, let us denote by ConOra(O) the formula

U\〉t(O) ∧
[
∀xN

(
CSN(xN)→ O(xN⊗0N+1)� xN⊗0N+1 ∧ O(xN⊗1N+1)� xN⊗1N+1

)
∨∀xN

(
CSN(xN)→ O(xN⊗0N+1)� xN⊗1N+1 ∧ O(xN⊗1N+1)� xN⊗0N+1

)]
saying that O is an action induced by a constant oracle; second, we denote by
BalOra(O) the formula (where k = 2N−1)

U\〉t(O) ∧ ∃x1
N...∃xk

N

[( k∧
i=1

CSN(xi
N)

)
∧
(∧
1≤i< j≤k

xi
N ⊥ x j

N

)
∧ ∀yN

(
CSN(yN)→

(
k∨

i=1

yN � xi
N → O(yN⊗0N+1) � yN⊗1N+1 ∧ O(yN⊗1N+1) � yN⊗0N+1)

∧(
k∧

i=1

yN ⊥ xi
N → O(yN⊗0N+1) � yN⊗0N+1 ∧ O(yN⊗1N+1) � yN⊗1N+1))

)]
saying that O is an action induced by a balanced oracle.

Finally, the correctness of the (N + 1)-qubit Deutsch-Jozsa algorithm (for any nat-
ural number N) is equivalent to the assertion that the following formula is valid in its
standard frame:

∀O
{
ConOra(O) ∨ BalOra(O)→[ (

ConOra(O)↔ H⊗(N+1); O; H⊗(N+1)(0N ⊗ 1N) � 0N ⊗ 1N

)
∧

(
BalOra(O)↔ H⊗(N+1); O; H⊗(N+1)(0N ⊗ 1N) ⊥ 0N ⊗ 1N

) ]}
.

5 Decidability

The set of validities of QPDSOL on any given frame is decidable. Using the same
proof strategy, the validity problem for pure formulas over (the class of) all frames is
also decidable. In this section, we sketch the proofs of these results.

The basic technique for proving these decidability results is a generalization and
extension of the method used in (Dunn et al. 2005): We express validity of formulas
of L without free variables in a given frame F via truth of first-order sentences of
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(R,+, ·, 0, 1); then the decidability of our logic follows from Tarski’s theorem in (Tarski
1948) which states that the first-order theory of (R,+, ·, 0, 1) is decidable. This idea is
unfolded into several technical steps.

In the first step, we need to deal with intersection of testable properties. For a
function symbol of the form (Pτ ∩ Qτ)?, it is well known that calculating the matrix
of the corresponding projector typically involves a process of taking limits and hence
can not be expressed in the first-order theory of (R,+, ·, 0, 1). The key to solving this is
the observation that complex predicate symbols, i.e. those built with ∩, ⊗, ∼ and other
operations, can be recursively eliminated from our language with the help of quantifiers
(over states). Let L∗ be the result of this translation. Its formulas consist of those built
as follows (where constraints on the types are those given in Definition 3.1 and 3.2, but
with the additional requirement that for each singleton τ = {i}, there exists a constant
0τ that denotes |̂0〉i, so as to facilitate the translation of generalized projectors):

tτ ::= xτ | cτ | xτ1 ⊗ xτ2 | αρ→τ(xρ)
Pτ ::= pτ | Tτ

ατ→ρ ::= aτ→ρ | Cτ→ρ | a†ρ→τ | aτ1→ρ1 ⊗ a′τ2→ρ2
| Pτ?

ϕ ::=x<r
τ (tτ) | x=r

τ (tτ) | ¬ϕ | ϕ ∧ ϕ | ∀xτϕ | ∀pτϕ | ∀aρ→τϕ.

With the possible exception of the constants 0τ, we have thatL∗ ⊆ L, and the semantics
of L∗ is the same as for L. One can define a function ∇ : L → L∗ by recursion (and
hence it is computable) s.t. M ϕ ⇔ M ∇(ϕ) for every model M. To illustrate
why this is the case and how it helps to solve the problem, we exhibit one case in its
definition:

∇(x=r
τ ((Pτ ∩ Qτ)?(tτ))) =∃yτ∃zτ

[
∇(tτ � yτ ⊕ zτ) ∧ ∇(P=1

τ (yτ)) ∧ ∇(Q=1
τ (yτ))

∧ x=r
τ (yτ) ∧ ∀uτ

(
∇(P=1

τ (uτ)) ∧ ∇(Q=1
τ (uτ))→ z=0

τ (uτ)
) ]

where xτ is a state variable, tτ is a term and tτ � yτ ⊕ zτ is defined to be ∀vτ(v=0
τ (yτ) ∧

v=0
τ (zτ)→ v=0

τ (tτ)), which means that tτ “lies on the plane generated by” yτ and zτ.
In the second step, we define for each frame F, a function TRF : L∗ → LC, where

LC is the first-order language of (C,+, ·, ·,≺,C), where · is the conjugate operator, ≺ is
a binary relation between complex numbers such that a + bi ≺ c + di iff a < c, and the
last component C is the set of numbers named by a constant. Towards this aim, we first
formalize in LC the matrix representation of the interpretation in F of terms, predicate
symbols and function symbols. This is possible because every term, predicate symbol
and function symbol involves only finitely many qubits indicated by its type. In fact,
one can define by recursion a computable function F\ from the set of terms, predicate
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symbols and function symbols that can occur in formulas in L∗ to the set of finite sets
of terms in LC. For the base case, we define F](xτ), F](pτ) and F](aτ→ρ) to be the
sets of variables indexed by τ2, τ2 ×τ 2 and ρ2 ×τ 2 in such a way that different state,
predicate or action variables are mapped to disjoint sets of variables. Moreover, F](cτ),
F](Tτ) and F](Cτ→ρ) are indexed in a similar way but they are sets of constants. Care
must be taken to ensure that the constants are defined according to the interpretation
in F. For complex symbols built with operations, we can mimic the manipulation of
vectors and matrices. For example, assume that we have defined F\(xτ) to be the set
of variables {x[ f ] | f ∈τ 2} and F\(yρ) to be {y[g] | g ∈ρ 2} respectively, then we
can mimic the Kronecker product of matrices and define F\(xτ ⊗ yρ) to be the set of
terms {x ⊗ y[h] | h ∈τ∪ρ 2} s.t. x ⊗ y[h] = x[h�τ] ·C y[h�ρ], where ·C is the symbol
for multiplication in LC. Using the function F\, we proceed to define TRF in such
a way that given a model M on the frame F, M ϕ iff (C,+, ·, ·,≺,C) MTRF(ϕ),
for every ϕ ∈ L∗. Here the subscript in “ M” is an interpretation (added to the
structure (C,+, ·, ·,≺,C)) of the free variables in TRF(ϕ) according to the modelM. In
defining TRF as such, care is taken in order to verify that quantification over (finitely
many) variables in F](xτ), F](pτ) or F](aτ→ρ) in the input formula really corresponds
to quantification of xτ, pτ or aτ→ρ in the translated formula.

In the third step, we focus on the behaviour of TRF on the set of closed formulas.
Since the definition of frames ensures that the matrix representation of the interpreta-
tion of constant symbols only has simple complex numbers as entries, the translation
TRF(ϕ) of a closed formula ϕ of L∗ in a given frame F is actually a first-order sen-
tence of (C,+, ·, ·,≺,S), where S is the set of simple complex numbers (see page 46).
A consequence of this is that pure formulas of L are translated via TRF into first-order
sentences of (C,+, ·, ·,≺), because there are no constants in a pure formula. Therefore,
by Lemma 1 and the property of TRF by definition, we know that on a given frame F,
F ϕ iff (C,+, ·, ·,≺,S) TRF ◦ ∇(ϕ), for every closed formula ϕ ∈ L.

The final step is to reduce the first-order theory of (C,+, ·, ·,≺,S) to the first-order
theory of the reals. This is a simple translation, where each simple complex number is
mapped to a pair of definable real numbers, and addition and multiplication are mapped
according to complex arithmetic. Thus the decidability of our logic follows from these
reductions and Tarksi’s theorem. To summarize, we have the following decidability
result.

Theorem 1. The set {ϕ ∈ L | ϕ is closed and F ϕ} is decidable, for any given frame
F. Moreover, the set {ϕ ∈ L | ϕ is pure and ϕ} is decidable.
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6 Conclusions

This paper extends decidability results from (Dunn et al. 2005) and (Baltag et al. 2012)
to a language that is much more versatile in its ability to express quantum algorithms
and their correctness. Our techniques can be applied to a wider range of quantum
logics, giving a general recipe for showing decidability as long as definability of the
sentences and operators can be done along the lines presented in this paper. In ad-
dition we have described how to express the correctness of Quantum Teleportation,
the Quantum Search algorithm and the Deutsch-Josza algorithm; however this is not
an exhaustive list of algorithms whose correctness can be expressed in our language.
The Fourier transform can easily be expressed in our language and this may lead to a
wealth of further examples, notably those involving the hidden subgroup problem, such
as order-finding and factoring; however we leave these for future work. Other future
tasks involve finding a complete axiomatization and determining the complexity of the
decision procedure.
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Abstract
This paper presents a logic for reasoning about evidence and knowledge. Follow-
ing van Benthem and Pacuit’s semantic approach to evidence, we make use of
Nozick’s tracking theory to define the key concept sound enough evidence, based
on which we then provide an account of evidence-based knowledge. In our frame-
work the newly defined knowledge does not imply the evidence-based belief but
respects the epistemic closure. The related philosophical issues are also discussed.

1 Introduction

Example 1 (The Witness of The Murder). One day a man was murdered in a room.
The detective Sherlock took charge of this case. Later a man came to him and said
that he had witnessed the whole murder and recognized the murderer (Killer) because
the window of that room was opposite to that of his own room and at that time he was
looking out of the window

Scenario 1 without any instruments;

Scenario 2 with a telescope;

and happened to see the murder. With the help of polygraph, Sherlock was certain
about the honesty of the witness. But he still could not make the judgement that the
murderer was definitely the man identified by the witness. (To be continued.)
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The explanation for Sherlock’s caution is simple: He can only be sure that the
witness has the evidence to make him believe that Killer is the murderer but can not
be sure whether the evidence the witness has is sound enough to make him know that
Killer is the murderer.

In the above explanation, three notions, “evidence”, “belief” and “knowledge”, play
a crucial role. To understand it better, a further analysis of the relation between these
concepts is needed. Furthermore, we would like to answer the following question:
How does Sherlock make sure that the witness’s evidence is sound enough?

The studies concerning those three concepts can be found in many logical and
philosophical literature (e.g. Dubois and Prade 1992, Baltag et al. 2012; 2013,
Williamson 1997, Moser 1991). Different from all of them, in this paper we will fol-
low the analysis of the relationship between evidence and belief in (van Benthem and
Pacuit 2011), in which evidence structure was introduced to standard doxastic models
and a dynamic logic of evidence-based belief was proposed. We attempt to analyse
the relationship between evidence and knowledge and propose a new way of defining
knowledge based on evidence.

Then the main issue comes down to the problem how to find the right evidences
which underlie an agent’s knowledge. The observation is EK ⊆ EB, where EB and
EK represent the set of propositions directly supported by the agent’s evidences from
which she can derive her belief and knowledge respectively. In other words, while
the propositions in EB are only the propositions we have evidence for, the proposi-
tions in EK are the propositions we have sound enough evidence for. The definition of
knowledge in (Cornelisse 2011) suggests that the relation between EB and EK should
be EK = ET ⊆ EB, where ET denotes the set of true propositions in EB. Different from
(Cornelisse 2011), however, we claim that the relation should be EK ⊆ ET ⊆ EB, for
which we will argue philosophically and technically in this paper. Therefore it is piv-
otal to find a mechanism which can pick the propositions in EK from the propositions
in EB to define knowledge.

This paper presents a way in which EK can be picked out from EB, inspired by
Holliday (2012)’s formalization of Nozick (1981)’s tracking theory, and then defines
knowledge based on evidences. After the introduction of the logic of evidence-based
belief (van Benthem and Pacuit 2011) in Section 2 and the couternfactual belief model,
(Holliday 2012) in Section 3, Section 4 proposes a new logic, the logic of sound enough
evidence, in which we can express the concept “sound enough evidence for” and dis-
cuss the relation between it and another concept “evidence for”. Section 5 extends
the logic of sound enough evidence with a new operator KE (knowledge based on evi-
dences) to form the logic of evidence-based knowledge, and analyses the corresponding
logical and philosophical issues. Finally, some further research directions are listed.
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2 Logic of evidence-based belief

This section mainly introduces the logic of evidence-based belief (EBL) proposed by
van Benthem and Pacuit (2011) and discusses the intuition behind the semantic truth
definitions. The reader is referred to (van Benthem et al. 2012) for the axiomatization
of this logic.

Definition 2.1 (Evidence and belief language). Let At be a set of atomic propositions.
The evidence and belief language L is defined by

p | ¬ϕ | ϕ ∧ ϕ | Bϕ | �ϕ | Aϕ

where p ∈ At. The definition of ∨,→, and↔ is as usual in terms of ¬ and ∧.

The intended reading of �ϕ is “the agent has evidence that implies ϕ(the agent has
“evidence for” ϕ). And Bϕ says that “the agent believes that ϕ is true”. The universal
modality (Aϕ: “ϕ is true in all states”) is included for technical convenience.

The evidences accepted by the agent are not necessarily jointly consistent, although
every evidence itself should be consistent. In Example 1, Sherlock takes the witness’s
testimony into account and at the same time he can also take other evidences of Killer’s
absence into consideration, but he will never accept the evidence which is itself con-
tradictory. Therefore the “evidence for” operator is not a normal modal operator and
neighbourhood models are the natural choice for the semantics of EBL.

Definition 2.2 (Evidence models). An evidence model is a tupleM = 〈W, E,V〉 with
W a non-empty set of worlds, E ⊆ W ×℘(W) an evidence relation, and V : At→ ℘(W)
a valuation function. E(w) is written for the set {X | wEX}, capturing the evidences
possessed by the agent in w. Two constraints are imposed on the evidence sets:

• For each w ∈ W, ∅ < E(w) (evidence per se is never contradictory);

• For each w ∈ W,W ∈ E(w) (agents know their space).

Note that E(w) is not assumed to be closed under supersets and disjoint evidence
sets are allowed for, whose combination may lead to trouble. Thus to derive the belief
operator from the evidence model, the following definition is needed:

Definition 2.3. A w-scenario is a maximal collection C ⊆ E(w) that has the fip (i.e., the
finite intersection property: for each finite subfamily {X1, . . . , Xn} ⊆ C,

⋂
1≤i≤n Xi , ∅).

A collection is called a scenario if it is a w-scenario for some state w.

Truth of formulas in L is defined as follows:
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Definition 2.4 (Truth conditions). Given a model M = 〈W, E,V〉 with W be an evi-
dence model. Truth of a formula ϕ ∈ L is defined inductively as follows:

• M,w p iff w ∈ V(p) (p ∈ At)

• M,w ¬ϕ iffM,w 2 ϕ

• M,w ϕ ∧ ψ iffM,w ϕ andM,w ψ

• M,w �ϕ iff there is an X with wEX and for all v ∈ X,M, v ϕ

• M,w Bϕ iff for each w-scenario C ⊆ E(w) and for all v ∈
⋂

C,M, v ϕ

• M,w Aϕ iff for all v ∈ W,M,w ϕ.

The “Bϕ” item reflects the mechanism of the agent’s believing a proposition ϕ, that
is considering all the maximally consistent theories based on the evidences collected
at w to see whether the proposition ϕ is true in all these theories, where the maximally
consistent theory is represented by the w-scenario.

Now that the epistemic operator belief (B) can be derived from the evidence struc-
ture, then how about knowledge (K)? Because the propositions the agent has evidence
for at certain possible state can not only be true but also be false, the “evidence for”(�)
operator represents only the evidences based on which the agent can get belief but not
knowledge. For this reason it is necessary to find the set EK (the propositions we have
sound enough evidence for) based on which the agent get her knowledge. Although it
is obvious that EK ⊆ EB as mentioned in the Introduction, it is not obvious how to pick
them from EB. Before the way of picking is presented in Section 4, the origin of this
idea should be first introduced.

3 The counterfactual belief (CB) model

This section introduces Holliday (2012)’s formalization1 of Nozick (1981)’s tracking
theory which argued that sensitivity and adherence – the conjunction of which is track-
ing – are necessary and sufficient for one’s belief to constitute knowledge, where the
sensitivity and adherence are as follows:

• if ϕ were false, the agent would not believe ϕ (sensitivity);

• if ϕ were true, the agent would believe ϕ (adherence)

1cf. the Chapter 3 of (Nozick 1981) for the philosophical discussion.
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Definition 3.1 (CB model). A counterfactual belief model is a tuple
M = 〈W,D,6,V〉, where

1. w is a non-empty set;

2. D is a serial binary relation on w;

3. 6 assigns to each w ∈ W a binary relation 6w on some Ww ⊆ W;

(a) 6w is reflexive and transitive;

(b) for all v ∈ Ww,w 6w v;

4. V assigns to each p ∈ At a set V(p) ⊆ W.

D can be thought of as a doxastic accessibility, so that a belief operator B can be
defined in this structure as follows:

• M,w Bϕ iff for all v ∈ W such that wDv,M, v ϕ.

u 6w v can be seen as a relation of comparative similarity with regard to w, with
which the counterfactuals can be defined as in (Lewis 1973) And Condition 3(b) means
that the actual world is always a relevant alternative. In (Holliday 2012), Holliday
analyses different effects of other restrictions on the validities and assumes that 6w is
well-founded which does not affect the results of (Holliday 2012):

• 6w is well-founded iff for every non-empty S ⊆ Ww,Min6w (S ) , ∅

where Min6w (S ) = {v ∈ S ∩Ww | there is no u ∈ S such that u <w v}.
In such a setting, the truth of counterfactuals (�) can be defined:

• ϕ � ψ is true at a world w iff the closest ϕ-worlds to w according to 6w are
ψ-worlds

Thus, all the conditions sufficient and necessary for knowledge can be expressed in
the CB model:

Definition 3.2 (Truth conditions). Given a well-founded CB modelM = 〈W,D,6,V〉
with w ∈ W and ϕ in the epistemic-doxastic language, defineM,w ϕ as follows:

• M,w p iff w ∈ V(p) (p ∈ At)

• M,w ¬ϕ iffM,w 2 ϕ

• M,w ϕ ∧ ψ iffM,w ϕ andM,w ψ
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• M,w Bϕ iff for all v ∈ W such that wDv,M, v ϕ

• M,w Kϕ iffM,w Bϕ and (sensitivity)∀v ∈ Min6w (~ϕ�) : M, v ¬Bϕ and
(adherence)∀v ∈ Min6w (~ϕ�) :M, v Bϕ

where ~ϕ� = {v ∈ W | M, v ϕ} and ~ϕ� = {v ∈ W | v < ~ϕ�}.

The definition of knowledge here can be seen as a selection from one’s belief: what
kind of belief can be qualified as knowledge? And this selection is a counterfactual
test of the agent’s epistemic state to check whether the agent’s epistemic state meets
the requirement of knowledge. Recall our question at the beginning: what kind of
evidences for the agent’s belief can be qualified as evidences for the agent’s knowledge?
Then it is natural to think that this counterfactual test can be used again, not of the
agent’s epistemic state, but of the agent’s evidential state.

4 A logic of sound enough evidence (SEL)

We first continue the story in Example 1.
To make clear whether the witness knows that the Killer is the murderer (we assume
that in fact the Killer is the murderer), Sherlock took another suspect Keller who was
also the acquaintance of the witness to the room where the murder happened and stim-
ulated the crime scene including the time, position of the murderer, light and so on.
And he asked Keller to stand at the position of murderer and the witness to stand in
front of his window to identify who the guy at the position of murderer was

Scenario 1 without any instruments;

Scenario 2 with a telescope.

At last, the witness

Scenario 1 did not recognize who he was;

Scenario 2 recognized who he was.

Therefore Sherlock

Scenario 1 still could not conclude that Killer is the murderer;

Scenario 2 could conclude that the Killer is the murderer.

This section develops a framework of evidence logic, which can be used to explain
the difference between the two scenarios in the examples.
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4.1 Language of SEL

Definition 4.1 (Language of SEL). Let At be a set of atomic sentence symbols, the
language LE is defined by

ϕ0 := p | ¬ϕ0 | ϕ0 ∧ ϕ0 | �ϕ0

ϕ := ϕ0 | ¬ϕ | ϕ ∧ ϕ | ϕ� ϕ

where p ∈ At. Additional connectives are defined as usual and the duals of ϕ� ψ,�ϕ
are ϕ� ψ,^ϕ respectively.

� is the operator for counterfactual conditionals and ϕ� ψ can be read as “If it
were the case that ϕ, then it would be the case that ψ”.

In this logic, “sound evidence for” is a derived operator, defined as an abbreviation
by putting �Kϕ := ϕ ∧ (¬ϕ � �¬ϕ) ∧ (ϕ � (�ϕ ∧ ¬�¬ϕ)). The interpretation of
�Kϕ is that the agent has sound enough evidence for ϕ, while �ϕ says that the agent
has evidence for ϕ.

For simplicity in this version of SEL and some philosophical reason2, evidence
for counterfactual conditionals is not taken into consideration. It is for this reason that
only ϕ0 formulas can appear inside “evidence for” operator. And we write the language
without operator � as L0.

4.2 Counterfactual evidence model

Recall the last paragraph of Section 3. We want to execute the counterfactual test for
the agent’s evidences. To capture such test in the evidence model, it is necessary to
introduce the relation 6, by which the relevance between different possible worlds can
be compared in the new introduced model:

Definition 4.2 (Truth conditions). Given a model M = 〈W, E,6〉 and state w ∈ W,
truth of a formula ϕ ∈ LE is defined inductively as follows:

• M,w p iff w ∈ V(p) (p ∈ At)

• M,w ¬ϕ iffM,w 2 ϕ

• M,w ϕ ∧ ψ iffM,w ϕ andM,w ψ

• M,w ϕ� ψ iff ∀v ∈ Min6w (~ϕ�) :M,w ψ

2The counterfactual conditionals, relating to the relevance ordering of the possible worlds, seems totally
different from the fact which can be known by us through empirical sense (evidence) and inference.
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• M,w �ϕ iff there is an X ∈ E(w) and for all v ∈ X,M, v ϕ and ϕ ∈ L0

•

∃X ⊆ ~ϕ� : X ∈ E(w) & ∀Y ⊆ ~ϕ� : Y < E(w),
M,w �Kϕ iff ∀v ∈ Min6w (~ϕ�)(∃X ⊆ ~ϕ� : X ∈ E(v)),

∀v ∈ Min6w (~ϕ�)(∃X ⊆ ~ϕ� : X ∈ E(v)) & ∀Y ⊆ ~ϕ� : Y < E(v))

To avoid some obvious counterexamples, we revise Nozick’s tracking theory3: the
agent has sound enough evidence for ϕ if and if only in the actual state where ϕ is true,
she has evidence for ϕ and has no evidence for ¬ϕ, at the same time, she would have
evidence for ¬ϕ in the most similar counterfactual states, and would have evidence for
ϕ and accept no evidence for ¬ϕ in the most similar possible states where ϕ was the
case. We can also call such evidential state truth-tracking evidential state.

Now it can be explained why Sherlock made different judgements in different sce-
narios. The difference between the two scenarios can be shown in the CE modelsM1
andM2 (see Figure 1 and Figure 2) where Killer is the murderer (i) in world w, Keller
is the murderer (e) in world v, Killer and Keller are both the murderer (i ∧ e) in world
u and Killer and Keller are neither the murderer in world t:

{w} W

w
E

``

E

>>

�w v
E

__

<w u <w t

Figure 1: CE model for Scenario 1: M1

{w} W {v}

w
E

``

E

>>

�w v
E

__

E

??

<w u <w t

Figure 2: CE model for Scenario 2: M2

3We can also define a weak version of �Kϕ with only the second condition different: ∀v ∈

Min6w (~ϕ�)(∀X ⊆ ~ϕ� : X < E(v)). However, according to this weak version, the evidential state of
witness in Scenario 1 also meet the requirements of knowledge, which is counterintuitive.

We do not mean here that our definition of �Kϕ is the unique possibility without any counterexample.
Nonetheless, concerning the example in this paper and other similar situations, such a definition is accept-
able. Maybe different definitions of �Kϕ can suit different situations so that the comparison between different
definitions is necessary. But we do not touch this issue for now.
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It is easy to verify that M2,w �K i but M1,w ¬�K i, which means that from
the perspective of Sherlock, the witness in Scenario 2 is in the truth-tracking evidential
state but the witness in Scenario 1 is not. And the following fact tells us why Sherlock
made different judgements in the different scenarios:

Fact 4.1. In the class of CE models, we have the following validity:4

• �Kϕ→ ϕ

Proof. Let M be any counterfactual evidence model and w any state in M such that
M,w �Kϕ. We need to show that (M,w) ϕ. Suppose M,w ¬ϕ for contra-
diction. As w ∈ Min6w (~ϕ�) (according to the assumption and Definition 3.1 3(b)), it
follows that (M,w) �¬ϕ by the definition of �Kϕ. At the same time, we can get
M,w ¬�¬ϕ by the definition of �Kϕ. Contradiction. �

With this fact we can now prove the claim made in the Introduction:

Remark 1. Given any CE model M = 〈W, E,6,V〉 and any w ∈ W, we can
represent the following three expressions: “the agent has evidence for ϕ”, “the
agent has true evidence for ϕ” and “the agent has sound enough evidence for ϕ”
as M,w �ϕ,M,w �ϕ ∧ ϕ and M,w �Kϕ respectively. Thus we can de-
note EB, ET , EK stated in Section 1 as EB(w) = {ϕ | M,w �ϕ}, ET (w) = {ϕ |
M,w �ϕ ∧ ϕ} and EK(w) = {ϕ | M,w �Kϕ}. By the fact �Kϕ → �ϕ ∧ ϕ
and �ϕ ∧ ϕ→ �ϕ, we have EK ⊆ ET ⊆ EB.

4.3 Relationship between �ϕ and �Kϕ

According to the truth condition of �, � and �K , the following fact follows immedi-
ately:

Fact 4.2.
ϕ ∧ (¬ϕ� �¬ϕ) ∧ (ϕ� (�ϕ ∧ ¬�¬ϕ))↔ �Kϕ

Proof. From right to left, it is trivial, noticing the fact �Kϕ→ ϕ. From left to right,
noticing the fact w ∈ Min6w (~ϕ�), it is also obvious. �

The fact suggests that the two operators � and �K are closely related. It seems
that �K(ϕ ∧ ψ) → �Kϕ is a validity like the validity for �: �(ϕ ∧ ψ) → �ϕ. But it is
not valid in fact. Moreover, there is no any evidential closure.5 Because the operator

4Without specification, in what follows all the validities we present are validities in the class of CE
models.

5This concept is similar to the concept “epistemic closure”.
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�K describes only our evidential state, in which there is no room for inference and
reasoning.

However, we can still ask: what condition on earth do we need to ensure some
evidential closure for �K? The following theorem gives the answer.6

Theorem 1 (Closure theorem). Let

χn := ϕ0 ∧ �Kϕ1 ∧ . . . ∧ �Kϕn → �Kψ1 ∨ . . . ∨ �Kψm

be a formula where ϕ1, . . . , ϕn and ψ1, . . . , ψm are all propositional formulae and ϕ0 is
a propositional conjunction. If∧

ϕ∈Θ

ϕ↔ ψ⇒ (
∧
ϕ∈Θ

�ϕ↔ �ψ) ∧ (
∨
ϕ∈Θ

�¬ϕ↔ �¬ψ) (1)

where Θ can be any set of formulae, then χn is valid iff

(a) ϕ0 ∧ . . . ∧ ϕn → ⊥ is valid or

(b) for some Φ ⊆ {ϕ1, . . . , ϕn} and ψ ∈ {ψ1, . . . , ψm},
∧
ϕ∈Φ ϕ↔ ψ is valid

Proof. The proof is similar to the proof of Theorem 5.2 in (Holiday 2013). The details
can be found in Appendix A. �

4.4 Axiomatization of the evidence logic

Combining the axioms for � (see Board 2004, p. 54) and the axioms for � (see
van Benthem et al. 2012), the axiom system CES for EL is the following:

taut: all propositional tautologies

�-1 ϕ� ϕ

�-2 ((ϕ� ψ) ∧ (ϕ� (ψ→ χ)))→ (ϕ� χ)

�-3 (ϕ� ψ)→ (((ϕ ∧ ψ) � χ)↔ (ϕ� χ))

�-4 ¬(ϕ� ¬ψ)→ (((ϕ ∧ ψ� χ)↔ (ϕ� (ψ→ χ)))

�-5 ϕ ∧ (ϕ� ψ)→ ψ

>- and non ⊥-evidence: �> ∧ ¬�⊥
6This theorem is inspired by Theorem 2.1 in (Holliday 2012).
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�-monotonicity:
ϕ→ ψ

�ϕ→ �ψ

MP: Modus Ponens

LE: From ϕ↔ ψ infer (ϕ� χ)↔ (ψ� χ)

N©: Necessitation for© = �, ϕ�

Theorem 2. The evidence logic is sound and weakly complete for the class of counter-
factual evidence models.

Proof. The proof of weak completeness is somewhat similar to the proof system in
(Board 2004, Proof of Theorem 2, p.77), but with several key differences. The first
difference is that the subformulas of ϕ may now include formulas of the form �ψ, from
which we construct maximally consistent sets (MSCs). Besides, we stipulate that �>
and ¬�⊥ are both in the MSC. The second difference is the definition of “6” in the
canonical model. The third difference is that we must construct a evidence relation
in the canonical model for EL, which can be referred to (van Benthem et al. 2012).
The detailed can be found in Appendix B. Also the proof of soundness can be found
there. �

5 A logic of evidence-based knowledge

Up to now, we only talk about the agent’s evidential state, and say nothing about one’s
epistemic state. In this section we try to define the agent’s knowledge based on her
evidence, or more exactly on EK and discuss the relation between these two kind of
states. We simply add operator KE to the language LE to form the new language of
EKL LEK .

Definition 5.1 (Language of EKL). Let At be a set of atomic sentence symbols, the
language LE K is defined by

ϕ0 := p | ¬ϕ0 | ϕ0 ∧ ϕ0 | �ϕ0

ϕ := ϕ0 | ¬ϕ | ϕ ∧ ϕ | KEϕ0 | ϕ� ϕ

where p ∈ At.

The new operator KE is for “evidence-based knowledge” and KEϕ can be read “the
agent knows ϕ based on her evidence”.
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We can define knowledge as in Definition 3.2 (we call it CB-knowledge). But
besides this definition, in the counterfactual evidence model there can be another
evidence-based definition of knowledge KE (we call it CE-knowledge).

Definition 5.2 (Truth condition for LEK in a CE model). Given a model
M = 〈W, E,6,V〉 and state w ∈ W, truth of a formula ϕ ∈ L is defined inductively,
all the cases are the same as in Definition 4.2 except the case for operator KE :

• M,w KEϕ iff {ψ | M,w �Kψ} ϕ.

Collecting all the propositions supported directly in the truth-tracking evidential
state, we form our knowledge based on them (EK) by inference and reasoning.

Fact 5.1. In the class of CE models, �Kϕ→ KEϕ is valid but KEϕ→ �Kϕ is not valid.

In addition, our knowledge satisfies the following properties:

Fact 5.2. In the class of CE models, we have the following validity:

• KEϕ→ ϕ

• KEϕ→ (KE(ϕ→ ψ)→ KEψ)

Proof. We only prove the first one, as the second is trivial.
Let M be any counterfactual evidence model and w any state in M such that

M,w KEϕ. We need to show that ϕ also holds on w. By the definition of
KEϕ, {ψ | M,w �Kψ} ϕ. By Fact 4.1, for any ψ ∈ {ψ | M,w �Kψ}, (M,w) ψ.
ThusM,w ϕ. �

The first item of Fact 5.2 is of no doubt a required property of knowledge. But the
second one seems controversial. We will discuss this issue in the next subsection.

As for the axiomatization and completeness of EKL for the class of counterfactual
evidence models, we leave it as an open question for the time being and focus on the
philosophical issues brought about by the evidence-based knowledge in this paper.

5.1 Relationship between B,�K and KE

Because the CE model is in fact a simple extension of the evidence model, the operators
belief (B) can be defined in it as in the evidence model. And because of the existence
of 6 in CE models, and the definability of the belief operator, the CB-knowledge can
also be defined in the CE models as in the CB models. Therefore this section discusses
some philosophical issue relating to relationship between these operators (B,�K ,KE)
in the CE models.
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Knowledge without belief

In both epistemology and epistemic logic, the dominant opinion on the relationship
between belief and knowledge is that belief is a necessary condition for knowledge.
However, the definition of CE-knowledge in Section 4.1 does not follow such a tradi-
tion:

Fact 5.3. 2 KEϕ→ Bϕ

Proof. We construct a counterfactual evidence model M = 〈W, E,6〉 where W =

{w, v, u, t},V(p) = {w, v},V(q) = {u, t} (see Figure 3).
It is easy to check that (M,w) �K p. It follows that (M,w) KE p from the fact that

{w} {v, t} W {w, u} {v, u} {w, u} W {w}

w
E

bb

E

OO

E

==

�w v
E

cc

E
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E

::

<w u
E
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E

OO

E

<<

<w t
E

bb

E

OO

p, q ¬p,¬q ¬p, q p,¬q

Figure 3: countermodel for KEϕ→ Bϕ

(M,w) �K p → KE p. However, we can also check that (M,w) ¬Bp according to
the Definition 2.4. �

To elucidate this fact better, we make use of an example from (Lewis 1996):

I even allow knowledge without belief, as in the case of the timid student
who knows the answer but has no confidence that he has it right, and so
does not believe what he knows. (p.556)

Let p be the answer to the question mentioned in the example (we denote it as A ) and
q be the proposition “The student has the ability to solve the problem like A”. Then
the model constructed in the above model characterizes the example substantially: The
student in Lewis’s example has an evidence for the answer ({w} ∈ E(w)), and has sound
enough evidence for the answer ((M,w) �K p). Thus, the student knows the answer
((M,w) KE p). However, at the same time, he also has evidence for his inability
to solve the question like A ({v, t} ∈ E(w)), which contradicts his another evidence
({w} ∈ E(w)). Therefore, he does not believe what he knows ((M,w) ¬Bp).

In some sense, our definition of knowledge can be seen as one explanation of the
so-called “knowledge without belief”.
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The epistemic closure and the gap between �K and KE

As mentioned in the end of the last subsection, the second item of Fact 5.2 is con-
troversial. Many epistemologists deny that this principle holds (Dreske 1970; 1981,
Nozick 1981). Because the closure under known implication can be made use of by
the sceptic to reach his conclusion about the unreliability of our knowledge. To save
the epistemic closure and avoid slipping into scepticism at the same time, the logics
proposed in this paper suggests to distinguish two “sources of knowledge”–externally
situated evidence (sound enough evidence) and internally situated reasons (inference
and reasoning) so that the reliability of knowledge is ensured by the sound enough
evidence and the epistemic closure is kept because of the internally situated reasons.

Such defence for epistemic closure is similar to (Klein.P. 1995)’s theory, which
distinguishes two “sources of justification”. And our above defence can be seen as an
analogous defence of closure for knowledge except that we require externally situated
evidence to be sound enough. However, Klein’s theory is blamed for the problem of
knowledge inflation by Holliday in Section 4.3 of (Holliday 2012).7 Holliday points out
that there is a gap between the knowledge gotten through externally situated evidence
and the knowledge gotten through internally situated reasons, because it can not be
explained why an uneliminated possibility v with respect to all propositions, including
the P that gives the internally situated reasons, after the reasons, however, will become
eliminated with respect to any Q entailed by P, including P itself. Then does our
defence also suffer from the similar problem? For KE , once we know P, we get it from
sound enough evidence or by inference. We know it without any uncertainty and there
is not any uneliminated possibility.8

However, we do not deny the existence of the gap here. The logics proposed in
this paper suggest that the gap does not locate between the knowledge gotten through
externally situated evidence and the knowledge gotten through internally situated rea-
sons, but between the evidences and the knowledge: how we can get knowledge from
evidence and how we can step from evidential state to epistemic state? In a sense,
this question is similar to the problem Immanuel Kant dedicated to solve in his The
Critique of Pure Reason: How are synthetic a priori judgements possible? The further
analysis of this philosophical problem is beyond the scope of this paper. It needs to be
stressed here only that in such perspective the epistemic closure can be saved, because
the theory of truth tracking (the source of closure failure) is used to decide the external
resource of knowledge (EK), but not the knowledge itself. The closure failure occurs
in the evidential state but not in the epistemic state.

7We refer the reader to Section 4.3 of (Holliday 2012) for the details, and only draw the outline here.
8All the knowledge we discuss here is implicit knowledge and it suffers from the omniscience problem.

But that is another story.
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6 Related work, conclusion and future work

In the logic of evidence-based knowledge, the definition of knowledge (belief) involves
a philosophical assumption that we can derive knowledge (belief) from evidence and
evidence is priori to knowledge (belief). Baltag et al. (2012) and Baltag et al. (2013)
share such an assumption.9 Nevertheless, they adopt a totally different approach to
analyse those concepts. Combining an innovative modification of the Fitting semantics
(Fitting 2005) for Artemov’s Justification Logic (Artemov 2008) and ideas of belief re-
vision awareness logics (van Benthem and Velazquez-Quesada 2010) and (Baltag and
Smets 2008), Baltag et al. (2012) introduces many evidence-related notions like “ac-
ceptance”, “admissibility” and “availability”, and characterizes knowledge and belief
in terms of the evidential reasoning that justifies those attitudes. Furthermore, Baltag
et al. (2013) adopts the notion of “conclusive evidence” to study evidence-based no-
tions. Though very different from our ideas, those works are inspiring. We think that
the tracking theory can also be applied to Artemov’s justification logic, and the logic of
evidence-based belief (van Benthem and Pacuit 2011) could provide a direct, semantic
approach to evidence that may have natural connections with the work of Baltag et al.
(2012) and Baltag et al. (2013).

To sum up, the main aim of this paper is to define knowledge based on evidence.
For this purpose, we introduced a logic of sound enough evidence and extended it to
the logic of evidence-based knowledge. The newly defined knowledge operator has
some interesting properties. Firstly, it does not imply belief. Secondly, although its
definition depends on the use of the theory of truth tracking (which is the source of clo-
sure failure of CB-knowledge in Section 3), CE-knowledge ensures epistemic closure.
The distinction between the evidential state and the epistemic state can well explain
the difference between CB-knowledge and CE-knowledge. And such a distinction also
brings about some further philosophical problems, like the gap mentioned above.

For future work, we would like to study the other resource of knowledge –
“inference”, which was mentioned a lot in this paper and moreover, it is closely related
to the problem of omniscience. And we also want to explore the multi-agent situation
and the dynamics of the evidence-based knowledge.
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Appendix

A Proof of Theorem 1

From right to left

Lemma 1. If the condition (b) of Theorem 1 holds and
⋂
ϕ∈Φ Min6w (~ϕ�) , ∅, then for

any pointed CE modelM,w

Min6w (~ψ�) ⊆
⋃
ϕ∈Φ

Min6w (~ϕ�)

Proof. See Lemma 5.10 in (Holiday 2013). �

With this lemma, we can prove the right-to-left directions of Theorem 1.

Proof. If (a) holds, then it is immediate that χn,m is valid, since its antecedent is always
false. For (b), we assume for a pointed CE modelM,w that

M,w
∧
ϕ∈Φ

�Kϕ (2)

then by the truth definition (Def. 3.2),

M,w
∧
ϕ∈Φ

(�ϕ ∧ ¬�¬ϕ), (3)
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⋃
ϕ∈Φ

Min6w (~ϕ�) ⊆
⋃
ϕ∈Φ

~�¬ϕ�
⋂
ϕ∈Φ

Min6w (~ϕ�) ⊆
⋂
ϕ∈Φ

(~�ϕ� ∩ ~�¬ϕ�) (4)

On the other hand it follows from (b) and (1) in Theorem 1,⋂
ϕ∈Φ

~�ϕ� = ~�ψ�,
⋃
ϕ∈Φ

~�ϕ� = ~�ψ�, (5)⋃
ϕ∈Φ

~�¬ϕ� = ~�¬ψ�,
⋂
ϕ∈Φ

~�¬ϕ� = ~�¬ψ� (6)

By (8) and (9), (5) implies M,w �ψ ∧ ¬�¬ψ. By (b), Lemma 1(a) and (9),
(7) implies Min6w (~ψ�) ⊆ ~�¬ψ�. ThenM,w ψ (suppose not, w ∈ Min6w (~ψ�) ⊆
~�¬ψ�, then we haveM,w ¬�ψ, which contradictsM,w �ψ ∧ ¬�¬ψ).

It follows that Min6w (~ψ�) =
⋂
ϕ∈Φ Min6w (~ϕ�). Then by (b), (8) and (9), (7)

implies Min6w (~ψ�) ⊆ ~�ψ ∧ ¬�¬ψ�.
Therefore,M,w �Kψ, givenM,w

∧
ϕ∈Φ �Kϕ �

From left to right

Proof. Suppose that neither (a) nor (b) holds for χn,m, we will prove there is a pointed
CE modelM,w such thatM,w 2 χn,m.

For each k 6 m, let S k = {i | 0 6 i 6 n and ψk → ϕi}. Since (b) does not hold for
χn,m, there must be

2
∧
i∈S k

ϕi → ψk (7)

ConstructM = 〈W, E,6〉 as follows (see Figure 4):

W = {w} ∪ {vk | k 6 m} ∪ {u};

E = 〈w, {W, {w}}〉, 〈vk, {W, {u}}〉, 〈u, {W}}〉;

6w= {〈w,w〉} ∪
⋃

k6m{〈w, vk〉} ∪
⋃

k, j6m{〈vk, v j〉};

For x ∈ W \ {w},6x is any total preorder on any Wx ⊆ W with x ∈ Min6x (W);

V is any valuation function on W such that M,w ϕ0 ∧ . . . ∧ ϕn, and for all k 6
m,M, vk

∧
i∈S k

ϕi ∧ ¬ψk andM, u
∧
ϕ∈Φ ¬ϕ ∧

∧
ψ∈Ψ ψ.

Then it is easy to check thatM,w 2 �Kψk for all k 6 m, whileM,w
∧
ϕ∈Φ �Kϕ.

�
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Figure 4: countermodel for χn,m

B Proof of Theorem 2

Soundness

The soundness of most axioms and rules can be referred to (van Benthem et al.
2012) and (Board 2004). Here we only prove the case of �-4 and the case of �-5.

�-4: We must show that for any counterfactual evidence modelM and any state
w ∈ M, (M,w) ¬(ϕ � ¬ψ) → (((ϕ ∧ ψ � χ) ↔ (ϕ � (ψ → χ))). Assume
M,w ¬(ϕ � ¬ψ), then Min6w (~ϕ� ∩ Ww) ∩ ~ψ� , ∅. By the transitivity and
totality of 6w, we have Min6w (~ϕ�∩ ~ψ�∩Ww) = Min6w (~ϕ�∩Ww)∩ ~ψ�. Therefore
∀y ∈ Min6w (~ϕ�∩~ψ�∩Ww), (M,w) χ iff ∀y ∈ Min6w (~ϕ�∩Ww)∩~ψ�, (M,w) χ.
It follows immediately that ((ϕ ∧ ψ� χ)↔ (ϕ� (ψ→ χ)).

�-5: We must show that (M,w) ϕ ∧ (ϕ � ψ) → ψ. Assume that
(M,w) ϕ ∧ (ϕ� ψ). By the Definition 3.1 3(b) and w ∈ ~ϕ�,w ∈ Min6w (~ϕ�). By
(M,w) ϕ� ψ,w ∈ ~ψ�.

Completeness

Following the standard strategy, we show that every CEKS -consistent formula in LEK

is satisfiable with respect to a counterfactual evidence model. To produce the satisfying
model we firstly construct maximally consistent sets (MCSs) from the subformulas of
ϕ.

Let S ub(ϕ) consist of all subformulas of ϕ: ψ ∈ S ub(ϕ) if either (a) ψ = ϕ, or (b)
ϕ is of the form ¬ϕ′, ϕ′ ∧ ϕ′′, ϕ′ � ϕ′′, or �ϕ′, and ψ ∈ S ub(ϕ′) or ψ ∈ sub(ϕ′′);
let S ub+(ϕ) be the smallest set such that (a) if ψ ∈ S ub(ϕ) then ψ ∈ S ub+(ϕ); (b) if
ψ, χ ∈ S ub+(ϕ), then ¬ψ, ψ ∧ χ ∈ S ub+(ϕ).
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Let S ub++(ϕ) be the set of all formulas of S ub+(ϕ) and all formulas of the form
χ � ψ, where ψ, χ ∈ S ub+(ϕ); and let S ub++

neg(ϕ) consist of (a) all the formulas in
S ub++(ϕ) and their negations; (b) �> and ¬�⊥. Let Con(ϕ) be the set of maximal
CEKS-consistent subsets of S ub++

neg(ϕ).
Before the construction of the canonical model, we need some notations and defi-

nitions:

Notation. Γ
©
ϕ = {ψ | ©ψ ∈ Γϕ : © = χ�,�,KE}

For the evidence relation E in the canonical model for EKL (see van Benthem
et al. 2012, Definition 4.3 and 4.4 (iii), p.10.), we need to define evidence sets on the
canonical model:

Definition 1. Given a MCS Γ with �α ∈ Γ, we define the α-neighborhood of Γ as

Nα(Γ) = {∆ ∈ Con(ϕ) | α ∈ ∆}

For 6Γ in the canonical model, because of the difference of our definition of Min6Γ

from Board’s, we use Board’s definition as a pre-relation RΓ:

Definition 2. ∆RΓΘ if there is some ψ ∈ S ub+(ϕ) ∩ ∆ ∩ Θ such that Γψ� ⊆ ∆

Then let WΓ = {∆ | ∆RΓΘ}.
Now we are ready to construct the canonical model Mϕ

Definition 3. Let Mϕ = 〈W, E,6,V〉 where

1. W = Con(ϕ)

2. E(Γ) = {Nα(Γ) | �α ∈ Γ}

3. ∆ 6Γ Θ iff ∆RΓΘ and Θ ∈ WΓ

4. For each p ∈ At ∩ Γ,Γ ∈ V(p) iff p ∈ Γ.

Next we prove the truth lemma:

Lemma 2. Truth Lemma For every ψ ∈ S ub++
neg(ϕ) and every Γ ∈ Con(ϕ),

ψ ∈ Γ⇔ (Mϕ,Γ) ψ
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Proof. The proof is by induction on the structure of ψ. The only interesting cases are
the modality � and �.

For the case of �, we only prove that right-to-left direction, and the converse is
totally the same as that in (van Benthem et al. 2012) (Proof of Proposition 4.11, p.11).
Assume that (Mϕ,Γ) �ψ. Then there exist an evidence X = Nα(Γ) ∈ E(Γ) such
that for all ∆ ∈ X, (Mϕ,∆) ψ. By the inductive hypothesis, for all ∆ ∈ X, ψ ∈ ∆.
By the definition of Nα(Γ), for all ∆ ∈ W, if α ∈ ∆, ψ ∈ ∆. It follows that for all
∆ ∈ W, α → ψ ∈ ∆. Thus, α → ψ ∈ Γ. By �-monotonicity and �α ∈ Γ, �ψ ∈ Γ, as
desired.

For the case of �, although there is no essential difference between the proof of
(Board 2004) for the case of Bχζ and our proof, there are some modifications made by
us. For clearness, we write down the details of the modified part.

Assume that ψ ∈ Γ where ψ is of the form χ � ζ. It follows immediately that
ζ ∈ Γχ�. Consider the set Min6Γ

(~χ� ∩WΓ). (Notice the difference between WΓ and
WΓ). If this set is empty, then we have (Mϕ,Γ) χ � ζ from the truth condition of
�.

Suppose then there is some ∆ ∈ Min6Γ
(~χ�∩WΓ). It is easy to prove that WΓ ⊆ WΓ.

Therefore there is some ξ ∈ S ub+(ϕ)∩∆ such that Γξ� ⊆ ∆. We will prove that ζ ∈ ∆.
Since Γξ� ⊆ ∆,Γξ� must be a CES-consistent set, Γχ� is a CES-consistent set
too. Suppose not: then we have some finite set of formulas F = {ϕ1, . . . , ϕK} ⊆ Γχ�

satisfying CES ` ¬(ϕ1 ∧ . . . ∧ ϕk). Letting η denote (ϕ1, . . . , ϕk), we have:

1. CES ` ¬η Assumption
2. CES ` η→ ξ 1,Taut,MP
3. CES ` (χ� η)→ (χ� ξ) 2,RE,�-2,Taut,MP
4. CES ` (χ� ξ)→ (((χ ∧ ξ) � η)↔ (χ� η)) �-3
5. CES ` (χ� η)→ ((χ ∧ ξ) � η) 3,4,Taut,MP
6. CES ` ¬(ξ� ¬χ)→ (((ξ ∧ χ) � η)↔ (ξ� (χ→ η))) �-4
7. CES ` ¬(ξ� ¬χ)→ (((χ ∧ ξ) � η)↔ (ξ� (χ→ η))) 6,LE,Taut,MP
8. CES ` (χ→ η)→ ¬χ 1,Taut,MP
9. CES ` (ξ� χ)→ ((χ→ η)→ (ξ� ¬χ)) 8,N,�-2,Taut,MP
10. CES ` ¬(ξ� ¬χ) ∧ (χ� η)→ (ξ� ¬χ) 5,7,9,Taut,MP

It follows that χ ∈ ∆ from the hypothesis of induction and ∆ ∈ ~χ�. It implies that
¬(ξ � ¬χ) ∈ Γ since ξ � ¬χ ∈ S ub++(ϕ). For η ∈ Γχ�, χ � η ∈ Γ. By line 10,
ξ � ¬χ ∈ Γ. It follows that ¬χ ∈ Γξ� ⊆ ∆, contradicting the fact χ ∈ ∆. So Γχ� is
a CES-consistent set and it has a maximal CES-consistent extension Λ.

For the left part of the proof, we refer the reader to (Board 2004)’s proof. �

We have shown that the truth lemma holds for all formulas ψ ∈ S ub(ϕ). To com-
plete the proof of completeness, we need to show that Mϕ really is a counterfactual ev-
idence structure. Here we only prove that for all Γ ∈ W,6Γ satisfies the condition “for



78 The Logic of Evidence-Based Knowledge

all ∆ ∈ WΓ,Γ 6Γ ∆”. The proof of well-foundness, transitivity and totality of 6Γ for all
Γ can be found in (Board 2004). And It is easy to see that “for all Γ ∈ W,W ∈ E(Γ) and
∅ < E(Γ)” follows from our stipulation that �>,¬�⊥ are both in all the MCSs and the
definition of E(Γ).

Lemma 3. For all ∆ ∈ WΓ,Γ 6Γ ∆

Proof. For any ∆ ∈ W, let ψ ∈ S ub+(ϕ) ∩ Γ ∩ ∆. For any χ ∈ Γψ�, χ ∈ Γ, since
ψ ∧ (ψ � χ) → χ ∈ Γ by �-5. Therefore, Γψ� ⊆ Γ, which means that Γ 6Γ ∆ by
the definition of 6Γ. �

With all above work, the evidence logic’s weak-completeness are proved for the
class of counterfactual evidence models.
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Abstract
The main aim of the present paper is to use a proof system for hybrid modal logic
to formalize what are called false-belief tasks in cognitive psychology, thereby in-
vestigating the interplay between cognition and logical reasoning about belief. We
consider two different versions of the Smarties task, involving respectively a shift
of perspective to another person and to another time. Our formalizations disclose
that despite this difference, the two versions of the Smarties task have exactly the
same underlying logical structure. We also consider the Sally-Anne task, having a
somewhat more complicated logical structure, presupposing a “principle of inertia”
saying that a belief is preserved over time, unless there is belief to the contrary.1

1 Introduction

In the area of cognitive psychology there is a reasoning task called the Smarties task.
The following is one version of the Smarties task.

A child is shown a Smarties tube where unbeknownst to the child the
Smarties have been replaced by pencils. The child is asked: “What do you
think is inside the tube?” The child answers “Smarties!” The tube is then
shown to contain pencils only. The child is then asked: “If your mother

1The present paper is a reformatted version of the paper (Braüner 2013) originally published in Proceed-
ings of Fourteenth Conference on Theoretical Aspects of Rationality and Knowledge (TARK 2013). Beside
reformatting, a couple of minor errors have been corrected.
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comes into the room and we show this tube to her, what will she think is
inside?”

It is well-known from experiments that most childred above the age of four correctly
say “Smarties” (thereby attributing a false belief to the mother) whereas younger chil-
dren say “Pencils” (what they know is inside the tube). For autistic2 children the cutoff

age is higher than four years, which is one reason to the interest in the Smarties task.
The Smarties task is one out of a family of reasoning tasks called false-belief tasks

showing the same pattern, that most children above four answer correctly, but autistic
children have to be older. This was first observed in the paper (Baron-Cohen et al.
1985) in connection with another false-belief task called the Sally-Anne task. Starting
with the authors of that paper, many researchers in cognitive psychology have argued
that there is a link between autism and a lack of what is called theory of mind, which is
a capacity to imagine other people’s mental states, for example their beliefs. For a very
general formulation of the theory of mind deficit hypothesis of autism, see the book
(Baron-Cohen 1995).

Giving a correct answer to the Smarties task involves a shift of perspective to an-
other person, namely the mother. You have to put yourself in another person’s shoes, so
to speak. Since the capacity to take another perspective is a precondition for figuring
out the correct answer to the Smarties task and other false-belief tasks, the fact that
autistic children have a higher cutoff age is taken to support the claim that autists have
a limited or delayed theory of mind. For a critical overview of these arguments, see the
book (Stenning and van Lambalgen 2008) by Keith Stenning and Michiel van Lambal-
gen. The books (Stenning and van Lambalgen 2008) and (Baron-Cohen 1995) not only
consider theory of mind at a cognitive level, such as in connection with false-belief
tasks, but they also discuss it from a biological point of view.

In a range of works van Lambalgen and co-authors have given a detailed logical
analysis (but not a full formalization) of the reasoning taking place in the Smarties
task and other false-belief tasks in terms of closed-world reasoning as used in non-
monotonic logics, see in particular (Stenning and van Lambalgen 2008). The analysis
of the Smarties task of (Stenning and van Lambalgen 2008) (in Subsection 9.4.4) makes
use of a modality B for belief satisfying two standard modal principles.3 The first prin-
ciple is B(ϕ → ψ) → (Bϕ → Bψ) (principle (9.5) at page 251 in Stenning and van

2Autism is a psychiatric disorder with the following three diagnostic criteria: 1. Impairment in social
interaction. 2. Impairment in communication. 3. Restricted repetitive and stereotyped patterns of behavior,
interests, and activities. For details, see Diagnostic and Statistical Manual of Mental Disorders, 4th Edition
(DSM-IV), published by the American Psychiatric Association.

3Strictly speaking, the modality B in (Stenning and van Lambalgen 2008) is not formalized in terms of
modal logic, but in terms of what is called event calculus, where B is a predicate that can take formulas as
arguments.



Braüner 81

Lambalgen 2008). The second principle is the rule called necessitation, that is, from ϕ
derive Bϕ (this principle is not mentioned explicitly in (Stenning and van Lambalgen
2008), but is implicit in the analysis given at the bottom of page 256). These two prin-
ciples together imply that belief is closed under logical consequence, that is, Bψ can be
derived from ϕ → ψ together with Bϕ, which at least for human agents is implausible
(when the modal operator stands for knowledge, this is called logical omniscience).

In the present paper we give a logical analysis of the perspective shift required to
give a correct answer to the Smarties and Sally-Anne tasks, and we demonstrate that
these tasks can be fully formalized in a hybrid-logical proof system not assuming prin-
ciples implying logical omniscience, namely the natural deduction system described in
Chapter 4 of the book (Braüner 2011), and the paper (Braüner 2004) as well. Beside
not suffering from logical omniscience, why is a natural deduction system for hybrid
modal logic appropriate to this end?

• The subject of proof-theory is the notion of proof and formal, that is, symbolic,
systems for representing proofs. Formal proofs built according to the rules of
proof systems can be used to represent—describe the structure of—mathematical
arguments as well as arguments in everyday human practice. Beside giving a way
to distinguish logically correct arguments from incorrect ones, proof systems
also give a number of ways to characterize the structure of arguments. Natural
deduction style proofs are meant to formalize the way human beings actually
reason, so natural deduction is an obvious candidate when looking for a proof
system to formalize the Smarties task in.

• In the standard Kripke semantics for modal logic, the truth-value of a formula
is relative to points in a set, that is, a formula is evaluated “locally” at a point,
where points usually are taken to represent possible worlds, times, locations,
epistemic states, persons, states in a computer, or something else. Hybrid logics
are extended modal logics where it is possible to directly refer to such points
in the logical object language, whereby locality can be handled explicitly, for
example, when reasoning about time one can formulate a series of statements
about what happens at specific times, which is not possible in ordinary modal
logic. Thus, when points in the Kripke semantics represent local perspectives,
hybrid-logical machinery can handle explicitly the different perspectives in the
Smarties task.

For the above reasons, we have been able to turn our informal logical analysis of
the Smarties and Sally-Anne tasks into formal hybrid-logical natural deduction proofs
closely reflecting the shift between different perspectives.
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The natural deduction system we use for our formalizations is a modified version
of a natural deduction system for a logic of situations similar to hybrid logic, originally
introduced by Jerry Seligman (1997). The modified system was introduced in the paper
(Braüner 2004), and later on considered in Chapter 4 of the book (Braüner 2011), both
by the present author. In what follows we shall simply refer to the modified system as
Seligman’s system.

Now, Seligman’s system allows any formula to occur in it, which is different from
the most common proof systems for hybrid logic that only allow formulas of a certain
form called satisfaction statements. This is related to a different way of reasoning in
Seligman’s system, which captures particularly well the reasoning in the Smarties and
Sally-Anne tasks. We prove a completeness result which also says that Seligman’s sys-
tem is analytic, that is, we prove that any valid formula has a derivation satisfying the
subformula property. Analyticity guarentees that any valid argument can be formalized
using only subformulas of the premises and the conclusion. The notion of analyticity
goes back to G.W. Leibniz (1646–1716) who called a proof analytic if and only if the
proof is based on concepts contained in the proven statement, the main aim being to be
able to construct a proof by an analysis of the result (cf. Baaz and Leitsch 2011).

The present paper is structured as follows. In the second section we recapitulate the
basics of hybrid logic, readers well-versed in hybrid logic can safely skip this section.
In the third section we introduce Seligman’s natural deduction system for hybrid logic
and in the fourth section we give a first example of reasoning in this system. In the fifth
and sixth sections we formalize two versions of the Smarties task using this system, and
in the seventh section we formalize the Sally-Anne task. A discussion can be found in
the eightth section, in the nineth section there are some brief remarks on other work,
and in the final section some remarks on further work. In the appendix we prove the
above mentioned completeness result, which also demonstrates analyticity.

2 Hybrid logic

The term “hybrid logic” covers a number of logics obtained by adding further expres-
sive power to ordinary modal logic. The history of what now is known as hybrid logic
goes back to the philosopher Arthur Prior’s work in the 1960s. See the handbook chap-
ter (Areces and ten Cate 2007) for a detailed overview of hybrid logic. See the book
(Braüner 2011) on hybrid logic and its proof-theory.

The most basic hybrid logic is obtained by extending ordinary modal logic with
nominals, which are propositional symbols of a new sort. In the Kripke semantics a
nominal is interpreted in a restricted way such that it is true at exactly one point. If the
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points are given a temporal reading, this enables the formalization of natural language
statements that are true at exactly one time, for example

it is five o’clock May 10th 2007

which is true at the time five o’clock May 10th 2007, but false at all other times. Such
statements cannot be formalized in ordinary modal logic, the reason being that there
is only one sort of propositional symbol available, namely ordinary propositional sym-
bols, which are not restricted to being true at exactly one point.

Most hybrid logics involve further additional machinery than nominals. There is
a number of options for adding further machinery; here we shall consider a kind of
operator called satisfaction operators. The motivation for adding satisfaction operators
is to be able to formalize a statement being true at a particular time, possible world, or
something else. For example, we want to be able to formalize that the statement “it is
raining” is true at the time five o’clock May 10th 2007, that is, that

at five o’clock May 10th 2007 it is raining.

This is formalized by the formula @ar where the nominal a stands for “it is five o’clock
May 10th 2007” as above and where r is an ordinary propositional symbol that stands
for “it is raining”. It is the part @a of the formula @ar that is called a satisfaction
operator. In general, if a is a nominal and ϕ is an arbitrary formula, then a new formula
@aϕ can be built (in some literature the notation a : ϕ is used instead of @aϕ). A
formula of this form is called a satisfaction statement. The formula @aϕ expresses that
the formula ϕ is true at one particular point, namely the point to which the nominal
a refers. Nominals and satisfaction operators are the most common pieces of hybrid-
logical machinery, and are what we need for the purpose of the present paper.

In what follows we give the formal syntax and semantics of hybrid logic. It is
assumed that a set of ordinary propositional symbols and a countably infinite set of
nominals are given. The sets are assumed to be disjoint. The metavariables p, q,
r, . . . range over ordinary propositional symbols and a, b, c, . . . range over nominals.
Formulas are defined by the following grammar.

S ::= p | a | S ∧ S | S → S | ⊥ | �S | @aS

The metavariables ϕ, ψ, θ, . . . range over formulas. Negation is defined by the con-
vention that ¬ϕ is an abbreviation for ϕ → ⊥. Similarly, ♦ϕ is an abbreviation for
¬�¬ϕ.

Definition 2.1. A model for hybrid logic is a tuple (W,R, {Vw}w∈W ) where

1. W is a non-empty set;
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2. R is a binary relation on W; and

3. for each w, Vw is a function that to each ordinary propositional symbol assigns
an element of {0, 1}.

The pair (W,R) is called a frame. Note that a model for hybrid logic is the same as
a model for ordinary modal logic. Given a modelM = (W,R, {Vw}w∈W ), an assignment
is a function g that to each nominal assigns an element of W. The relationM, g,w ϕ
is defined by induction, where g is an assignment, w is an element of W, and ϕ is a
formula.

M, g,w p iff Vw(p) = 1
M, g,w a iff w = g(a)

M, g,w ϕ ∧ ψ iff M, g,w ϕ andM, g,w ψ
M, g,w ϕ→ ψ iff M, g,w ϕ impliesM, g,w ψ
M, g,w ⊥ iff falsum
M, g,w �ϕ iff for any v ∈ W such that wRv,M, g, v ϕ
M, g,w @aϕ iff M, g, g(a) ϕ

By conventionM, g ϕmeansM, g,w ϕ for every element w of W andM ϕmeans
M, g ϕ for every assignment g. A formula ϕ is valid if and only if M ϕ for any
modelM.

3 Seligman’s system

In this section we introduce Seligman’s natural deduction systems for hybrid logic.
Before defining the system, we shall sketch the basics of natural deduction. Natural
deduction style derivation rules for ordinary classical first-order logic were originally
introduced by Gerhard Gentzen (1969) and later on developed much further by Dag
Prawitz (1965, 1971). See (Troelstra and Schwichtenberg 1996) for a general introduc-
tion to natural deduction systems. With reference to Gentzen’s work, Prawitz made the
following remarks on the significance of natural deduction.

. . . the essential logical content of intuitive logical operations that can be
formulated in the languages considered can be understood as composed of
the atomic inferences isolated by Gentzen. It is in this sense that we may
understand the terminology natural deduction.

Nevertheless, Gentzen’s systems are also natural in the more superficial
sense of corresponding rather well to informal practices; in other words,
the structure of informal proofs are often preserved rather well when for-
malized within the systems of natural deduction. (Prawitz 1971, p. 245)
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Similar views on natural deduction are expressed many places, for example in a text-
book by Warren Goldfarb.

What we shall present is a system for deductions, sometimes called a sys-
tem of natural deduction, because to a certain extent it mimics certain
natural ways we reason informally. In particular, at any stage in a deduc-
tion we may introduce a new premise (that is, a new supposition); we may
then infer things from this premise and eventually eliminate the premise
(discharge it). (Goldfarb 2003, p. 181)

Basically, what is said by the second part of the quotation by Prawitz, and the quotation
by Goldfarb as well, is that the structure of informal human arguments can be described
by natural deduction derivations.

Of course, the observation that natural deduction derivations often can formalize, or
mimic, informal reasoning does not itself prove that natural deduction is the mechanism
underlying human deductive reasoning, that is, that formal rules in natural deduction
style are somehow built into the human cognitive architecture. However, this view is
held by a number of psychologists, for example Lance Rips in the book (Rips 1994),
where he provides experimental support for the claim.

. . . a person faced with a task involving deduction attempts to carry it out
through a series of steps that takes him or her from an initial description
of the problem to its solution. These intermediate steps are licensed by
mental inference rules, such as modus ponens, whose output people find
intuitively obvious. (Rips 1994, p. x)

This is the main claim of the “mental logic” school in the psychology of reasoning
(whose major competitor is the “mental models” school, claiming that the mechanism
underlying human reasoning is the construction of models, rather than the application
of topic-neutral formal rules).

We have now given a brief motivation for natural deduction and proceed to a for-
mal definition. A derivation in a natural deduction system has the form of a finite tree
where the nodes are labelled with formulas such that for any formula occurrence ϕ in
the derivation, either ϕ is a leaf of the derivation or the immediate successors of ϕ in
the derivation are the premises of a rule-instance which has ϕ as the conclusion. In
what follows, the metavariables π, τ, . . . range over derivations. A formula occurrence
that is a leaf is called an assumption of the derivation. The root of a derivation is called
the end-formula of the derivation. All assumptions are annotated with numbers. An
assumption is either undischarged or discharged. If an assumption is discharged, then
it is discharged at one particular rule-instance and this is indicated by annotating the
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assumption and the rule-instance with identical numbers. We shall often omit this in-
formation when no confusion can occur. A rule-instance annotated with some number
discharges all undischarged assumptions that are above it and are annotated with the
number in question, and moreover, are occurrences of a formula determined by the
rule-instance.

Two assumptions in a derivation belong to the same parcel if they are annotated
with the same number and are occurrences of the same formula, and moreover, either
are both undischarged or have both been discharged at the same rule-instance. Thus, in
this terminology rules discharge parcels. We shall make use of the standard notation

[ϕr]
·
·
·
π

ψ

which means a derivation πwhere ψ is the end-formula and [ϕr] is the parcel consisting
of all undischarged assumptions that have the form ϕr.

We shall make use of the following conventions. The metavariables Γ, ∆, . . . range
over sets of formulas. A derivation π is called a derivation of ϕ if the end-formula of π
is an occurrence of ϕ, and moreover, π is called a derivation from Γ if each undischarged
assumption in π is an occurrence of a formula in Γ (note that numbers annotating undis-
charged assumptions are ignored). If there exists a derivation of ϕ from ∅, then we shall
simply say that ϕ is derivable.

A typical feature of natural deduction is that there are two different kinds of rules for
each connective; there are rules called introduction rules which introduce a connective
(that is, the connective occurs in the conclusion of the rule, but not in the premises) and
there are rules called elimination rules which eliminate a connective (the connective
occurs in a premiss of the rule, but not in the conclusion). Introduction rules have
names in the form (. . . I . . .), and similarly, elimination rules have names in the form
(. . . E . . .).

Now, Seligman’s natural deduction system is obtained from the rules given in Fig-
ure 1 and Figure 2. We let N′H denote the system thus obtained. The system N′H
is taken from (Braüner 2004) and Chapter 4 of (Braüner 2011) where it is shown to
be sound and complete wrt. the formal semantics given in the previous section. As
mentioned earlier, this system is a modified version of a system originally introduced
in (Seligman 1997). The system of (Seligman 1997) was modified in (Braüner 2004)
and (Braüner 2011) with the aim of obtaining a desirable property called closure under
substitution, see Subsection 4.1.1 of (Braüner 2011) for further explanation.
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Figure 1: Rules for connectives

ϕ ψ
(∧I)

ϕ ∧ ψ

ϕ ∧ ψ
(∧E1)

ϕ

ϕ ∧ ψ
(∧E2)

ψ

[ϕ]
·
·
·
ψ

(→ I)
ϕ→ ψ

ϕ→ ψ ϕ
(→ E)

ψ

[¬ϕ]
·
·
·
⊥

(⊥)∗
ϕ

a ϕ
(@I)

@aϕ

a @aϕ
(@E)

ϕ

[♦c]
·
·
·

@cϕ
(�I)†

�ϕ

�ϕ ♦e
(�E)

@eϕ

∗ ϕ is a propositional letter.
† c does not occur free in �ϕ or in any undischarged assumptions other than the speci-
fied occurrences of ♦c.

Figure 2: Rules for nominals

ϕ1 . . . ϕn

[ϕ1] . . . [ϕn][a]
·
·
·
ψ

(T erm)∗
ψ

[a]
·
·
·
ψ

(Name)†
ψ

∗ ϕ1, . . . , ϕn, and ψ are all satisfaction statements and there are no undischarged as-
sumptions in the derivation of ψ besides the specified occurrences of ϕ1, . . . , ϕn, and a.
† a does not occur in ψ or in any undischarged assumptions other than the specified
occurrences of a.



88 Hybrid-Logical Reasoning in False-Belief Tasks

4 A first example

The way of reasoning in Seligman’s system is different from the way of reasoning in
most other proof systems for hybrid logic4. In this section we give the first example of
reasoning using the (T erm) rule (displayed in Figure 2).

Beside the (T erm) rule, the key rules in the example are the rules (@I) and (@E)
(displayed in Figure 1), which are the introduction and elimination rules for the satis-
faction operator. The rule (@I) formalizes the following informal argument.

It is Christmas Eve 2011; it is snowing, so at Christmas Eve 2011 it is
snowing.

And the rule (@E) formalizes the following.

It is Christmas Eve 2011; at Christmas Eve 2011 it is snowing, so it is
snowing.

The (T erm) rule enables hypothetical reasoning where reasoning is about what is the
case at a specific time, possibly different from the actual time. Consider the following
informal argument.

At May 10th 2007 it is raining; if it is raining it is wet, so at May 10th
2007 it is wet.

The reasoning in this example argument is about what is the case at May 10th 2007.
If this argument is made at a specific actual time, the time of evaluation is first shifted
from the actual time to a hypothetical time, namely May 10th 2007, then some rea-
soning is performed involving the premise “if it is raining it is wet”, and finally the
time of evaluation is shifted back to the actual time. The reader is invited to verify this
shift of time by checking that the argument is correct, and note that the reader himself
(or herself) imagines being at the time May 10th 2007. Note that the premise “if it is
raining it is wet” represents a causal relation holding at all times.

Now, in a temporal setting, the side-condition on the rule (T erm) requiring that all
the formulas ϕ1, . . . , ϕn, ψ are satisfaction statements (see Figure 2) ensures that these
formulas are temporally definite, that is, they have the same truth-value at all times,
so the truth-value of these formulas are not affected by a shift of temporal perspective.
The rule would not be sound if the formulas were not temporally definite.

4We here have in mind natural deduction, Gentzen, and tableau systems for hybrid logic, not axiom
systems. Proof systems of the first three types are suitable for actual reasoning, carried out by a human, a
computer, or in some other medium. Axiom systems are usually not meant for actual reasoning, but are of a
more foundational interest.
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We now proceed to the formalization of the above argument about what is the case
at May 10th 2007. We make use of the following symbolizations

p It is raining
q It is wet
a May 10th 2007

and we take the formula p→ q as an axiom since it represents a causal relation between
p and q holding at all times (note that we use an axiom since the relation p → q holds
between the particular propositions p and q, we do not use an axiom schema since the
relation obviously does not hold between any pair of propositions).5 Then the argument
can be formalized as

(1)

@a p

[a]

[a] [@a p]
(@E)

p
(Axiom)

p→ q
(→ E)

q
(@I)

@aq
(T erm)

@aq

Note that the derivation (1) above is obtained by applying the (T erm) rule to the
subderivation (2) below.

(2)
a

a @a p
(@E)

p
(Axiom)

p→ q
(→ E)

q
(@I)

@aq

Thus, the (T erm) rule delimits a piece of reasoning taking place at a certain hypothet-
ical time, which above is the subderivation (2).

The above example argument is similar to an example given in the paper (Seligman
1997). The following is a slightly reformulated version.

5One of the anonymous reviewers asked why the premise “if it is raining it is wet” is formalized as
p → q using classical implication, rather than a form of non-monotonic implication. Like in many cases
when classical logic is used to formalize natural language statements, there is an idealization in our choice of
classical implication. We think this idealization is justified since our main goal is to formalize the perspective
shift involved in the example argument, which we presume is orthogonal to the issue of non-monotonicity.
We note in passing that our premise “if it is raining it is wet” corresponds to the premise “if alcohol is
forbidden Sake is forbidden” in Seligman’s example argument briefly described below, and Seligman also
uses classical implication, or to be precise, machinery equivalent to classical implication, (Seligman 1997).
See also Footnote 7.
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In Abu Dabi alcohol is forbidden; if alcohol is forbidden Sake is forbidden,
so in Abu Dabi Sake is forbidden.

Thus, the example of (Seligman 1997) involves spatial locations rather than times, and
the shift is to a hypothetical place, namely the city of Abu Dabi.

Formally, the shift to a hypothetical point of evaluation effected by the rule (T erm)
can be seen by inspecting the proof that the rule (T erm) is sound: The world of eval-
uation is shifted from the actual world to the hypothetical world where the nominal
a is true (see Figure 2), then some reasoning is performed involving the delimited
subderivation which by induction is assumed to be sound, and finally the world of eval-
uation is shifted back to the actual world. Soundness of the system N′H , including
soundness of the rule (T erm), is proved in Theorem 4.1 in Section 4.3 of (Braüner
2011).

The rule (T erm) is very different from other rules in proof systems for hybrid
logic, roughly, this rule replaces rules for equational reasoning in other systems, see
for example the rules in the natural deduction system given in Section 2.2 of the book
(Braüner 2011).

In passing we mention that the way in which the (T erm) rule delimits a subderiva-
tion is similar to the way subderivations are delimited by so-called boxes in linear logic,
and more specifically, the way a subderivation is delimited by the introduction rule for
the modal operator � in the natural deduction system for S4 given in (Bierman and
de Paiva 2000), making use of explicit substitutions in derivations.

5 The Smarties task (temporal shift version)

In this section we will give a formalization which has exactly the same structure as the
formalization in the previous section, but which in other respects is quite different. It
turns out that a temporal shift like the one just described in the previous section also
takes place in the following version of the Smarties task, where instead of a shift of
perspective to another person, there is a shift of perspective to another time.6

A child is shown a Smarties tube where unbeknownst to the child the
Smarties have been replaced by pencils. The child is asked: “What do
you think is inside the tube?” The child answers “Smarties!” The tube is
then shown to contain pencils only. The child is then asked: “Before this
tube was opened, what did you think was inside?”

6The author thanks Michiel van Lambalgen for mentioning the Smarties task in an email exchange where
the author suggested that the shift of perspective in the hybrid-logical rule (T erm) could be of relevance in
connection with the theory of mind view of autism.
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See (Gopnik and Astington 1988) for more on the temporal version of the Smarties
task. Below we shall formalize each step in the logical reasoning taking place when
giving a correct answer to the task, but before that, we give an informal analysis. Let
us call the child Peter. Let a be the time where Peter answers the first question, and let
t be the time where he answers the second one. To answer the second question, Peter
imagines himself being at the earlier time a where he was asked the first question. At
that time he deduced that there were Smarties inside the tube from the fact that it is a
Smarties tube. Imagining being at the time a, Peter reasons that since he at that time
deduced that there were Smarties inside, he must also have come to believe that there
were Smarties inside. Therefore, at the time t he concludes that at the earlier time a he
believed that there were Smarties inside.

We now proceed to the full formalization. We first extend the language of hybrid
logic with two modal operators, D and B. We make use of the following symbolizations

D Peter deduces that ...
B Peter believes that ...
p There are Smarties inside the tube
a The time where the first question is asked

and we take the principle Dϕ→ Bϕ as an axiom schema (it holds whatever proposition
is substituted for the metavariable ϕ, hence an axiom schema). This is principle (9.4)
in (Stenning and van Lambalgen 2008).7 Then the shift of temporal perspective in the
Smarties task can be formalized very directly in Seligman’s system as

@aDp

[a]

[a] [@aDp]
(@E)

Dp Dp→ Bp
(→ E)

Bp
(@I)

@aBp
(T erm)

@aBp

Recall that the derivation is meant to formalize each step in Peters’s reasoning at
the time t where the second question is answered. The premise @aDp in the derivation
says that Peter at the earlier time a deduced that there were Smarties inside the tube,
which he remembers at t.

7 Analogous to the question in Footnote 5, it can be asked why we use classical implication in Dϕ →
Bϕ, rather than a form of non-monotonic implication. Again, the answer is that this is an idealization,
but we presume that the perspective shift involved in the Smarties task is orthogonal to the issue of non-
monotonicity, at least from a logical point of view. In this connection we remark that principle (9.4) in
(Stenning and van Lambalgen 2008) also uses classical implication (the non-monotonicity in the logical
analysis of the Smarties task of (Stenning and van Lambalgen 2008) does not concern principle (9.4), but
other principles).
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Note that the formalization does not involve the � operator, so this operator could
have been omitted together with the associated rules (�I) and (�E) in Figure 1. Since
this proof system is complete, the � operator satisfies logical omniscience. The opera-
tors D and B are only taken to satisfy the principle Dϕ→ Bϕ, as mentioned above.

Compare the derivation above to the derivation (1) in the previous section and note
that the structure is exactly the same. Note that what we have done is that we have for-
malized the logical reasoning taking place when giving the correct answer “Smarties”.
Note also that the actual content of the tube, namely pencils, is not even mentioned in
the formalization, so it is clear from the formalization that the actual content of the tube
is not relevant to figure out the correct answer. Accordingly, our formalization does not
tell what goes wrong when a child incorrectly answers “Pencils”.

6 The Smarties task (person shift version)

As a stepping stone between the temporal version of the Smarties task we considered
in the previous section, and the Sally-Anne task we shall consider in the next section,
we in the present section take a look again at the version of the Smarties task described
in the introduction. The only difference between the version in the introduction and the
version in the previous section is the second question where

“Before this tube was opened, what did you think was inside?”

obviously gives rise to a temporal shift of perspective, whereas

“If your mother comes into the room and we show this tube to her, what
will she think is inside?”

gives rise to a shift of perspective to another person, namely the imagined mother.
To give a correct answer to the latter of these two questions, the child Peter imagines

being the mother coming into the room. Imagining being the mother, Peter reasons that
the mother must deduce that there are Smarties inside the tube from the fact that it is
a Smarties tube, and from that, she must also come to believe that there are Smarties
inside. Therefore, Peter concludes that the mother would believe that there are Smarties
inside.

The derivation formalizing this argument is exactly the same as in the temporal
case dealt with in previous section but the symbols are interpreted differently, namely
as

D Deduces that ...
B Believes that ...
p There are Smarties inside the tube
a The imagined mother
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So now nominals refer to persons rather than times. Accordingly, the modal operator
B now symbolize the belief of the person represented by the point of evaluation, rather
than Peter’s belief at the time of evaluation, etc. Thus, the premise @aDp in the deriva-
tion in the previous section now says that the imagined mother deduces that there are
Smarties inside the tube, which the child doing the reasoning takes to be the case since
the mother is imagined to be present in the room.

Incidentally, letting points in the Kripke model represent persons is exactly what
is done in Arthur Prior’s egocentric logic, see Section 1.3 in the book (Braüner 2011),
in particular pp. 15–16. In egocentric logic the accessibility relation represents the
taller-than relation, but this relation is obviously not relevant here.

7 The Sally-Anne task

In this section we will give a formalization of a somewhat more complicated reasoning
task called the Sally-Anne task. The following is one version.

A child is shown a scene with two doll protagonists, Sally and Anne, hav-
ing respectively a basket and a box. Sally first places a marble into her
basket. Then Sally leaves the scene, and in her absence, the marble is
transferred by Anne and hidden in her box. Then Sally returns, and the
child is asked: “Where will Sally look for her marble?”

Most children above the age of four correctly responds where Sally must falsely believe
the marble to be (in the basket) whereas younger children respond where they know
the marble to be (in the box). Again, for autists, the cutoff is higher.

Below we shall formalize the correct response to the task, but before that, we give
an informal analysis. Let us call the child Peter again. Let t1 be the time where he
answers the question. To answer the question, Peter imagines himself being Sally at
an earlier time t0 before she leaves the scene, but after she places the marble in her
basket. Imagining being Sally, he reasons as follows: At the time t0 Sally believes that
the marble is in the box since she can see it. At the time t1, after she has returned, she
deduces that the marble is still in the box as she has no belief to the contrary, and since
Sally deduces that the marble is in the box, she must also come to believe it. Therefore,
Peter concludes that Sally believes that the marble is in the box.

In our formalization we make use of a tiny fragment of first-order hybrid logic,
involving the unary predicate P(t), the binary predicate t < u, and the modal operators
S , D and B, but no quantifiers. We make use of the following symbolizations.
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p(t) The marble is in the basket at the time t
t < u The time t is before the time u
S Sees that ...
D Deduces that ...
B Believes that ...
a The person Sally

We also make use of the following three principles.

Sϕ→ Bϕ
Dϕ→ Bϕ
Bϕ(t) ∧ t < u ∧ ¬B¬ϕ(u)→ Dϕ(u)

The first two are versions of principles (9.2) and (9.4) in the book (Stenning and van
Lambalgen 2008) and the third is similar to principle (9.11) in that book. In order to
make the formalization more compact, and also more in the spirit of natural deduction
style, we do not take the principles as axiom schemas, but instead we turn them into
the following proof-rules.

Sϕ
(R1)

Bϕ

Dϕ
(R2)

Bϕ

Bϕ(t) t < u ¬B¬ϕ(u)
(R3)

Dϕ(u)
The second and third proof-rule together formalizes a “principle of inertia” saying that
a belief is preserved over time, unless there is belief to the contrary.

We liberalize the side-condition on the (Term) rule such that the formulas ϕ1, . . . ,
ϕn, and ψ may include formulas on the form t < u, since we assume that the truth-
values of such formulas are not changed by the perspective shift effected by the rule.
With this machinery in place, the shift of person perspective in the Sally-Anne task can
be formalized as

@aS p(t0) t0 < t1 @a¬B¬p(t1)

[a]

[a] [@aS p(t0)]

S p(t0)
(R1)

Bp(t0) [t0 < t1]

[a] [@a¬B¬p(t1)]

¬B¬p(t1)
(R3)

Dp(t1)
(R2)

Bp(t1)

@aBp(t1)
(T erm)

@aBp(t1)

where we have omitted names of introduction and elimination rules for the satisfaction
operator. Recall that this derivation is meant to formalize the child’s reasoning at the
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time t1 where the question is answered. The first premise @aS p(t0) in the derivation
says that Sally (the reference the nominal a) at the earlier time t0 saw that the marble
was in the basket, which the child remembers. The third premise @a¬B¬p(t1) says
that Sally at the time t1 does not believe that the marble is not in the basket, which the
child realizes as Sally was absent when the marble was transferred to the box.

Note that the actual position of the marble at the time t1 is irrelevant to figure out the
correct response. Note that in the Sally-Anne task there is a shift of person perspective
which we deal with in a modal-logical fashion letting points of evaluation stand for
persons, like in the person version of the Smarties task in the previous section, but
there is also a temporal shift in the Sally-Anne task, from the time t0 to the time t1,
which we deal with using first-order machinery.

8 Discussion

In the introduction of the present paper we remarked that reasoning in Seligman’s sys-
tem is different from reasoning in the most common proof systems for hybrid logic,
and that reasoning in Seligman’s system captures well the reasoning in the Smarties
and Sally-Anne tasks, in particular the involved shift between different local perspec-
tives.

More can be said about this difference between the proof systems and how local
perspectives are (or are not) represented. A truth-bearer is an entity that is either true
or false. According to Peter Simons’ paper (Simons 2006), there have historically been
two fundamentally opposed views of how truth-bearers have their truth-values.

One view takes truth to be absolute: a truth-bearer’s truth-value (whether
truth or falsity) is something it has simpliciter, without variation according
to place, time, by whom and to whom it is said. The other view allows
a truth-bearer’s truth-value to vary according to circumstances: typically
time or place, but also other factors may be relevant. (Simons 2006, p.
443)

Peter Simons calls the first view the absolute view and the second the centred view. It
is well-known that Arthur Prior often expressed sympathy for what is here called the
centred view, most outspoken with respect to time, one reason being that he wanted to
allow statements to change truth-value from one time to another. What a truth-bearer’s
truth-value varies according to, is by Simons called a location.

I understand ’location’ broadly to include not just spatial location but
also temporal location, spatiotemporal location, modal location, and more
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broadly still location in any relational structure. I consider that the con-
cept of an object being located at a position among other positions is a
formal concept, applicable topic-neutrally in any field of discourse. This
means that logical considerations about location are not limited in extent
or parochial in interest. (Simons 2006, p. 444)

The proposition expressed in the quotation above is defended in Simons’ paper (Simons
2004). See also the paper (Simons 2003). Obviously, a frame for modal and hybrid
logic is a mathematically precise formulation of Simons’ concept of a location, see
Definition 2.1.

What does all this have to do with proof systems for hybrid logic? The distinc-
tion between the absolute view and the centred view is useful for describing proof
systems and the formulas that occur in them. The basic building blocks of the most
common proof systems for hybrid logic are satisfaction statements, and satisfaction
statements have constant truth-values, so the basic building blocks of such systems
are absolute, although it is arguable that such systems have both absolute and centred
features since arbitrary subformulas of satisfaction statements do have varying truth-
values, and therefore have to be evaluated for truth at some location. On the other
hand, the basic building blocks of Seligman’s system are arbitrary formulas, and ar-
bitrary formulas have varying truth-values, so this system is centred, involving local
perspectives in the reasoning.

9 Some remarks on other work

Beside analysing the reasoning taking place when giving a correct answer to a reason-
ing task, the works by van Lambalgen and co-authors also analyse what goes wrong
when an incorrect answer is given. We note that Stenning and van Lambalgen (2008)
warn against simply characterizing autism as a lack of theory of mind. Rather than
being an explanation of autism, Stenning and van Lambalgen see the theory of mind
deficit hypothesis as “an important label for a problem that needs a label” (cf. Stenning
and van Lambalgen 2008, p. 243). Based on their logical analysis, they argue that
another psychological theory of autism is more fundamental, namely what is called
the executive function deficit theory. Very briefly, executive function is an ability to
plan and control a sequence of actions with the aim of obtaining a goal in different
circumstances.

The paper (Pijnacker et al. 2009) reports empirical investigations of closed-world
reasoning in adults with autism. Incidentally, according to the opening sentence of
that paper, published in 2009, “While autism is one of the most intensively researched
psychiatric disorders, little is known about reasoning skills of people with autism.”



Braüner 97

With motivations from the theory of mind literature, the paper (van Ditmarsch
and Labuschagne 2007) models examples of beliefs that agents may have about other
agents’ beliefs (one example is an autistic agent that always believes that other agents
have the same beliefs as the agent’s own). This is modelled by different agents prefer-
ence relations between states, where an agent prefers one state over another if the agent
considers it more likely. The beliefs in question turn out to be frame-characterizable
by formulas of epistemic logic.

The paper (Flobbe et al. 2008) reports empirical investigations of what is called
second-order theory of mind, which is a person’s capacity to imagine other people’s
beliefs about the person’s own beliefs (where first-order theory of mind is what we
previously in the present paper just have called theory of mind). The investigations in
(Flobbe et al. 2008) make use of a second-order false-belief task, as well as other tasks.

The paper (Gierasimczuk et al. 2012) does not deal with false-belief tasks or theory
of mind, but it is nevertheless relevant to mention since it uses formal proofs to compare
the cognitive difficulty of deductive tasks. To be more precise, the paper associates the
difficulty of a deductive task in a version of the Mastermind game with the minimal
size of a corresponding tableau tree, and it uses this measure of difficulty to predict the
empirical difficulty of game-plays, for example the number of steps actually needed for
solving a task.

The method of reasoning in tableau systems can be seen as attempts to construct
a model of a formula: A tableau tree is built step by step using rules, whereby more
and more information about models for the formula is obtained, and either at some
stage a model can be read off from the tableau tree, or it can be concluded that there
cannot be such a model (in fact, in the case of Gierasimczuk et al. 2012, any formula
under consideration has exactly one model, so in that case it is a matter of building a
tableau tree that generates this model). Hence, if the building of tableau trees is taken
to be the underlying mechanism when a human is solving Mastermind tasks, then the
investigations in (Gierasimczuk et al. 2012) can be seen to be in line with the mental
models school (see the third section of the present paper).

A remark from a more formal point of view: The tableau system described in
(Gierasimczuk et al. 2012) does not include the cut-rule8. Much has been written on
the size of proofs in cut-free proof systems, in particular, the paper (Boolos 1984) gives
examples of first-order formulas whose derivations in cut-free systems are much larger
than their derivations in natural deduction systems, which implicitly allow unrestricted
cuts (in one case more than 1038 characters compared to less than 3280 characters).
Similarly, the paper (D’Agostino and Mondadori 1994) points out that ordinary cut-

8The cut-rule says that the end of any branch in a tableau tree can extended with two branches with ϕ
on the one branch and ¬ϕ on the other (expressing the bivalence of classical logic).
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free tableau systems have a number of anomalies, one of them being that for some
classes of propositional formulas, decision procedures based on cut-free systems are
much slower than the truth-table method (in the technical sense that there is no polyno-
mial time computable function that maps truth-table proofs of such formulas to proofs
of the same formulas in cut-free tableau systems). Instead of prohibiting cuts com-
pletely, the paper (D’Agostino and Mondadori 1994) advocates allowing a restricted
version of the cut-rule, called the analytic cut-rule.

10 Future work

We would like to extend the work of the present paper to further false-belief tasks,
perhaps using different hybrid-logical machinery (and moreover, to see if we can also
use hybrid-logical proof-theory to analyse what goes wrong when incorrect answers
are given). Not only will formalization of further reasoning tasks be of interest on their
own, but we also expect that such investigations can be feed back into logical research,
either as corroboration of the applicability of existing logical constructs, or in the form
of new logical constructs, for example new proof-rules or new ways to add expressive
power to a logic.

We are also interested in further investigations in when two seemingly dissimilar
reasoning tasks have the same underlying logical structure, like we in the present paper
have disclosed that two different versions of the Smarties task have exactly the same
underlying logical structure. Such investigations might be assisted by a notion of iden-
tity on proofs (exploiting the longstanding effort in proof-theory to give a notion of
identity between proofs, that is, a way to determine if two arguments have common
logical structure, despite superficial dissimilarity).

More speculatively, we expect that our formalizations can contribute to the ongo-
ing debate between two dominating views on theory of mind, denoted theory-theory
and simulation-theory. According to theory-theory, theory of mind should be viewed
as an explicit theory of the mental realm of another person, like the theories of the
physical world usually going under the heading “naive physics”, whereas according to
simulation-theory, theory of mind should be viewed as a capacity to put yourself in
another person’s shoes, and simulate the person’s mental states.
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A Proof of analyticity

Usually, when considering a natural deduction system, one wants to equip it with a
normalizing set of reduction rules such that normal derivations satisfy the subformula
property. Normalization says that any derivation by repeated applications of reduction
rules can be rewritten to a derivation which is normal, that is, no reduction rules apply.
From this it follows that the system under consideration is analytic.

Now, the works (Braüner 2004) and (Braüner 2011), Section 4.3 by the present au-
thor devise a set of reduction rules for N′H obtained by translation of a set of reduction
rules for a more common natural deduction system for hybrid logic. This more com-
mon system, which we denote NH , can be found in (Braüner 2004) and in (Braüner
2011), Section 2.2. All formulas in the system NH are satisfaction statements. De-
spite other desirable features, it is not known whether the reduction rules for N′H are
normalizing, and normal derivations do not always satisfy the subformula property. In
fact, Chapter 4 of the book (Braüner 2011) ends somewhat pessimistically by exhibit-
ing a normal derivation without the subformula property. It is remarked that a remedy
would be to find a more complete set of reduction rules, but the counter-example does
not give a clue how such a set of reduction rules should look.

In what follows we shall take another route. We prove a completeness result saying
that any valid formula has a derivation in N′H satisfying a version of the subformula
property. This is a sharpened version of a completeness result for N′H originally given
in (Braüner 2004) and in Section 4.3 of (Braüner 2011) (Theorem 4.1 in (Braüner
2011)). Thus, we prove that N′H is analytic without going via a normalization result.
So the proof of the completeness result does not involve reduction rules. The result
is mathematically weaker than normalization together with the subformula property
for normal derivations, but it nevertheless demonstrates analyticity. Analyticity is a
major success criteria in proof-theory, one reason being that analytic provability is a
step towards automated theorem proving (which obviously is related to Leibniz’ aim
mentioned in the intoduction of the present paper).

In the proof below we shall refer to NH as well as a translation (·)◦ from NH to
N′H given in (Braüner 2004) and Section 4.3 of (Braüner 2011). This translates a
derivation π in NH to a derivation π◦ in N′H having the same end-formula and parcels
of undischarged assumptions. The reader wanting to follow the details of our proof is
advised to obtain a copy of the paper (Braüner 2004) or the book (Braüner 2011). The
translation (·)◦ satisfies the following.

Lemma 1. Let π be a derivation in NH . Any formula θ occuring in π◦ has at least one
of the following properties.

1. θ occurs in π.
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2. @aθ occurs in π for some satisfaction operator @a.

3. θ is a nominal a such that some formula @aψ occurs in π.

Proof. Induction on the structure of the derivation of π. Each case in the translation
(·)◦ is checked. �

Note that in item 1 of the lemma above, the formula θ must be a satisfaction state-
ment since only satisfaction statements occur in π. In what follows @dΓ denotes the
set of formulas {@dξ | ξ ∈ Γ}.

Theorem 1. Let π be a normal derivation of @dϕ from @dΓ in NH . Any formula θ
occuring in π◦ has at least one of the following properties.

1. θ is of the form @aψ such that ψ is a subformula of ϕ, some formula in Γ, or
some formula of the form c or ♦c.

2. θ is a subformula of ϕ, some formula in Γ, or some formula of the form c or ♦c.

3. θ is a nominal.

4. θ is of the form @a(p → ⊥) or p → ⊥ where p is a subformula of ϕ or some
formula in Γ.

5. θ is of the form @a⊥ or ⊥.

Proof. Follows from Lemma 1 above together with Theorem 2.4 (called the quasi-
subformula property) in Subsection 2.2.5 of (Braüner 2011). �

We are now ready to give our main result, which is a sharpened version of the
completeness result given in Theorem 4.1 in Section 4.3 of (Braüner 2011).

Theorem 2. Let ϕ be a formula and Γ a set of formulas. The first statement below
implies the second statement.

1. For any modelM, any world w, and any assignment g, if, for any formula ξ ∈ Γ,
M, g,w ξ, thenM, g,w ϕ.

2. There exists of derivation of ϕ from Γ in N′H such that any formula θ occuring
in the derivation has at least one of the five properties listed in Theorem 1.
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Proof. Let d be a new nominal. It follows that for any modelM and any assignment
g, if, for any formula @dξ ∈ @dΓ,M, g @dξ, thenM, g @dϕ. By completeness
of the system NH , Theorem 2.2 in Subsection 2.2.3 of the book (Braüner 2011), there
exists a derivation π of @dϕ from @dΓ in NH . By normalization, Theorem 2.3 in
Subsection 2.2.5 of the book, we can assume that π is normal. We now apply the rules
(@I), (@E), and (Name) to π◦ obtaining a derivation of ϕ from Γ in N′H satisfying at
least one of the properties mentioned in Theorem 1. �

Remark: If the formula occurrence θ mentioned in the theorem above is not of one
of the forms covered by item 4 in Theorem 1, and does not have one of a finite number
of very simple forms not involving propositional symbols, then either θ is a subformula
of ϕ or some formula in Γ, or θ is of the form @aψ such that ψ is a subformula of ϕ
or some formula in Γ. This is the version of the subformula property we intended to
prove.
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Abstract
The semantic automata framework, developed originally in the 1980s, provides
computational interpretations of generalized quantifiers. While recent experimen-
tal results have associated structural features of these automata with neuroanatom-
ical demands in processing sentences with quantifiers, the theoretical framework
has remained largely unexplored. In this paper, after presenting some classic re-
sults on semantic automata in a modern style, we present the first application of se-
mantic automata to polyadic quantification, exhibiting automata for iterated quan-
tifiers. We also discuss the role of semantic automata in linguistic theory and offer
new empirical predictions for sentence processing with embedded quantifiers.1

1 Introduction

The interpretation of natural language determiner phrases as generalized quantifiers has
led to deep and subtle insights into linguistic quantification. While the original goal of
interpreting determiner phrases uniformly as higher-order properties is now seen as
perhaps too simplistic,2 the very idea that determiners can be assigned meanings which
correctly predict their contribution to the meanings of sentences is of fundamental im-
portance in semantics. Generalized quantifier theory, and arguably model-theoretic

1The final version of this paper appeared in Linguistics and Philosophy. The final publication is available
at link.springer.com. Please use that version for citations.

2See Szabolcsi 2009 for an overview of some recent developments in quantifier theory. As she notes
(p.5), “these days one reads more about what [generalized quantifiers] cannot do than about what they can.”

http://link.springer.com
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semantics in general, has largely developed independently of detailed questions about
language processing. If one’s aim is to understand how language can express truths,
abstracting away from language users, then this orientation is arguably justified.3 How-
ever, if the aim is to understand the role quantification plays in human cognition,
model-theoretic interpretation by itself is too abstract. Patrick Suppes (1980) aptly
summarized the point more than three decades ago:

“It is a surprising and important fact that so much of language . . . can be
analyzed at a nearly satisfactory formal level by set-theoretical semantics,
but the psychology of users is barely touched by this analysis.” (p. 27)

Consider, for instance, the basic question of how a quantified sentence is verified as true
or false. Generalized quantifier theory by itself has nothing to say about this question.
One may worry that the psychological details would be too complex or unsystematic
to admit useful and elegant theorizing of the sort familiar in formal semantics. How-
ever, in the particular case of verification, we believe the analysis of quantifier phrases
by semantic automata provides a promising intermediate level of study between the
abstract, ideal level of model theory and the mosaic, low-level details of processing.

Semantic automata, originally pioneered by Johan van Benthem (1986), offer an al-
gorithmic, or procedural, perspective on the traditional meanings of quantifier phrases
as studied in generalized quantifier theory. They are thus ideally suited to modeling
verification-related tasks. A semantic automaton represents the control structure in-
volved in assessing whether a quantified sentence is true or false. While there has
been relatively little theoretical work in this area since van Benthem (1986) (though
see Mostowski 1991; 1998), a series of recent imaging and behavioral experiments
has drawn on semantic automata to make concrete predictions about quantifier com-
prehension (McMillan et al. 2005; 2006, Szymanik and Zajenkowski 2010a;b). These
experiments establish (among other results, to be discussed further below) that working
memory is recruited in the processing of sentences involving certain quantifiers, which
corresponds to an analogous memory requirement on automata. Such studies provide
impetus to revisit the semantic automata framework from a theoretical perspective. In
this paper we extend the framework from simple single (monadic) quantifier sentences
to sentences involving iterated quantification. This extension in turn raises new ques-
tions about processing.

3A classic statement of this approach to semantics can be found in (Lewis 1970, p. 170): “I distinguish
two topics: first, the description of possible languages or grammars as abstract semantic systems whereby
symbols are associated with aspects of the world; and second, the description of the psychological and
sociological facts whereby one of these abstract semantic systems is the one used by a person or population.
Only confusion comes of mixing these two aspects.” Lewis, Montague, and others clearly took the first as
their object of study.
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In Section 2, we give a quick review of generalized quantifiers, followed by an
extended introduction to semantic automata for single quantifier sentences in Section
3. Section 4 includes a more detailed discussion of how semantic automata might fit
into semantic theorizing, at a level in between model-theoretic semantics and language
processing. Finally, our main technical contribution is in Section 5 where we show how
to extend the framework to iterations of quantifiers. A general construction method is
given for combining automata for single quantifiers into automata for iterations. We
then discuss further open empirical questions and other issues raised by this work.

2 Generalized quantifiers

Definition 2.1 (Mostowski 1957, Lindström 1966). A generalized quantifier Q of type
〈n1, . . . , nk〉 is a class of modelsM = 〈M,R1, . . . ,Rk〉 closed under isomorphism, where
each Ri ⊆ Mni .4 A generalized quantifier is monadic if ni = 1 for all i, and polyadic
otherwise.

We write QM R1 . . . Rk as shorthand for 〈M,R1, . . . ,Rk〉 ∈ Q. Usually the sub-
scripted M is omitted for readability. Thus, e.g., for type 〈1, 1〉 we write Q A B, where
A and B are predicates. This connects with the more familiar definition given in lin-
guistic semantics as can be seen by the following examples:

all = {〈M, A, B〉 | A ⊆ B}

some = {〈M, A, B〉 | A ∩ B , ∅}

The isomorphism closure condition (partially) captures the intuition that quantifiers
are sensitive only to the size of the relevant subsets of M and not the identity of any
particular elements or the order in which they are presented.

A useful classification of generalized quantifiers is given by the standard logical
hierarchy. We restrict attention to type 〈1, 1〉, and we distinguish only between first-
order and higher-order definability.

Definition 2.2. A generalized quantifier Q of type 〈1, 1〉 is first-order definable if and
only if there is a first-order language L and an L-sentence ϕ whose non-logical vo-
cabulary contains only two unary predicate symbols A and B such that for any model
M = 〈M, A, B〉,

QMAB ⇔ 〈M, A, B〉 ϕ.

4For more complete introductions to the theory of generalized quantifiers see Barwise and Cooper 1981,
van Benthem 1986, Westerståhl 1989, Keenan 1996, Keenan and Westerståhl 2011.
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The generalization to higher-order (non-first order) definability is obvious. As ex-
amples, all, some, and at least three are first-order definable:

allMAB⇔ 〈M, A, B〉 ∀x (Ax→ Bx) ;
someMAB⇔ 〈M, A, B〉 ∃x (Ax ∧ Bx) ;

at least threeMAB⇔ 〈M, A, B〉 ∃x, y, z ϕ(x, y, z),

where ϕ(x, y, z) is the formula

x , y ∧ y , z ∧ x , z ∧ Ax ∧ Bx ∧ Ay ∧ By ∧ Az ∧ Bz.

Most, an even number of, and an odd number of are (only) higher-order definable. For
most, see, e.g., Appendix C of Barwise and Cooper (1981).

Because the space of type 〈1, 1〉 quantifiers places few constraints on possible deter-
miner meanings, several properties have been offered as potential semantic universals,
narrowing down the class of possible meanings. These properties seem to hold of (at
least a majority of) quantifiers found in natural languages. Two of these will play a
pivotal role in the development of semantic automata, due to their role in Theorem 1
below:

CONS QMAB iff QMA(A ∩ B).
EXT QMAB iff QM′AB for every M ⊆ M′.

Lemma 1. A quantifier Q satisfies CONS + EXT iff, for allM = 〈M, A, B〉:

QMAB⇔ QAA(A ∩ B).

Theorem 1. A quantifier Q satisfies CONS and EXT if and only if for every M,M′

and A, B ⊆ M, A′, B′ ⊆ M′, if |A − B| = |A′ − B′| and |A ∩ B| = |A′ ∩ B′|, then
QMAB⇔ QM′A′B′.

Proof. Suppose Q satisfies CONS and EXT. If |A−B| = |A′−B′| and |A∩B| = |A′∩B′|,
then we have bijections between the set differences and intersections which can be
combined to give a bijection from A to A′. Thus QAA(A ∩ B) ⇔ QA′A′(A′ ∩ B′) by
isomorphism closure. By two applications of Lemma 1, QMAB⇔ QM′A′B′.

In the other direction, for any given 〈M, A, B〉, let M′ = A′ = A and B′ = A ∩ B.
The assumption yields QMAB⇔ QM′A′B′ ⇔ QAA(A∩B), which by Lemma 1 implies
CONS + EXT. �

In other words, quantifiers that satisfy CONS and EXT can be summarized suc-
cinctly as binary relations on natural numbers. Given Q we define:

Qc
M xy ⇔ ∃ A, B ⊆ M s.t. QMAB and |A − B| = x, |A ∩ B| = y.
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Standard generalized quantifiers can thus be seen as particular simple cases.

everyc
M xy⇔ x = 0

somec
M xy⇔ y > 0

at least threec
M xy⇔ y ≥ 3

mostc
M xy⇔ y > x

an even number o f c
M xy⇔ y = 2n for some n ∈ N

Theorem 1 guarantees that the relation Qc is always well defined.

2.1 Iterating monadic quantifiers

To handle sentences such as

(1) (a) One of our neighbors stole all but four of the sunflowers.
(b) Three explorers discovered most of the islands.

in which quantified phrases appear both in object position and subject position, we need
to look at so-called polyadic lifts of monadic quantifiers. Intuitively, these sentences
express complex properties of the respective transitive verbs. Since these verbs take
two arguments, it will be impossible to give truth-conditions using monadic predicates.

In particular, we will need iterations of type 〈1, 1〉 quantifiers. For notation, if R is
a binary relation, we write

Rx = {y | Rxy}

If Q1 and Q2 are type 〈1, 1〉, then It(Q1,Q2) will be of type 〈1, 1, 2〉, defined:

It(Q1,Q2) A B R ⇔ Q1 A {x | Q2 B Rx}

We will sometimes use the alternative notation Q1 · Q2 for It(Q1,Q2).5

Sentences with embedded quantifiers can be formalized as iterations. For instance,
the sentences in (1) would typically be assigned truth conditions in (2):

(2) (a) It(some, all but four) neighbor sunflowers stole
(b) It(three,most) explorers islands discovered

For example, (2) (a) holds iff

neighbor ∩ {x | all but four sunflowers stolex} , ∅

In Section 5 we will show how to define automata corresponding to such iterations.
But first, in the next section, we introduce automata for single quantifier sentences.

5This is a special case of a general definition for iterating quantifiers. For details, see Chapter 10 of
Peters and Westerståhl 2006.
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3 Semantic automata

Throughout this section all quantifiers are assumed to satisfy CONS and EXT.6 The
basic idea behind semantic automata is as follows: given a modelM = 〈M, A, B〉 and
an enumeration of A, we define a string in s ∈ {0, 1}∗ by assigning 0 to elements of
A \ B and 1 to A ∩ B. Note that we can use any enumeration of A since quantifiers
are closed under isomorphism. To ensure that these strings are finite, we consider only
finite models. It then follows by Theorem 1 that

M ∈ Q ⇔ 〈#0(s), #1(s)〉 ∈ Qc,

where #0 and #1 are recursively defined functions yielding the number of zeros and
of ones in a string, respectively. The goal is to define machines that correspond to
quantifiers, in the sense that they accept exactly the strings encoding models in the
denotation of the quantifier. The language of Q is the set

LQ = {s ∈ {0, 1}∗ | 〈#0(s), #1(s)〉 ∈ Qc} .

Definition 3.1. Let M = 〈M, A, B〉 be a model, ~a an enumeration of A, and n = |A|.
We define τ

(
~a, B

)
∈ {0, 1}n by

(
τ
(
~a, B

))
i =

0 ai ∈ A \ B
1 ai ∈ A ∩ B

Thus, τ defines the string corresponding to a particular finite model.

Lemma 2. If a quantifier Q satisfies CONS and EXT, then the language LQ is
permutation-invariant. In other words, if 〈M, A, B〉 ∈ Q, then τ(~a, B) ∈ LQ for all
enumerations ~a of A.

Proof. Membership in LQ depends only on the number of ones and zeros in a string,
neither of which is affected by permutations.

�

The simplest class of automata are the (deterministic) finite-state automata:7

Definition 3.2. A deterministic finite-state automaton (DFA) is a tuple 〈Q,Σ, δ, q0, F〉:

6These assumptions can be dropped. But with them, we can use a two-letter alphabet in defining our
languages below. Without them, we would need a four-letter alphabet. Moreover, little to no coverage of
natural language determiners is lost by making these assumptions.

7For a canonical reference on automata theory, see Hopcroft et al. 2001.
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• Q a finite set of states

• δ : Q × Σ→ Σ a transition function

• F ⊆ Q the set of accepting states

• Σ a finite set of input symbols

• q0 the start state

We denote the components of a DFA M by Q (M), Σ (M), etc.

A DFA can be given a simple graphical representation. Each state q ∈ Q corre-
sponds to a node. We will often represent these as circles, omitting the name of the
node. Final states (another name for accepting states) in F will be represented as dou-
ble circles. If δ(q, a) = p, we draw a directed arc from q to p labeled by a. For semantic
automata our alphabet Σ will always be {0, 1}.

For an example, consider every. Recall that everyc
M xy ⇔ x = 0. Thus, the only

words w ∈ {0, 1}∗ that should be accepted are those where #0(w) = 0. So the automaton
for every will start in an accepting state and stay there so long as it only reads 1s.
As soon as it reads a 0, however, the automaton moves to a non-accepting state and
remains there. We represent every by the DFA in Figure 1.

Figure 1: A finite state automaton for every

Here is a toy example: A = {a, b}, B = {a, b, c}. In this case, A will be represented
by the string 11 and the DFA for every will start and stay in the accepting state. If, on
the other hand, B = {a, c}, then A will be represented by the string 10. Upon reading 0,
the DFA for every will move to the non-accepting state and end there.

Recall that somec
M xy⇔ y > 0. Therefore, a DFA for some should accept any word

w ∈ {0, 1}∗ which contains at least one 1 (i.e. such that #1(w) > 0). It is easily verified
that the DFA depicted in Figure 2 will do just that.
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Figure 2: A finite state automaton for some

One can prove that all first-order definable quantifiers have languages that can be
accepted by DFAs. Motivated by this result, one might hope that only first-order de-
finable quantifiers can be so simulated. It turns out, however, that some higher-order
definable quantifiers can also be modeled by finite state automata. Figure 3 shows such
an automaton for an even number of, which is not first-order definable.

Figure 3: A cyclic finite state automaton for an even number of

Switching the end-state from the node on the left to the node on the right renders
Figure 3 a (cyclic) finite state automaton for an odd number of. In general, the first-
order definable quantifiers correspond to a smaller class of DFAs:

Theorem 2 (van Benthem 1986, p.156-157). A quantifier Q is first-order definable iff
LQ can be recognized by a permutation-invariant acyclic finite state automaton.

Moreover, it is not the case that all higher-order quantifiers can be simulated by
cyclic finite-state automata. Mostowski (1991) (see also Mostowski 1998) has char-
acterized the class of quantifiers which can. The type 〈1〉 divisibility quantifier Dn is
defined:

〈M, A〉 ∈ Dn iff |A| is divisible by n.
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Theorem 3 (Mostowski 1991). Finite state automata accept exactly the class of quan-
tifiers of type 〈1, . . . , 1〉 definable in first-order logic augmented with Dn for all n.

To simulate quantifiers such as less than half or most, neither of which is definable
in divisibility logic, we must move to the next level of the machine hierarchy, to push-
down automata.8 Intuitively, a pushdown automaton augments a DFA with a stack of
memory; this stack is a last-in/first-out data structure, onto which we can “push” new
content, and from which we can “pop” the topmost element.

Definition 3.3. A (non-deterministic) pushdown automaton (PDA) is a tuple
〈Q,Σ,Γ, δ, q0,Z0, F〉:

• Q is a finite set of states

• Γ is a finite stack alphabet

• q0 is the start state

• Z0 is the start symbol

• Σ is a finite set of input symbols

• δ : Q × (Σ ∪ {ε}) × Γ→ P (Q × Γ∗) is a transition function

• F is the set of accepting states

The biggest difference between DFAs and PDAs lies in the transition function. The
idea is that δ receives as input the current state, the symbol most recently read, and the
symbol at the top of the stack. An output pair (p, γ) indicates that the automaton has
moved to state p and replaced the top of the stack with the string γ. Suppose X is the
symbol at the top of the stack. If γ = ε (here ε denotes the empty string), then the top
of the stack has been popped. If γ = X, then no change has been made. If γ = YZ, then
X has been replaced with Z and Y has been pushed onto the stack. While the definition
of a PDA allows for any length string to be pushed, we will incidentally work only with
strings of length 2.

Graphically, we represent δ(q, a, X) = (p, γ) by a directed arc from q to p labeled
by a, X/γ. Here X/γ is intended to signify that symbol X has been replaced by string γ
at the top of the stack. We use x as a variable over characters in an alphabet in order to
consolidate multiple labels. In all of the following examples, we assume Γ = Σ ∪ {ε}.

Figure 4 depicts a PDA for less than half. The idea here is that we push 1s and 0s to
8In particular, we are moving one level up the Chomsky (1959) hierarchy of formal grammars. The

regular languages are generated by DFAs, while the context-free languages are generated by pushdown
automata. That quantifiers such as most and less than half are not computable by DFAs can be easily proven
using the Pumping Lemma for regular languages.
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Figure 4: A pushdown automaton for less than half

the stack as often as we can, but popping off pairs. If a 1 is read and a 0 is on the stack,
we pop the 0 and vice versa. This has the affect of “pairing” the members of A \ B
and A ∩ B. Because less than half holds when the former outnumber the latter, there
should be only 0s on the stack at the end of this process. Therefore, the transition to the
accepting state occurs only when the string of 0s and 1s has been entirely processed
and popping off any remaining 0s exhausts the contents of the stack. Modifying the
labels on the edges of the final two states to pop all 1s would render this a PDA for
most.

The final result reported in this section depends on one final definition.

Definition 3.4. A quantifier Q is first-order additively definable if there is a formula ϕ
in the first-order language with equality and an addition symbol +̄ such that

Qc
Mab ⇔ 〈N,+, a, b〉 ϕ(a, b)

Theorem 4 (van Benthem 1986, p.163-165). LQ is computable by a pushdown au-
tomaton if and only if Q is first-order additively definable.

4 Automata and processing

How exactly does this work on automata relate to questions about processing? On
one hand, the machine representations of quantifiers discussed in the previous section
are inspired directly by the standard model-theoretic meanings assumed in classical
quantifier theory. On the other hand, the fine structure of these representations promises
a potential bridge to lower level questions about language processing. In this section
we discuss two important dimensions of this connection:
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(1) Semantic automata suggest a relatively clean theoretical separation between se-
mantic competence and performance errors.

(2) Recent imaging and behavioral experiments have revealed that structural differ-
ences in automata may be predictive of neuroanatomical demands in quantifier
processing.

4.1 Explaining performance errors

The logical theory of generalized quantifiers is occasionally dismissed as being irrel-
evant to the psychological facts about how people produce and assess quantified sen-
tences, typically by citing data that suggests human reasoning with quantifiers does not
match the patterns assumed in standard logical analysis. Indeed, experiments reveal
people diverge from standard logical prescriptions, not only in reasoning tasks such as
the classical syllogism (see, e.g. Chater and Oaksford 1999), but even in simple veri-
fication tasks (see, e.g. McMillan et al. 2005) with a similar pattern in (Szymanik and
Zajenkowski 2010a)). One could take this to show, or at least to reinforce the idea,
that logical/truth-conditional semantics and the psychology of language are best kept
separate, with the former studying abstract normative aspects of meaning and the lat-
ter studying the actual mechanisms involved in processing.9 Yet the normative aspects
of meaning, and of quantifier meanings in particular, are clearly relevant to questions
about how people use quantifiers, and vice versa. While a complete discussion of this
issue is beyond the scope of this paper, we would like to point out that semantic au-
tomata have the potential to serve as a natural bridge. In principle, they allow for
a separation between abstract control structure involved in quantifier verification and
innumerable other variables that the framework leaves underspecified: order of evalua-
tion, predication judgments, domain restriction, and any contextual or practical factors
that might affect these and other variables. This could be viewed as a modest distinction
between competence and performance for quantifier expressions.10

We might hypothesize that competence with a particular quantifier involves, at least
in part, internalizing the right abstract computational mechanism for verification, in
particular that given by the appropriate automaton. How precisely verification is im-
plemented on a given occasion will depend on many factors quite independent from

9Recall the quotation from Lewis 1970 in Footnote 3 above.
10Our suggestion is compatible with many interpretations of what this distinction comes to. For instance,

the relatively non-committal interpretation of Smolensky (1988) says competence of a system or agent is
“described by hard constraints” which are violable and hold only in the ideal limit, with unbounded time,
resources, and other enabling conditions. The actual implementational details are to be given by “soft con-
straints” at a lower level, which have their own characteristic effects on performance.
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the meanings of quantifiers: prototype effects, saliency effects, time constraints, and so
on. Consider, for instance, how one might verify or falsify a sentence like (1):

All U.S. presidents have served at least one year in office. (1)

Supposing one does not already know whether this is true or false, but that an answer
must be computed using information stored in memory, one might check famous pres-
idents like George Washington or Abraham Lincoln first and only then move to less
salient presidents. Alternatively, if one actually knew James Garfield or William Har-
rison had served less than a year, such information might be retrieved quickly without
first checking more salient presidents. The subtleties of such strategies are fascinating,
but arguably go beyond the meanings of quantifiers. Indeed, they arise in tasks and
phenomena having nothing to do with quantifiers.

The same can be said for cases where a search is terminated too soon. In example
(1) a person might think about a few salient examples and conclude that the sentence is
true. For a particular task it may take too long to think about all forty-four presidents,
or it may not be worth the effort, and a quick guess is sufficient. However, even in such
cases, upon being shown a counterexample, a subject will not insist that the sentence is
actually true just because they were unable to identify the counterexample. It is in that
way that people are reasonably attuned to the proper, “normative” meanings. Ordinary
speakers have a good sense for what needs to be checked to verify a quantified sentence,
even if in practice going through the necessary steps is difficult or infeasible. Semantic
automata allow separating out control structure from the specific algorithm used to
implement the procedure.

In terms of the Marr’s famous levels of explanation (Marr 1982), the standard
model-theoretic semantics of quantification could be seen as a potential computational,
or level 1, theory. Semantic automata offer more detail about processing, but, as we
have just argued, less than one would expect by a full algorithmic story about process-
ing (level 2), which would include details about order, time, salience, etc. Thus, we
might see the semantic automata framework as aimed at level 1.5 explanation,11 in be-
tween levels 1 and 2, providing a potential bridge between abstract model theory and
concrete processing details.

11Peacocke (1986) coined the term “level 1.5”, though in a slightly different context. Soames (1984)
independently identified three levels of (psycho)linguistic investigation which appear to (inversely) corre-
late with Marr’s three levels. Pietroski et al. (2009) also articulate the idea that verification procedures for
quantifiers (for most, specifically) provide a level 1.5 explanation. Independently, the idea of level 1.5 expla-
nation has recently gained currency in Bayesian psychology in relation to rational process models (personal
communication, Noah Goodman).
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4.2 Experimental results

While this separation between competence and performance remains somewhat specu-
lative, recent experimental work has shown that certain structural features of semantic
automata are concretely reflected in the neuroanatomical demands on quantifier ver-
ification. Recall that certain quantifiers can be computed by memoryless finite state
automata whereas others (such as most) require a pushdown automaton which has a
form of memory in its stack data structure. McMillan et al. (2005) used fMRI to test
“the hypothesis that all quantifiers recruit inferior parietal cortex associated with nu-
merosity, while only higher-order quantifiers recruit prefrontal cortex associated with
executive resources like working memory.” In their study, twelve native English speak-
ers were presented with 120 grammatically simple sentences using a quantifier to ask
about a color feature of a visual array. The 120 sentences included 20 instances of
6 different quantifiers: three first-order (at least 3, all, some) and three higher-order
(less than half, an odd number of, an even number of ). Each subject was first shown
the proposition alone on a screen for 10s, then the proposition with a visual scene for
2500ms, then a blank screen for 7500ms during which they were to assess whether the
proposition accurately portrayed the visual scene.

While behavioral results showed a statistically significant difference in accuracy
between verifying sentences with first-order quantifiers and those with higher-order
quantifiers, more interesting for our present purposes was the fact that activation in
brain regions (dorsolateral prefrontal and inferior frontal cortices) typically linked with
executive functioning such as working memory was found only in processing higher-
order quantifiers. They concluded that the formal difference between the machines re-
quired to compute quantifier languages seems to reflect a physical difference in neuro-
anatomical demands during quantifier comprehension.

This first piece of evidence does not tell the whole story, however. The first-order
vs. higher-order distinction does not map directly on to the distinction between DFAs
and PDAs because of parity quantifiers such as an even number of, which are com-
putable by cyclic DFAs. Szymanik (2007) observed that McMillan et al. did not make
this distinction and began investigating the demands placed on memory by parity quan-
tifiers. In a subsequent study by Szymanik and Zajenkowski (2010b) reaction times
were found to be lowest for Aristotelian quantifiers (all , some), higher for parity (an
even number of ), yet higher for cardinals of high rank (at least 8), and highest for pro-
portionality quantifiers (most). This provides some evidence that the complexity of the
minimal automaton, and not simply the kind of automaton, may be relevant to ques-
tions about processing.12 A subsequent study by Szymanik and Zajenkowski (2011)

12Indeed, a general notion of complexity for automata in the context of language processing would be
useful in this context (see also the discussion in Section 5.1).
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showed that proportionality quantifiers place stronger demands on working memory
than parity quantifiers. This result is consistent with the semantic automata picture,
since a PDA computing the relevant parity quantifiers never needs to push more than
one symbol on to the stack.

Finally, it is also relevant that McMillan et al. (2005) found no significant differ-
ence in activation between judgments involving at least 3 where the relevant class had
cardinality near or distant to three. This suggests subject are invoking a precise num-
ber sense in such cases. This contrasts with recent studies by Pietroski et al. (2009)
and Lidz et al. (2011), which attempt to distinguish which of several verification pro-
cedures are actually used when processing sentences with most. Although the present
paper shares much in spirit with this project, their protocols show a scene for only 150
or 200ms, which effectively forces the use of the approximate number system.13 The
finding is that in such cases people do not seem to be using a pair-matching proce-
dure such as that defined above. We conjecture that with more time the pair-matching
algorithm would be used, at least approximately.

The experimental work described in this section has been based solely on automata
defined for monadic quantifiers. In order to carry this project further, and to understand
its potential and its shortcomings as a high-level processing model, we need to define
machines appropriate for more complex quantificational types. In the next section
we take an important first step in this direction, defining automata for iterations of
quantifiers.14

5 Iteration

We now show how to define automata for type 〈1, 1, 2〉 iterations of quantifiers by
composing the automata already defined for 〈1, 1〉 quantifiers. Recall:

It(Q1,Q2) A B R ⇔ Q1 A {x | Q2 B Rx}

Intuitively, we simply want to run the automaton for Q1 on the string generated by
the sets A and {x | Q2 B Rx}. The trick, however, comes in “generating” this second
set on the fly. Our basic maneuver will be this: we run the Q2 automaton on B and
Rai for every ai ∈ A. For each run, we push onto a stack a 1 or a 0 corresponding
to whether ai ∈ {x | Q2 B Rx} or not. Then, we run a transformed version of the Q1
automaton where every transition has been replaced with one that pops symbols off the

13See Dehaene 1997 for the distinction between precise and approximate number systems.
14Szymanik (2010) investigated the computational complexity of polyadic lifts of monadic quantifiers.

This approach, however, deals only with Turing machines. Our development can be seen as investigating the
fine structure of machines for computing quantifier meanings.
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stack instead of reading them. In this sense, the stack of the iterated machine will serve
as the input tape for the Q1 machine and we will use the Q2 machine to generate an
appropriate string. We will now make this all precise, first working with quantifiers
computable by finite state automata, and then generalizing to those computable only
by pushdown automata.

Definition 5.1. LetM = 〈M, A, B,R〉 be a model, ~a and ~b enumerations of A and B,
with n = |A|, m = |B|. We overload notation (see Definition 3.1) by allowing τ to take
a relation as an extra argument:

τ
(
~a, ~b,R

)
=

(
τ
(
~b,Rai

)
�

)
i≤n

where τ
(
~b,Rai

)
is the translation given in Definition 3.1. The operation (·)i≤n concate-

nates instances of (·) for 0, . . . , n. The � functions as a separator symbol in a way that
will shortly be made precise.

To see this translation in a concrete example, consider a model 〈M, A, B,R〉 where
M = {x, y, z}, A = {x, y}, B = M, and

R = {〈x, y〉, 〈y, x〉, 〈y, y〉, 〈y, z〉}

Let the enumerations ~a and ~b be given alphabetically. Then τ
(
~a, ~b,R

)
will be

010 � 111� (2)

Definition 5.2. Let Q1 and Q2 be quantifiers of type 〈1, 1〉. We define the language of
Q1 · Q2 by

LQ1·Q2 = {w ∈ (wi�)∗ | i ≤ n, wi ∈ {0, 1}∗ and〈
card

({
wi | wi < LQ2

})
, card

({
wi | wi ∈ LQ2

})〉
∈ Qc

1}

For w ∈ (wi�)∗, we write numsep (w) for the number of � symbols in w.

Note that w < LQ iff w ∈ L¬Q where ¬Q is the outer negation, given by

〈M, A, B〉 ∈ ¬Q⇔ 〈M, A, B〉 < Q.

We illustrate the definition with a few examples.

Example 1. Here are a few examples using some, every, and most. We omit some of
the conditions (e.g., that i ≤ n) to enhance readability.

w ∈ Levery·some ⇔
〈
card ({wi | wi ∈ Lsome}) , card ({wi | wi < Lsome})

〉
∈ everyc
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⇔ card ({wi | wi < Lsome}) = 0
⇔ card ({wi | # (1) = 0}) = 0

w ∈ Lsome·every ⇔ card ({wi | # (0) = 0}) > 0
w ∈ Lmost·some ⇔ card ({wi | # (1) > 0}) > card ({wi | # (1) = 0})

One can see that the translation given in (2) will be in Lsome·every.

As before we have the following relationship between translations of models and
languages.

Proposition 1. LetM = 〈M, A, B,R〉 be a model and Q1,Q2 quantifiers of type 〈1, 1〉.
Then for any enumerations ~a and ~b of A and B,

τ
(
~a, ~b,R

)
∈ LQ1·Q2 ⇔ 〈M, A, B,R〉 ∈ It(Q1,Q2)

5.1 Iterating finite state machines

In order to define PDAs that accept these iterated languages, we first need to define the
aforementioned transformation on DFAs which allows a stack to be treated as if it were
input.

Definition 5.3. Let M be a DFA. The pushdown reader of M, Mp is defined by

• Q (Mp) = Q (M), q0 (Mp) = q0, F (Mp) = F (M) ;

• Σ (Mp) = ∅ ;

• Γ (Mp) = Σ (M) ;

• δ (Mp) = {〈q1, ε, r, ε, q2〉 | 〈q1, r, q2〉 ∈ δ (M)}.

In other words, the stack alphabet of the pushdown reader is the input alphabet of
the original automaton. The state spaces are the same, but each transition q1

r
→ q2 in M

is replaced by q1
ε,r/ε
→ q2, i.e. by popping an r from the stack. On its own, a pushdown

reader is a fairly meaningless machine since its input alphabet is empty. But they will
prove to be a critical component in the PDAs which compute iterated quantification.

Before defining the iteration automata, we provide several helper definitions. For
an automaton M, let the sign of q ∈ Q (M) be given by

sgn (q) =

1 q ∈ F
0 q < F
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We define the sign of M as
sgn (M) = sgn (q0 (M))

In what follows, the complement operator (·)c : {0, 1} → {0, 1} maps 1 to 0 and 0 to 1.
With these definitions in hand, we can proceed to the central definition of this paper.

Definition 5.4 (Iteration Automaton). Let Q1 and Q2 be two DFAs accepting LQ1 and
LQ2 , respectively. The PDA It (Q1,Q2) is given by:

• Q = {qI} ∪ Q
(
Qp

1

)
∪ Q (Q2)

• Σ = {0, 1,�}

• Γ = {0, 1}

• Transition function:

δ = δ
(
Qp

1

)
∪ {〈qI , ε, x, sgn (Q2) x, q0 (Q2)〉 | i ≤ n}

∪ {〈q1, 1, x, x, q2〉 | 〈q1, 1, q2〉 ∈ δ (Q2) and sgn (q1) = sgn (q2)}
∪ {〈q1, 0, x, x, q2〉 | 〈q1, 0, q2〉 ∈ δ (Q2) and sgn (q1) = sgn (q2)}
∪ {〈q1, 1, x, xc, q2〉 | 〈q1, 1, q2〉 ∈ δ (Q2) and sgn (q1) , sgn (q2)}
∪ {〈q1, 0, x, xc, q2〉 | 〈q1, 0, q2〉 ∈ δ (Q2) and sgn (q1) , sgn (q2)}
∪ {〈q,�, x, x, qI〉 | q ∈ Q (Q2)}

∪
{
〈qI , ε, x, x, q0

(
Qp

1

)
〉
}

• q0 = qI

• F = F
(
Qp

1

)
The basic idea is as follows: qI is a new start state. From qI , we have a ε transition

to the start state of Q2. When we take such a transition, a 1 or a 0 is pushed onto the
stack according to whether or not the start state of Q2 is an accepting state. The role
of sgn and (·)c is to ensure that we switch the original symbol pushed onto the stack
by the i transition whenever we go from an accepting to a non-accepting state or vice
versa. In this way, we push exactly one symbol on to the stack for each visit to Q2: a
1 if it ended in an accepting state and a 0 if not. The � transitions from each state of
Q2 to qI enable � to function as a separating symbol. From qI , we can also take an
ε-transition to Qp

1 ; this pushdown reader will then process the stack generated by the
visits to Q2.
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Figure 5: A pushdown automaton for some A R every B

Example 2. In Figure 2 is a PDA for computing some · every.
Here, Qp

1 is the pushdown reader (see Definition 5.3) of some. Q2 is the trans-
formed copy of every. Note that we push a 1 onto the stack on the transition from qI to
the start state of every since q0 (every) ∈ F (every). Similarly, we pop this 1 and push
a 0 on the 0 transition since this goes from an accepting to rejecting state of every.

Consider our earlier string
010 � 111�

which we know to be in Lsome·every. When reading 010, this automaton will push a 0
on to the stack, but will push a 1 on to the stack when it reads 111. Thus, somep will
accept the stack input and so the whole string will be accepted.

We record here a basic fact about iterated machines which follows straightfor-
wardly from the definition, and which will be important shortly.

Observation 1. It (Q1,Q2) has 1 + |Q (Q1) | + |Q (Q2) | states.

While the informal description of It (Q1,Q2) and the example make it seem plau-
sible that this PDA accepts the right iterated language, we now make this equivalence
precise. First, we prepare a few preliminary results, for which a basic definition of the
notion of computation in a PDA is required.
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Definition 5.5. Given a PDA M, a triple 〈q,w, X〉 ∈ Q × Σ∗ × Γ∗ is called an instan-
taneous description of M, specifying the current state, what of the input has not been
read, and the current stack contents. The transition function defines a notion of one-step
computation: for every 〈q1, x, A, q2, X〉 ∈ δ, we write

〈q1, xw, AY〉 `M 〈q2,w, XY〉

for every w ∈ Σ∗ and Y ∈ Γ∗, with `∗M the reflexive, transitive closure of `M.

Intuitively, 〈q1,w1w2, AY〉 `∗M 〈q2,w2, XY〉 means that there is a sequence of tran-
sitions starting in q1 which reads w1, ends in q2 and changes the stack from AY to
XY .

Lemma 3. Let Q1 and Q2 be quantifiers corresponding to regular languages and wi ∈

{0, 1}∗. Abbreviate It (Q1,Q2) by M.

(1) If wi ∈ LQ2 , then (qI ,wi � w, X) `∗M (qI ,w, 1X) for any X ∈ Γ∗, w ∈ Σ∗.

(2) If wi < LQ2 , then (qI ,wi � w, X) `∗M (qI ,w, 0X) for any X ∈ Γ∗, w ∈ Σ∗.

In other words, for any string wi, there is a wi� path through the iterated PDA such
that a 1 or 0 is pushed onto the stack according to whether or not wi ∈ LQ2 .

Proof. We prove (1) by induction on the length of wi. The proof for (2) is wholly
analogous. Assume wi ∈ LQ2 .

If |wi| = 0 (i.e. wi = ε), then q0 (Q2) ∈ F (Q2), i.e. sgn (Q2) = 1. Thus, we take the
ε, X/1X transition from qI to q0 (Q2), immediately followed by the �, x/x transition
back to qI .

For the inductive step, let |wi| = n and write wi = w−i ci where ci ∈ {0, 1}. By
assumption, Q2 accepts wi, so its wi sequence of transitions ends in some qwi ∈ F (Q2).
We need to check two cases: w−i ∈ LQ2 or w−i < LQ2 .

If w−i ∈ LQ2 , then by the inductive hypothesis, there is a w−i � sequence in the
iterated PDA sending X to 1X. Moreover, by assumption, sgn

(
qw−i

)
= sgn

(
qwi

)
. Thus,

we replace the � transition in the w−i � sequence with the ci, x/x transition from qw−i to
qwi that is given by definition of δ (It (Q1,Q2)).

If w−i < LQ2 , then by the inductive hypothesis, there is a w−i � sequence in the
iterated PDA sending X to 0X. This time, by assumption, sgn

(
qw−i

)
, sgn

(
qwi

)
. Thus,

we replace the � transition in the w−i � sequence with the ci, 0/1 transition from qw−i to
qwi that is given by definition of δ (It (Q1,Q2)).

�
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Corollary 1. Let w ∈ (wi�)∗ where wi ∈ {0, 1}∗. Then (qI ,w,Z0) `∗M (qI , ε, X) for some
X with |X| = numsep (w).

Theorem 5. Let Q1 and Q2 be quantifiers corresponding to regular languages. The
language accepted by It (Q1,Q2) is LQ1·Q2 .

Proof. First, LQ1·Q2 ⊆ L (It (Q1,Q2)). In particular, we show by induction on n =

numsep (w) for w ∈ LQ1·Q2 that (qI ,w,Z0) `∗M (qI , ε, X) where

card
({

wi | wi ∈ LQ2

})
= #1 (X)

card
({

wi | wi < LQ2

})
= #0 (X)

The inclusion then follows immediately from the definition of the pushdown reader Qp
1

and the ε, x/x transition from qI to q0

(
Qp

1

)
. If n = 0, then w = ε. This is in LQ1·Q2

only if 〈0, 0〉 ∈ Qc
1. One can easily check that this entails q0 (Q1) ∈ F (Q1), so the ε

transition from qI to q0

(
Qp

1

)
takes us to an accepting state of M.

For the inductive step, assume n > 0. Write w = w−wi�. By inductive hypothesis,
we have a w− path from qI to qI generating a stack X such that

card
({

wi | wi ∈ w− and wi ∈ LQ2

})
= #1 (X)

card
({

wi | wi ∈ w− and wi < LQ2

})
= #0 (X)

By Lemma 3, there is a w sequence from qI to qI which generates a stack 1X or 0X
depending on whether wi ∈ LQ2 or not, exactly as desired.

For the LQ1·Q2 ⊇ L (It (Q1,Q2)) inclusion, consider w ∈ L (M). Because F(M) =

F
(
Qp

1

)
and Qp

1 only pops from the stack, there must be a w sequence from qI to qI

generating a stack that contains a word accepted by Q1. Because the only transitions
leaving qI are ε and the only ones back to qI are �, x/x, w must be of the form (wi�)∗.
That w ∈ Ln

Q1·Q2
then follows by numsep(w) applications of Lemma 3 and by inspection

of Definition 5.3. �

Although we have demonstrated that languages for iterating two quantifiers whose
languages can be processed by finite state automata can be processed by pushdown
automata, a natural question arises: can these iterated languages also be accepted by
finite state automata? In other words, are the regular languages closed under iteration?
We show the answer to be positive.

First, note the following fact about regular expressions.15

15In fact, the substitutions we are defining are known in the compilers literature as regular definitions.
See, for instance, Aho et al. 2006, Ch. 3.
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Lemma 4. If E is a regular expression in alphabet {a1, . . . , an} and Ei is a regular
expression in alphabet Σi, then E [a1/E1, . . . , an/En] is a regular expression in

⋃
i≤n Σi.

Definition 5.6. Let E1 and E2 be regular expressions in {0, 1}. We define the iterated
regular expressions It (E1, E2) by

It (E1, E2) = E1

[
0/

(
Ec

2�
)
, 1/ (E2�)

]
where Ec denotes a regular expression for the complement of the language generated
by E (recall the regular languages are closed under complement).

From Lemma 4 we know that It (E1, E2) is a regular expression for every n. In-
spection of the above definition makes the following closure result obvious.

Proposition 2. Let Q1 and Q2 be quantifiers with regular languages; write EQ1 and
EQ2 for a regular expression generating LQ1 and LQ2 . Then It

(
EQ1 , EQ2

)
generates

LQ1·Q2 . In other words, LQ1·Q2 is a regular language whenever both LQ1 and LQ2 are.

Note on processing

Already in the single quantifier case, certain quantifiers like an even number of have
both DFA and PDA representations. It has been suggested, with supporting evidence
(Szymanik and Zajenkowski 2010a), that working memory is solicited when process-
ing sentences containing such quantifiers. This provides prima facie reason to believe
that working memory will be recruited when processing sentences with multiple quan-
tifiers each computable by a DFA. This would show that the PDA representation more
closely resembles the actual processing mechanism.

One argument in support of the DFA representation could derive from Fact 1 about
the size of the PDAs. Both It (some, every) and It (every, some) have five states. It can
be shown, however, that the minimal DFA accepting Lsome·every has four states and that
the minimal DFA accepting Levery·some, depicted in Figure 6, has three states, strictly
fewer than the associated PDAs.

This smaller state space and the apparent superfluity of the stack may favor the DFA
representation for such iterations. On the other hand, the PDA construction provides
a general method for generating a machine for the iteration of any two quantifiers.
There appears to be no such analogously general mechanism for generating the minimal
DFAs. Because neither argument on its own can be conclusive, empirical investigation
should be done to see how much (if any) working memory is activated in these and
similar cases.
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Figure 6: The minimal DFA accepting the language for every A R some B

5.2 Iterating with one or more pushdown automata

We now consider the case where one or both of the quantifiers in the iteration defines
a non-regular, context-free language. Note that Definition 5.2 and Proposition 1 still
apply in this situation. To define machines accepting these iterated languages, we pro-
ceed as before by adding a stack to act as an input tape to a pushdown reader. Because
one or both of the machines being iterated may in fact be a pushdown automaton, we
must generate a two-stack pushdown automaton.

Definition 5.7. A two-stack pushdown automaton is exactly like a pushdown automa-
ton except that the transition function is now of the form

δ : Q × (Σ ∪ {ε}) × Γ × Γ→ P(Q × Γ∗ × Γ∗)

We depict a transition δ (q, a, X1, X2) = (p, γ1, γ2) by a directed arc from q to p,
labeled by a, X1/γ1, X2/γ2.

Definition 5.8. Let M be a PDA. The pushdown reader of M, Mp, is a two-stack push-
down automaton defined by

• Q (Mp) = Q (M), q0 (Mp) = q0, F (Mp) = F (M)

• Σ (Mp) = ∅

• Γ (Mp) = Σ (M)

• δ (Mp) = {〈q1, ε, X, r, q2, γ, ε〉 | 〈q1, r, X, q2, γ〉 ∈ δ (M)}
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In the pushdown reader, all r, X/γ transitions in the original machine become
ε, X/γ, r/ε transitions. Definition 5.4 of iterated machines easily generalizes when one
(or both) of Q1 and Q2 is a PDA. The construction is nearly identical, merely keeping
track of the extra stack. An example will make this clearer.

Example 3. Figure 7 depicts a two-stack PDA accepting Ln
most·some.

Figure 7: A pushdown automaton for most A R some B

As a model of computation, two-stack PDAs have the same power as Turing ma-
chines, in that every Turing machine can be simulated by a two-stack PDA and vice
versa. One might wonder whether our machines really need the power of two stacks or
whether, as was the case with the regular languages, the added stack can be eliminated
while accepting the same language. In other words, the question arises of whether the
context-free languages are closed under iteration (both with regular languages and with
other context-free languages).

Again, the answer is positive. The approach directly mirrors that for showing clo-
sure of regular languages, replacing 1s and 0s in the language of Q1 by words in the
(appropriately indexed) language of Q2. First, a simple observation:

Observation 2. For a quantifier Q, if LQ is context-free, then so too is L¬Q.

Proof. Let ϕ be a formula in first-order additive arithmetic defining Q (as given by
Theorem 4). Then ¬ϕ defines ¬Q.

�
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Theorem 6. If LQ1 and LQ2 are context-free, then so is LQ1·Q2 .

Proof. Let G1, G2, and G2 be context-free grammars (CFGs) in alphabet {0, 1} gen-
erating LQ1 , LQ2 , and L¬Q2 respectively. Let n > 0. We will construct a CFG G in
alphabet {0, 1,�} generating LQ1·Q2 .

The start symbol of G is the start symbol of G1. We add a copy of G2 and call its
start symbol S 2. Similarly for G2. We then have two new production rules:

W → S 2�

W → S 2

G simply contains the rules of G1

[
0/W, 1/W

]
and the production rules outlined in the

previous paragraph. That G generates LQ1·Q2 follows via an analogous argument to
that given in the proof of Proposition 2; intuitively, W generates some wi ∈ LQ2 and W
some w ∈ Li

¬Q2
.

�

Example 4. The grammar below generates exactly Ln
most·some:

M → MWM | M′WM | MWM′ | M′WM′

M′ → WM′W | WM′W | ε

W → S 2�

W → S 2�
S 2 → S ′21S ′2
S ′2 → S ′2S ′2 | 1 | 0 | ε

S 2 → 0S 2 | ε

Just as one can algorithmically generate a DFA from a regular expression, so too
can a PDA be generated from a CFG. There is not, however, an analog of the minimal
DFA in the case of PDAs. It is also less clear what repercussions this closure result
would have for issues of language processing.

6 Conclusion

Our main contribution in this paper is the first extension of the semantic automata
framework to polyadic quantification. After presenting the classical results in this area,
and discussing general issues in the connection between automata and processing, we
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showed how to model sentences with iterated quantification. We also showed that
the regular and context-free languages are closed under iteration in a precise sense.
This is the first step in gaining a better understanding of how these machine models
might relate more generally to uses of quantifiers in natural language. At this point
a number of new questions suggestion themselves for further investigation. Some of
these include:

• The extension of semantic automata to iterated quantification gives rise to new
empirical predictions, as mentioned above. These predictions should be tested,
and more detailed predictions should be explored.

• In light of the discussion in Section 4, it is easy to imagine probabilistic automata
or other extensions, reflecting either biases or specific algorithmic verification
strategies. This could allow more detailed process models that could be subject
to more precise behavioral experimentation.

• Having defined automata for iteration, it is natural to consider other polyadic
lifts: resumption, cumulation, branching.16

• It may be possible to define automata for irreducibly polyadic quantifiers,
which could allow another angle on understanding the elusive Frege boundary
(van Benthem 1989, Keenan 1992), through semantic automata.

• A related theoretical question concerns whether minimal DFAs for iterated quan-
tifiers may or must contain non-trivial cycles. This can be phrased more pre-
cisely by asking whether these regular languages have non-zero star height (see
McNaughton and Papert 1971).

• The close relationship between quantifiers and formal languages in the semantic
automata framework allows some results from mathematical linguistics to be
used to address semantic issues. For instance, semantic learning may be study in
the context of the learnability in the limit framework (Gold 1967). First steps in
this direction have been taken by Gierasimczuk (2009) and Clark (2011).

We hope to pursue these questions in future work.

Acknowledgements We thank Johan van Benthem, Christopher Potts, and Jakub
Szymanik for helpful discussions.

16As a reviewer pointed out, we can already define a machine for cumulation as the sequential composi-
tion of It (Q1, some) and It (Q2, some).
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Abstract
We study possible algorithmic models for the picture verification task with double-
quantified sentences of the form ‘Some X are connected with every Y’. We show
that the ordering of quantifiers, either Some ◦ Every or Every ◦ Some, influences
the cognitive difficulty of the task. We discuss how computational modeling can
account for the varying cognitive load in quantifier verification.

1 Introduction

A central area of cognitive science is the study of our linguistic abilities, including the
understanding and evaluation of natural language sentences. Given the richness and
the variety of natural language constructions it is almost an impossible task to model
those cognitive abilities in their full generality. However, there are some fragments of
language which have formal semantics and which are well understood and rigorously
described by linguists. Those fragments are good candidates for cognitive computa-
tional modeling building upon the formal results. In particular, linguistic expressions
of quantities deserve special attention. This is because the study of such expressions
(determiner phrases) in the framework of Generalized Quantifier Theory (GQT) marks
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one of the most well-developed branches of formal semantics. Recently, it has been
shown how GQT can give rise to a computational model delivering neuropsycholog-
ical predictions on verification tasks (see, e.g, McMillan et al. 2005, Szymanik and
Zajenkowski 2010a). However, the model could only account for sentences with a sin-
gle quantifier, like ‘More than 5 boys played the game’. In this paper we discuss an
extension of the model that covers sentences with multiple-quantifiers, like ‘Some boy
kissed every girl’. We also test empirically some predictions of the model about the
cognitive complexity of various sentences with embedded quantifiers.

1.1 Generalized quantifiers

Generalized quantifiers (GQs) are one of the basic tools of today’s linguistics; their
mathematical properties have been extensively studied since the 1950s (see, e.g., Peters
and Westerståhl 2006). GQT assigns meanings to statements by defining the semantics
of the quantifiers in terms of relations between subsets of the universe. Let us consider
sentence ((1)) as an example:

(1) Every poet has low self-esteem.

GQT takes ‘every’ as a binary relation between (in this case) the set of poets and the
set of people having low self-esteem. Following the natural linguistic intuition we will
say that sentence ((1)) is true if and only if the set of poets is included in the set of
people having low self-esteem. Hence, the quantifier ‘every’ corresponds in this sense
to the inclusion relation.

Mathematically, such notion of GQs may be captured by identifying sentences of
the form QAB with the situations (models) in which those sentences are true (Lind-
ström 1966). For instance, we want to uniformly express the meaning of ‘most’ in-
dependently from the situation. Let us explain this approach further by giving a few
examples. Sentence ((1)) is of the form Every A is B, where A stands for poets and B
for people having low self-esteem. As we explained above the sentence is true if and
only if A ⊆ B. Therefore, the quantifier ‘every’ corresponds to the class of models
(M, A, B) in which A ⊆ B. For the same reasons the quantifier ‘some’ corresponds to
the class of models in which the set A ∩ B is nonempty. Finally, let us consider the
quantifier ‘most’. The sentence Most As are B is true if and only if the cardinality of
set (A ∩ B) is greater than the cardinality of set (A − B). Therefore, formally speaking:

Every = {(M, A, B) | A, B ⊆ M and A ⊆ B}.

Some = {(M, A, B) | A, B ⊆ M and |(A ∩ B)| > 0}.
Most = {(M, A, B) | A, B ⊆ M and |(A ∩ B)| > |(A − B)|}.
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Hence, if we fix a model M, then we can treat a generalized quantifier as a relation
between relations over the universe, and this is the familiar notion from natural lan-
guage semantics. For instance, in a given model M the statement MostM(A, B) says
that |(AM ∩ BM)| > |(AM − BM)|, where AM , BM ⊆ M.

The above formalization links tightly with many computational models and results
on GQs (see, e.g., Szymanik 2009). Even though it has not been designed as a cognitive
model, it can raise precise processing predictions (see Szymanik 2007). In the reminder
of the paper we study the computational model of the verification tasks for sentences
containing combinations of ‘every’ and ‘some’ quantifiers.

2 Model

In the semantic automata approach to GQs, quantifiers are modeled as automata of
various types. This works by associating each finite model1 – corresponding, say,
to a visual scene – with a string in a formal language and designing an automaton
that accepts a string if and only if the model which was translated into that string
makes the quantifier sentence true. As an example, consider Every, the model-theoretic
interpretation of which is given above. Given a model M, we can write a word in
{a, b}|M| by enumerating A and writing an a for every element in A \ B, and a b for
every element in A ∩ B.2 To verify whether M ∈ Every, we must then simply check
whether the word consists entirely of bs since A ⊆ B iff A \ B = ∅. An automaton that
recognizes strings corresponding to models in Some should accept any string in which
at least one b appears. These two automata are pictured below in Figure 1.

Figure 1: Finite state automata for Every (left) and Some (right)

1As we work with natural language quantifier the restriction to finite models is arguably innocent (see
Szymanik 2009).

2To use a two-letter alphabet, the quantifiers must satisfy certain properties, like topic neutrality, domain
independence and conservativity (see, e.g., Peters and Westerståhl 2006). All the quantifiers considered in
this study do.
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A detailed theory of automata for GQs of this form has been developed by van
Benthem (1986) (but see also Mostowski (1998)). Certain quantifiers, such as Most
can only be modeled by pushdown automata. These automata add to the ones above a
stack data structure, a.k.a. a form of memory. A slew of both neuroimaging and be-
havioral studies (see, e.g., McMillan et al. 2005, Szymanik and Zajenkowski 2010a;b,
Zajenkowski et al. 2011) have shown that this formal distinction is mirrored in the way
patients process quantifiers: proportional quantifiers like Most take longer to process,
are processed less accurately, and place more demand on working memory than do
simpler quantifiers.

Most of the theoretical and experimental work thus far has focused, however, on
sentences of the form QAB. But natural language contains the ability to embed quanti-
fiers, as in “some student read every book” or “most students take three classes”. These
are modeled by iterated quantifiers. For instance:

Some ◦ Every = {(M, A, B,R) | (M, A, {x ∈ M | (M, B,Rx) ∈ Every}) ∈ Some},

where A, B ⊆ M, R ⊆ M × M, and Rx = {y ∈ M | Rxy}. Unpacking this definition,
we find that “some student read every book” will come out true just when the set of
students (x) who are such that every book was read by them (Rx) is non-empty (see
Figure 4 for an example).

Szymanik (2010) has studied the computational complexity of the various readings
of multi-quantifier sentences, including iterated quantifiers. He identified the border
between tractable and intractable constructions that has been later tested experimentally
by Schlotterbeck and Bott (2012). It has turned out that the computational differences
approximate cognitive complexity of the corresponding verification task. However, the
results of Szymanik for multi-quantifier sentences have been formally disconnected
from the automata model for simple quantifier sentences. Recently, that gap has been
bridged by Steinert-Threlkeld and Icard (forthcoming) who have extended the semantic
automata approach to handle cases of iterated quantification. While we refer the reader
to the paper for formal details, we here present one example, a machine for Some ◦
Every (Figure 2)3.

Let us assume that we want to verify sentence ‘Some boy reads every book’. The
idea is this: for every boy we check the set of books he reads (the string generated
by B and Rx). We run the Every automaton on it to check whether that particular boy
actually reads all the books. If he does we push a 1 onto the stack, otherwise we push
a 0. Next, we move to the books read by the next boy (� separates the corresponding
substrings in the encoding) and run the same algorithm. Once we analyzed books read
by every boy in that way, we then run the Some machine but using the stack contents

3� is a special separator symbol needed in the encoding of the models.
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Figure 2: A pushdown automaton for Some ◦ Every

as the tape. So, this machine will reach the accepting state if and only if there is at least
one 1 on the stack, which will happen if and only if at least one x ∈ A is such that the
Every automaton accepts the string generated by B and Rx, meaning that there is a boy
who reads all books.

This raises an empirical question: do iterated quantifiers place demands on working
memory as the pushdown automata model would predict?

2.1 Predictions

We address this question by performing sentence-verification tasks on sentences with
Some ◦ Every and Every ◦ Some iterations. First, we must note that it turns out that
these iterations can be also modeled by deterministic finite state automata.4 Figure 3
depicts the minimal DFAs accepting Every ◦ Some and Some ◦ Every.

Nevertheless, we predict that processing iterated quantifiers will place similar de-
mands on working memory to proportional quantifiers. This is because the construction
outlined in the previous section provides a general mechanism for converting automata
for any two quantifiers into an automaton for their iteration. No such general mech-
anism is known to exist for generating DFAs for iteration. To see this, compare the
two automata in Figure 3. Although the top row of the Some ◦ Every machine does
contain a copy of the Every DFA, no such copy of either DFA can be found in Figure 3;

4A key result of Steinert-Threlkeld and Icard (forthcoming) is that if Q1 and Q2 are computable by
deterministic finite state automata, then so too is Q1 ◦ Q2, i.e., a push-down automata from Figure 2 can be
actually transformed into a finite-state automata.
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Figure 3: Minimal DFAs accepting the language for Every ◦ Some (left) and Some ◦ Every
(right). To compare with PDA let us explain the run of Some ◦ Every automata for the sentence
‘Some boy reads every book’. Again, we pick the first boy and look at the books he reads. If he
reads all the books we move to accepting state; otherwise, if we find one book he doesn’t read
we move to state p. From here we can move back to the initial state only by starting to check
books read by another boy (marked by � in the encoding of the model). From the initial state
we can go to the double-circled accepting state if and only if we find a boy who reads all books.
The bottom row indicates that once we have found one such student, it does not matter whether
or not any of the others have read every book.

more importantly, there doesn’t appear to be a uniform construction generating the two
iterated DFAs. It is plausible that people learn procedures for assessing basic quantifier
meanings and then develop a general mechanism for processing embedded quantifiers.
Since iteration of quantifiers is one semantic operation which is independent of the two
basic quantifiers, we predict that there is a single corresponding mental mechanism
for constructing procedures to process iterated quantifiers from basic procedures. This
mechanism generates pushdown automata and so we expect to find strong working
memory demands when processing iterated quantifiers.

Furthermore, the model allows us to predict that true instances of Every ◦ Some
might be more complex to verify than true instances of Some ◦Every. This is because
in the first case subjects have to run through every element of A, whereas in the latter,
they needed only find one example; this example might be salient in the image. But
even if not, a subject verifying Some ◦ Every can stop processing once he finds one
appropriate A and need not continue to the rest. Of course, the model predicts that the
situation is opposite for false instances: namely false Every◦Some are simpler to verify
than false Some ◦ Every since the former require just finding one counterexample.
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3 Experimental results

3.1 Method

To test the theoretical predictions we studied how people verify sentences of the form
‘Every X is connected with some Y’ and ‘Some X is connected with every Y’. We also
compared the performance on these sentences with other cognitive tasks. In particular,
we measured memory span and cognitive control. According to the multicomponent
model of working memory as well as empirical findings, these two cognitive functions
reflect central aspects of working memory (see, e.g., Logie 2011). Additionally, we
looked at proportional judgments of the form ‘More than half of the dots are yellow’.
According to the model, proportional sentences are only computable by PDAs and,
therefore, they engage working memory.

Participants

Seventy-six Polish-speaking students from University of Warsaw (46 females and 30
males) between 19 and 31 years (mean age was 22.64 years, SD=2.65) were recruited
for this experiment. Each subject received a small financial reward for participating.

Materials and procedure

Iterations The task tested how subjects verify two types of sentences against simple
pictures (see Figure 4).

21

Figure 4: Examples of stimuli used in the study. Sentence ’Every circle is connected with some
square’ is true in situation 1. Sentence ’Some circle is connected with every square’ is true in
situation 2.

Each sentence was repeated eight times. Half of the trials were true. At the begin-
ning of each trial a sentence was displayed. Subjects had as much time as they needed
to read it. Next, a picture was presented, and participants were asked to decide within
20000 ms if the proposition accurately describes the picture. All stimuli were counter-
balanced and randomly distributed throughout the experiment. For every sentence we
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mesured mean reading time, mean verification time, and accuracy (number of correct
answers; maximum=8).

Memory span The memory span task was a computerized version of Sternberg’s
(1966) short-term memory measure. On each trial of the test, the subjects were pre-
sented with a random series of different digits, one at a time, for 300 ms, followed by
a blank screen and the test digit. Participants had to decide whether the test digit had
appeared in the previously displayed string. Sequences of digits of three lengths (four,
six, or eight) were repeated eight times each; hence, there were 24 trials overall. The
score was the total of correct responses from all conditions (range 0 to 24).

Cognitive control Cognitive control was measured with the short version of the At-
tention Networks Test (ANT) designed by Fan et al. (2002).

The authors’ starting point was the assumption that the attentional system can be
divided into three functionally independent networks: alerting, orienting, and execu-
tive control. In the present study we focused on the latter network (the monitoring and
resolution of conflict between expectation, stimulus, and response) as an index of cog-
nitive control. In the ANT task, on each trial, the participant has to decide, by pressing
a button, whether a central arrow stimulus (the target) points left or right. The target is
flanked by distractor stimuli, which may be congruent with the target (arrow points in
same direction) or incongruent (arrow points in opposite direction). In each case, two
flankers are presented on either side of the target. The control index is calculated by
subtracting the RT median of the congruent flanking conditions from the RT median of
incongruent flanking conditions.

Proportional judgements This task measured the reaction time and accuracy of pro-
portional judgments, such as ‘Less than half of the dots are blue’, against color pictures
presenting dots. The pictures accompanying sentences differed in terms of the number
of objects (15 dots or 17 dots), but not the distance between the cardinalities of two
sets of dots (7 vs 8 and 8 vs 9). Within each condition, subjects had to solve eight
trials. Half of them were true. Participants were asked to decide, by pressing a button,
whether or not the proposition accurately describes the picture. We analyzed mean re-
action time (RT) as well as accuracy level (number of correct answers; maximum=8)
of each condition.
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3.2 Results

Iterations

First we compared the processing of two types of sentences used in the task. ANOVA
with type of sentence (2 levels) and statements truth-value (2 levels) as two within-
subject factors was used to examine differences in mean verification times and accu-
racy (see Table 1 and Table 2 for means and standard deviations). The main effect
of sentence type was significant indicating that sentences containing quantifiers or-
dered as every-some were verified significantly longer (F(1, 75) = 17.01, p < 0.001,
η2=0.19) and less accurately (F(1, 75) = 22.48, p < 0.001, η2=0.23) than sentences
with some-every order. Moreover, the analysis revealed the significant main effect of
the interaction between sentence type and truth-value in case of verification time (F(1,
75) = 42.02, p < 0.001, η2=0.36) as well as accuracy (F(1, 75) = 25.63, p < 0.001,
η2=0.26). Further comparisons among means indicated that true sentences with every-
some were processed longer and worse than all other situations. Both false conditions
did not differ from one another, and were medium difficult, while true some-every sen-
tences had shortest mean RT and the highest correctness.

Finally, for reading time we analyzed only difference between sentence types.
ANOVA reached the tendency level (F(1, 75) = 2.85, p = 0.095, η2=0.04) and in-
dicated that participants needed more time for every-some than some-every construc-
tions.

Correlations

Next, we correlated the scores obtained in the iteration verification task with other cog-
nitive measures (see Table 1). Analyzing accuracy, we found that only some-every
sentences were highly and positively correlated with scores obtained in the memory
task and proportional judgements, while in the case of cognitive control the relation-
ship was negative. The latter result is negative since the high result on control network
indicates delay in inhibiting response to competing stimuli, and hence poor executive
functioning. Interestingly, similar correlations were obtained between accuracy on pro-
portional judgements and both memory span and control tasks. We also found that the
verification times for sentences with two quantifiers are positively associated with the
verification times of proportional judgments.

When the correlations are conducted separately for true and false iterated state-
ments, the general pattern of significant correlations remains the same (see Table 2).
Specifically, only sentences with some-every order were significantly associated with
cognitive control, memory span, and proportional quantifiers. This relationship was
independent of truth-value.
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Table 1: Means (SD) of all variables and correlations between iteration task and other cognitive
measures

Control Memory Prop15 acc Prop17 acc Mean (SD)
Every-some -.12 -.04 -.14 .02 5019 (2520)
read
Some-every -.05 -.01 -.15 -.07 4738 (2140)
read
Every-some .11 .11 -.01 .01 2506 (1129)
ver
Some-every .10 -.13 -.02 -.10 2079 (867)
ver
Every-some -.06 .02 .10 -.05 6.48 (1.76)
acc
Some-every -.38** .29* .32** .45** 7.61 (.92)
acc
Control -.26* -.33** -.29* 95.68 (38.22)

Memory .25* .30** 20.89 (2.15)

Prop15 acc .49** 6.86 (1.22)

Prop17 acc 6.88 (1.24)

* p < 0.05; ** p < 0.01; Note Read - reading time; ver - verification time; acc - accuracy; prop15 - proportional quantifiers

presented with 15 objects, prop17 - proportional quantifiers presented with 17 objects.

4 Discussion

We have studied the computational model of verifying sentences containing embed-
ded quantifiers. We confirmed the prediction that for true instances Every ◦ Some is
harder than Some ◦ Every but we did not find the opposite relation for false instances.
Most importantly, while the model suggests that sentences with Some ◦ Every and
Every ◦ Some iterations are equally difficult with respect to working memory engage-
ment, we found some differences in subjects’ performance: ‘Every-some’ sentences
are more difficult in terms of reaction time and accuracy. On the other hand, only
verification of ‘some-every’ sentences correlates with other tasks engaging working
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Table 2: Means (SD) of iterated sentences in true and false conditions, and their correlations
with other cognitive measures

Control Memory Prop15 acc Prop17 acc Mean (SD)
Every-some .12 .05 -.02 .05 2231 (870)
ver false
Every-some .09 .20 -.02 -.06 2781 (1569)
ver true
Some-every .03 -.12 .10 .05 2468 (1315)
ver false
Some-every .16 -.20 -.21 -.19 1690 (752)
ver true
Every-some -.06 .18 .03 .03 3.5 (0.80)
acc false
Every-some -.05 -.09 .05 -.11 2.96 (1.35)
acc true
Some-every -.30** .24* .23* .41** 3.72 (0.62)
acc false
Some-every -.38** .28* .31** .36** 3.90 (0.42)
acc true

memory resources, like cognitive control and memory span, as well as with accuracy
of proportional judgments. Moreover, the latter are also associated with both work-
ing memory aspects. These findings point towards an alternative model under which
Some ◦ Every gets associated with a canonical push-down automata from Figure 2
and Every ◦ Some iterations are processed with a strategy resembling a finite-state
automaton from Figure 3. That could explain, on the one hand, the qualitatively differ-
ent engagement of working memory in the verification of ‘Some X is connected with
every Y’, and on the other hand, the longer reaction time and higher error-rate in the
judgments of ‘Every X is connected with some Y’. The idea here would be that even
though the push-down automata strategy engages more cognitive resources, it is more
effective than the corresponding finite-state automata. A related empirical finding is
that the reading time (comprehension) for ‘every-some’ sentences is longer than for
‘some-every’ sentences. Therefore, an alternative model should also predict that deriv-
ing the push-down automata verification strategy for Some ◦ Every iteration is easier
than constructing the finite-state automata strategy for Every ◦ Some iteration. This
seems to be a natural direction for future research.
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5 Outlook

We think that one of the best strategies for subsequent research would be to embed the
formal theory in a proper computational cognitive model or implement it within some
cognitive architecture, like ACT-R. The general aim of the project would be to build
a psychologically and neurally plausible theory of quantifier meaning and compare it
with other proposals, such as Johnson-Laird’s mental models (1983) or Clark’s Com-
parison Theory (1976). There are many questions about the correspondence between
the formal models of quantifier verification and the cognitive resources the subjects
need to use in order to solve the task. Building a computational cognitive model will
lead to new experimental predictions that can be consequently tested. Moreover, none
of the empirical research so far has looked into actual strategies the subjects are ap-
plying in order to verify quantifier sentences. Eye-tracking studies could fill the gap
and provide additional data to assess whether models of quantifier verification postu-
late psychologically plausible strategies. We hope that such tasks could be successfully
carried out in a collaboration between cognitive modelers and logicians studying GQT.

6 Conclusions

The paper describes an abstract and purely quantitative model of quantifier verifica-
tion motivated by logical investigations in the semantics of natural language. From a
cognitive computational perspective, this is a sort of conceptual pre-modeling, mathe-
matically delimiting the class of all possible cognitive strategies that could be further
implemented in a proper cognitive computational model, giving raise to qualitative
predictions. In other words, our approach is to analyze human cognitive behavior by
investigating formal computational properties of the task (cf. Marr 1983, Anderson
1990). One could say that our work is positioned between the computational and algo-
rithmic levels of Marr at level 1.5 explanation (see, e.g., Steinert-Threlkeld and Icard
2013, Isaac et al. 2014) We do not specify the actual verification strategies people use
but we do more than only formal computational characterization of the task, namely
we delimit a class of ‘reasonable’ strategies. Our toolbox in doing that is modern logic
and computation theory which focuses on processes rather than ‘logical correctness’.
One natural application of this toolbox – that we have explored in the paper – is in
estimating cognitive difficulty of a task. We believe that the formal insights logic and
computation theory have to offer are instrumental for building plausible cognitive com-
putational models.
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Abstract
We study structural properties of a turn-based game called the Marble Drop Game,
which is an experimental paradigm designed to investigate higher-order social rea-
soning. We show that the cognitive complexity of game trials, measured with
respect to reaction time, can be predicted by looking at the structural properties of
the game instances. In order to do this, we define complexity measures of finite
dynamic two-player games based on the number of alternations between the game
players and on the pay-off structure. Our predictions of reaction times and rea-
soning strategies, based on the theoretical analysis of complexity of Marble Drop
game instances, are compared to subjects’ actual reaction times. This research il-
lustrates how formal methods of logic and computer science can be used to identify
the inherent complexity of cognitive tasks. Such analyses can be located between
Marr’s computational and algorithmic levels.

1 Introduction

In recent years, questions have been raised about the applicability of logic and com-
puter science to model cognitive phenomena (see, e.g., Frixione 2001, Stenning and
Van Lambalgen 2008, Van Rooij 2008). One of the trends has been to apply formal
methods to study the complexity of cognitive tasks in various domains, for instance:
syllogistic reasoning (Geurts 2003), problem solving (Gierasimczuk et al. 2013), and
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natural language semantics (Szymanik and Zajenkowski 2010). It has been argued that
with respect to its explanatory power, such analysis can be located between Marr’s
(1983) computational and algorithmic levels.

More recently, there has also been a trend to focus on similar questions regarding
social cognition, more specifically, theory of mind. Especially, higher-order reasoning
of the form ‘I believe that Ann knows that Peter thinks . . . ’ became an attractive topic
for logical analysis (Verbrugge 2009). Here, the logical investigations often go hand
in hand with game theory (see, e.g., Osborne and Rubinstein 1994). In this context,
one of the common topics among researchers in logic and game theory has been back-
ward induction (BI), the process of reasoning backwards, from the end of the game,
to determine a sequence of optimal actions (van Benthem 2002). Backward induction
can be understood as an inductive algorithm defined on a game tree. The BI algorithm
tells us which sequence of actions will be chosen by agents that want to maximize their
own payoffs, assuming common knowledge of rationality. In game-theoretical terms,
backward induction is a common method for determining sub-game perfect equilibria
in the case of finite extensive-form games.1

Games have been extensively used to design experimental paradigms aiming at
studying social cognition (Camerer 2003), recently with a particular focus on higher-
order social cognition: the matrix game (Hedden and Zhang 2002), the race game
(Gneezy et al. 2010, Hawes et al. 2012), the road game (Flobbe et al. 2008, Raijmakers
et al. 2013), and the Marble Drop Game (henceforth, MDG) (Meijering et al. 2010;
2011; 2012). All the mentioned paradigms are actually game-theoretically equivalent.
They are all finite extensive-form games that can be solved by applying BI. As an
example in this paper we will consider MDG (see Fig. 1).

Many studies have indicated that application of higher-order social reasoning
among adults is far from optimal (see, e.g., Hedden and Zhang 2002, Verbrugge and
Mol 2008). However, Meijering et al. (2010; 2011) report on a near ceiling perfor-
mance of subjects when their reasoning processes are facilitated by, for example, a
step-wise training. Still, an eye-tracking study of the subjects solving the game sug-
gests that backward induction is not necessarily the only strategy used Meijering et al.
(2012).

1Backward induction is a generalization of the minimax algorithm for extensive form games; the
subgame-perfect equilibrium is a refinement of the Nash equilibrium, introduced to exclude equilibria with
implausible threats (Osborne and Rubinstein 1994).
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We still do not know exactly what reasoning strategies2 the subjects are applying
when playing this kind of dynamic extensive form games. One way to use formal meth-
ods to study this question has been proposed by Ghosh et al. (2010), Ghosh and Mei-
jering (2011): to formulate all reasoning strategies in a logical language, and compare
ACT-R models based on each reasoning strategy with a subject’s actual performance
in a sequence of games, based on reaction times, accuracy and eye-tracking data. This
corresponds to a study between the computational and algorithmic levels of Marr’s
Marr (1983) hierarchy.

Here, we aim to tackle the problem from a somewhat more generic, complexity-
theoretic viewpoint: we propose to study the problem on the computational level.
Specifically, we will identify inherent, structural properties of the game that make cer-
tain MDG trials harder than others.

2 Alternation type

Every instance of a finite extensive form game can be presented as a decision tree. The
second-order trials of MDG have the abstract tree form presented in Fig. 2.

How to approximate the complexity of a single instance of MDG? In the worst-
case scenario, the backward induction algorithm, based on breadth-first search from
the leaves of the tree upwards, will have to travel through all the nodes of the decision
tree. Thus, it will find the rational solution (Nash Equilibrium) in time and space
proportional to the number of nodes plus the number of edges in the tree, O(|V | +
|E|). However, the size of the tree does not seem to be a psychologically plausible
complexity measure. To see this, consider two trees of equal size, but in the first one
all the nodes are controlled by Player 1 while in the second tree, the players alternate.
Obviously, the problem posed by the second tree is much more complex. This suggests
that one of the key aspects of the problem is the structure of the move alternation in the
game tree. Let us then categorize game trees with respect to such alternations. In the
following, we restrict the analysis to two-player games, although it would be possible
to extend the ideas to finite dynamic games for more than two players.

Definition 2.1. Let us assume that the players {1, 2} strictly alternate in the game; Let
player i ∈ {1, 2}. Then:

2The term ‘strategy’ is used here more broadly than in game theory, where it is just a partial function
from the set of histories (sequences of events) at each stage of the game to the set of actions of the player
when it is supposed to make a move. We are interested in human reasoning strategies that can be used to
solve the cognitive problems posed by the game.
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Figure 1: Examples of a zero-, first-, and second-order Marble Drop game. The blue marbles,
on the left-hand side in the bins, are the participant’s payoffs and the orange marbles, on the
right-hand side, are the computer’s payoffs. The marbles can be ranked from the lightest to the
darkest. For each player, the goal is to get the white marble to drop into the bin with the darkest
possible marble of their color. The participant controls the blue trapdoors (i.e., blue diagonal
lines) and the computer controls the orange ones (the second set of trapdoors from the left).
The participants are told that the computer aims at maximizing its pay-off. The dashed lines
represent the trapdoors that both players should remove to attain the darkest possible marble of
their color. See http://www.ai.rug.nl/˜meijering/marble_drop.html for an interactive
demo. Backward induction reasoning proceeds from the last decision, which in 1c is Player 1’s
decision between the blue marbles in payoff-pairs C and D. Player 1 would decide to remove
the left trapdoor because C contains the darker blue marble. Backward induction would then
proceed with the second-to-last decision, which is Player 2’s decision between the orange mar-
bles in payoff-pairs B and C. Player 2 would decide to remove the left orange trapdoor, because
B contains the darker orange marble. Backward induction reasoning stops at the third-to-last
decision, which is Player 1’s decision between the blue marbles in payoff-pairs A and B. Player
1 would remove the right blue trapdoor, because B contains the darker blue marble.

• In a Λi
1 tree, all the nodes are controlled by Player i.

• A Λi
k+1 tree, a tree of k-alternations for some k ≥ 0, starts with a Player i node.3

For instance, the tree in Fig. 2 is Λ1
3, a 1-game tree of 2 alternations, because Player

1 has the first move at the root, followed by an alternation of Player 1 to Player 2 and
another alternation of Player 2 to Player 1.

3From the computational complexity theory perspective, this corresponds to a hierarchy of computa-
tional problems of increasing complexity (see, e.g., Arora and Barak 2009).

http://www.ai.rug.nl/~meijering/marble_drop.html
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(t1, t2) t,2
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(p1, p2) (q1, q2)
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Figure 2: Nodes s and u are controlled by Player 1. t is controlled by Player 2. If a player
controls a node then in that node he can choose whether to go left, l, or right, r. Every leaf is
labeled with the pay-offs for Players 1 and 2.

3 Pay-off structure and cognitive difficulty

From the psychological perspective, it seems really crucial to take pay-offs into account
when comparing the difficulty of particular MDG tasks. For instance, the two trees
from Fig. 3 are Λ1

3, because they both start with Player 1 and both have two alternations,
from Player 1 to Player 2 and back again. However, clearly, the first game, represented
by T1, is much easier for Player 1 than the second game, represented by T2. In the first
game it is enough for Player 1 to realize that 999 is the highest possible pay-off, and
then he can instantly move left and finish the game.

To explain the eye-tracking data of the subjects solving the Marble Drop game,
Meijering et al. (2012) suggest that subjects may be using forward reasoning with
backtracking (henceforth FRB), based on statistical analysis of eye gaze sequences.
For instance, in the game from Fig. 1c, Player 1 will find out that B contains the
darkest blue marble. He has to ask himself whether that marble is attainable. In other
words, he has to reason about whether Player 2 would remove the left orange trapdoor.
Therefore, Player 1 has to look at the orange marbles in bins B, C and D to find out
that bin D contains Player 2’s darkest orange marble. The reasoning continues with
Player 1 asking himself whether Player 2 thinks that her orange marble in bin D is at-
tainable. In other words, Player 1 has to reason about whether she thinks that he would
remove the right blue trapdoor of the rightmost set of trapdoors. Player 1 knows that
he would not remove that trapdoor, but that he would remove the left one instead. He
also knows that she is aware of this, as both players are aware of each other’s goals.
Therefore, Player 1 knows that Player 2 knows that her darkest orange marble in D
is unattainable. Therefore, Player 1 has to go back to the second decision point (i.e.,
the orange trapdoors). There, Player 2 would compare the orange marbles in B and C
and decide to remove the left orange trapdoor, because the orange marble in B is the
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Figure 3: Two Λ1
3 trees

darkest orange marble that she can still attain. To conclude, Player 1 knows that his
darkest blue marble in B is attainable, and will thus remove the right blue trapdoor of
the leftmost set of trapdoors.

As it is relatively hard to conclude from the eye-tracking data whether subjects ap-
ply exactly the above described forward reasoning with backtracking, we propose an
orthogonal idea. We aim to identify the properties of the games that make certain trials
harder than others and see whether such an explanation is congruent with forward rea-
soning plus backtracking. In order to do that, we put forward the following definitions.
The idea here is that subjects may be looking for the highest possible pay-off and then
try to reach it.

Definition 3.1. A game T is generic, if for each player, distinct end nodes have different
pay-offs.

Note, for instance, that the game in Figure 1c is generic: the four bins contain
marbles of four different hues of blue and four different hues of orange.
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Definition 3.2. Suppose i ∈ {1, 2}. If T is a generic game tree with the root node
controlled by Player i and n is the highest possible pay-off for Player i, then T− is the
minimal subtree of T containing the root node and the node with pay-off n for Player i.

To illustrate this definition, Figure 4 shows the restricted T− trees for the two trees
shown in Figure 3.

Hypothesis 1. Let us take two MDG trials T1 and T2. T1 is easier for participants
than T2 if and only if T−1 is lower in the tree alternation hierarchy than T−2 .

Hypothesis 1 takes into account pay-off structures. According to it, the first tree
from Fig. 3, T1, should be easier for participants than the right tree, T2, as T−1 is a Λ1

1
tree while T−2 is still Λ1

3, see Fig. 4. Moreover, it is possible that some subjects may try
to apply the procedure iteratively: check if the maximum pay-off is reachable, if not
then check for the second-best pay-off, and so on.

T−1

s,1

999, 1

l

T−2

s,1

5, 5 t,2

12, 14 u,1

5, 7 w, 1

16, 8

l r

l r

l r

l

Figure 4: The maximum pay-off restricted trees corresponding to the trees in Fig. 3

As an additional question, we ask whether the following predictions agree with the
proposal of Meijering and colleagues (Meijering et al. 2012) that the subjects in the
game are applying forward reasoning, with backtracking when necessary (FRB). First
of all, why would subjects ever apply FRB?

Hypothesis 2. For an average random game with 3 decision points structured as the
Λ1

3 game of Figure 2, the forward reasoning plus backtracking algorithm needs fewer
computation steps to yield a correct solution than backward induction.

Furthermore, if subjects used forward reasoning, then we could observe the follow-
ing by running FRB algorithm on the game trees:
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Hypothesis 3. Let us take two MDG trials T1 and T2. The forward induction with
backtracking algorithm yields a correct solution for T1 faster than for T2 if and only if
T−1 is lower in the tree alternation hierarchy than T−2 .

4 Experimental results

To experimentally corroborate our hypotheses, we analyzed performance and reaction
time data from (Meijering et al. 2012). Twenty-three first-year psychology students
(14 female) with a mean age of 20.8 years (ranging from 18 to 24 years) participated
in the experiment and were asked to solve Marble Drop trials, in the sense that they
had to make a decision ‘left’ or ‘right’ at the first decision point. All experimental
game trials had payoff structures that required Player 1 to reason about the decision at
each of the three decision points, structured as the Λ1

3 game of Figure 2. Therefore, the
experiment was constructed in a way to be diagnostic for second-order theory of mind
(see Meijering et al. 2012, for more information on the experimental design).

We divided experimental trials into two sets: Accessible ones, in which the high-
est possible pay-off for Player 1 is obtainable for him and Inaccessible ones, where his
highest possible pay-off is not obtainable. For example, the game of Figure 1c is acces-
sible, because Player 1 can reach the marble of the darkest hue of blue, which is located
in bin B, by opening the right trapdoor; after all, Player 2 will also choose to stay there.
Note that in general, if T1 represents an accessible game and T2 an inaccessible one,
then T−1 is lower in the alternation hierarchy than T−2 .

Therefore, according to Hypothesis 1, our prediction was that the shortest reasoning
times will be recorded in the condition “Accessible”, where the highest pay-off was
obtainable for Player 1.

Furthermore, by simulating forward reasoning with backtracking on experimental
trials and computing the number of reasoning steps, we investigated hypotheses 2 and
3. Again, our prediction was that the number of steps should be smaller in “accessible”
cases, where the highest-possible pay-off for Player 1 was obtainable.

4.1 Hypothesis 1: pay-offs and alternation type

To investigate the first hypothesis, we compared reaction times (RTs) in games in which
the highest payoff was accessible against RTs in games in which the highest payoff was
not accessible. The RTs were log-transformed to approximate the normal distribution.

A paired-samples t-test indicated a significant (within-subjects) difference, t(12) =

4.07, p < .01. The RTs decrease if the maximum payoff is accessible, which can be
seen in Figure 5.
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Figure 5: Players’ reaction times with respect to accessibility, namely the attainability of the
highest payoff for Player 1

4.2 Hypothesis 2: simulating the algorithms

When looking at all possible payoff-structures in Marble Drop games with two alter-
nations (or three decision points), we implemented the forward reasoning plus back-
tracking algorithm as a set of heuristics based on several cases that can occur in the
Marble Drop game; we used the same algorithm that we derived in (Meijering et al.
2012) from the participants’ eye-tracking data.4

When using the algorithm on all 576 possible pay-off structures, we see that for-
ward reasoning with backtracking in general requires fewer steps than backward induc-
tion, e.g., in 288 cases only 1 step is enough. More specifically, forward reasoning with
backtracking requires on average 3 steps, whereas backward induction would always
require 6 steps, irrespective of payoff structure. Table 1 provides a cross-table of payoff

structures and number of steps. This simulation supports our Hypothesis 2.
These simulation results imply that, on average, it pays off to use a forward rea-

soning strategy. In fact, Meijering et al. (2012) found a strong prevalence of forward
reasoning with backtracking, even though participants were presented with a subset
of hard-to-solve games in which backward induction would actually be more efficient

4Thus, we did not use a generic implementation of forward reasoning with backtracking that would
work for any possible game tree.
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Table 1: Cross-table of payoff structures and the necessary number of steps when using forward
reasoning with backtracking

# of steps 1 2 4 5 6 8
# of payoff structures 288 72 48 56 16 96

on average. However, participants did not know that they were presented with this
particular subset of very difficult games.

4.3 Hypothesis 3: FRB and structural complexity

The implementation of the forward reasoning plus backtracking (FRB) algorithm was
applied to the subset of actually presented experimental games to determine the number
of reasoning steps required for each game. In the following analyses, number of steps
was included as a predictor of the reaction times. We label the factor simply as ‘forward
reasoning with backtracking’.

The log-RTs were analysed by means of linear mixed-effects (LME) models
(Baayen et al. 2008) to account for random effects of participants and unequal numbers
of observations across all experimental conditions. Traditional (repeated measures)
ANOVAs could not be performed as they require equal numbers of observations.

Fitting LMEs on the log-transformed reaction times, we see that forward reasoning
plus backtracking (FRB) is a good predictor. The model with FRB cannot be rejected
in favor of a simpler model without FRB as a predictor, χ2(1) = 8.4, p = 0.004. We
discuss the best model below.

Again, the reaction times significantly decrease if the maximum Player 1 payoff is
accessible (Table 2a). In case of games in which the maximum payoff is not accessible,
the reaction times do not significantly increase with each additional reasoning step
(Table 2b). Those games require in between 6 and 8 reasoning steps, which is too small
a difference to find a significant effect on the RTs. In contrast, the RTs do significantly
increase with each additional reasoning step in games in which the maximum payoff is
accessible (Table 2c).

5 Discussion

We have investigated the structural properties of the Marble Drop Game, an experi-
mental paradigm designed to study higher-order social reasoning. Using theoretical
approaches from logic and complexity theory, we identified inherent properties of the
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Table 2: Output of full-factorial linear mixed-effects model with factors Accessibility (A), Steps
of forward reasoning with backtracking (FRB)

Parameter Estimate St. Error t-value p-value
a) Accessible -0.689147 0.271256 -2.54 .000
b) FRB 0.008767 0.034930 0.25 .418
c) A:FRB 0.084336 0.037277 2.26 .000

game trials responsible for the cognitive difficulty of the task. Meijering and col-
leagues’ (2012) reaction time data can be explained by looking at the alternation type
and pay-off distribution of the particular game items. It turned out that the game items
are harder if the maximum possible pay-off for Player 1 is not accessible for him. This
observation is consistent with the assumption that participants were mostly applying
forward reasoning with backtracking to solve the games. By simulating forward rea-
soning with backtracking on the experimental items, we have shown that the reaction
times and the number of necessary comparisons significantly decrease if the maximum
Player 1 payoff is accessible. As MDG is game-theoretically equivalent to many other
experimental paradigms making use of turn-based games (see, e.g., Hedden and Zhang
2002, Gneezy et al. 2010, Hawes et al. 2012, Flobbe et al. 2008, Raijmakers et al.
2013), we would expect that our results generalize to those cases.

One could wonder why the subjects did not use backward induction in the first
place, as it is the method that always delivers the optimal pay-off (Osborne and Rubin-
stein 1994). One possible answer is that they avoided backward induction in order to
simplify the underlying reasoning. Recall, that while backward induction reasoning al-
ways takes 6 steps in the Marble Drop game with 3 decision points, forward reasoning
and backtracking takes on average only 3 steps, corresponding with the phenomenon
that T− is usually lower in the tree alternation hierarchy than T itself. Moreover, it-
erating the forward reasoning strategy by backtracking in case the highest pay-off is
not obtainable will finally lead to the optimal solution. Therefore, some subjects may
choose to use that strategy to avoid higher-order reasoning, even though keeping the
intermediate results in mind during backtracking is expected to tax working memory
more than applying backward induction.

Subjects may as well use other heuristics that do not guarantee reaching the pre-
scribed backward induction result, namely a Nash equilibrium of the game. For in-
stance, as suggested by Hedden and Zhang (2002), subjects may assume that their
opponents are playing according to some fixed patterns. Instead of assuming that the
opponent is rational and correctly predicts Player 1’s choice at the last decision point,
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Player 1 may take his opponent to be risk-averse or risk-taking. Such heuristics, essen-
tially based on considering sub-trees of the initial game-tree, will also lead to simplified
reasoning.

Of course, assuming that the opponent is of some specific type changes the game
drastically and can lead to a very bad outcome, in case of wrong judgement of the other
player’s type. Still, people notoriously apply similar heuristics in strategic situations,
for example, when joining a poker table, many players try to evaluate whether the op-
ponents play ‘loose’ or ‘tight’.5 An important question is what are the good alternative
strategies. They should be not only easy to compute for people but also relatively safe
to apply. It seems that the forward reasoning plus backtracking strategy in MDG might
be a cognitively attractive strategy for people asked to solve turn-based games. First
of all, it does not ask for the second-order social reasoning that is known to be very
hard even for many adults (Verbrugge 2009), and moreover, on average it demands
fewer comparisons. One may even think that competent players know a collection of
various strategies and their strategic abilities could be partially equated with the skill
of choosing the right one, i.e., a strategy that may be safely applied in a given context
to simplify the underlying reasoning.

6 Outlook

Inspired by the logical study of backward induction and the cognitive science experi-
ments with the Marble Drop Game, we investigated structural properties of turn-taking
dynamic games and we provided a more refined analysis of the complexity of particular
game trials, which takes into account alternation type of the game and pay-off distribu-
tion. We compared our predictions to actual reaction time data from (Meijering et al.
2012).

Of course, there are many further topics to be resolved. For instance, it would be
interesting to extend our analysis to account for imperfect information games. Also it
would be fruitful to explore connections with various related logical formalisms and
to investigate further epistemic phenomena. In parallel, we would like to confront
Hypotheses 1 and 3 with the available eye-tracking data from (Meijering et al. 2012),
as well as with eye-tracking data to be gathered from a wider class of turn-based two-
player games. Moreover, we plan to investigate other reasonable reasoning strategies
that subjects may successfully adapt in game-plays.

5A similar phenomenon is well-recognized in natural language semantics. People often shift the mean-
ing of sentence ϕ from ~ϕ� to a more restricted meaning ~ψ� ⊆ ~ϕ�. And again, one of the factors triggering
such meaning-shifts might be related to the computational complexity of ϕ (see, e.g., Szymanik 2010).
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Abstract
We prove that the computational problem of finding backward induction outcome
is PTIME-complete.

1 Introduction

Higher-order reasoning of the form ‘I believe that Ann knows that Peter thinks. . . ’
is an attractive topic for logical analysis. The logical investigations often go hand in
hand with game theory. In this context, one of the common topics among researchers
in logic and game theory has been backward induction (henceforth, BI), the process
of reasoning backwards, from the end to determine a sequence of optimal actions.
BI is a common method for determining sub-game perfect equilibria in the case of
finite extensive-form games. BI can be understood as an inductive algorithm defined
on a game tree – an algorithm that tells us which sequence of actions will be chosen
by agents that want to maximize their own payoffs, assuming common knowledge of
rationality.

Games have been also extensively used to design experimental paradigms aiming
at studying social cognition, with a particular focus on higher-order social cognition.
Often the experimental turn-based games can be modeled as extensive-form games and
solved by applying BI. As it is hard to determine what the reasoning strategies used by
participants in such games are, formal findings on backward induction have been used
to better understand humans’ strategic reasonings (Szymanik et al. 2013).
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Recently, van Benthem and Gheerbrant (2010) have studied the logical definability
of BI. They have observed that it can be defined in the first-order logic extended with
the least fixed-point operator as well as in a variety of other dynamic epistemic for-
malisms. Obviously, from the least fixed-point definability result it follows that BI is
in PTIME (Immerman 1998). But is it also hard, and therefore complete for PTIME?

2 Preliminaries

Let us start by recalling that the reachability problem on alternating graphs is PTIME-
complete (Immerman 1998).

Definition 2.1. Let an alternating graph G = (V, E, A, s, t) be a directed graph whose
vertices, V , are labeled universal or existential. A ⊆ V is the set of universal vertices.
E ⊆ V × V is the edge relation.

Definition 2.2. Let G = (V, E, A, s, t) be an alternating graph. We say that t is reachable
from s iff PG

a (s, t), where PG
a (x, y) is the smallest relation on vertices of G satisfying:

(1) PG
a (x, x).

(2) If x is existential and PG
a (z, y) holds for some edge (x, z) then PG

a (x, y).

(3) If x is universal, there is at least one edge leaving x, and PG
a (z, y) holds for all

edges (x, z) then PG
a (x, y).

The idea here is that for t to be reachable from an existential node x there must exist
a path from x to t, while the condition for a universal node y is stronger: t is reachable
from y if and only if every path from y leads to t. One can think about alternating
reachability in terms of a competitive game, where the player controlling existential
vertices wants to get to t and the player controlling universal vertices is trying to prevent
that. For example, in the alternating graph of Figure 1, t is not reachable from s (i.e.,
there is no winning strategy for the existential player). To see it just imagine that the
first player will move from s to v. Then the second player has only one choice leading to
the dead-end. It means, that not every move of the first player controlling the universal
node s is on the path to t.

Now, we can define the alternating reachability problem, that is a class of alter-
nating graphs in which t is reachable from s. One can think about that as a decision
problem: given an alternating graph G and nodes s, t check whether t is reachable
from s.

Definition 2.3. REACHa = {G|PG
a (s, t)}
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s, A

E v, E

A A

t, A

Figure 1: t is not reachable from s

The following computational complexity result will be crucial for us.

Theorem 1 (Immerman 1981). REACHa is PTIME-complete via first-order reduc-
tions.

Proof. The original proof of Immerman simulates directly an alternating Turing ma-
chine (ATM) to show that the problem is complete for ATM logarithmic space, known
to be equal to P (Chandra et al. 1981). �

As the proof of Theorem 1 simulates ATM computation tree it follows that:

Corollary 1. REACHa is PTIME-complete on trees.

Note, that given a game tree T and an existential node s, the problem REACHa over
T intuitively corresponds to the question: ‘Is s a winning position for the first player
in the zero-sum game T , i.e., can the first player force the game from node s towards
node t against all possible counterstrategies of the second player?’ (see Greenlaw et al.
1995, Problem A.11.1).

3 Backward Induction Problem

Now we are ready to define the computational decision problem corresponding to BI
for extensive form, non zero-sum games. Intuitively: can the first player force the
game from node s towards node t against all possible rational (= pay-off maximizing)
counterstrategies of the second player? The difference here is that we consider only
rational strategies as the non zero-sum games do not have to be strictly competitive.

Definition 3.1. A two-player finite extensive form game
T = (V, E,V1,V2,Vend, f1, f2, s, t), where V is the set of nodes, E ⊆ V × V is the edge
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relation (available moves). For i = 1, 2, Vi ⊆ V is the set of nodes controlled by Player
i, and V1∩V2 = ∅. Vend is the set of end nodes. Finally, fi : Vend −→ N assigns pay-offs
for Player i.

Without loss of generality let us restrict attention to generic games:

Definition 3.2. A game T is generic, if for each player, distinct end nodes have different
pay-offs.

Definition 3.3. Let T be a two-player game. We define the backward induction ac-
cessibility relation on T . Let PT

bi(x, y) be the smallest relation on vertices of T such
that:

(1) PT
bi(x, x)

(2) Take i = 1, 2. Assume that x ∈ Vi and PT
bi(z, y). If the following two conditions

hold, then also PT
bi(x, y) holds:

(a) E(x, z);

(b) there is no w, v such that E(x,w), PT
bi(w, v), and fi(v) > fi(y).

For example, in the tree of Figure ?? t is not a backward induction solution for the
game starting from s. Player 2 will rather start the game by going to the state w than v.
And, t is not reachable from w.

We can again define the corresponding decision problem – whether in the game
represented by tree T and starting in node s the first player can force the output t –
as a class of game trees where s and t belong to the backward induction accessibility
relation on T?

s, 2

v, 1 w, 1

2 (4, 7)

t, (5, 6)

Figure 2: t is not reachable from s
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Definition 3.4. BI = {T |PT
bi(s, t)}

The problem BI intuitively corresponds to the question whether t is a sub-game
perfect equilibrium in game T starting at node s (Osborne and Rubinstein 1994).

4 Complexity of BI

The definability result of Van Benthem and Gheerbrant implies that it can be decided
in polynomial time whether node t is a subgame perfect equilibrium of the game, i.e.,
the result of a gameplay following a BI strategy. First of all, note that it also follows
that given an arbitrary finite extensive game with starting node s one can find a BI
solution of the game in polynomial time. Simply, it is enough to run the polynomial
decision algorithm for every node of the game. In this section we prove that computing
backward induction relation is not only in PTIME but it is actually a PTIME-complete
problem.

Theorem 2. BI is PTIME-complete via first-order reductions.

Proof. First of all, BI is in PTIME by providing FO(LFP) definition (Immerman 1998).
Now, it suffices to show PTIME-hardness. For that we will reduce the REACHa

problem on trees (cf. Corollary 1) to the BI problem. We take any alternating tree
T = (V, E, A, s, t). Without loss of generality let us assume that s is existential. We
construct a two player game, T ′ = (V ′, E′,V1,V2,Vend, f1, f2, s′, t′), where: V = V ′,
t ∈ Vend = {end nodes of V}, E = E′, V1 = V − A, V2 = A, s = s, t = t, and for every
v ∈ V ′, if v , t, then f1(t) > f1(v) and f2(t) < f2(v).

Now, we need to prove that T ∈ REACHa iff T ′ ∈ BI. Assume, that T ∈ REACHa.
It means that whatever Player 2 does in the game T ′, Player 1 has a strategy to force
outcome t. As t gives strictly the best pay-off for Player 1, then PT ′

bi (s, t). Hence,
T ′ ∈ BI. For the other direction, assume for contradiction that T < REACHa. This
means that there is a node v , t such that Player 2 can guarantee the game T ′ to end
in v. From the pay-off construction for T ′, v is more attractive to Player 2 than t.
Therefore, it is not the case that PT ′

bi (s, t). Hence, T ′ < BI. �

What does this tell us about the complexity of backward induction? First of all,
problems in PTIME are usually taken to be tractable (Edmonds 1965), so relatively
easy to solve, also for humans (Frixione 2001). Furthermore, given assumptions on
non-collapse, PTIME-completeness suggests that the problem of deciding whether a
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given node is a sub-game perfect equilibrium of the game is difficult to effectively
parallelize (it lies outside NC1) and solve in limited space (it lies outside LOGSPACE).
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Abstract
Taking inspiration from the arguments for probabilism advanced by de Finetti
(1970) and Joyce (1998, 2009), we develop a general framework for ground-
ing synchronic, epistemic coherence requirements for various types of judgment.
Then, we show how to apply our general framework to yield coherence require-
ments for both full belief and comparative confidence.

1 Introduction: de Finetti, Joyce, and probabilism

Joyce’s argument for probabilism as a formal, epistemic, synchronic coherence require-
ment for (numerical) degrees of confidence (viz., credences) was inspired (formally) by
an elegant geometrical argument of de Finetti. In this section, we will briefly explain
how the simplest case of their (formal) argument goes. Then, we will show how their
argument can be generalized to yield a framework for grounding (synchronic, epis-
temic) coherence requirements, which can be applied to various types of judgment.
Finally, we will discuss two applications of this general framework: full belief and
comparative confidence.

De Finetti (1970) showed that if a credence function b is non-probabilistic, then
there exists another credence function b′ that is (in one precise sense) strictly more
accurate — in all possible worlds.1 Let’s keep things maximally simple. Consider a
toy agent S who is forming judgments over a very simple Boolean algebra generated

1De Finetti did not interpret the Brier score (his favored scoring rule) as a measure of “inaccuracy”.
Joyce (1998, 2009) was the first to give this epistemic interpretation to de Finetti’s argument.
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by a propositional language containing one atomic sentence (P). That is, S ’s doxastic
space contains only four propositions {>, P,¬P,⊥}. For simplicity, we will assume that
S assigns credence 1 to > and credence 0 to ⊥. Thus, the question of S ’s probabilis-
tic coherence reduces to the question of whether S ’s credence function b satisfies the
following two probabilistic constraints regarding P and ¬P:

• b(P) ∈ [0, 1] and b(¬P) ∈ [0, 1];

• b(P) + b(¬P) = 1.

Next, let’s think about how we might “score” a credence function, in terms of its
“distance from the truth (or inaccuracy) in a possible world”. For our toy agent, there
are only two relevant possible worlds: w1 in which P is false, and w2 in which P is true.
If we use the number 1 to “numerically represent” the truth-value true (at a world) and
the number 0 to “numerically represent” the truth-value false (at a world), then we can
“score” a credence function b using a scoring rule which is some function of (i) the
values b assigns to P and ¬P, and (ii) the “numerical truth-values” of P and ¬P at the
two relevant possible worlds w1 and w2. It is standard in this context (beginning with
de Finetti) to use what is called the Brier score (of a credence function b, at a world
w), which is the sum of squared differences between credences and truth values. For
our toy agent S , it is defined in the following way (think Euclidean distance between
the agent’s credences and the numerical truth-values of P and ¬P in worlds w1 and w2,
respectively).

• The Brier score of b in w1 =df (0 − b(P))2 + (1 − b(¬P))2.

• The Brier score of b in w2 =df (1 − b(P))2 + (0 − b(¬P))2.

The idea behind all such scoring rules is that the inaccuracy of a credence function b (at
a world w) is measured in terms of b’s distance (at w) from the numerical truth-values
of the set of propositions in the agent’s doxastic space.

With these basics in mind, we can now explain how the simplest case of the de
Finetti/Joyce argument proceeds. Figure 1 depicts an elegant “geometrical proof” of
the following theorem regarding our toy agent S .

Theorem (de Finetti 1970). S ’s credence function b is non-probabilistic (i.e.,
S ’s b violates at least one of the two probabilistic constraints above) if and only
if (⇔) there exists another credence function b′ which has lower Brier score in
every possible world (i.e., b′ is closer to the truth-values of P,¬P than b is in
every possible world, as measured via Euclidean distance).
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Figure 1: Geometrical proof of the two directions of (the simplest case of) de Finetti’s theorem
(on the simplest Boolean algebra)

The x-axes in these plots represent b(P) and the y-axes represent b(¬P). The diagonal
lines in the plots represent the set of all of probabilistic credence functions b such that
b(P) + b(¬P) = 1. The only if direction (⇒) of de Finetti’s theorem is illustrated in the
plot on the left side of Figure 1. The dot (at approximately b(P) = b(¬P) = 1/3) rep-
resents a non-probabilistic credence function b. The two curves drawn through the dot
represent the sets of credence functions that are the same (Euclidean) distance as b from
w1 and w2, respectively. The credence functions in the shaded region (which will be
non-empty, so long as b is non-probabilistic) are guaranteed to be closer (in Euclidean
distance) to the truth-values of P,¬P in both possible worlds. The if direction (⇐) of
de Finetti’s theorem is illustrated in the plot on the right side of Figure 1. This time, the
dot represents a probabilistic credence function b. The two curves drawn through the
dot represent the sets of credence functions that are the same (Euclidean) distance as
b from w1 and w2, respectively. This time, the curves are tangent, which means there
is no credence function b′ that is closer (in Euclidean distance, come what may) to the
truth than b is. This simple geometrical argument for the simplest case of de Finetti’s
theorem can be generalized to finite Boolean algebras of arbitrary size. Unlike the tra-
ditional (pragmatic) arguments for probabilism (Ramsey 1926; Hájek 2008), Joyce’s
interpretation of de Finetti’s argument is epistemic. This is because it trades solely on
the accuracy of a credence function b, which is a distinctively epistemic aspect of b.
In the next section, we explain how to turn Joyce’s argument for probabilism into a
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general recipe for generating and grounding coherence requirements for different types
of judgment.

2 Generalizing Joyce’s argument for probabilism

Abstracting away from the details of Joyce’s argument for probabilism (as an epis-
temic coherence requirement for numerical credences) reveals a general strategy for
grounding coherence requirements for judgment sets of various types. This general
argumentative strategy involves three steps.

Step 1: Define the vindicated (viz., perfectly accurate) judgment set (of type J),
at world w. Call this set

◦

Jw.

– Think of
◦

Jw as the judgments (of type J) that “the omniscient/ideal agent”
would make (at world w).

Step 2: Define a notion of “distance between J and
◦

Jw”. That is, define a measure
of distance from vindication: D(J,

◦

Jw).

– Think of D as measuring how far one’s judgment set J is (in w) from the
vindicated or ideal set of judgments

◦

Jw (in w).

Step 3: Adopt a fundamental epistemic principle, which uses D(J,
◦

Jw) to ground
a formal coherence requirement for J.

– Think of the fundamental epistemic principle as articulating an evaluative
connection between D and J-coherence.

In the case of Joyce’s argument for probabilism, the three steps were as follows

Step 1: The vindicated credence function
◦

bw is the indicator function vw(·) which
assigns 1 to the truths in w and 0 to the falsehoods in w.

Step 2: The measure of distance from vindication D(b,
◦

bw) is the Brier score
(i.e., Euclidean distance d(b,

◦

bw) between the credal vectors b and
◦

bw).
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Step 3: The fundamental epistemic principle is strict accuracy dominance avoid-
ance (SADA), which requires that there does not exist a credence function b′

such that d(b′,
◦

bw) < d(b,
◦

bw), for all possible worlds w.

In the next section, we discuss the application of our general framework to the case of
full belief.

3 Application #1: Full Belief 2

3.1 Deductive consistency: The contemporary dialectic

When it comes to (formal, synchronic, epistemic) coherence requirements for full be-
lief, philosophers have traditionally devoted a lot of attention to the requirement of
deductive consistency, which can be stated informally as follows:

(CB) Consistency Requirement for Belief. Epistemically rational agents should (at
any given time) have logically consistent belief sets.

One popular motivation for imposing such a requirement is the presupposition that
epistemically rational agents should, in fact, obey the following norm:

(TB) Truth Norm for Belief. Epistemically rational agents should (at any given time)
believe propositions that are true.

These two norms differ in one fundamental respect: (TB) is local in the sense that an
agent complies with it only if each particular belief the agent holds (at a given time)
has some property (in this case: truth). On the other hand, (CB) is a global norm:
whether or not an agent’s doxastic state (at a given time) is in accordance with (CB) is
a more holistic matter, which trades essentially on properties of their entire belief set.
While these two epistemic norms differ in this respect, they are also intimately related,
logically. We may say that one norm n entails another norm n′ just in case everything
that is permissible according to n is permissible according to n′. In this sense, (TB)
asymmetrically entails (CB). That is, if an agent is in accordance with (TB), then they
must also be in accordance with (CB), but not conversely.

Although (CB) accords well with (TB) there is a strong case to be made that (CB)
conflicts with other plausible local norms, in particular:

2This section draws heavily on joint work with Kenny Easwaran (Easwaran and Fitelson 2013) as well
as Rachael Briggs and Fabrizio Cariani (Briggs et al. 2014). Those papers contain a much more detailed
discussion of the application of our general framework to the case of full belief. Moreover, I am currently
writing a book (Fitelson 2014) which will go into even more detail about the various applications of our
general framework. In this article, I will (basically) be presenting a précis of that more complete story.
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(EB) Evidential Norm for Belief. Epistemically rational agents should (at any given
time) believe propositions that are supported by their evidence.

It is plausible to interpret preface cases as revealing a tension between (EB) and (CB).
Here is a rendition of the preface that we find particularly compelling (Easwaran and
Fitelson 2013).

Preface Paradox. John is an excellent empirical scientist. He has devoted his
entire (long and esteemed) scientific career to gathering and assessing the ev-
idence that is relevant to the following first-order, empirical hypothesis: (H)
all scientific/empirical books of sufficient complexity contain at least one false
claim. By the end of his career, John is ready to publish his masterpiece, which is
an exhaustive, encyclopedic, 15-volume (scientific/empirical) book which aims
to summarize (all) the evidence that contemporary empirical science takes to be
relevant to H. John sits down to write the Preface to his masterpiece. Rather
than reflecting on his own fallibility, John simply reflects on the contents of (the
main text of) his book, which constitutes very strong inductive evidence in favor
of H. On this basis, John (inductively) infers H. But, John also believes each of
the individual claims asserted in the main text of the book. Thus, because John
believes (indeed, knows) that his masterpiece instantiates the antecedent of H,
the (total) set of John’s (rational/justified) beliefs is inconsistent.

We take it that, in suitably constructed preface cases (such as this one), it would be
epistemically permissible for S to satisfy (EB) but violate (CB). That is, we think that
some preface cases are counterexamples to the claim that (CB) is a requirement of
(ideal) epistemic rationality. It is not our aim here to investigate whether this is the
correct response to the preface paradox.3 Presently, we simply take this claim as a
datum. Our aim here will be to explain how to ground alternatives to (CB), using our
general framework above.

3.2 Setting up our formal framework for full belief

To streamline our discussion, we will restrict our attention to the simplest application
of our general framework to the case of full belief. To wit, let

B(p) =df S believes that p.

D(p) =df S disbelieves that p.

3We think Christensen (2004) has given compelling arguments for the epistemic rationality of certain
preface cases (i.e., for the rationality of some inconsistent belief sets).
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For simplicity, we suppose that S is opinionated, and that S forms judgments involving
propositions drawn from a finite Boolean algebra of propositions. More precisely, let
A be an agenda, which is a (possibly proper) subset of some finite boolean algebra of
propositions. For each p ∈ A, S either believes p or S disbelieves p, and not both.4 In
this way, an agent can be represented by her “belief set” B, which is just the set of her
beliefs (B) and disbeliefs (D) over some salient agenda A. More precisely, B is a set
of proposition-attitude pairs, with propositions drawn fromA and attitudes taken by S
toward those propositions (at a given time). Similarly, we think of propositions as sets
of possible worlds, so that a proposition is true at any world that it contains, and false
at any world it doesn’t contain.5 With these background assumptions in mind, we can
now go through the three steps required for the application of our general framework
to the case of (opinionated) full belief.

3.3 Step 1: The vindicated belief set

Step 1 is easy. It is clear what it means for a belief set B to be perfectly accu-
rate/vindicated. The vindicated set

◦

Bw is given by the following definition:
◦

Bw contains B(p) [D(p)] just in case p is true [false] at w.

This is clearly the best explication of
◦

Bw, since B(p) [D(p)] is accurate just in case p is
true [false]. So, in this context, Step 1 is uncontroversial. It follows from our (widely
accepted) correctness/accuracy conditions for belief/disbelief.

3.4 Step 2: Measuring distance between belief sets

Step 2 is less straightforward, because there are many ways one could measure “dis-
tance between judgment sets”. For simplicity, we adopt perhaps the most naı̈ve distance
measure, which is given by

4The assumption of opinionation results in no significant loss of generality for present purposes. This
is for two reasons. First, as Christensen (2004) convincingly argues, suspension of judgment is (ultimately)
not a compelling way for defenders of (CB) to respond to the preface paradox (or other similar paradoxes
of consistency). Second, we are not assuming that agents never suspend judgment (i.e., that agents are
opinionated across the board). Rather, we are focusing on specific agendas on which (epistemically rational)
agents happen to exhibit opinionation. Of course, in general, we would want to be able to model suspension
of judgment in our framework. See (Easwaran 2013) for just such a generalization of the present framework.

5It is implicit in this formalism that agents satisfy a weak sort of logical omniscience, in the sense that
if two propositions are logically equivalent, then they are in fact the same proposition, and so the agent can’t
have distinct attitudes toward them. However, it is not assumed that agents satisfy a stronger sort of logical
omniscience — an agent may believe some propositions while disbelieving some other proposition that is
entailed by them (i.e., our logical omniscience assumption does not imply closure).
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d(B,B′) =df the number of judgments on which B and B′ disagree.6

In particular, if you want to know how far your judgment set B is from vindication
(at w) just count the number of mistakes you have made (at w). To be sure, this is a
very naı̈ve measure of distance from vindication. In this paper, I will not delve into
the dialectic concerning measures of distance between judgment sets. Presently, I will
simply assume the most naı̈ve, counting measures of distance (for a detailed discussion
of this issue, see Easwaran and Fitelson 2013, Fitelson 2014).7

3.5 Step 3: The fundamental epistemic principle for B

Step 3 is the philosophically crucial step. Given our setup, there is a choice of funda-
mental epistemic principle that yields (CB) as a coherence requirement for full belief.
Specifically, consider the following principle

Possible Vindication (PV). There exists some possible world w at which all of
the judgments in B are accurate. Or, to put this more formally, in terms of our
distance measure d: (∃w)[d(B,

◦

Bw) = 0].

Given our setup, it is easy to see that (PV) is equivalent to (CB). As such, a defender
of (TB) would presumably find (PV) attractive as a fundamental epistemic principle.
However, in light of preface cases (and other paradoxes of consistency), many philoso-
phers would be inclined to say that (PV) is too strong to yield a (plausible, binding)
coherence requirement for full belief. Indeed, we ultimately opt for fundamental prin-
ciples that are strictly weaker than (PV). But, as we mentioned above, our rejection of
(PV) was not (initially) motivated by prefaces and the like. Rather, our adoption of
fundamental principles that are weaker than (PV) was motivated (initially) by analogy
with Joyce’s arguments for probabilism as a coherence requirement for credences.

In the case of credences, the analogue of (PV) is clearly inappropriate. The vin-
dicated set of credences (i.e., the credences an omniscient agent would have) are such
that they assign maximal credence to all truths and minimal credence to all falsehoods
(Joyce 1998). As a result, in the credal case, (PV) would require that all of one’s cre-
dences be extremal. One doesn’t need preface-like cases (or any other subtle or para-
doxical cases) to see that this would be an unreasonably strong requirement. It is for

6This is called the Hamming distance between the binary vectors B and B′ (Deza and Deza 2009).
7As it turns out, we only need to assume that our measures of distance between judgment sets are

additive in a rather weak sense. This is explained in (Easwaran and Fitelson 2013, Fitelson 2014). We omit
those discussions here, in the interest of maintaining the brevity of this précis. For further useful recent
discussions concerning measures of distance between judgment sets, (see, e.g. Pigozzi 2006, Miller and
Osherson 2009, Duddy and Piggins 2012).
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this reason that Joyce (and all others who argue in this way for probabilism) back away
from the analogue of (PV) to strictly weaker epistemic principles — specifically, to
accuracy-dominance avoidance principles, which are credal analogues of the following
fundamental epistemic principle.

Weak Accuracy-Dominance Avoidance (WADA). B is not weakly 8 dominated
in distance from vindication. Or, to put this more formally (in terms of d), there
does not exist an alternative belief set B′ such that:

(i) (∀w)[d(B′,
◦

Bw) ≤ d(B,
◦

Bw)], and

(ii) (∃w)[d(B′,
◦

Bw) < d(B,
◦

Bw)].

(WADA) is a very natural principle to adopt, if one is not going to require that it be
possible to achieve perfect accuracy. Backing off (PV) to (WADA) is analogous to
what one does in decision theory, when one adopts a weak dominance principle rather
than a principle of maximizing (actual) utility.

Initially, it may seem undesirable for an account of epistemic rationality to allow for
doxastic states that cannot be perfectly accurate. But, as Richard Foley (1992) explains,
an epistemic strategy that is guaranteed to be imperfect is sometimes preferable to one
that leaves open the possibility of vindication.

. . . if the avoidance of recognizable inconsistency were an absolute prerequisite of
rational belief, we could not rationally believe each member of a set of propositions
and also rationally believe of this set that at least one of its members is false. But
this in turn pressures us to be unduly cautious. It pressures us to believe only those
propositions that are certain or at least close to certain for us, since otherwise we
are likely to have reasons to believe that at least one of these propositions is false.
At first glance, the requirement that we avoid recognizable inconsistency seems
little enough to ask in the name of rationality. It asks only that we avoid certain
error. It turns out, however, that this is far too much to ask.

We agree with Foley’s assessment that (PV) is too demanding. (WADA), however,
seems to be a better candidate fundamental epistemic principle. As we will explain
below, if S violates (WADA), then S ’s doxastic state must be defective — from both
alethic and evidential points of view.

8Strictly speaking, Joyce et al. opt for strict dominance-avoidance principles. However, in the credal
case (assuming continuous, strictly proper scoring rules), there is no difference between weak and strict
dominance (Schervish et al. 2009). So, there is no serious disanalogy here.
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3.6 Principled alternatives to deductive consistency

If an agent S satisfies (WADA), then we say S is non-dominated (we’ll also apply the
term ‘non-dominated’ to belief sets). The above considerations suggest the following
new coherence requirement for full belief

(NDB) Epistemically rational agents should (at any given time) be non-
dominated.

Interestingly, (NDB) is strictly weaker than (CB). Moreover, (NDB) is weaker than
(CB) in the right way, in light of the preface case (and other similar paradoxes of
consistency). Our first two theorems help to explain why.9

The first theorem states a necessary and sufficient condition for (i.e., a character-
ization of) non-dominance: we call it Negative because it identifies certain objects,
the non-existence of which is necessary and sufficient for non-dominance. The second
theorem states a sufficient condition for non-dominance: we call it Positive because it
states that in order to show that a certain belief set B is non-dominated, it’s enough to
construct a certain type of object.

Definition 3.1 (Witnessing Sets). S is a witnessing set iff (a) at every world, at least
half of the judgments10 in S are inaccurate; and, (b) at some world, more than half of
the judgments in S are inaccurate.

If S is a witnessing set and no proper subset of it is a witnessing set, then S is
a minimal witnessing set. Notice that if S is a witnessing set, then it must contain a
minimal witnessing set. Theorem 1 shows that the name “witnessing set” is apt, since
these entities provide a witness to incoherence.

Theorem 1 (Negative). B is non-dominated if and only if no subset of B is
a witnessing set.

It is an immediate corollary of this first theorem that if B is logically consistent [i.e, if
B satisfies (PV)], then B is non-dominated. After all, if B is logically consistent, then
there is a world w such that no judgments in B are inaccurate at w. However, while
consistency guarantees coherence, the converse is not the case. That is, coherence
does not guarantee consistency. This will be most perspicuous as a consequence of our
second central theorem:

9In the interest of brevity, we omit all proofs. All theorems reported here are proven in (Easwaran and
Fitelson 2013, Fitelson 2014, Fitelson and McCarthy 2013).

10Throughout the paper, we rely on naı̈ve counting. This is unproblematic since all of our algebras are
finite.
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Definition 3.2. A probability function Pr represents a belief set B iff for every p ∈ A:

(i) B contains B(p) iff Pr(p) > 1/2.

(ii) B contains D(p) iff Pr(p) < 1/2.

Theorem 2 (Positive). B is non-dominated if 11 there is a probability function Pr that
represents B.

To appreciate the significance of Theorem 2, it helps to think about a standard
lottery case.12 Consider a fair lottery with n tickets, exactly one of which is the winner.
For each j 6 n (for n > 3), let p j be the proposition that the jth ticket is not the winning
ticket. And, let q be the proposition that some ticket is the winner. Finally, let Lottery
be the following belief set: {

B(p j) | 1 6 j 6 n
}
∪ {B(q)} .

Lottery is clearly non-dominated (just consider the probability function that as-
signs each ticket equal probability of winning), but it is not logically consistent. This
explains why (NDB) is strictly weaker than (CB). Moreover, this example is a nice il-
lustration of the fact that (NDB) is weaker than (CB) in a desirable way. More precisely,
we can now show that (NDB) is entailed by both alethic considerations [(TB)/(CB)] and
evidential considerations [(EB)].

While there is much disagreement about the precise content of (EB), there is
widespread agreement that the following is a necessary condition for (EB).

Necessary Condition for Satisfying (EB). S satisfies (EB), i.e., all of S ’s judg-
ments are justified, only if :

(R) There exists some probability function that probabilifies (i.e., assigns prob-
ability greater than 1/2 to) each of S ’s beliefs and dis-probabilifies (i.e.,
assigns probability less than 1/2 to) each of S ’s disbeliefs.

Many evidentialists agree that probabilification — relative to some probability func-
tion — is a necessary condition for justification. Admittedly, there is a lot of dis-

11For counterexamples to the converse of Theorem 2, see Easwaran & Fitelson 2013.
12 We are not endorsing the belief set Lottery in this example as epistemically rational. Indeed, we think

that the lottery paradox is not as compelling — as a counterexample to (CB) — as the preface paradox is.
On this score, we agree with Pollock (1990) and Nelkin (2000). We are just using this lottery example to
make a formal point about the logical relationship between (CB) and (NDB).
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agreement about which probability function is implicated in (R).13 But, because our
Theorem 2 only requires the existence of some probability function that probabilifies
S ’s beliefs and dis-probabilifies S ’s disbeliefs, it is sufficient to ensure (on most evi-
dentialist views) that (EB) entails (NDB). And, given our assumptions about prefaces
(and perhaps even lotteries), this is precisely the entailment that fails for (CB). Thus,
by grounding coherence for full beliefs in the same way Joyce grounds probabilism
for credences, we are naturally led to a coherence requirement for full belief that is a
plausible alternative to (CB). This gives us a principled way to reject (CB), and to offer
a new type of response to preface cases (and other similar paradoxes of consistency).
Figure 2 depicts the logical relations between the requirements and norms discussed in
this section.

(TB) (EB)

(CB)/(PV)

�
wwwwwwwwwwwwwwwwwwwwwwwwwww

(R)

⇐
==
==
==
==
==
==
==
==
==
==
==

============⇒

(NDB)/(WADA)

�
wwwwwwwwwwwwwwwwwwwwwwwwwww

Figure 2: Logical relations between the requirements and norms for full belief

Here, I have presented a highly abridged rendition of the application of our frame-
work to the case of full belief. A much more detailed and comprehensive version of
our account (and its applications) can be found in (Easwaran and Fitelson 2013, Briggs
et al. 2014, Fitelson 2014). In the next section, we explain how our framework can be
fruitfully applied to comparative confidence judgments.

13Internalists like Fumerton (1995) require that the function Pr(·) which undergirds (EB) should be “inter-
nally accessible” to the agent (in various ways). Externalists like Williamson (2000) allow for “inaccessible”
evidential probabilities. And, subjective Bayesians like Joyce (2005) say that Pr(·) should reflect the agent’s
subjective degrees of belief (viz., credences). Despite this disagreement, most evidentialists agree that (EB)
entails (R), which is all we need for present purposes.
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4 Application #2: Comparative confidence14

4.1 Setting up our framework for comparative confidence

In this section, we will be concerned with a relational epistemic attitude that we will call
comparative confidence. We will use the notation pp � qq to express the comparative
confidence relation, which can be glossed as pS is at least as confident in the truth of p
as they are in the truth of qq (where S is some epistemic agent a some time t).15 For the
purposes of the present paper, we will make various simplifying assumptions about �.
These simplifying assumptions are not essential to our overall approach, but they will
make it easier to introduce the main ideas involved in our justifications of epistemic
coherence requirements for �.

Our first simplifying assumption is that our agents S form judgments regarding
(pairs of) propositions drawn from a finite Boolean algebra of propositions B. In other
words, one can think of the p’s and q’s in judgments of the form pp � qq as classi-
cal, possible-worlds propositions. We will also assume (for simplicity) a weak form
of logical omniscience, according to which agents always make the same judgments
regarding logically equivalent propositions. Finally, we will assume that the relation �
constitutes a total preorder on the Boolean algebra B. That is, we will assume that �
satisfies the following two ordering conditions.16

Totality. For all p, q ∈ B, either p � q or q � p.

Transitivity. For all p, q, r ∈ B, if p � q and q � r, then p � r.

With � in hand, we can define a “strictly more confident than” relation �, as follows

p � q =df p � q and q � p.

14This section draws heavily on joint work with David McCarthy (Fitelson and McCarthy 2013).
15It is difficult to articulate the intended meaning of pp � qq without implicating that the �-relation

reduces to (or essentially involves) some non-relational comparison of degrees of confidence b of the agent
S (e.g., b(p) ≥ b(q)). But, it is important that no such reductionist assumption be made in the present
context. Later in the paper, we will discuss issues of numerical representability of �-relations. But, the
reader should assume that � is an autonomous relational attitude, which may not (ultimately) reduce to (or
essentially involve) something non-relational. Other glosses on pp � qq have been given in the literature,
e.g., pS judges p to be no less believable/plausible than qq.

16We are well aware of the fact that each of these total preorder assumptions have been a source of con-
troversy in the literature on coherence requirements for comparative confidence relations. See (Forrest 1989,
Fishburn 1986, Lehrer and Wagner 1985) for discussion. But, we have chosen (in this initial investigation)
to simplify things by bracketing controversies about the order structure of �. We will address those issues
(which we think will require a different sort of treatment in any event) in future work (Fitelson 2014).
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And, we can define an “equally confident in” (or “epistemically indifferent between”)
relation ∼, as follows

p ∼ q =df p � q and q � p.

Because � is a total preorder on B, it will follow that � is an asymmetric, transitive,
irreflexive relation on B; and, it will also follow that ∼ is an equivalence relation on
B. In other words, for each pair of propositions p, q ∈ B our agent(s) will be such that
either p � q or q � p or p ∼ q, where these three relations have the usual ordering
properties one would naturally be inclined to attribute to them.

What we’re interested in presently is providing an epistemic justification for various
sorts of coherence requirements — above and beyond the (not uncontroversial fn. 16)
assumption that � is a total preorder — that have been proposed for � in the contem-
porary literature. But, before we do that, we’ll need to say a little bit more about how
we’re going to represent �-relations.

One convenient way to represent a �-relation on a Boolean algebra Bn containing n
propositions is via its adjacency matrix. Let p1, . . . , pn be the n propositions contained
in some Boolean algebra Bn. The adjacency matrix A� of a �-relation on Bn is an n×n
matrix of zeros and ones such that A�i j = 1 iff pi � p j.

It’s instructive to look at a simple example. Consider the simplest Boolean algebra
B4, which is generated by a single contingent claim P. This algebra B4 contains the
following four propositions: 〈p1, p2, p3, p4〉 = 〈>, P,¬P,⊥〉. To make things concrete,
let P be the claim that a fair coin (which is about to be tossed) will land heads (so, ¬P
says the coin will land tails). Suppose our agent S is equally confident in (viz., epistem-
ically indifferent between) P and ¬P. And, suppose that S is strictly more confident
in > than in any of the other propositions in B4, and that S is strictly less confident
in ⊥ than in any of the other propositions in B4. This description fully characterizes
a �-relation on B4, which has the adjacency matrix representation (and the graphical
representation) depicted in Figure 3. In the adjacency matrix A� of �, a 1 appears in
the 〈i, j〉-th cell just in case pi � p j. In the graphical representation of �, an arrow is
drawn from pi to p j just in case pi � p j. With our basic formal framework in hand, we
are ready to proceed.

In the next section, we’ll discuss a fundamental coherence requirement for � that
has been accepted by (nearly) everyone in the contemporary literature. Then, we will
layout our general framework for grounding �-coherence requirements, and we will
explain how our framework can be used to provide a compelling epistemic justification
for this fundamental coherence requirement for �.
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Stage-Setting Some Philosophical Background Some Formal Background The Framework Refs

As a simple, toy case, consider an agent with a language L
containing just one atomic sentence P . This gives rise to an
algebra B containing four propositions: {>, P , ¬P, ?}.

We can represent relations R on B using binary adjacency
matrices. And, we can visualize them using graphs, where
the four propositions {>, P , ¬P, ?} of B are nodes.

For instance, consider the following relation ⌫ on B ⇥ B,
which satisfies the axioms of comparative probability:

P

ß

ÿP

¶
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With ⌫ in hand, we can define a “strictly more confident than” relation �, as follows

p � q ÷ p ⌫ q and q Ë p.

And, we can define an “equally confident in” (or “epistemically indifferent be-
tween”) relation ⇠, as follows

p ⇠ q ÷ p ⌫ q and q ⌫ p.

Because ⌫ is a total preorder on B, it will follow that � is an asymmetric, transitive,

irreflexive relation on B; and, it will also follow that ⇠ is an equivalence relation on
B ?. In other words, for each pair of propositions p, q 2 B our agent(s) will be such
that either p � q or q � p or p ⇠ q, where these three relations have the usual
ordering properties one would naturally attribute to them.

What we’re interested in presently is providing an epistemic justification for var-
ious sorts of coherence requirements — above and beyond the (not uncontroversial
fn. 2) assumption that ⌫ is a total preorder — that have been proposed for ⌫ in the
contemporary literature. But, before we do that, we’ll need to say a little bit more
about how we’re going to represent ⌫-relations.

As it happens, any ⌫-relation on a Boolean algebra Bn containing n propositions
can be represented via its adjacency matrix. Let p1, . . . , pn be the n propositions
contained in some Boolean algebra Bn. The adjacency matrix A⌫ of a ⌫-relation on
Bn is an n ⇥ n matrix of zeroes and ones such that A⌫

ij = 1 iff pi ⌫ pj .
It’s instructive to look at a simple example. Consider the simplest Boolean alge-

bra B4, which is generated by a single contingent claim P . This algebra B4 contains
the following four propositions: hp1, p2, p3, p4i = h>, P , ¬P, ?i.3 To make things
concrete, let P be the claim that a fair coin (which is about to be tossed) will land
heads (so, ¬P says the coin will land tails). Suppose our agent S is equally confi-
dent in (viz., epistemically indifferent between) P and ¬P . And, suppose that S is
strictly more confident in > than in any of the other propositions in B4; and, that S
is strictly less confident in ? than in any of the other propositions in B4. This fully
characterizes a ⌫-relation on B4, which has the adjacency matrix representation
(and the graphical representation) depicted in Figure ??.

⌫ > P ¬P ?
> 1 1 1 1
P 0 1 1 1

¬P 0 1 1 1
? 0 0 0 1

fig1.pdf

Figure 1. Adjacency matrix and graphical representation of an
intuitive ⌫-relation on the smallest Boolean algebra B4

3Here, we use > and ? to denote the tautological and contradictory members of B, respectively.

Figure 3: Adjacency matrix A� and graphical representation of an intuitive �-relation on the
smallest Boolean algebra B4

4.2 The fundamental coherence requirement for �

The literature on coherence requirements for � has become rather extensive. A plethora
of coherence requirements of varying degrees of strength, etc., have been proposed and
defended. We will not attempt to survey all of these requirements here.17 Instead, we
will focus on the most fundamental of the existing coherence requirements, which is
common to all the approaches we have seen.

A plausibility measure (a.k.a., a capacity) on a Boolean algebra B is real-valued
function Pl : B 7→ [0, 1] which maps propositions from B to the unit interval, and
which satisfies the following three axioms (Halpern 2003, p. 51)

(Pl1) Pl(⊥) = 0.

(Pl2) Pl(>) = 1.

(Pl3) For all p, q ∈ B, if p entails q then Pl(q) ≥ Pl(p).

The fundamental coherence requirement for � (C) can be stated in terms of repre-
sentability by a plausibility measure. That is, here is one way of stating (C).

(C) It is a requirement of ideal epistemic rationality that an agent’s �-relation (as-
sumed to be a total preorder on a finite Boolean algebra B) be representable by

17See (Halpern 2003) for an up-to-date and comprehensive survey. See, also, (Wong et al. 1991, Capotorti
and Vantaggi 2000, Spohn 2012) and references therein.
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some plausibility measure. That is, a �-relation is coherent only if there exists
some plausibility measure Pl such that for all p, q ∈ B

p � q iff Pl(p) ≥ Pl(q).

It is well known (Capotorti and Vantaggi 2000) that (C) can be stated via axiomatic
constraints on �, as follows:

(C) It is a requirement of ideal epistemic rationality that an agent’s �-relation (as-
sumed to be a total preorder on a finite Boolean algebra B) satisfy the following
two axiomatic constraints

(A1) > � ⊥.

(A2) For all p, q ∈ B, if p entails q then q � p.

In words, (C) requires (A1) that an agent’s �-relation ranks tautologies strictly above
contradictions, and (A2) that an agent’s �-relation lines up with the “is deductively
entailed by” (viz., the “logically follows from”) relation.

As far as we know, despite the (nearly) universal acceptance of (C) as a coherence
requirement for �, no epistemic justification has been given for (C). Various pragmatic
justifications of requirements like (C) have been given. Starting with Ramsey (1926),
the most well-known arguments for these sorts of constraints on � as a formal, syn-
chronic, coherence requirements for comparative confidence have been pragmatic. For
instance, “Money Pump” arguments and “Representation Theorem” arguments (Sav-
age 1972, Halpern 2003) aim to show that agents with �-relations that violate (C) must
exhibit some sort of “pragmatic defect”. Following Joyce (1998, 2009), we will be
focusing on non-pragmatic (viz., epistemic) defects implied by the synchronic incoher-
ence (in a precise sense to be explicated below) of an agent’s �-relation. To be more
specific, we will be concerned with the accuracy of an agent’s �-relation (in a precise
sense to be explicated below), which we will take to be distinctively epistemic.

Next, we’ll explain our general (broadly Joycean) strategy for grounding epistemic
coherence requirements for �. This will allow us to explain why (C) is a requirement of
ideal epistemic rationality. Moreover, our explanation will be a unified and principled
one, which dovetails with the similar explanations for credence and full belief rehearsed
above. As in the cases of credence and full belief, applying our general framework
requires completing the three steps.
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4.3 Grounding the fundamental requirement (C)

Step 1: The vindicated �-relation

We will adopt the (Joycean) idea that the vindicated confidence ordering
◦

�w ranks all
truths (in w) strictly above all falsehoods (in w); and, we will also assume that

◦

�w is
indifferent between propositions having the same truth-value (in w). That is, we will
assume the following definition

p
◦

�w q =df

p � q if p is true in w and q is false in w
p ∼ q if p and q have the same truth-value in w

It is easy to see that this definition determines a unique vindicated total preorder in
each possible world. Here, we follow Joyce in adopting an extensional definition of
the vindicated/perfectly accurate judgment set in w — i.e., we assume that p

◦

�w q is
determined solely by the truth-values of p and q in w. We think the � clause of the
definition of

◦

�w is less controversial than the ∼ clause. Indeed, our main focus here
will be on grounding coherence requirements for �.18

Step 2: Distance from the vindicated �-relation

In the case of Joyce’s argument for probabilism, this step has proved to be the most con-
troversial. It turns out that Joyce’s argument is very sensitive to his choice of measure
of distance from vindication (Maher 2002). We won’t get into that controversy here.
Moreover, as in the case of full belief above, we will adopt a very naı̈ve measure of
distance between comparative confidence orderings.19 For simplicity, we will present
our argument for (C) using the simplest (and most well known and widely used) mea-
sure of distance between finite binary relations: Kemeny distance. Kemeny and Snell
(1962) give an axiomatic argument in favor of a measure d(�1,�2) of distance between,
which is equivalent to the following definition

d(�1,�2) =df the number of cells 〈i, j〉 such that A�1
i j , A�2

i j .

18Grounding coherence requirements for ∼ turns out to be a subtle and tricky affair. For simplicity, we
will largely ignore the question of explicating the proper epistemic requirements for ∼ in this précis. See
fn. 21 and (Fitelson and McCarthy 2013) for discussion.

19As in the case of full belief, our arguments here will not (ultimately) depend that sensitively on our
particular (naı̈ve) choice of distance measure. We omit that dialectic here, but see (Fitelson and McCarthy
2013) and (Fitelson 2014) for discussion.
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That is, d(�1,�2) just counts the number of (point-wise) differences between the adja-
cency matrices of �1 and �2. This is equivalent to counting the number of pairs 〈i, j〉
such that the two relations �1 and �2 disagree regarding whether pi � p j. An illustra-
tive example is helpful here. Recall our toy agent who forms judgments on the simplest
Boolean algebra B4. Let S ’s �-relation be given by the intuitive ordering depicted in
Figure 3. Now, because there are only two salient possible worlds in this case, we
only have two vindicated �-relations to consider. Let

◦

�1 be the vindicated �-relation
in world w1 in which P is false, and let

◦

�2 be the vindicated �-relation in world w2 in
which P is true. The adjacency matrices of

◦

�1 and
◦

�2 are depicted in Figure 4.

◦

�1 > P ¬P ⊥

> 1 1 1 1
P 0 1 0 1
¬P 1 1 1 1
⊥ 0 1 0 1

◦

�2 > P ¬P ⊥

> 1 1 1 1
P 1 1 1 1
¬P 0 0 1 1
⊥ 0 0 1 1

Figure 4: The adjacency matrices of the vindicated �-relations (over B4) in worlds w1 (P false)
and w2 (P true), respectively

With all three of the salient adjacency matrices in front of us (in Figures 3 and 4), it
is easy to calculate the values of d(�,

◦

�1) and d(�,
◦

�2). For d(�,
◦

�1), all we have to
do is count the number of cells in A� and A

◦
�1 that differ. Inspection of these matrices

reveals that there are three cells: 〈3, 1〉, 〈4, 2〉, and 〈2, 3〉 at which A� and A
◦
�1 differ.

Thus, d(�,
◦

�1) = 3. A similar inspection reveals that there are also three cells: 〈2, 1〉,
〈3, 2〉, and 〈4, 3〉 at which A� and A

◦
�2 differ. Thus, d(�,

◦

�2) = 3. In other words, �
is equidistant from

◦

�1 and
◦

�2, according to our (Kemeny) measure of distance from
vindication. This brings us to our third and final Step.

Step 3: The fundamental epistemic principle for �

For the purposes of grounding (C), we will adopt the same fundamental epistemic
principle that Joyce used — strict accuracy dominance avoidance (SADA), i.e., the
following principle

Strict Accuracy-Dominance Avoidance (SADA). � should not be strictly dom-
inated in distance from vindication. Or, to put this more formally (in terms of d),
there should not exist a relation �′ on B such that

(∀w)
[
d(�′,

◦

�w) < d(�,
◦

�w)
]
.
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As in the case of full belief, the avoidance of dominance in distance from vindication
is a very basic principle of epistemic utility theory. If one violates (SADA), then one is
(ideally, a priori) in a position to know that one must not be living up to one’s epistemic
aim of having accurate judgments. Interestingly, (SADA) is sufficient to ground (C).
That is, we have the following fundamental theorem.

Theorem 3. If � violates (C), then � violates (SADA). That is, (SADA) entails (C).

Next, we will peek beyond (C) to stronger coherence requirements for � that have
appeared in the literature. As we’ll see, (SADA) can be used to provide epistemic
justifications for a large family of coherence requirements for �.

4.4 Coherence requirements stronger than (C)

The fundamental requirement (C) is but one member of a family of coherence require-
ments has been proposed for �. We will not survey all of the requirements in this family
here. We’ll focus on a handful of members of the family. Before stating the other re-
quirements in the family, we’ll first need to define two more numerical functions that
will serve as representers of comparative confidence relations.

A mass function on a Boolean algebra B is real-valued function m : B 7→ [0, 1]
which maps propositions from B to the unit interval, and which satisfies the following
two axioms.

(M1) m(⊥) = 0.

(M2)
∑
p∈B

m(p) = 1.

A belief function on a Boolean algebra B is a real-valued function Bel : B 7→ [0, 1]
which maps propositions from B to the unit interval, and which is generated by an
underlying mass function m in the following way

Belm(p) =df

∑
q∈B

q entails p

m(q).

It is easy to show that all belief functions are plausibility functions (but not conversely).
In this sense, the concept of a belief function is a refinement of the concept of a plau-
sibility function. The class of Belief functions, in turn, contains the class of probabil-
ity functions, which can be defined in terms of a special type of mass function. Let
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s ∈ B be the states of a Boolean algebra B (or the state descriptions of a propositional
language L which generates B). A probability mass function is real-valued function
m : B 7→ [0, 1] which maps states of B to the unit interval, and which satisfies the
following two axioms.

(M1) m(⊥) = 0.

(M2)
∑
s∈B

m(s) = 1.

A probability function on a Boolean algebra B is a real-valued function Pr : B 7→ [0, 1]
which maps propositions from B to the unit interval, and which is generated by an
underlying probability mass function m in the following way

Prm(p) =df

∑
s∈B

s entails p

m(s).

It is easy to show that all probability functions are belief functions (but not conversely).
So, probability functions are special kinds of belief functions (and belief functions are,
in turn, special kinds of plausibility measures).

There are various senses in which a real-valued function f may be said to rep-
resent a comparative confidence relation �. We will say that f fully agrees with a
comparative confidence relation � just in case, for all p, q ∈ B, p � q if and only if
f (p) ≥ f (q). Thus, the fundamental coherence requirement (C) requires that there exist
a plausibility measure Pl which fully agrees with �. There is a weaker kind of numer-
ical representability that will play an important role for us. A real-valued function f
is said to partially agree with a comparative confidence relation � just in case, for all
p, q ∈ B, p � q only if f (p) > f (q). If f partially agrees with �, then we will say that
f partially represents �. And, if f fully agrees with �, then we will say that f fully
represents �. It is easy to see that full representability (of � by f ) is strictly stronger
than partial representability (of � by f ).

It is well known (Wong et al. 1991) that a total preorder � is partially represented
by some belief function Bel just in case � satisfies (A2). The following theorem is,
therefore, an immediate corollary of Theorem 3.

Theorem 4. (SADA) entails that � is partially represented by some belief function Bel.
That is, (SADA) entails that there exists a belief function Bel such that, for all p, q ∈ B,
p � q only if Bel(p) > Bel(q).
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A natural question to ask at this point is whether (SADA) ensures that � is fully repre-
sented by some belief function Bel. Interestingly, the answer to this question is no. In
order to see this, it helps to recognize that full representability by a belief function has
a simple axiomatic characterization (Wong et al. 1991). Specifically, a total preorder �
is fully represented by some belief function just in case � satisfies (A1), (A2), and

(A3) If p entails q and q, r are mutually exclusive, then:

q � p =⇒ q ∨ r � p ∨ r.

Theorem 3 establishes that (SADA) entails both (A1) and (A2). However, it turns out
that (SADA) is not quite strong enough to entail (A3). That is, we have the following
(negative) theorem regarding (SADA).

Theorem 5. (SADA) does not entail (A3). [As a result, (SADA) is not strong enough to
ensure that � is fully represented by some belief function (Wong et al. 1991).]

Let’s take stock. So far, we have encountered the following three coherence re-
quirements for �, in increasing order of strength.

(C0) � should be partially representable by some belief function Bel. This is equiva-
lent to requiring that � (a total preorder) satisfies (A2).

(C) � should be fully representable by some plausibility measure Pl. This is equiva-
lent to requiring that � (a total preorder) satisfies (A1) and (A2).

(C1) � should be fully representable by some belief function Bel. This is equivalent
to requiring that � (a total preorder) satisfies (A1), (A2), and (A3).

Moving beyond (C1) takes us into the realm of comparative probability. A total
preorder � is said to be a comparative probability relation just in case � satisfies (A1)
and the following two additional axioms.

(A4) For all p ∈ B, p � ⊥.

(A5) For all p, q, r ∈ B, if p, q are mutually exclusive and p, r are mutually exclusive,
then:

q � r ⇐⇒ p ∨ q � p ∨ r.
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It is easy to show that {(A1), (A2)} jointly entail (A4). So, � (a total preorder) is a
comparative probability relation just in case � satisfies the three axioms (A1), (A2) and
(A5). Now, consider the following coherence requirement.

(C2) � should be be a comparative probability relation. This is equivalent to requiring
that � (a total preorder) satisfies (A1), (A2) and (A5).

It is well known (and not too difficult to prove) that (A5) is strictly stronger than (A3),
in the presence of (A1) and (A2). Therefore, (C2) is strictly stronger than (C1). The
following axiomatic constraint is a weakening of (A5).

(A?
5 ) For all p, q, r ∈ B, if p, q are mutually exclusive and p, r are mutually exclusive,

then:
q � r =⇒ p ∨ r � p ∨ q

The following coherence requirement is a (corresponding) weakening of (C2).

(C?2 ) � should (be a total preorder and) satisfy (A1), (A2) and (A?
5 ).

De Finetti (1937, 1951) famously conjectured that all comparative probability re-
lations are fully representable by some probability function. As it turns out, this con-
jecture is false. In fact, Kraft et al. (1959) showed that some comparative probability
relations are not even partially representable by any probability function.20 That brings
us to our final two coherence requirements for �, which we add (in increasing order of
strength) to our family of �-requirements.

(C3) � should be be partially representable by some probability function.

(C4) � should be be fully representable by some probability function.

In light of the counterexample of Kraft et al. (1959), (C4) is strictly stronger than (C2),
and (C3) does not follow from (C2). In fact, it is straightforward to show that (C3)
entails (C?2 ), but (C3) is independent of (C2) and (C1).

Figure 5 depicts the logical relations between the �-coherence requirements we’ve
been discussing. The superscripts on the coherence requirements in Figure 5 have the

20We won’t enter into the fascinating subsequent historical dialectic here. But, we discuss it in some
detail in (Fitelson and McCarthy 2013).
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following meanings. If a coherence requirement is known to follow from (SADA), then
it gets a “X”. If a coherence requirement is known not to follow from (SADA), then it
gets an “7”. If it is an open question whether (SADA) entails a coherence requirement,
then it gets a “?”. The “X”s on (C0) and (C) are implied by Theorem 3, above. And,
the other “X” [for (C?2 )] is implied by the following theorem.

Theorem 6. If � violates (C?2 ), then � violates (SADA). That is, (SADA) entails (C?2 ).

(C4)7 ============⇒ (C3)?

(C2)7

�wwwwwwwwwwwwwwwwwwwwwwww
============⇒ (C?2 )X

�wwwwwwwwwwwwwwwwwwwwwwww

(C1)7

�wwwwwwwwwwwwwwwwwwwwwwww

(C)X
�wwwwwwwwwwwwwwwwwwwwwwww
⇐
==
==
==
==
==
==
==
==
==
==
==
=

(C0)X
�wwwwwwwwwwwwwwwwwwwwwwww

Figure 5: Logical relations between �-coherence requirements

Because probability functions are refinements of belief functions, the existence of a
probabilistic (partial or full) representation of � is a strictly stronger than the existence
of a (partial or full) belief-function representation of �. It is, therefore, an immediate
corollary of Theorem 5 that (SADA) is not strong enough to ensure that � is fully
represented by a probability function (indeed, our proof of Theorem 5 establishes all
three of the “7”s in Figure 5).21 However, this leaves open the question of whether

21As we mentioned above (fn. 18), determining the proper vindication constraints and coherence require-
ments for ∼ is tricky. We have adopted a naı̈ve, extensional definition of vindication for ∼. This is the reason
why we have only been able to establish partial numerical representability results for � (viz., complete nu-
merical representability results for �) via (SADA). We don’t have the space here to delve into the subtleties
of ∼-coherence. But, we have more to say about these thorny questions in (Fitelson and McCarthy 2013) and
(Fitelson 2014).
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(SADA) is sufficient to ensure that � is partially representable by a probability function
(which explains the “?” superscript on (C?3 ) in Figure 5). We have made some headway
toward settling this question (Fitelson and McCarthy 2013), but it remains open.

5 Conclusions

Inspired by the arguments of de Finetti and Joyce (for probabilism), we have devel-
oped a general framework for grounding (formal, synchronic, epistemic) coherence
requirements for various types of judgment. We have shown how to fruitfully apply
this framework to the cases of full belief and comparative confidence. This has been
but a précis of a larger project. For a more thorough discussion of our framework
and its applications, see (Easwaran and Fitelson 2013, Briggs et al. 2014, Fitelson and
McCarthy 2013, Fitelson 2014).
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Abstract
The discussion of knowledge has been dominated among computer scientists and
logicians by Kripke structures and their progeny. This tendency has led to exciting
technical developments but often falls short of reaching actual human practice,
both at the individual and social level. Also, the question, “But where do these
Kripke structures come from?” tends to be thrown under the rug. We offer some
ideas.

1 Introduction

I will start with two examples from literature. One is Shakespeare’s Hamlet, in a play
with the same name. Hamlet, while unwise in some other ways, does have some epis-
temic skills.

According to the play, it is given out that Hamlet’s father, the king of Denmark,
was bitten by a serpent while sleeping in his garden. His brother succeeds to the throne
and marries Hamlet’s mother. Hamlet arrives back to Denmark and wonders if he has
come to his father’s funeral or to his mother’s wedding.

But then Hamlet is told by his father’s ghost (or what appears to be his father’s
ghost) a rather different story. The ghost says,

Now, Hamlet, hear: ’Tis given out that, sleeping in my orchard,
A serpent stung me; so the whole ear of Denmark
Is by a forged process of my death
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Rankly abused: but know, thou noble youth,
The serpent that did sting thy father’s life
Now wears his crown.

Hamlet does not know what to do. If the ghost is right then it is Hamlet’s duty to
kill his uncle and avenge his father’s death. But what if the ghost is lying?

Hamlet decides to put on a little play to check if the story told him by his father’s
ghost is indeed true.

I’ll have these players
Play something like the murder of my father
Before mine uncle: I’ll observe his looks;
I’ll tent him to the quick: if he but blench,
I know my course. The spirit that I have seen
May be the devil: and the devil hath power
To assume a pleasing shape; yea, and perhaps
Out of my weakness and my melancholy,
As he is very potent with such spirits,
Abuses me to damn me: I’ll have grounds
More relative than this: the play ’s the thing
Wherein I’ll catch the conscience of the king.

Hamlet does catch his uncle in a state of unpleasant surprise and decides to avenge
his father’s murder.

A play by Shaw, The Man of Destiny also has some epistemic considerations. A
letter has been received by Napolean, presumably detailing his wife Josephine’s infi-
delities. A pretty woman, acting on Josephine’s behalf, appears before Napolean reads
the letter and tries to use her beauty and her intelligence to talk him out of reading it.
Napolean sees through her tricks and responds,

NAPOLEON (with coarse familiarity, treating her as if she were a vi-
vandiere). Capital! Capital! (He puts his hands behind him on the table,
and lifts himself on to it, sitting with his arms akimbo and his legs wide
apart.) Come: I am a true Corsican in my love for stories. But I could tell
them better than you if I set my mind to it. Next time you are asked why
a letter compromising a wife should not be sent to her husband, answer
simply that the husband would not read it. Do you suppose, little innocent,
that a man wants to be compelled by public opinion to make a scene, to
fight a duel, to break up his household, to injure his career by a scandal,
when he can avoid it all by taking care not to know?
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There are fascinating epistemic insights shown by these two great writers which
logicians would do well to try and formalize.

Let us consider these two examples. First Hamlet.
Claudius never tells, Hamlet, “I killed your father.” Rather, there is a default reac-

tion on the part of Claudius if he is innocent and a default reaction (or at least a likely
reaction) if he is guilty.

If Claudius is innocent, then his reaction to the play might be to enjoy it, to criticize
it or to be bored. But his actual reaction is dismay and shock. He leaves the play
halfway through. This may not be proof that he is guilty but as a good Bayesian,
Hamlet must realize that now he has evidence independent of his father’s ghost.

Napolean of course is much more savvy than Claudius. The issue here is, “Can
a man choose not to know p”? Perhaps he does not want to not know p but merely
not have others know that he does know p. If others know that Napolean knows that
Josephine is unfaithful, then he would expected to act on the basis of this infidelity and
he does not want to bear the cost. But he does actually want to know. After protesting
that he does not plan to read the letter, he reads it when he is alone in the garden.

Let p stand for “Josephine is unfaithful”, n for Napolean, and w for the world,
thought of as one person. Then Napolean achieves

Kn(p) and ¬KwKn(p)
These two are very sophisticated uses of epistemic reasoning by these two great

writers, Shakespeare and Shaw (the only person to win both the Nobel prize and an
Oscar!)

2 Putting your money where your mouth is

In a joint paper with Aranzazu San Gines, we consider the following story.

Imagine, for instance, the following situation. We are in Spain. Today is
the morning of December 22nd, the day of the Christmas lottery. Most
people have the radio on, hoping for their numbers to be winners. (A) and
(B) are respectively a woman and her boyfriend who are having a coffee in
a cafeteria. (A) receives a call. After the woman hangs up, the following
dialog takes place:
(A) We have won the lottery!!
(B) What? How do you know that?
(A) It was my father. He seemed quite excited. He said he has good news.
He wants us to be at home in half an hour to tell us the news and celebrate.
You see? I know it! We have won the lottery!
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(B) Really? The lottery? Would you call your boss right now and tell her
that you quit your job?
(A) Mmmmm. OK, OK, you’re right. I don’t know for certain ...

Here B challenges A asking her to put her money where her mouth is. Is she
prepared to resign her job based on her belief that her father has won the lottery? She
backs down ending with I don’t know for certain. If the father has some other piece of
good news, then resigning her job would be a big mistake.

This case parallels the one discussed by Jason Stanley in his prize winning work
(Stanley 2005).

Hannah and her husband are driving home on a Friday afternoon. They plan to
stop at the bank on the way home to deposit their paychecks. But as they drive past
the bank, they notice that the lines inside are very long, as they often are on Friday
afternoons. Thinking that it isn’t very important that their paychecks are deposited
right away, Hannah says “I know the bank will be open tomorrow, since I was there
just two weeks ago on Saturday morning. So we can deposit them tomorrow morning.”

But then Hannah’s husband reminds her that a very important bill comes due on
Monday, and that they have to have enough money in their account to cover it. He
says, “Banks do change their hours. Are you certain that’s not what is going to happen
tomorrow?” Hannah concedes, uttering “I guess I don’t really know that the bank will
be open tomorrow.”

In both cases, Hannah has the same evidence and let us also assume that the truth
values are the same. Since there are no Gettier type issues here we can assume that
knowledge coincides (here) with justified true belief. So whence the difference?

Clearly the difference in the two cases, “knowledge” and “not knowledge” arises
from a difference in belief. But in fact the belief must be the same since the evidence
is also the same. It is the weight placed on the belief which is at issue.

This line of attack by Stanley is a little like that due to Ramsey (1954) and later
Savage (1972). The subjective probability of an event is determined by looking at the
risks which the agent is willing to take. The risk posed by the non-deposit of the check
is small initially but rises once the husband points out that there is a bill due. The
probability of “The bank will be open on Saturday” is high enough to justify the first
risk but not the second.

Ever since Ramsey (and perhaps earlier) we have accepted the idea that whether
someone has a belief is revealed by the actions they take. If someone picks up an
umbrella as she is going out we assume that she believes that it is raining or soon will.

Moreover, we tend to attribute knowledge, not necessarily on the basis of evidence,
but on the basis of successful behavior. In an earlier paper I wrote about a mouse being
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asked to choose between two boxes, one of which contains cheese and the other does
not. I said,

Suppose now that the mouse invariably goes to that box which contains the
cheese. We would then say, ”he somehow knows where the cheese is”, and
would look for some evidence that might have given him a clue. Perhaps
we would find such a clue, but our judgment that he knew where the cheese
was would not depend on such a clue, but rather on our perception of
successful behaviour on the part of the mouse which we were unable to
otherwise understand.

Presumably the belief of the mouse is revealed by the choices he makes. And if the
mouse does find the cheese then there is truth as well. But what about justification? As
Wittgenstein says in a similar context, “No such thing was in question here.” Repeated
success on the part of the mouse indicates knowledge (Peirce 1931-5).

3 Socrates’ problem

The justified true belief account of knowledge is that knowing something is no more
than having a justified belief that it is true, and indeed its being true. There is a common
impression that the justified true belief (JTB) definition of knowledge is due to Plato
and was undermined by Gettier in his 1963 paper (Gettier 1963).

Gettier himself says, “Plato seems to be considering some such definition at
Theaetetus 201, and perhaps accepting one at Meno 98.”

The Stanford Encyclopedia of Philosophy article on the Analysis of Knowledge
[IS] says,

Socrates articulates the need for something like a justification condi-
tion in Plato’s Theaetetus, when he points out that ‘true opinion’ is in gen-
eral insufficient for knowledge. For example, if a lawyer employs sophistry
to induce a jury into a belief that happens to be true, this belief is insuffi-
ciently well-grounded to constitute knowledge.

Others who have attributed the JTB theory to Plato include Artemov and Nogina
(2005).

However, a cursory look at the Theaetetus shows that Socrates at least did not
endorse the JTB theory.

It is the boy Theaetetus (who was a mere 16 years old at the time) and not Socrates
who proposes the JTB account after proposing two others, knowledge as perception
and knowledge as true belief.
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Oh, yes, Socrates, that’s just what I once heard a man say; I had for-
gotten but it is now coming back to me. He said that it is true judgement
with an account that is knowledge; true judgment without an account falls
outside of knowledge.

Socrates subjects Theatetus’ assertion to rigorous analysis and finally undermines
this third, JTB account, ending with the words,

therefore, knowledge is neither perception, nor true judgement, nor an
account added to true judgement.

The JTB account of knowledge, rather than being endorsed by Socrates, is explic-
itly rejected.

But what is of interest to us in this paper is Socrates’ objection to JTB which is
different from that of Gettier and arguably deeper.

Gettier’s own undermining of JTB went the following route. Someone justifiably
believes A.

He deduces B from A and indeed A implies B.

And B is true. So the belief in B is both justified and true.

However, unfortunately, A is false so that the belief in B, while justified, can’t really
be considered knowledge.

3.1 The nature of justification

Socrates does not go this route but instead asks what a justification might be like (the
Greek term here for justification is logos, which translates roughly as ‘account’.)

An analogy to justification here is an analysis of the first syllable SO of his own
name. SO is composed of the two letters S and O and that spelling out is rather like a
justification.

Both an analysis and a justification have structure and Socrates points out that the
letters S and O, not having structure, cannot have an analysis.

But is it possible to know the syllable SO without knowing the letters S and O? And
if not, then how can we rest a knowledge of SO on a knowledge of S and a knowledge
of O?

This issue is also addressed by Wittgenstein who says, “Explanations come to an
end somewhere”.1

1There is actually a piece of music with that title.
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Our knowledge of some facts is parasitical on our knowledge of some other facts.
But eventually we hit bottom and then there is no more to be said. Like G.E. Moore,
we know a hand when we see it.

4 Strategizing

In the movie Basic Instinct 2, the psychiatrist Michael Glass asks Catherine Tramell
(played by Sharon Stone), “Did you kill Adam Towers?” and Tramell counters, “Would
you believe me if I said I didn’t?”

This issue has not been discussed much in epistemic literature but is prominent in
the literature on cheap talk. Much current literature in epistemic logic assumes that
messages sent are truthful. But the cheap talk literature considers the possibility of
messages which might not be truthful and asks why someone would send an untruthful
message and when such a message might be believed.

Such issues have been discussed at length by Stalnaker in his very readable paper
(Stalnaker 2005).

Stalnaker does not assume that the parties are speaking the truth but rather that they
will talk in such a way as to maximize their payoff in the game they are playing with
the listener.

Stone is presumably not familiar with Stalnaker’s work, but what she is saying is
that a message “I didn’t kill Johnny Boz” would not be credible2 as the other message
“I did kill Johnny Boz” would not be sent regardless of the situation.

What is interesting is that Tramell does not utter the message which would not be
credible, but a meta-message. Why? Perhaps it serves a purpose a little like that of
John Snow, below.

We tend to believe the speaker if we know that she has nothing to gain by lying
(and is assumed to be well informed). But we might not believe Mr. Obama when he
says that the NSA is not listening to our conversations. The NSA is his agency and he
has nothing to gain by giving away the truth about it.

In the cited paper, Stalnaker discusses the case of the US Treasury Secretary John
Snow, who in response to a question said, “When the dollar is at a lower level it helps
exports, and I think exports are getting stronger as a result.” What Snow said was
perfectly true, but it caused a precipitous drop in the dollar causing the Wall Street
Journal to scold Snow for “dumping on his own currency.”

Did Snow intend or not intend for the dollar to drop?

2Stalnaker uses credible as a technical term. The message “I did not kill Johnny Boz” would be pf-
rational (prima facie rational) as Tramell would prefer it to be believed, but not credible, for she would send
the same message even if she had killed Johnny Boz.
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Such issues are too deep for the present paper and we will postpone detailed dis-
cussion to a later publication.

5 Conclusions

We have looked in this paper at various ways in which we could follow a wider ap-
proach to knowledge. The pattern which Plaza and others (Baltag and Moss 2004, van
Benthem et al. 2006) have followed is certainly an important one. It consists of hearing
a formula from a trusted source.

But there are many many other ways of acquiring knowledge and knowledge plays
a very wide role both in personal and social life. I encourage logicians to follow this
path.
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Abstract
The theories of Nash noncooperative solutions and of rationalizability intend to
describe the same target problem of ex ante individual decision making, but they
are distinctively different. We consider what their essential difference is by giving
a unified approach and parallel derivations of their resulting outcomes. Our results
show that the only difference lies in the use of quantifiers for each player’s predic-
tions about the other’s possible decisions; the universal quantifier for the former
and the existential quantifier for the latter. Based on this unified approach, we dis-
cuss the statuses of those theories from the three points of views: Johansen’s pos-
tulates, the free-will postulate vs. complete determinism, and prediction/decision
criteria. One conclusion we reach is that the Nash theory is coherent with the
free-will postulate, but we would meet various difficulties with the rationalizabil-
ity theory.

1 Introduction

We make critical comparisons between the theory of Nash noncooperative solutions
due to Nash (1951) and the theory of rationalizable strategies due to Bernheim (1984)
and Pearce (1984). Each theory is intended to be a theory of ex ante individual decision
making in a game, and thus focuses on the decision-making process before the actual
play of the game. The difference in their resulting outcomes has been well analyzed
and known. However, their conceptual difference has not been much discussed. In
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this paper, we evaluate these two theories while considering certain conceptual bases
of game theory and addressing the question of logical coherence of these theories with
them.

We begin with a brief review of these theories. It is well known that Nash (1951)
provides the concept of Nash equilibrium and proves its existence in mixed strategies.
However, it is less known that the main focus of (Nash 1951) is on ex ante individ-
ual decision making. In that paper, various other concepts are developed, including
interchangeability, solvability, subsolutions, symmetry, and values; those concepts are
ingredients of a theory of ex ante individual decision making, though the aim is not
explicitly stated in (Nash 1951). This view is discussed in Nash’s (1950) dissertation
(p. 23) and a few other papers such as Johansen (1982) and Kaneko (1999).1 We call
the entire argumentation the Nash noncooperative theory.2

On the other hand, in the literature, the theory of rationalizability is typically re-
garded as a faithful description of ex ante individual decision making in games, ex-
pressing the common knowledge of “rationality”. Mas-Colell et al. (1995, p. 243)
wrote: “The set of rationalizable strategies consists precisely of those strategies that
may be played in a game where the structure of the game and the player’s rationality
are common knowledge among the players.” This view is common in many standard
game theory/micro-economics textbooks.

The literature exhibits a puzzling feature: Both theories target ex ante individual
decision making, and both are widely used by many researchers. However, their formal
definitions, predicted outcomes, and explanations differ considerably. This puzzling
feature raises the following questions: How should we make comparisons between
these theories? Then, what are their main differences? How would the difference be
evaluated? What are bases for such an evaluation? This paper attempts to answer these
questions.

We formulate the two theories in terms of prediction/decision criteria, which gives a
unified framework for comparisons of these theories. For the Nash theory, the criterion
is given by the following requirements:

N1o: player 1 chooses his best strategy against all of his predictions
about player 2’s choice based on N2o;

N2o: player 2 chooses his best strategy against all of his predictions
about player 1’s choice based on N1o.

1Millham (1974) and Jansen (1981) study the mathematical structure of the solution and subsolutions,
but do not touch the view.

2The mathematical definition of Nash equilibrium allows different interpretations such as a steady state
in a repeated situation (one variant is the “mass-action” interpretation due to Nash 1950, pp. 21-22), but we
do not touch other interpretations (see Kaneko 2004).
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We may say that player 1 makes a decision if it satisfies N1o; however, to determine
this decision, N1o requires a prediction about 2’s possible decisions, which are deter-
mined by N2o. The symmetric form N2o determines a decision for 2 if he predicts 1’s
decisions. In this sense, these requirements are circular. Also, they can be regarded
as a system of simultaneous equations with players’ decisions/predictions as unknown.
In Section 3, we show that the system N1o-N2o characterizes the Nash noncooperative
solution as the greatest set satisfying them if the game is solvable (the set of Nash equi-
libria is interchangeable); and for an unsolvable game, a maximal set satisfying them
is a subsolution.

The rationalizable strategies are characterized by another prediction/decision crite-
rion R1o-R2o:

R1o: player 1 chooses his best strategy against some of his predictions
about player 2’s choice based on R2o;

R2o: player 2 chooses his best strategy against some of his predictions
about player 1’s choice based on R1o.

These are obtained from N1o-N2o simply by replacing the quantifier “for all” by “for
some” before predictions about the other player’s decisions. These requirements are
closely related to the BP-property (“best-response property” in (Bernheim 1984) and
(Pearce 1984)), and the characterization result is given in Section 3.

The above prediction/decision criteria and characterization results unify the Nash
noncooperative theory and rationalizability theory, and pinpoint their difference: It is
the choice of the universal or existential quantifiers for predictions about the other
player’s possible decisions. To evaluate this difference, we first review the discussion
of ex ante decision making in games given in (Johansen 1982). In his argument, a
theory of ex ante decision making in games should describe a player’s active inferences
based on certain axioms about his own and the other’s decision-making. Johansen gives
four postulates for the Nash solution, although his argument there is still informal and
contains some ambiguities.

Our formulation of N1o-N2o may be viewed as an attempt to formalize his postu-
lates in the language of classical game theory. The pinpointed difference between the
two theories clarifies the precise requirements in those postulates to obtain the Nash
theory. One of Johansen’s postulates requires that any possible decision be a best re-
sponse to the predicted decisions, which is violated by the “for some” requirement in
R1o-R2o. His postulates help to clarify N1o-N2o, and vice versa. Nevertheless, his pos-
tulates contain some subtle concepts, which go beyond the language of classical game
theory.

One such concept is “rationality”. In the theory of rationalizability, “rationality” is
typically regarded as equivalent to payoff maximization. In Johansen’s postulates, how-
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ever, payoff maximization is separated from “rationality”, and is only one component
of “rationality”. We also take this broader view of “rationality”; in our formulation,
it includes, but not limited to, the prediction/decision criterion and logical abilities to
understand their implications. This broader view allows further research on decision
criterion (such as the additional principles needed for specific classes of unsolvable
games) and investigations of how players’ logical abilities affect their decisions.

To evaluate the difference further, we go to deeper methodological assumptions:
the free-will postulate vs. complete determinism. The former, stating that each player
has free will, is automatically associated with decision making. The quantifier “for
all” in N1o-N2o is coherent with the application of the free-will postulate between the
players. On the other hand, as will be argued in Section 4, the theory of rationaliz-
ability is better understood from the perspective of complete determinism. Indeed, the
epistemic justification for rationalizability begins with a complete description of play-
ers’ actions as well as mental states, and characterizes classes of those states by certain
assumptions.

As a result, our problem is a choice between two methodological assumptions, the
free-will postulate and complete determinism. This choice is discussed by Morgen-
stern (1935) and Heyek (1952) in the context of economics and/or social science in
general. Based upon their arguments, we will conclude that the free-will postulate is
more coherent with large part of social science than complete determinism. From this
perspective, the Nash theory is preferable to rationalizability.

The Nash theory might be less preferred in that it does not recommend definite de-
cisions for unsolvable games. However, it may not be a defect from the perspective that
it points out that additional principles, other than the decision criteria given above, are
needed for decision making in unsolvable games. A general study of such additional
principles is beyond the scope of this paper, but we remark that many applied works
appeal to principles such as symmetry (which is already discussed in (Nash 1951)) and
the Pareto criterion. As an instance, we will give an argument with the Pareto principle
for the class of games of strategic complementarity in Section 3.1. From a theoretical
perspective, our approach provides a framework to discuss coherence between basic
decision criteria and additional principles.

The paper is written as follows: Section 2 introduces the theories of Nash nonco-
operative solutions and rationalizable strategies; we restrict ourselves to finite 2-person
games for simplicity. Section 3 formulates N1o-N2o and R1o-R2o, and gives two the-
orems characterizing the Nash noncooperative theory and rationalizability. In Section
4, we discuss implications from them considering foundational issues. Section 5 gives
a summary and states continuation to the companion paper.
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2 Preliminary definitions

In this paper, we restrict our analysis to finite 2-person games with pure strategies. In
Section 3.3, we discuss required changes for our formulation to accommodate mixed
strategies.

We begin with basic concepts in a finite 2-person game. Let G = (N, {S i}i∈N , {hi}i∈N)
be a finite 2-person game, where N = {1, 2} is the set of players, S i is the finite set of
pure strategies and hi : S 1 × S 2 → R is the payoff function for player i ∈ N. We assume
S 1 ∩ S 2 = ∅. When we take one player i ∈ N, the remaining player is denoted by j.
Also, we write hi(si; s j) for hi(s1, s2). The property that si is a best-response against s j,
i.e.,

hi(si; s j) ≥ hi(s′i ; s j) for all s′i ∈ S i, (1)

is denoted by Best(si; s j). Since S 1 ∩ S 2 = ∅, the expression Best(si; s j) has no ambi-
guity. A pair of strategies (s1, s2) is a Nash equilibrium in G iff Best(si; s j) holds for
both i = 1, 2. We use E(G) to denote the set of all Nash equilibria in G. The set E(G)
may be empty.

Nash noncooperative solutions: A subset E of S 1 × S 2 is interchangeable iff

(s1, s2), (s′1, s
′
2) ∈ E imply (s1, s′2) ∈ E. (2)

It is known that this requirement is equivalent for E to have the product form, as stated
in the following lemma.

Lemma 1. Let E ⊆ S 1 ×S 2 and let Ei = {si : (si; s j) ∈ E for some s j ∈ S j} for i = 1, 2.
Then, E satisfies (2) if and only if E = E1 × E2.

Now, let E = {E : E ⊆ E(G) and E satisfies (2)}. We say that E is the Nash solution
iff E is nonempty and is the greatest set in E, i.e., E′ ⊆ E for any E′ ∈ E. We say that
E is a Nash subsolution iff E is a nonempty maximal set in E, i.e., there is no E′ ∈ E
such that E ( E′.

Table 2.1 Table 2.2
s21 s22

s11 (2, 2) (1, 1)
s12 (1, 1) (0, 0)

s21 s22

s11 (1, 1) (1, 1)
s12 (1, 1) (0, 0)

When E(G) , ∅, E(G) is the Nash solution if and only if E(G) satisfies (2). When
the Nash solution exists for game G, G is called solvable. The game of Table 2.1 is
solvable. On the other hand, a game G may be unsolvable for two reasons: either
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E(G) = ∅ or E(G) is nonempty but violates (2). For a game G with E(G) , ∅, a
subsolution exists always; specifically, for any (s1, s2) ∈ E(G), there is a subsolution
Eo containing (s1, s2). This Eo may not be unique: The game of Table 2.2 is not
solvable and has two subsolutions: {(s11, s21), (s11, s22)} and {(s11, s21), (s12, s21)}, and
both include (s11, s21).

In Section 3, it will be argued that the Nash solution can be regarded as a theory of
ex ante decision making in games. Here we give two comments about this argument.

First, for a solvable game, the theory recommends the set of possible decisions for
each player, i.e., the set of Nash strategies for him; moreover, the recommendation also
includes the set of predicted decisions of the other player. This means that from player
1’s perspective, E1(G) = {s1 ∈ S 1 : (s1, s2) ∈ E(G) for some s2} describes player 1’s
possible decisions, while E2(G) = {s2 ∈ S 2 : (s1, s2) ∈ E(G) for some s1} is player
1’s predictions of player 2’s decisions. As shown later, predictions about player 2’s
decisions are crucial to determine player 1’s possible decisions from the perspective of
ex ante decision making in games.

Second, the Nash theory does not provide a definite recommendation for decisions
if the game is unsolvable, even if a subsolution exists. Suppose that G has exactly two
subsolutions, say, F1 = F1

1 × F1
2 and F2 = F2

1 × F2
2 with F1

i , F2
i for i = 1, 2. One may

think that the Nash theory would recommend the set Ei = F1
i ∪ F2

i for player i as the
set of possible decisions to play G. However, this is not valid; we cannot find a set E′1
or E′2 such that E′1 × (F1

2 ∪ F2
2) or (F1

1 ∪ F2
1) × E′2 satisfies interchangeability.

Rationalizable strategies: Now, we turn to rationalizability. The pure strategy ver-
sion introduced here is known as point-rationalizability due to Bernheim (1984). We
begin with the iterative definition of rationalizability. A sequence of sets of strategies,
{(Rν

1(G),Rν
2(G))}∞ν=0, is inductively defined as follows: for i = 1, 2, R0

i (G) = S i, and

Rν
i (G) = {si : Best(si; s j) holds for some s j ∈ Rν−1

j (G)} for any ν ≥ 1. (3)

We obtain rationalizable strategies by taking the intersection of these sets, i.e., Ri(G) =⋂∞
ν=0 Rν

i (G) for i = 1, 2; a pure strategy si ∈ S i is rationalizable iff si ∈ Ri(G).
It is shown by induction on ν that Rν

i (G) is nonempty for all ν and i = 1, 2. Also,
each sequence {Rν

i (G)}ν is monotonically decreasing. Because each Rν
i (G) is finite and

nonempty, Rν
i (G) becomes constant after some ν; as a result, Ri(G) is nonempty. These

facts are more or less known, but we give a proof for completeness.

Lemma 2. {Rν
i (G)}ν is a decreasing sequence of nonempty sets, i.e., Rν

i (G) ⊇ Rν+1
i (G) ,

∅ for all ν.
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Proof. We show by induction over ν that the two sequences {Rν
i (G)}ν, i = 1, 2, are

decreasing with respect to the set-inclusion relation. Once this is shown, since S i

is finite, we have Ri(G) =
⋂∞
ν=0 Rν

i (G) , ∅. For the base case of ν = 0, we have
R0

i (G) = S i ⊇ R1
i (G) for i = 1, 2. Now, suppose the hypothesis that this inclusion holds

up to ν and i = 1, 2. Let si ∈ Rν+1
i (G). By (3), Besti(si; s j) holds for some s j ∈ Rν

j(G).
Since Rν−1

j (G) ⊇ Rν
j(G) by the supposition, Besti(si; s j) holds for some s j ∈ Rν−1

j (G).
This means si ∈ Rν

i (G). �

Criterion for prediction/decision making: Our discussion of ex ante decision making
in games begins with a prediction/decision criterion.3 While comparison between the
Nash theory and rationalizability is our concern, some simpler examples of decision
criteria may be helpful. First, utility maximization can be regarded as a decision crite-
rion in a non-interactive context, which recommends the set of decisions maximizing a
given utility function. In game theory, a classical example of a decision criterion is the
maximin criterion due to von Neumann-Morgenstern (1944): It recommends a player
to choose a strategy maximizing the guarantee level (that is, the minimum payoff for a
strategy). In G = (N, {S i}i∈N , {hi}i∈N), let Ei be a nonempty subset of S i, i = 1, 2. The
set Ei is interpreted as the set of possible decisions for player i based on the maximin
criterion. The criterion is formulated as follows:

NM1: for each s1 ∈ E1, s1 maximizes mins2∈S 2 h1(s1; s2);

NM2: for each s2 ∈ E2, s2 maximizes mins1∈S 1 h2(s2; s1).

These are not interactive, since NMi, i = 1, 2, can recommend a decision without
considering NM j, and player i needs to know only his own payoff function. Thus, no
prediction is involved for decision making with this criterion.

A more sophisticated criterion may allow one player to consider the other’s crite-
rion. One possibility is the following:

N1: for each s1 ∈ E1, Best(s1, s2) holds for all s2 ∈ E2;

NM2: for each s2 ∈ E2, s2 maximizes mins1∈S 1 h2(s2; s1).

The criterion N1 requires player 1 to predict player 2’s decisions and to choose his best
decision against that prediction, while player 2 still adopts the maximin criterion. In
this sense, their interpersonal thinking stops at the second level. In the Nash theory and
rationalizability theory, we would meet some circularity and their interpersonal thought
goes beyond the second level.

3A general concept of a prediction/decision criterion is formulated in an epistemic logic of shallow
depths in (Kaneko and Suzuki 2002).
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There may be multiple pairs of (E1, E2) that satisfies a given decision criterion.
Without other information than the criterion and components of the game, a player
(and we) cannot make a further choice of particular strategies among those satisfying
the criterion. In the case of NM1-NM2, Ei should consist of all strategies maximizing
mins2∈S 2 h1(s1; s2); that is, Ei is the greatest set satisfying NMi. In the case of N1-NM2,
this should also be applied to player 1’s predictions about 2’s choice: E2 in N1 should
be the greatest set satisfying NM2. We will impose this greatest-set requirement for
Ei in Section 3; this is not a mere mathematical requirement, but is very basic for the
consideration of ex ante decision making, as it will be discussed later.

3 Parallel derivations of the Nash noncooperative solutions and ra-
tionalizable strategies

In this section we give two parallel decision criteria, and derive the Nash noncoopera-
tive solutions and the rationalizable strategies from those criteria. Our characterization
results pinpoint the difference between the two theories. This difference is used as
the basis for our evaluation of these two theories, which comes in Section 4. We give
remarks on the mixed strategy versions of those derivations in Section 3.3.

3.1 The Nash noncooperative solutions

The decision criterion for the Nash solution formalizes the statements N1o and N2o

in Section 1. This criterion, N1-N2, is formulated as follows: Let Ei be a subset of
S i, i = 1, 2, interpreted as the set of possible decisions based on N1-N2,

N1: for each s1 ∈ E1, Best(s1; s2) holds for all s2 ∈ E2;

N2: for each s2 ∈ E2, Best(s2; s1) holds for all s1 ∈ E1.

These describe how each player makes his decisions; when one player’s viewpoint is
fixed, one of N1-N2 is interpreted as decision making, and the other is interpreted as
prediction making. For example, from player 1’s perspective, N1 describes his decision
making, and N2 describes his prediction making.

Mathematically, N1 and N2 can be regarded as a system of simultaneous equations
with unknown E1 and E2. First we give a lemma showing that (E1, E2) satisfies N1-N2
if and only if it consists only of Nash equilibria.

Lemma 3. Let Ei be a nonempty subset of S i for i = 1, 2. Then, (E1, E2) satisfies
N1-N2 if and only if any (s1, s2) ∈ E1 × E2 is a Nash equilibrium in G.
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Proof. (Only-If): Let (s1, s2) be any strategy pair in E1 × E2. By N1, h1(s1, s2) is
the largest payoff over h1(s′1, s2), s′1 ∈ S 1. By the symmetric argument, h2(s1, s2) is the
largest payoff over s′2’s. Thus, (s1, s2) is a Nash equilibrium in G.
(If): Let (s1, s2) ∈ E1 × E2 be a Nash equilibrium. Since h1(s1, s2) ≥ h1(s′1, s2) for all
s′1 ∈ S 1, we have N1. We have N2 similarly.�

Regarding N1-N2 as a system of simultaneous equations with unknown E1 and E2,
there may be multiple solutions; indeed, any Nash equilibrium pair as a singleton set
is a solution for N1-N2. However, the sets E1 and E2 should be based only on the
information of the game structure G. This implies that we should look for the pair of
greatest sets (E1, E2) that satisfies N1-N2.4

The following theorem states that N1-N2 is a characterization of the Nash solution
theory.

Theorem 1. [The Nash Noncooperative Solutions] (0): G has a Nash equilibrium if
and only if there is a nonempty pair (E1, E2) satisfying N1-N2.

(1): Suppose that G is solvable. Then E is the Nash solution E(G) if and only if the
greatest pair (E1, E2) satisfying N1-N2 exists and E = E1 × E2.

(2): Suppose that G has a Nash equilibrium but is unsolvable. Then E is a Nash
subsolution if and only if (E1, E2) is a nonempty maximal pair satisfying N1-N2.

Proof. (0): If (s1, s2) is a Nash equilibrium of G, then E1 = {s1} and E2 = {s2} satisfy
N1-N2. Conversely, if a nonempty pair (E1, E2) satisfies N1-N2, then, by Lemma 3,
any pair (s1, s2) ∈ E1 × E2 is a Nash equilibrium of G.

(1):(If): Let (E1, E2) be the greatest pair satisfying N1-N2. It suffices to show E(G) =

E1 × E2. By Lemma 3, any (s1, s2) ∈ E1 × E2 is a Nash equilibrium. Conversely, let
(s′1, s

′
2) ∈ E(G) and E′i = {s′i} for i = 1, 2. Since this pair (E′1, E

′
2) satisfies N1-N2, we

have (s′1, s
′
2) ∈ E′1 × E′2 ⊆ E1 × E2. Hence, E(G) = E1 × E2.

(Only-If): Since E is the Nash solution, it satisfies (2). Hence, E is expressed as
E = E1×E2 by Lemma 1. Since it consists of Nash equilibria, (E1, E2) satisfies N1-N2
by Lemma 3. Since E(G) = E = E1 × E2, (E1, E2) is the greatest pair having N1-N2.
(2): (If): Let (E1, E2) be a maximal pair satisfying N1-N2, i.e., there is no (E′1, E

′
2)

satisfying N1-N2 with E1 × E2 ( E′1 × E′2. By Lemma 3, E1 × E2 is a set of Nash
equilibria. Let E′ be a set of Nash equilibria satisfying (2) with E1 × E2 ⊆ E′. Then,
E′ is also expressed as E′1 × E′2. Since E′1 × E′2 satisfies N1-N2 by Lemma 3, we
have E′i ⊆ Ei for i = 1, 2 by maximality for (E1, E2). By the choice of E′, we have

4If any additional information is available, then we extend N1-N2 to include it and should consider the
pair of greatest sets satisfying the new requirements.
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E1 × E2 = E′. Thus, E is a maximal set satisfying interchangeability(2).
(Only-If): Since E is a subsolution, it satisfies (2). Hence, E is expressed as E = E1 ×

E2. Also, by Lemma 3, (E1, E2) satisfies N1-N2. Since E = E1 × E2 is a subsolution,
(E1, E2) is a maximal set satisfying N1-N2.�

When G has a Nash equilibrium but is unsolvable, there are multiple pairs of max-
imal sets (E1, E2) satisfying N1-N2. We do not have those problems in NM1-NM2 in
Section 2.3, for which the greatest pair always exists and is nonempty. The reason for
this difference may be the interactive nature of N1-N2, which is lacking in NM1-NM2.

For an unsolvable game G with a Nash equilibrium, there is no single definite rec-
ommended set of decisions and predictions based on N1-N2, even though the deci-
sion criterion and game structure are commonly understood between the players. Each
maximal pair (E1, E2) satisfying N1-N2 may be a candidate, but it requires further in-
formation for the players to choose among them. Thus, N1-N2 alone is not sufficient
to provide a definite recommendation for unsolvable games. Theorem 1 gives a de-
marcation line between the games with a definite recommendation and those without
it.

One possible way to reach a recommendation for an unsolvable game is to impose
an additional criterion, such as the symmetry requirement in Nash (1951). The game
of Table 2.2 is unsolvable, but it has a unique symmetric equilibrium (s11, s21). Hence,
if we add the symmetry criterion, we convert an unsolvable game to a solvable game.

Another possible criterion is the Pareto-criterion. It may work to choose one subso-
lution for some class of games. For example, it is known that a finite game of strategic
complementarity (or super modularity) has a Nash equilibrium in pure strategies, and
under some mild condition, that if it has multiple equilibria, they are Pareto-ranked
(see Vives 2005 for an extensive survey of this theory and its applications). For those
games, when there are multiple equilibria, each equilibrium constitutes a subsolution.
However, when we add the Pareto-criterion, the subsolution which Pareto dominates
the other subsolutions is chosen. Since a finite game version of this theory is not well
known, we give a brief description of this theory in our context.

Assume that the strategy set S i is linearly ordered so that S i is expressed as {1, ..., `i}

for i = 1, 2. Here, S 1 ∩ S 2 = ∅ is violated but is recovered by a light change. We say
that a game G has the SC property iff (1): for i = 1, 2, hi(si; s j) is concave with respect
to si, i.e., for all si = 1, ..., li − 2 and all s j ∈ S j

hi(si + 1; s j) − hi(si; s j) ≥ hi(si + 2; s j) − hi(si + 1; s j); (4)

and (2): hi(si; s j) is strategically complement, i.e., for all s1 ∈ S 1\{`1} and s2 ∈ S 2\{`2},

hi(si + 1; s j) − hi(si; s j) ≤ hi(si + 1; s j + 1) − hi(si; s j + 1). (5)
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Then, the following are more or less known results, but we give a proof for self-
containedness.5

Lemma 4. Let G be a game with the SC property.
(1): G has a Nash equilibrium in pure strategies.
(2): Suppose u-single peakedness, i.e., for each i = 1, 2 and s j ∈ S j, hi(si; s j) has
a unique maximum over S i.Then, when G has multiple equilibria, they are linearly
ordered with strict Pareto-dominance.

Proof. (1): We will use Tarski’s fixed point theorem: Let (A,≤) be a complete lattice,
i.e., any subset of A has both infimum and supremum with respect to ≤. A function
ϕ : A → A is called increasing iff a ≤ b implies ϕ(a) ≤ ϕ(b). Tarski’s theorem
states that ϕ is an increasing function on a complete lattice (A,≤) to itself, then ϕ has
a fixed point. See (Vives 2005, Appendix) and (Cousot and Cousot 1979) for relevant
concepts.

We define the partial order ≤ over S 1 × S 2 by: (s1, s2) ≤ (s′1, s
′
2) ⇐⇒ si ≤ s′i for

i = 1, 2. Then, (S 1×S 2,≤) is a complete lattice. We also define the (least) best-response
function f : S 1 × S 2 → S 1 × S 2 as follows: for i = 1, 2 and s j ∈ S j,

fi(s j) = min{ti : Best(ti; s j) holds}. (6)

Now, f (s1, s2) = ( f1(s2), f2(s1)) for each (s1, s2) ∈ S 1 × S 2. We show that this f is
increasing. Then, f has a fixed point (so

1, s
o
2), which is a Nash equilibrium.

Suppose s j < s′j. Let fi(s j) = ti. By (6) and (5), we have 0 < hi(ti; s j)−hi(ti−1; s j) ≤
hi(ti; s′j)−hi(ti−1; s′j).By (4), we have 0 < hi(ti; s′j)−hi(ti−1; s′j) ≤ hi(ki; s′j)−hi(ki−1; s′j)
for all ki ≤ ti. Thus, hi(ti; s′j) ≥ hi(ki; s′j) for all ki ≤ ti. This implies that player i’s best
response to s′j is at least as small as ti, i.e., fi(s′j) = t′i ≥ ti.

(2): Let (s1, s2), (s′1, s
′
2) be two Nash equilibria with si < s′i . By the monotonicity

of f shown in (1), s j = f j(si) ≤ f j(s′i) = s′j. If s j = s′j, then hi(·; s j) takes a maximum
at si and s′i . This is not allowed by u-single peakedness.�

When an SC game G with u-single peakedness has multiple equilibria, G is un-
solvable by (2). However, if we add one criterion for player i’s prediction/decision
criterion, then we can choose one solution for any SC game with u-single peakedness.
It may be better to state the result as a theorem.

5Intervals of reals are typically adopted for these results. But Tarski’s fixed point theorem is applied for
the existence result in our case, too. In fact we can construct an algorithm to find a Nash equilibrium.
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Theorem 2. Let G be an SC game with u-single peakedness. Suppose that (E1, E2)
and (E′1, E

′
2) satisfy N1-N2. Then, if for i = 1, 2, hi(s) ≥ hi(s′) for some s ∈ E1×E2 and

s′ ∈ E′1×E
′

2, then E1×E2 consists of the unique NE Pareto-dominating all other NE’s.

Thus, one subsolution is chosen by adding the Pareto-criterion to N1-N2.

3.2 Rationalizable strategies

The decision criterion for rationalizability theory, which formalizes the statements R1o

and R2o in Section 1, is given as follows: for E1 and E2,

R1: for each s1 ∈ E1, Best(s1; s2) holds for some s2 ∈ E2;

R2: for each s2 ∈ E2, Best(s2; s1) holds for some s1 ∈ E1.

This criterion differs from N1-N2 only in that the quantifier “for all” before players’
predictions in N1-N2 is replaced by “for some”. In fact, R1-R2 is the pure-strategy
version of the BP-property given by Bernheim (1984) and Pearce (1984). The great-
est pair (E1, E2) satisfying R1-R2 exists and coincides with the sets of rationalizable
strategies (R1(G),R2(G)). A more general version of the following theorem is reported
in Bernheim (1984) (Proposition 3.1); we include the proof for self-containment.

Theorem 3. (R1(G),R2(G)) is the greatest pair satisfying R1-R2.

Proof. Suppose that (E1, E2) satisfies R1-R2. First, we show by induction that E1 ×

E2 ⊆ Rν
1(G)×Rν

2(G) for all ν ≥ 0,which implies E1×E2 ⊆ R1(G)×R2(G). Since R0
i (G) =

S i for i = 1, 2, E1 × E2 ⊆ R0
1(G) × R0

2(G). Now, suppose E1 × E2 ⊆ Rν
1(G) × Rν

2(G).
Let si ∈ Ei. Due to the R1-R2, there is an s j ∈ E j such that Best(si; s j) holds. Because
E j ⊆ Rν

j(G), we have s j ∈ Rν
j(G). Thus, si ∈ Rν+1

i (G).
Conversely, we show that (E1(G), E2(G)) satisfies R1-R2. Let si ∈ Ri(G) =⋂∞

ν=0 Rν
i (G). Then, for each ν = 0, 1, 2, ...., there exists sνj ∈ Rν

j such that Best(si; sνj)
holds. Since S j is a finite set, we can take a subsequence {sνt

j }
∞
t=0 in {sνj}

∞
ν=0 such that

for some s∗j ∈ S j, sνt
j = s∗j for all νt. Then, s∗j belongs to R j(G) =

⋂∞
ν=0 Rν

j(G). Also,
Besti(si; s∗j) holds. Thus, (R1(G),R2(G)) satisfies R1-R2. �

Existence of a theoretical prediction: Theorem 3 and Lemma 2 imply that the great-
est pair satisfying R1-R2 exists and consists of the sets of rationalizable strategies.
Interchangeability is automatically satisfied by construction. In this respect, the ratio-
nalizability theory appears preferable to the Nash theory in that it avoids the issues due
to emptiness or multiplicity of subsolutions. We take a different perspective to reverse
this preference: Difficulties involved in the Nash theory identify situations where addi-
tional requirements other than N1-N2 are required for prediction/decision making. In
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this sense, the Nash theory is a more precise and potentially richer theory of ex ante
decision making in an interactive situations.
Set-theoretical relationship to the Nash solutions: It follows from Theorem 3 that
each strategy of a Nash equilibrium is a rationalizable strategy. Hence, the Nash solu-
tion, if it exists, is a subset of the set of rationalizable strategy profiles. However, the
converse does not necessarily hold. Indeed, consider the game of Table 3.4, where the
subgame determined by the 2nd and 3rd strategies for both players is the “matching
pennies”.

Table 3.4
s21 s22 s23

s11 (5, 5) (−2,−2) (−2,−2)
s12 (−2,−2) (1,−1) (−1, 1)
s13 (−2,−2) (−1, 1) (1,−1)

This game has a unique Nash equilibrium, (s11, s21). Hence, the set consisting of this
equilibrium is the Nash solution.

Both s11 and s21 are rationalizable strategies. Moreover, the other four strategies,
s12, s13 and s22, s23 are also rationalizable: Consider s12. It is a best response to s22,
which is a best response to s13, and s13 is a best response to s23, which is a best response
to s12. That is, we have the following relations:

Best(s12; s22), Best(s22; s13),Best(s13; s23), and Best(s23; s12).

By Theorem 3, those four strategies are rationalizable. In sum, all the strategies are
rationalizable in this game.

This example shows that even for solvable games, the Nash solution may differ
from rationalizable strategies.6 As we shall see later, the game of Table 3.4 becomes
unsolvable if mixed strategies are allowed, while the rationalizable strategies remain
the same.

3.3 Mixed strategy versions

Theorems 1 and 3 can be carried out in mixed strategies without much difficulty. The
use of mixed strategies may give some merits and demerits to each theory. Here, we
give comments on the mixed strategy versions of the two theories.

6When a 2-person game has no Nash equilibria, each player has at least two rationalizable strategies.
If a player has a unique rationalizable strategy, it is a Nash strategy. Moreover, when each player has a
unique rationalizable strategy, then the pair of them is a unique Nash equilibrium. Example 3.4 states that
the converse does not necessarily hold.
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The mixed strategy versions can be obtained by extending the strategy sets S 1 and
S 2 to the mixed strategy sets ∆(S 1) and ∆(S 2), where ∆(S i) is the set of probability
distributions over S i. The notion of Nash equilibrium is defined in the same manner
with the strategy sets ∆(S 1) and ∆(S 2) : Once the Nash equilibrium is defined, the
Nash solution, subsolution, etc. are defined in the same manner. However, the mixed
strategy version of rationalizability requires some modification: A sequence of sets of
strategies, {(R̃ν

1(G), R̃ν
2(G))}∞ν=0, is inductively defined as follows: for i = 1, 2, R̃0

i (G) =

S i, and for any ν ≥ 1,

R̃ν
i (G) = {si : Best(si; m j) holds for some m j ∈ ∆(R̃ν−1

j (G))}.

A pure strategy si ∈ S i is rationalizable iff si ∈ R̃i(G) =
⋂∞
ν=0 R̃ν

i (G).
Requirements N1-N2 are modified by replacing S i by ∆(S i), i = 1, 2;for Ei ⊆ ∆(S i),

i = 1, 2,

N1m: for each m1 ∈ E1, Best(m1; m2) holds for all m2 ∈ E2,

N2m: for each m2 ∈ E2, Best(m2; m1) holds for all m1 ∈ E1.

Notice that N1m-N2m is the same as N1-N2 with different strategy sets. Moreover,
Theorem 1 still holds without any substantive changes.

In a parallel manner, the mixed strategy version of rationalizability can also be
obtained: for Ei ⊆ ∆(S i), i = 1, 2,

R1m: for each m1 ∈ E1, Best(m1; m2) holds for some m2 ∈ E2,

R2m: for each m2 ∈ E2, Best(m2; m1) holds for some m1 ∈ E1.

This is a direct counterpart of R1-R2 in a game with mixed strategies. In this case, a
player is allowed to play mixed strategies. However, in the original version of ratio-
nalizability in (Bernheim 1984) and (Pearce 1984), the players are allowed to use pure
strategies only; indeed, mixed strategies are interpreted as a player’s beliefs about the
other player’s decisions. We can reformulate R1m-R2m based on this interpretation of
mixed strategies: In R1m, the first occurrence of m1 is replaced by a pure strategy in
the support of E1, and R2m is modified in a parallel manner. This reformulation turns
out to be mathematically equivalent to R1m-R2m.

With the replacement of R1-R2 by R1m-R2m in Theorem 3.5, the following state-
ment holds:

Theorem 4. (∆(R̃1(G)),∆(R̃2(G))) is the greatest pair satisfying R1m-R2m.

A simple observation is that a rationalizable strategy in the pure strategy version
is also a rationalizable strategy in the mixed strategy version. Similarly, since a Nash
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equilibrium in pure strategies is also a Nash equilibrium in mixed strategies, it may be
conjectured that if a game G has the Nash solution E in the pure strategies, it might be
a subset of the Nash solution in mixed strategies. In fact, this conjecture is answered
negatively.

Consider the game of Table 3.4. This game has seven Nash equilibria in mixed
strategies:

((1, 0, 0), (1, 0, 0)), ((0, 12 ,
1
2 ), (0, 12 ,

1
2 )), (( 4

18 ,
7
18 ,

7
18 ), ( 4

18 ,
7

18 ,
7

18 ))

(( 1
8 ,

7
8 , 0), ( 3

10 ,
7
10 , 0)), (( 1

8 , 0,
7
8 ), ( 3

10 , 0,
7

10 )), (( 3
10 ,

7
10 , 0), ( 1

8 , 0,
7
8 )), (( 3

10 , 0,
7

10 ), ( 1
8 ,

7
8 , 0)).

This set does not satisfy interchangeability (2). For example, ((1, 0, 0), (1, 0, 0)) and
((0, 1

2 ,
1
2 ), (0, 1

2 ,
1
2 )) are Nash equilibria, but ((0, 1

2 ,
1
2 ), (1, 0, 0)) is not a Nash equilib-

rium. Thus, (2) is violated, and the set of all mixed strategy Nash equilibria is not the
Nash solution. This result depends upon the choice of payoffs: In Table 3.5, (s11, s21)
is a unique Nash equilibrium even in mixed strategies, while all pure strategies are still
rationalizable.

Table 3.5
s21 s22 s23

s11 (5, 5) ( 1
2 ,

1
2 ) ( 1

2 ,
1
2 )

s12 ( 1
2 ,

1
2 ) (1,−1) (−1, 1)

s13 ( 1
2 ,

1
2 ) (−1, 1) (1,−1)

4 Evaluations of N1-N2 and R1-R2

Our unified approach pinpoints the difference between the Nash and rationalizability
theories: the choice of quantifier “for all” or “for some” for each player’s predictions.
Here we evaluate this difference reflecting upon on the conceptual bases of game the-
ory. We take Johansen’s (1982) argument on the Nash theory as our starting point.
Then, we make comparisons between the two theories by considering two methodolog-
ical principles: the free-will postulate and complete determinism. We also consider
multiplicity in prediction/decision criteria and how we should take it in our research
activities.

4.1 Johansen’s argument

Johansen (1982) gives the following four postulates for prediction/decision making in
games and asserts that the Nash noncooperative solution is derived from those postu-
lates for solvable games. For this, he assumes (p. 435) that the game has the unique
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Nash equilibrium, but notes (p. 437) that interchangeability is sufficient for his asser-
tion.

Postulate J1 (Closed World)7: A player makes his decision si ∈ S i on the basis of,
and only on the basis of information concerning the action possibility sets of two play-
ers S 1, S 2 and their payoff functions h1, h2.

Postulate J2 (Symmetry in PD criterion): In choosing his own decision, a player
assumes that the other is rational in the same way as he himself is rational.

Postulate J3 (Predictability): If any8 decision is a rational decision to make for an
individual player, then this decision can be correctly predicted by the other player.

Postulate J4 (Optimization against “for all” predictions): Being able to predict the
actions to be taken by the other player, a player’s own decision maximizes his payoff

function corresponding to the predicted actions of the other player.

Notice that the term “rational” occurs in J2 and J3, and “payoff maximization” in J4.
The term “rational” in Johansen’s argumentation is broader than its typical meaning in
the game theory literature referring to “payoff maximization.” Indeed, He regards these
four postulates together as an attempt to define “rationality”; “payoff maximization” is
only one component of “rationality”. We may further disentangle it using the concept
of prediction/decision criterion, which includes J4 as its component, and the concept
of logical abilities. Then, the above four postulates will be well understood, which is
now discussed.

Postulate J1 is the starting point for his consideration of ex ante decision making.
Postulate J2 requires the decision criterion be symmetric between the decision maker
and the other player in his mind. Postulate J3 requires each player’s prediction about
the other’s decision be correctly made. Postulate J4 corresponds to the payoff max-
imization requirement. In the following, we first elaborate Postulates J2 and J3, and
then use J1-J4 as a reference point for our critical comparisons between N1-N2 and
R1-R2.

Postulate J2 implies that from player 1’s perspective, the decision criterion has to be
symmetric between the two players. In our context, this is interpreted as applied to the
choice of prediction/decision criterion. Both N1-N2 and R1-R2 satisfy this symmetric
requirement. The combination N1-NM2 discussed in Section 2 violates symmetry, and
so does N1-R2, which will be further discussed in Section 4.3.

Postulate J3 is interpreted in the following manner: First, player 1 thinks about the
whole situation, taking player 2’s criterion as given, and makes inferences from this

7The titles of those postulates are given by the present authors.
8This “any” was “some” in Johansen’s orginal Posutlate 3. According to logic, this should be “any”.

However, this is expressed as “some” by many scientists (even mathematicians).
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thinking. Based on such inferences, player 1 makes a prediction about 2’s decisions.
This prediction is correct in the sense that player 1’s prediction criterion is the same
as 2’ decision criterion and 1 has the same logical ability as player 2’s. In this sense,
predictability in J3 is a result of a player’s contemplation of the whole interactive situ-
ation.9 In this reasoning, “rationality” in J3 emphasizes symmetry in players’ interper-
sonal logical abilities, while that in J2 emphasizes symmetry in his prediction/decision
criterion.

Postulates J1-J3 are compatible with N1-N2 and R1-R2. Only Postulate J4 makes
a distinction between the Nash theory and rationalizability theory. If we read Postulate
J4 in light of his assertion that interchangeability is a sufficient condition for J1-J4 to
lead to the Nash solution, we can interpret J4 as adopting “for all” predicted actions of
the other player’s possible decisions.

Johansen (1982) does not give a formal analysis of his postulates. Our N1-N2
may be regarded as a formulation of these postulates in the language of classical game
theory. In this sense, Theorem 1 formalizes Johansen’s assertion that the Nash solution
is characterized by J1-J4. If we modify Postulate J4 so that the “for all” requirement is
replaced by the “for some” requirement, Theorem 3 for R1-R2 would be a result. We
still need to discuss what are bases for the choice of “for all” or “for some”.

4.2 The free-will postulate vs. complete determinism

Here, we evaluate the difference between N1-N2 and R1-R2, based on two conflicting
meta-theoretical principles: the free-will postulate and complete determinism.

The free-will postulate: This states that players have freedom to make choices follow-
ing their own will. Whenever the social science involves value judgements for individ-
ual beings and/or the society, they rely on the free-will postulate as a foundation.10 In
a single person decision problem, utility maximization may effectively void this pos-
tulate.11 However, in an interactive situation, even if both players are very smart, it is
still possible that individual decision making, based on utility maximization alone, may
not result in a unique decision. This is first argued in Morgenstern (1935), using the
paradox of Moriarty chasing Holmes. This is still a central problem in game theory;

9Bernheim’s (1986, p. 486) interpretation of J3 in his criticism against these postulates is quite different
from our reasoning. In his framework, predictability simply means that the belief about the other player’s
action, which is exogenously given, coincides with the actual action.

10The free-will postulate is needed for deontic concepts such as responsibility for individual choice and
also for individual and social efforts for future developments.

11This does not imply that utility maximization even for 1-person problem violates the free-will postualte;
he has still freedom to ignore his utility.
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the free-will postulate constitutes an important part of this problem. In this respect, the
free-will postulate still remains relevant to game theory.

Consider applications of the postulate at two different layers in terms of interper-
sonal thinking:

(i): It is applied by the outside observer to the (inside) players;

(ii): It is applied by an inside player to the other player.

In application (i), the outside theorist respects the free will of each player; the theorist
can make no further refinement than the inside player. This corresponds to the great-
estness requirement for (E1, E2) in Theorems 1.(1) and Theorem 3. In (ii), when one
player has multiple predictions about the other’s decisions, the free-will postulate, ap-
plied to interpersonal decision making, requires the player take all possible predictions
into account. N1-N2 is consistent with this requirement in that it requires each player’s
decision be optimal against all predictions.12

Criterion R1-R2 involves some subtlety in judging whether it is consistent with ap-
plication (ii). The main difficulty is related to the interpretation of “for some” before
the prediction about the other’s decision. This leads us to another view, “complete de-
terminism.”

Complete determinism: The quantifier “for some” in R1-R2 has two different inter-
pretations:

(a): it requires only the mere existence of a rationalizing strategy;

(b): it suggests a specific rationalizing strategy predetermined for some other reason.

Interpretation (a) is more faithful to the mathematical formulation of R1-R2 as a de-
cision criterion. If we accept (a), then arbitrariness of the rationalizing strategy shows
no respect to the other player’s free will, but we would not find a serious difficulty
in R1-R2 with the free-will postulate in that R1-R2 is a prediction/decision criterion
adopted by a player. However, this reminds us Aesops’ sour grapes that the fox finds
one convenient reason to persuade himself: For R1-R2, it suffices to find any rational-
izing strategy. This interpretation of “rationalization” is at odds with the purpose of a
theory of ex ante decision-making for games, since such a theory is supposed to pro-
vide a rationale for players’ decisions as well as predictions. Interpretation (a) requires
no rationale for each specific rationalizing strategy.

Interpretation (b) resolves the arbitrariness in (a): According to (b), there are some
further components, not explicitly included in the game description G and R1-R2, that
determine a specific rationalizing strategy. However, a specific rationalizing strategy

12There are many other criteria consistent with the requirement. For example, player 1 uses the maximin
criterion to choose his action against E2. Another possibility is to put equal probability on each action in E2
and to apply expected utility maximization.
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for each step has to be uniquely determined, for otherwise the player would have to
arbitrarily choose among different strategies or to look for a further reason to choose
some of them. Thus, interpretation (b) violates Johansen’s postulate J1.

Interpretation (b) deserves a further analysis, since it is related to complete deter-
minism, which has been regarded as very foundational in natural sciences. To deter-
mine a specific rationalizing strategy, one possibility is to refer to a full description of
the world including players’ mental states; this presumes some form of determinism.
We consider only complete determinism for simplicity. Such a full description in a
situation with two persons may require an infinite hierarchy of beliefs. Indeed, there is
a literature, beginning from Aumann (1987)13, to justify the rationalizability theory or
alike along this line (see Tan-Werlang 1988).

Complete determinism is incompatible with the free-will postulate in that it con-
tains no room for decision; ex ante decision making is an empty concept from this
perspective. From this view, R1-R2 is regarded as a partial description of a law of
causation.

Except for conflicting against the free-will postulate, complete determinism may
not be very fruitful as a methodology for social science in general, which is aptly
described by Hayek (1952, Section 8.93): “Even though we may know the general
principle by which all human action is causally determined by physical processes, this
would not mean that to us a particular human action can ever been recognizable as the
necessary result of a particular set of physical circumstances.”

Complete determinism is justified only because of its non-refutability by withdraw-
ing from concrete problems into its own abstract world. In fact, neither complete de-
terminism nor the free-will postulate can be justified by its own basis. Either should
be evaluated with coherency of the entire scope and the scientific and/or theoretical
discourse.

Our conclusion is that the free-will postulate is needed for the perspective of social
sciences, and complete determinism has no such a status in social sciences. The Nash
noncooperative theory is constructed coherently with the free-will postulate, but the
rationalizability theory meets a great difficulty to reconcile with it.

13In the problem of common knowledge in the information partition model due to Robert Aumann, the
information partitions themselves are assumed to be common knowledge. He wrote in (Aumann 1976,
p. 1237): “Included in the full description of a state ω of the world is the manner in which information is
imparted to the two persons”. This can be interpreted as meaning that the primitive state ω includes every in-
formation. A person receives some partial information about ω, but behind this, everything is predetermined.
This view is shared with Harsanyi (1967/8) and Aumann (1987).
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4.3 Prediction/decision criteria

The characterizations of the Nash and rationalizability theories in terms of predic-
tion/decision criteria are helpful to find their differences as well as to understand Jo-
hansen’s argument and vice versa. However, these characterization results also intro-
duce a new problem: Among all possible prediction/decision criteria, why should we
focus particularly on the Nash theory or the rationalizability theory? Here we consider
a few exmaples of prediction/decision criteria and their resulting outcomes.

Relativistic view: It may be the case that people adopt different prediction/decision
criteria. In addition to N1-N2 and R1-R2, as already indicated, NM1-NM2, N1-NM2
and N1-R2 are also possible candidates, among others. Even restricting our focus to
N1-N2 and R1-R2, it is natural to ask why we avoid a mixture, such as N1-R2, of those
criteria. Moreover, this combination actually generates a different outcome either from
N1-N2 or R1-R2. Consider the game which is obtained from Table 3.4 by changing
the payoffs in the first row and first column.

Table 4.1
s21 s22 s23

s11 (1, 1)NE (1,1)NE (0,0)
s12 (1,0) (1,−1) (−1, 1)
s13 (0,0) (−1, 1) (1,−1)

For this game, we can calculate the greatest pairs (E1, E2) satisfying N1-N2, R1-R2
and N1-R2 as follows:

N1-N2: ({s11}, {s21, s22})
R1-R2: ({s11, s12, s13}, {s21, s22, s23})
N1-R2: ({s11, s12}, {s21, s22})

As soon as we start considering different combinations, they could provide actually
different recommendations.

This relativistic view may turn our target problem into an empirical study of such
criteria in real societies. However, a prediction/decision criterion itself is still an ana-
lytic concept that serves as a benchmark to understand the prediction/decision-making
process in interactive situations. From this perspective, the focus should rather be a
study of the underlying structures and rationales for those criteria; if a criterion is inco-
herent with other bases, people will eventually avoid it. The goal of such study is then
to separate some criteria from others, even if we take the relativistic view that people
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follow diverse ways of prediction/decision making. For example, Johansen’s postulate
J2 accepts N1-N2 and R1-R2 but rejects N1-R2 as a legitimate criterion.

This paper analyzes two specific criteria, N1-N2 and R1-R2, taking Johansen’s
postulates and the current game theory literature as given. However, if we enter the rel-
ativistic world of prediction/decision criterion, we may require rationales for the postu-
lates such as J2. A full analysis, which would involve broader conceptual bases for pre-
diction/decision criterion and more explicit study of the underlying thought processes
for prediction/decision making, is way beyond the current research. Nevertheless, Sec-
tion 5 mentions a further research possibility on these problems as a continuation of
the present paper.

5 Conclusions

5.1 The unified framework and parallel derivations

We presented the unified framework and parallel derivations of the Nash noncoopera-
tive solutions and rationalizable strategies. The difference between them is pinpointed
to be the choice of the quantifier “for all” or “for some” for predictions about the other
player’s possible decisions. In Section 4, we discussed various conceptual issues by
viewing the quantifier “for all” and “for some” from the perspectives of Johansen’s
postulates, the free-will postulate vs. complete determinism, and prediction/decision
criteria.

Comparisons with Johansen’s postulates help us well understand our unified frame-
work and derivations. The argument from the perspective of the free-will postulate
vs. complete determinism concludes that the Nash theory is more coherent to social
sciences as a whole than the rationalizability theory. Nevertheless, as a descriptive
concept, it would be possible for some people to use a criterion with “for some” for
their decision making. Reflections upon our approach in terms of prediction/decision
criteria manifest that vast aspects of prediction/decision making in social context are
still hidden.

One such problem is the treatment of the assumption of common knowledge. We
started this paper with the quotation of Mas-Colell and Green (1995) about the standard
interpretation of rationalizability theory in terms of common knowledge. It is also
common to interpret the Nash theory as to require common knowledge of the game
structure. In this paper, the notion of common knowledge or even knowledge/beliefs
remains interpretational. To study the thought process for prediction/decision making
explicitly, we meet new issues and additional framework is necessary. The following
section discusses these issues.
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5.2 Thought process for prediction/decision making

The present paper employs the standard game theory language. In this language,
many essential elements remain informal and hidden, including a player’s beliefs or
knowledge. Those elements are essential for understanding the thought process for
prediction/decision-making. Here we consider only N1-N2, but the argument is also
applicable to R1-R2.

Prediction making (putting oneself in the other’s shoes): N1-N2 is understood as
describing both prediction making and decision making: From player 1’s perspective,
E1 in N1 is his decision variable, while E2 in N1 is his prediction variable. Here, player
1 puts himself into player 2’s shoes to make predictions. In fact, this argument could
not stop here; by putting himself in 2’s shoes, 1 needs to think about 2’s predictions
about 1’s decisions. Continuing this argument ad infinitum, we meet the infinite regress
described in Diagram 5.1, which is made from the viewpoint of player 1. A symmetric
argument from player 2’s viewpoint can be constructed.

Double uses of N1-N2: In the infinite regress, N1 is a decision criterion for 1 and
is a prediction criterion for 2, while N2 is a decision criterion for 2 and a prediction
criterion for 1. Thus, N1 and N2 are used both as decision and prediction criteria.
This double use makes the infinite regress in Diagram 5.1 collapse into a system of
simultaneous equations described by Diagram 5.2. Theorem 1 solves this system of
equations.

Diagram 5.1 Diagram 5.2
N1 N1 N1 · · ·

↓ ↗ ↓ ↗ ↓ ↗

N2 N2 N2
=⇒

N1
↓ ↑

N2

The language of classical game theory is incapable to explicitly distinguish between
player 1’s and 2’s perspectives; as a result, many foundational problems can only be
discussed at interpretational levels. One way to formalize those issues is to reformulate
the above problem in the epistemic logic framework. Then, we can avoid the collapses
from Diagram 5.1 into Diagram 5.2, and explicitly discuss the relationship between the
above infinite regress and the common knowledge of N1-N2. In doing so, we will be
able to evaluate the standard interpretations, such as the quotation from (Mas-Colell
and Green 1995) in Section 1, of the rationalizability theory as well as the Nash theory.
Also, we can more explicitly discuss Johansen’s (1982) argument. The research on
these problems will be undertaken in the companion paper (Hu and Kaneko 2013).
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Abstract
“Pluralistic ignorance” is a phenomenon mainly studied in social psychology.
Viewed as an epistemic phenomenon, one way to define it is as a situation where
“no one believes, but everyone believes that everyone else believes”. In this paper
various versions of pluralistic ignorance are formalized using epistemic/doxastic
logic (based on plausibility models). The motive is twofold. Firstly, the formal-
izations are used to show that the various versions of pluralistic ignorance are all
consistent, thus there is nothing in the phenomenon that necessarily goes against
logic. Secondly, pluralistic ignorance, is on many occasions, assumed to be fragile.
In this paper, however, it is shown that pluralistic ignorance need not be fragile to
announcements of the agents’ beliefs. Hence, to dissolve pluralistic ignorance in
general, something more than announcements of the subjective views of the agents
is needed. Finally, suggestions to further research are outlined.

Pluralistic ignorance is a term from the social and behavioral sciences going back to
the work of Floyd H. Allport and Daniel Katz (1931).1 Krech and Crutchfield (1948,
pp. 388-89) define pluralistic ignorance as a situation where “no one believes, but
everyone believes that everyone else believes”. Elaborated, pluralistic ignorance is the
phenomenon where a group of people shares a false belief about the beliefs, norms,
actions or thoughts of the other group members. It is a social phenomenon where
people make systematic errors in judging other people’s private attitudes. This makes it
an important notion in understanding the social life. However, pluralistic ignorance is a
term used to describe many different phenomena that all share some common features.

1See (O’Gorman 1986) for more on the coining of the term “pluralistic ignorance”.
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Therefore, there are many different definitions and examples of pluralistic ignorance
and a few of the most common of these will be presented in Section 1.

Pluralistic ignorance has been approached by formal methods before (Centola et al.
2005, Hendricks 2010), but to the knowledge of the author, (Hendricks 2010) is the
only paper that takes a logic-based approach.2 Hendricks (2010) models pluralistic ig-
norance using formal learning theory and logic. In this paper, the tool will be classical
modal logic in the form of doxastic/epistemic logic. In Section 2, we introduce a doxas-
tic/epistemic logic based on the plausibility models previously studied by van Benthem
(2007) and Baltag and Smets (2008). The reason for choosing this framework instead
of, for instance, the multi-modal logic KD45, is that KD45 cannot straightforwardly be
combined with public announcements.3 Since one of the aspect of pluralistic ignorance
studied in this paper is the question of what it takes to dissolve the phenomenon, we
need to be able to talk about the dynamics of knowledge and beliefs. Public announce-
ments are the simplest form of actions that can affect the beliefs and knowledge of the
agents and they therefore serve the purpose of this paper perfectly.

After having presented the formal framework in Section 2, it is possible in Sec-
tion 3 to give a formal analysis of the different versions of pluralistic ignorance. We
will give several different formalizations of pluralistic ignorance and discuss whether
they are satisfiable or not. Afterwards, we will look at what it takes to dissolve plural-
istic ignorance and show that, in general, something more than mere announcements
of agents’ true beliefs is needed. Since the logical approach to pluralistic ignorance is
still very limited, there is ample opportunity for further research and several sugges-
tions will be discussed in Section 4. Following this, a concise conclusion is given in
Section 5. Finally, a postscript is added at the very end summing up the research on
logic-based models of pluralistic ignorance that have appeared since the first publishing
of this paper.

1 Examples of pluralistic ignorance

Examples of pluralistic ignorance are plentiful in the social and behavioral sciences’
literature. One example is the drinking of alcohol on (American) college campuses.
Several studies have shown that many students feel much less comfortable with drink-

2Since the first appearance of this paper in Future Directions for Logic - Proceedings of PhDs in Logic
III, College Publications, 2012, several other papers with a logic-based approach to pluralistic ignorance
have appeared. In Section 6, these papers will be discussed in more details.

3Public announcement of a formula ϕ corresponds, in the model theory of modal logic, to the operation
of going to the submodel only containing worlds where ϕ was true. However, the class of frames under-
lying the logic KD45 is not closed under taking submodels, since seriality is not preserved when going to
submodels. When combined with public announcement the logic KD45 actually turns into the logic S5.
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ing than they believe the average college student does (Prentice and Miller 1993). In
other words, the students do not believe that drinking is at all enjoyable, but they still
believe that all of their fellow students believe drinking to be quite enjoyable. Another
classical example is the classroom example in which, after having presented the stu-
dents with difficult material, the teacher asks them whether they have any questions.
Even though most students do not understand the material they may not ask any ques-
tions. All the students interpret the lack of questions from the other students as a sign
that they understood the material, and to avoid being publicly displayed as the stupid
one, they dare not ask questions themselves. In this case the students are ignorant with
respect to some facts, but believe that the rest of the students are not ignorant about the
facts.

A classical made-up example is from Hans Christian Andersen’s fable “The Em-
peror’s New Clothes” from 1837. Here, two impostors sell imaginary clothes to an
emperor claiming that those who cannot see the clothes are either not fit for their of-
fice or just truly stupid. Not wanting to appear unfit for his office or truly stupid, the
Emperor (as well as everyone else) pretends to be able to see the garment. No one
personally believes the Emperor to have any clothes on. They do, however, believe
that everyone else believes the Emperor to be clothed. Or alternatively, everyone is
ignorant to whether the Emperor has clothes on or not, but believes that everyone else
is not ignorant. Finally, a little boy cries out: “but he has nothing on at all!” and the
pluralistic ignorance is dissolved.

What might be clear from these examples is that pluralistic ignorance comes in
many versions. A logical analysis of pluralistic ignorance may help categorize and dis-
tinguish several of these different versions. Note that these examples were all formu-
lated in terms of beliefs, but pluralistic ignorance is often defined in the term of norms
as well. For instance, Centola et al. (2005) define pluralistic ignorance as “a situation
where a majority of group members privately reject a norm, but assume (incorrectly)
that most others accept it”.

Misperceiving other people’s norms or beliefs can occur without it being a case
of pluralistic ignorance. Pluralistic ignorance is the case of systematic errors in
norm/belief estimation of others. Thus, pluralistic ignorance is a genuine social phe-
nomenon and not just people holding wrong beliefs about other people’s norms or
beliefs (O’Gorman 1986). This might be the reason why pluralistic ignorance is often
portrayed as a fragile phenomenon. Just one public announcement of a private belief or
norm will resolve the case of pluralistic ignorance. In “The Emperor’s New Clothes”
a little boy’s outcry is enough to dissolve the pluralistic ignorance. If, in the class-
room example, one student dares to ask a question (and thus announces his academic
ignorance) the other students will surely follow with questions of their own. In some
versions of pluralistic ignorance, the mere awareness of the possibility of pluralistic
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ignorance is enough to suspend it. This fragility might not always be the case and, as
we shall see, there is nothing in the standard definitions of pluralistic ignorance that
forces it to be a fragile phenomenon.

2 Plausibility models: A logical model of belief, knowledge, doubt,
and ignorance

We will model knowledge and beliefs using modal logic. More specifically, we will
be using the framework of Baltag and Smets (2008). This section is a review of that
framework. We will work in a multi-agent setting and thus, assume a finite set of
agents A to be given. Furthermore, we also assume a set of propositional variables
PROP to be given. The models of the logic will be special kinds of Kripke models
called plausibility models:

Definition 2.1. A plausibility model is a tupleM = 〈W, (≤a)a∈A,V〉, where W is a non-
empty set of possible worlds/states, ≤a is a locally connected converse well-founded
preorder on W for each a ∈ A, and V is a valuation that to each p ∈ PROP assigns a
subset of W.

A relation is a locally connected converse well-founded preorder on W if it is lo-
cally connected (wherever x and y are related and y and z are related, then x and z
are also related), converse well-founded (every non-empty subset of W has a maximal
element), and is a preorder (it is reflexive and transitive). In the following we will
sometimes refer to the plausibility models simply as models.

The intuition behind plausibility models is that the possible worlds represent dif-
ferent ways the world might be. That w ≤a v, for an agent a, means that agent a thinks
that the world v is at least as possible as world w, but a cannot distinguish which of the
two is the case. The relation ≤a will be used to define what an agent a believes. To
define what an agent a knows we introduce an equivalence relation ∼a defined by:

w ∼a v if, and only if w ≤a v or v ≤a w

The intuition behind w ∼a v is that for all that agent a knows, she cannot distinguish
between which of the worlds w and v is the case. Given an agent a and a world w, the
set |w|a = {v ∈ W | v ∼a w} is the information cell at w of agent a and represents all the
worlds that agent a considers possible at the world w. In other words, this set encodes
the hard information of agent a at the world w.

Based on the introduced notions, we can now define knowledge and beliefs. Let Ka

and Ba be modal operators for all agents a ∈ A. We read Kaϕ as “agent a knows that
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ϕ” and Baϕ as “agent a believes that ϕ”. We specify the formal language L, which we
will be working with, by the following syntax:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | Baϕ,

where p ∈ PROP and a ∈ A. The logical symbols >,⊥,∨,→,↔ are defined in the
usual way. The semantics of the logic is then defined by:

Definition 2.2. Given a plausibility model M = 〈W, (≤a)a∈A,V〉 and a world w ∈ W
we define the semantics inductively by:

M,w p iff w ∈ V(p)
M,w ¬ϕ iff it is not the case thatM,w ϕ

M,w ϕ ∧ ψ iff M,w ϕ andM,w ψ

M,w Kaϕ iff for all v ∈ |w|a, M, v ϕ

M,w Baϕ iff for all v ∈ max≤a (|w|a), M, v ϕ,

where max≤a (S ) is the set of maximal elements of S with respect to the relation ≤a. We
say that a formula ϕ is satisfiable if there is a modelM and a world w inM such that
M,w ϕ. A formula ϕ is valid if for all modelsM and all worlds w inM,M,w ϕ.

Note, that the semantics makes Kaϕ → Baϕ valid. In the framework of Baltag
and Smets (2008) other notions of beliefs are also introduced. The first is conditional
beliefs; Bϕaψ expresses that agent a believes that ψ was the case, if she learned that ϕ
was the case. The semantic of this modality is:

M,w Bϕaψ iff for all v ∈ max≤a (|w|a ∩ [[ϕ]]M), M, v ψ,

where [[ϕ]]M is the set of worlds inM where ϕ is true. Another notion of belief is safe
belief for which we use �a. The semantics of this modality is:

M,w �aϕ iff for all v ∈ W, if w ≤a v, thenM, v ϕ.

Note, this is the usual modality defined from the relation ≤a. Since ≤a is reflexive,
�aϕ → ϕ is valid and thus, “�a-beleifs” are veridical. Hence, safe belief is a very
strong notion of belief (or a weak notion of knowledge). Because a central aspect
of pluralistic ignorance is people holding wrong beliefs, safe belief is not a suitable
notion. Yet another notion of belief, that also implies truth, is weakly safe belief �weak

a
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given by the following semantics:

M,w �weak
a ϕ iff M,w ϕ and for all v ∈ W, if w <a v, thenM, v ϕ,

where <a is defined by; w <a v if and only if w ≤a v and v �a w. Finally, Baltag and
Smets (2008) define strong belief S ba by

S baϕ iff Baϕ ∧ Ka(ϕ→ �aϕ).

In addition to the several notions of belief, Baltag and Smets (2008) also discuss
several ways of updating knowledge and beliefs when new information comes about.
These are update, radical upgrade, and conservative upgrade and can be distinguished
by the trust that is put in the source of the new information. If the source is known to be
infallible, it should be an update. If the source is highly reliable, it should be a radical
upgrade and if the source is just barely trusted, it should be a conservative upgrade. In
this paper we are interested in what it takes to dissolve pluralistic ignorance and since
update is the “strongest” way of updating knowledge and beliefs, we will focus on this.
We will also refer to this way of updating as public announcement.

We introduce operators [!ϕ], and add to the syntax the clause that for all formulas
ϕ and ψ, [!ϕ]ψ is also a formula. [!ϕ]ψ is read as “after an announcement of ϕ, ψ is
true”. Semantically, a public announcement of ϕ will result in a new plausibility model
where all the ¬ϕ-worlds have been removed, and the truth of ψ is then checked in this
new model. These intuitions are made formal in the following definition:

Definition 2.3. Given a plausibility modelM = 〈W, (≤a)a∈A,V〉 and a formula ϕ, we
define a new modelM!ϕ = 〈W ′, (≤′a)a∈A,V ′〉 by,

W ′ = {w ∈ W | M,w ϕ}

≤′a = ≤a ∩(W ′ ×W ′)
V ′(p) = V(p) ∩W ′

The semantics of the public announcement formulas are then given by:

M,w [!ϕ]ψ iff ifM,w ϕ thenM!ϕ,w ψ.

Finally, we add to the framework of Baltag and Smets (2008) the two notions
of ignorance and doubt. These are notions rarely discussed in the literature on epis-
temic/doxastic logic. However, ignorance is discussed in (van der Hoek and Lomuscio
2004). On the syntactic level we add two new operators Ia and Da for each agent a ∈ A.
The formula Iaϕ is read as “agent a is ignorant about ϕ” and Daϕ is read as “agent a
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doubts whether ϕ”. The semantics of these operators are defined from the semantics of
the knowledge operator and the belief operator:

Definition 2.4. The operators Ia and Da are defined be the following equivalences:

Iaϕ := ¬Kaϕ ∧ ¬Ka¬ϕ

Daϕ := ¬Baϕ ∧ ¬Ba¬ϕ.

Note that, since Kaϕ→ Baϕ is valid, Daϕ→ Iaϕ is also valid.

3 Modeling pluralistic ignorance

Based on the logic introduced in the previous section, we will now formalize different
versions of pluralistic ignorance that are all consistent. Then, we will discuss whether
these formalizations make pluralistic ignorance into a fragile phenomenon.

3.1 Formalizations and consistency of pluralistic ignorance

As discussed in Section 1, there are many ways of defining pluralistic ignorance and in
this section we attempt to formalize a few of these. We will also discuss whether these
formalizations lead to consistent concepts in the sense that the formalizations are by
satisfiable formulas.

Firstly, we assume that pluralistic ignorance is a situation where no agent believes
ϕ, but every agent believes that everyone else believes ϕ. This can easily be formalized
as: ∧

a∈A

(
¬Baϕ ∧

∧
b∈A\{a}

BaBbϕ
)
. (1)

For boolean formulas ϕ4, the formula (1) is satisfiable since a plausibility model
can easily be constructed such that it contains a possible world that satisfies it. Such a
model is given in Figure 1, where we assume that the set of agents isA = {a1, a2, ..., an}.
In the following, when drawing models like this one, an arrow from a state w to a state
v labeled by ai will represent that w <ai v holds in the model. An arrow from w to
v labeled by a set B ⊆ A represent that w <b v for all b ∈ B. The full plausibility
relations of the model will be the reflexive transitive closures of the relations drawn in
the pictures. When a formula ϕ appears next to a state it means that ϕ is true at that
state.

4A formula is boolean if it constructed solely from propositional variables and the logical connectives
¬, ∧, ∨,→, and↔.
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Figure 1: A plausibility model where (1) is satisfiable at the root

There are also formulas ϕ for which (1) is unsatisfiable, take for instance ϕ to be
Bbψ or ¬Bbψ for any agent b ∈ A and any formula ψ. It cannot be the case that agent
a does not believe that agent b believes that ψ, but at the same time a believes that b
believes that b believes that ψ, i.e. (1) is unsatisfiable when ϕ is Bbψ or ¬Bbψ because
¬BaBbψ ∧ BaBbBbψ and ¬Ba¬Bbψ ∧ BaBb¬Bbψ are unsatisfiable. In the following,
when discussing pluralistic ignorance as defined by (1) we will therefore assume that
ϕ is a boolean formula.

If belief is replaced by strong belief, such that (1) becomes∧
a∈A

(
¬S baϕ ∧

∧
b∈A\{a}

S baS bbϕ
)
. (2)

pluralistic ignorance remains satisfiable for boolean formulas, which is testified by
Figure 1 again. Furthermore, (2) is also not satisfiable if ϕ is of the form S bbψ or
¬S bbψ for a b ∈ A. However, if we use safe belief and weak safe belief instead of
belief in (1), pluralistic ignorance becomes unsatisfiable. This is obvious since both
safe belief and weak safe belief implies truth.

In the classroom example of Section 1, a better definition of pluralistic ignorance
may be obtained using the ignorance operator. This leads to the following definition of
pluralistic ignorance: ∧

a∈A

(
Iaϕ ∧

∧
b∈A\{a}

Ba¬Ibϕ
)
. (3)

This formula expresses a case where all the agents are ignorant about ϕ, but believe
that all the other agents are not ignorant about ϕ. Instead of ignorance, doubt could be
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Figure 2: A plausibility model where (3) and (4) are satisfiable at the root

used as well, providing yet another definition of pluralistic ignorance:∧
a∈A

(
Daϕ ∧

∧
b∈A\{a}

Ba¬Dbϕ
)
. (4)

Note that, since Daϕ→ Iaϕ, (4) implies (3).
The two definitions of pluralistic ignorance (3) and (4) are also easily seen to be

satisfiable for boolean formulas ϕ. This is made apparent by Figure 2. Now, however,
formulas of the form Bbϕ, for b ∈ A, can also be subject to pluralistic ignorance. It is
possible that agent a can doubt whether agent b believes ϕ and at the same time believe
that agent b does not doubt whether he himself /agent b believes ϕ.

In (3) and (4) we can also replace the belief operator by the strong belief operator
and obtain the following versions of pluralistic ignorance:∧

a∈A

(
Iaϕ ∧

∧
b∈A\{a}

S ba¬Ibϕ
)
, (5)

∧
a∈A

(
Daϕ ∧

∧
b∈A\{a}

S ba¬Dbϕ
)
. (6)

These new definitions of pluralistic ignorance are consistent as they are satisfiable at
the root of the model in Figure 2. We still cannot obtain versions of (3) and (4) with
safe belief and weak safe belief for the same reason as before.

It seems obvious that we can formalize even further versions of pluralistic igno-
rance within this framework. Thus, using the logic introduced in Section 2, we can
characterize and distinguish many different versions of pluralistic ignorance. Further-
more, all the definitions (1)-(6) were satisfiable, which seems to entail that the concept
of pluralistic ignorance is not inconsistent.
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3.2 The fragility of pluralistic ignorance

After having formalized different versions of pluralistic ignorance, we can ask whether
any of the definitions entail that pluralistic ignorance is a fragile phenomenon. How-
ever, first of all we need to spell out what we mean by a fragile phenomenon. The
question of whether pluralistic ignorance is fragile or not reduces to the question of
what it takes to dissolve it. We will regard pluralistic ignorance as dissolved only when
none of the agents have wrong beliefs about the other agents’ beliefs anymore.5 The
way agents can change their beliefs, will in this section be modeled by the [!ϕ] opera-
tors of Section 2.

For the time being, we fix pluralistic ignorance to be defined as (1). According
to several descriptions of pluralistic ignorance, it should be dissolved if just one agent
announces his true belief. If the formula !¬Bbϕ is announced, it naturally follows
that

∧
a∈A Ba¬Bbϕ. However, this does not dissolve the pluralistic ignorance since all

agents might keep their wrong beliefs about any other agent than b. In other words, a
model satisfying (1) can be constructed such that after the announcement of !¬Bbϕ it
still holds that

∧
a∈A

(∧
c∈A\{a,b} BaBcϕ

)
.

It turns out that there is nothing in the definition (1) that prevents the wrong beliefs
of the agents from being quite robust. Even if everybody except an agent c announce
that they do not believe ϕ, all the agents might still believe that c believes ϕ. Using
a formula of L we can define a notion of robustness in the following way: agent a
robustly believes that the group of agents B ⊆ A\{a} believes ϕ if∧

C⊆B

(
[!¬Bcϕ]c∈C

(∧
b∈B\C

BaBbϕ
))
, (7)

where [!¬Bcϕ]c∈C is an abbreviation for [!¬Bc1ϕ][!¬Bc2ϕ]...[!¬Bckϕ], when C =

{c1, c2, ..., ck}.6 An example of a model where agent 1 believes ¬ϕ and robustly be-
lieves that the agents {2, 3, 4, 5} believe ϕ is shown in Figure 3.

Another way of looking at the formula (7) is that it describes a situation where
agent a believes that all the other agents’ beliefs about ϕ are independent; maybe they

5In other words, if pluralistic ignorance in form of
∧

a∈A

(
¬Baϕ ∧

∧
b∈A\{a}BaBbϕ

)
is the case, we will

regard it as dissolved only when
∧

a∈A,b∈A\{a}Ba¬Bbϕ is the case. Thus, from pluralistic ignorance being the
case in its “full” form

∧
a∈A

(
¬Baϕ ∧

∧
b∈A\{a}BaBbϕ

)
until it is dissolved in our terminology there might be

intermediate situations where pluralistic ignorance is neither properly dissolved or is the case in its full form.
6An alternative to (7) is ∧

C⊆B

(
[!
∧
c∈C

¬Bcϕ]
( ∧
b∈B\C

BaBbϕ
))
,

however, the two are not equivalent. We will not go into a discussion of which definition is preferable.
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Figure 3: A robust model where agent 1 believes ¬ϕ and has a strong robust belief in that the
agents 2, 3, 4, and 5 believe ϕ. The worlds marked with “◦” are worlds where ¬ϕ is true and
the “clouds” marked with ϕ are collections of worlds where ϕ is true all over. The arrows not
marked with numbers represent the plausibility relation for agent 1 only.

all believe ϕ for different reasons. Thus, learning about some agents’ beliefs about ϕ
tells a nothing about what the other agents believe about ϕ.

With robustness defined by (7), pluralistic ignorance is consistent with all the agents
having wrong robust beliefs about the other agents’ beliefs. Taking disjoint copies of
the model in Figure 3 for each agent and joining the roots shows that:

Proposition 1. Pluralistic ignorance in form of (1) is consistent with that all the agents
a ∈ A, robustly believes that the group of agents A\{a} believe ϕ.

Another way of interpreting this result is that announcements of the true beliefs of
some of the involved agents are not enough to dissolve pluralistic ignorance. Either
all the agents need to announce their true beliefs or new information has to come from
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an outside trusted source. Thus, announcements of the forms !Baϕ or !¬Baϕ are not
guaranteed to dissolve pluralistic ignorance. However, a public announcement of !¬ϕ
in the model of Figure 3 will remove the pluralistic ignorance. But an announcement of
the form !¬ϕ (or !ϕ) is precisely an announcement from an trusted outsider. An agent
a can only announce formulas of the form !Baψ or !¬Baψ.

What turns pluralistic ignorance into a fragile phenomenon in most cases, is the fact
that the agents consider the other agents’ beliefs not to be independent as is the case if
(7) is satisfied. In other words, pluralistic ignorance in the fragile form occurs mainly
when the beliefs of the involved agents are correlated. This fits well with the view that
pluralistic ignorance is a genuine social phenomenon as claimed by O’Gorman (1986).

Proposition 1 only regards pluralistic ignorance as defined by (1). However, for
the definitions (3) and (4) similar results hold. Neither of the definitions (3) and (4)
entail that pluralistic ignorance is fragile to public announcements of doubts ([!Dbϕ])
or ignorance ([!Ibϕ]). We can construct a new model, similar to the one i Figure 3, in
which an agent a doubts whether ϕ but has a strong robust belief in that all the agents
in A\{a} do not doubt whether ϕ (and the same goes for ignorance). This new model is
shown in Figure 4.

When it comes to the definitions of pluralistic ignorance based on strong beliefs
(2), (5), and (6), something interesting happens. In the model of Figure 3 agent 1 does
not have a strong belief that the other agents have strong beliefs in ϕ. For instance,
there is a state where B1S b5ϕ and S b5ϕ are true, but �1S b5ϕ is not true. The same
issue occurs in the model of Figure 4. It is still unknown whether robust models can
be constructed such that they satisfy the strong belief versions of pluralistic ignorance
as defined by (2), (5), and (6). Thus, it is left for further research whether there are
strong belief versions of pluralistic ignorance that are not fragile. There are several
other questions for further research, which we will turn to now.

4 Further research on logic and pluralistic ignorance

We have given several consistent formalizations of pluralistic ignorance, but there still
seems to be more possible variations to explore. Furthermore, we have been working
within one specific framework, and the question remains of whether there are other
natural frameworks in which all formalizations of pluralistic ignorance become incon-
sistent. This would be highly unexpected though. Another question regarding for-
malizations of pluralistic ignorance in different frameworks is whether it changes the
fragility of the phenomenon. This is still an open question.

Even though pluralistic ignorance needs not be fragile, neither as a “real life” phe-
nomenon nor according to the formalizations given in this paper, it seems that the
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Figure 4: A robust model where agent 1 doubts whether ϕ, has a strong robust belief in that the
agents 2, 3, 4, and 5 do not doubt whether ϕ. The worlds marked with “◦” are worlds where ¬ϕ
is true and the worlds marked with “•” are worlds where ϕ is true. The arrows with no numbers
on are arrows for agent 1. Remember that the full plausibility relations of the model are the
reflexive transitive closures of the arrows in the pictures

really interesting cases occur when pluralistic ignorance is, in fact, fragile. Whether
pluralistic ignorance is fragile appears to be closely related to it being a genuine social
phenomenon; the dependence between agents’ beliefs is what makes pluralistic igno-
rance fragile. Thus, the real interesting question for further research is how agents’
beliefs are interdependent in the case of pluralistic ignorance and how best to model
this in logic. In answering this question, a shift in focus from what it takes to dissolve
pluralistic ignorance, to what it takes for pluralistic ignorance to arise, seems natural.

4.1 Informational Cascades: How pluralistic ignorance comes about and how it
vanishes

An agent’s beliefs may depend on other agents’ beliefs in many ways; one way is
through testimony of facts by other agents in which the agent trusts. Modeling trust
and testimony is for instance done in Holliday (2010). Another way in which agents’
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beliefs may depend on each other could be through a common information source
(Bikhchandani et al. 1998). Yet another way is through informational cascades.

Informational cascades are a phenomenon widely discussed in the social sciences
(Bikhchandani et al. 1998, Lohmann 1994) and was introduced by Bikhchandani et al.
(1992). When actions/signals are preformed sequentially and agents start to ignore
their private information and instead base their actions/signaling merely on information
obtained from the actions/signals of the previous individuals, an informational cascade
has occurred. If the acts of the first people in the cascade oppose to their private beliefs
and the remaining people join in with the same actions (also oppose to their private
beliefs) the result might be a case of pluralistic ignorance. However, informational
cascades are also fragile (Bikhchandani et al. 1992) and opposite cascades may occur,
thus eliminating pluralistic ignorance again.

These kinds of informational cascades, which have been shown to occur in nu-
merous of places, may very well be the cause of pluralistic ignorance. Hence, logical
framework that can model informational cascades might also be suited to model plural-
istic ignorance. To the knowledge of the author, the only paper on logic-based models
of informational cascades is (Holliday 2010), but it may very well be possible to model
pluralistic ignorance in that framework. However, further work on the logics of infor-
mational cascades is still to come.

4.2 Private versus public beliefs – the need for new notions of group beliefs

The concept of pluralistic ignorance, regardless of which version one adopts, seems to
hint at the need for new notions of common knowledge/beliefs. Pluralistic ignorance
can be viewed as a social phenomenon where everybody holds a private belief in ϕ,
but publicly display a belief in ¬ϕ and thus contribute to a “common belief” (“public
belief” might be a better world) in ¬ϕ. Due to the usual definition of common belief
(everybody believes ϕ and everybody believes that everybody believes ϕ and ...), a
common belief in ¬ϕ leads to private belief in ¬ϕ for all agents in the group, but this is
exactly the thing that fails in social epistemic scenarios involving pluralistic ignorance.
Hence, a new notion of common group belief seems to be needed. In general, there are
various ways in which group beliefs can be related to the beliefs of individuals of the
group. Thus, a logic that distinguishes between private and public beliefs or contains
new notions of common beliefs may help model pluralistic ignorance more adequately.
Once again, this is left for further research.
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4.3 How agents act

The way agents act in cases of pluralistic ignorance also seems to play an important
role. The reason why most students believe that other students are comfortable with
drinking might be that they observe the other students drinking heavily. In the class-
room example students are also obtaining their wrong beliefs based on the observation
of others. Furthermore, focusing on actions might also tell us something about how
pluralistic ignorance evolves in the first place.

Therefore, a logic combining beliefs and actions might be the natural tool for mod-
eling pluralistic ignorance. There exist several logics that combine beliefs/knowledge
and actions, but which one to chose and the actual modeling, is left for further research
to decide.

5 Conclusion

Firstly, we have seen that there are many ways of defining pluralistic ignorance, all
of which by satisfiable formulas. Therefore, pluralistic ignorance is (seemingly) not
a phenomenon that goes against logic. In other words, wrong logical reasoning is not
necessarily involved in pluralistic ignorance.

Secondly, the standard definitions of pluralistic ignorance, for instance as a situa-
tion where no one believes, but everyone believes that everyone else believes, do not
entail that the phenomenon is fragile. Public announcements of the true beliefs of some
of the involved agents are not enough to dissolve pluralistic ignorance. Either all the
agents need to announce their true beliefs or new information has to come from an
outside, trusted source. However, pluralistic ignorance often seems to occur in cases
where the agents’ beliefs are correlated and in such cases pluralistic ignorance might
be increasingly more fragile.

The paper has hinted at a first logic approach to pluralistic ignorance. Some features
and problems have been singled out, but the main aim of the paper was to pave the
way for further research into logical modeling of social phenomena such as pluralistic
ignorance.

6 Postscript

Since the first appearance of this paper in Future Directions for Logic - Proceedings of
PhDs in Logic III, College Publications, 2012, several philosophical and logical papers
addressing pluralistic ignorance have appeared. In this postscript, we will discuss some
of them.
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First of all, the issue of how exactly to define pluralistic ignorance is thoroughly
addressed by Bjerring et al. (to appear), as well. They cite several versions of pluralistic
ignorance, and discuss the relationship between them, before settling on a version of
pluralistic ignorance that highlights the key epistemic and social interactive aspects of
the phenomenon. In their definition, the behavior of the agents involved in pluralistic
ignorance play an essential role, and as such, they take the considerations of Section 4.3
seriously. However, it should be noted that the inclusion of the agents’ behavior in the
definition of pluralistic ignorance makes their definition of pluralistic ignorance diverge
substantially from any of the definitions given in this paper.

It is argued in this paper that pluralistic ignorance is not a phenomenon that goes
against logic. However, one may still think that rational agents cannot find themselves
in a situation of pluralistic ignorance without it being dissolved immediately. Contrary
to this, Bjerring et al. (to appear) also provide an in-depth philosophical argument as
to why pluralistic ignorance might arise and persist among rational agents. Thus, it
might takes more than just correct logical and rational reasoning to avoid or dissolve
pluralistic ignorance.

The question of dissolving pluralistic ignorance and whether the phenomenon is
fragile is also addressed by Proietti and Olsson (2013). They build on the framework
of this paper, but go on to discuss what happens if agents are equipped with descriptive
norms of assertion that specify when they announces their true beliefs. Each agent
is assigned a percentage threshold such that she will announce her true belief if the
percentage of her peers announcing similar beliefs exceeds her threshold. If the agents
are arranged in a particular social network structure and do not have to high thresholds,
Proietti and Olsson (2013) show that pluralistic ignorance might be dissolved if the
right agent starts announcing her true belief. The pluralistic ignorance is dissolved
through an cascade just as mentioned in Section 4.1.

In addition to (Holliday 2010) another paper providing logical models of informa-
tional cascades has been published since this paper first occurred. Baltag et al. (2013)
provide two logical models of informational cascades based on two evidence logics.
Whether these logics are useful in modeling pluralistic ignorance is still an open ques-
tion.

In Section 4.2, the distinction between private and public beliefs was argued to be
important for pluralistic ignorance. In a recent paper, Christoff and Hansen (2013) have
developed a simple logic that exactly distinguishes between private and public beliefs.
Their model of beliefs is significantly simpler than the one used in this paper based on
plausibility models. However, Christoff and Hansen (2013) also include machinery to
talk about the social network structure of the agents and a notion of social influence,
based on the work by Zhen and Seligman (2011), Seligman et al. (2011). With this
notion of social influence, Christoff and Hansen (2013) show that pluralistic ignorance
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is a “robust” state in the sense that it constitutes a fix-point under the introduced notion
of social influence. On the other hand, they also show that pluralistic ignorance is
fragile under their notion social influence in the sense that pluralistic ignorance might
be dissolve if just one agent announces her true belief. Moreover, the situations where
pluralistic ignorance might be dissolved if just one agent announces her true belief
is completely characterized by the social network structure the agents are arranged
in (Christoff and Hansen 2013). Thus, the work by Proietti and Olsson (2013) and
Christoff and Hansen (2013) have contributed to a better understanding of the fragility
of pluralistic since this paper was first published.

Finally, Hansen et al. (2013) consider pluralistic ignorance in connection with other
information phenomena such as informational cascades, bystander effects and belief
polarization, and discuss how such phenomena might be magnified significantly by
modern information technologies.
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The more you can create that magic bubble, that suspension of disbelief, for a while,
the better.

- Edward Norton

The term “bubble” has traditionally been associated with a particular situation oc-
curring on financial markets:

A bubble is considered to have developed when assets trade at prices that
are far in excess of an estimate of the fundamental value of the asset, as
determined from discounted expected future cash flows using current in-
terest rates and typical long-run risk premiums associated with asset class.
Speculators, in such circumstances, are more interested in profiting from
trading the asset than in its use or earnings capacity or true value. (Vogel
2010, p. 16)

Textbook examples of bubbles include the Dutch tulip bulbs frenzy in the 1600s,
the South Sea and Mississippi excesses about a century later, the US stock market as of
1929, the Japanese real estate and equity markets of the 1980s, the dot.com period and
Internet stock boom of the 1990s, and of course the balloons, frenzies and speculative
mania in the world economy leading to the global financial crisis of 2008 of which we
are still in the midst of the aftermath.

In wake of the current crisis there have been many suggestions as to why finan-
cial bubbles occur, most of them composites in terms of explanatory factors involving
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different mixing ratios of bubble-hospitable market configurations and social psycho-
logical features of human nature and informational phenomena like the ones discussed
here in Infostorms (Hendricks and Rasmussen 2012).

One seemingly paradoxical hypothesis suggests that too much liquidity is actually
poisonous rather than beneficial for a financial market (Buchanan 2008). Monetary
liquidity in excess stimulated by easy access to credit, large disposable incomes and
lax lending standards combined with expansionary monetary policies of lowering in-
terests by banks and advantageous tax breaks and bars by the state, flush the market
with capital. This extra liquidity leaves financial markets vulnerable to volatile asset
price inflation the cause of which is to be found in short-term and possibly leveraged
speculation by investors.

The situation becomes that too much money chases too few assets, good as well as
bad, both of which in return are elevated well beyond their fundamental value to a level
of general unsustainability. Pair up too much liquidity with robustly demonstrated
socio-psychological features of human nature like boom-thinking, group-thinking,
herding, informational cascades and other aggregated phenomena of social proof, it
becomes a matter of time before the bubbles start to burst (Lee 1998) - at least in
finance.

However, behind every financial bubble, crash and subsequent crisis “lurks a polit-
ical bubble - policy biases that foster market behaviors leading to financial instability”
(McCarty and Rosenthal 2013) with reference to the 2008 financial crunch. Thus there
are political bubbles too . . . and other sorts as well.

There are stock, real-estate and other bubbles associated with financial markets but
also filter bubbles, opinion bubbles, political bubbles, science bubbles, social bubbles,
status bubbles, fashion bubbles, art bubbles . . . all pushing collectives of agents in the
same (often unfortunate) direction; not only buying the same stock or real estate but
also thinking the same thing, holding the same opinions, appreciating the same art,
“liking” the same posts on social media, purchasing the same brand names, subscribing
to the same research program in science etc.

Internet activist Eli Pariser coined the term “filter bubble” (Pariser 2011) to refer
to selective information acquisition by website algorithms (in search-engines, news
feeds, flash messages, tweets) personalizing search results for users based on past
search history, click behavior and location accordingly filtering away information in
conflict, with user interest, viewpoint or opinion. An automated but personalized in-
formation selection process in line with polarization mechanics isolating users in their
cultural, political, ideological or religious bubbles. Filter bubbles may stimulate indi-
vidual narrow-mindedness but are also potentially harmful to the general society un-
dermining informed civic or public deliberation, debate and discourse making citizens
ever more susceptible to propaganda and manipulation:
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A world constructed from the familiar is a world in which there’s nothing
to learn ... (since there is) invisible autopropaganda, indoctrinating us with
our own ideas. (Pariser 2011, The Economist, June 30)

Harvesting or filtering information in a particular way is part of aggregating opin-
ion. One may invest an opinion on the free market place of ideas and a certain idea or
stance, whether political, religious or otherwise, may at a certain point gain popularity
or prominence and become an asset by the number of people apparently subscribing
to it in terms of likes, upvotes, clicks or similar endorsements of minimum personal
investment. Public opinion tends to shift depending on a variety of factors ranging
from zeitgeist, new facts, current interests to premiums of social imprimatur. Opinion
bubbles may accordingly suddenly go bust or gradually deflate depending.

Everyday personal opinions can serve as intellectual liquidity chasing assets of
political or cultural ideas. But scientific inquiry may also be geared with too much
intellectual liquidity in terms of explanatory expectations and available funding, paired
up with boom-thinking in the scientific community. The short-term and possibly lever-
aged speculation by scientist may exactly occur in the way characterizing a ballooning
market - science bubbles emerge (Pedersen and Hendricks 2013). The modern com-
mercialization of science and research has even been compared to downright Ponzi-
schemes only surviving as long as you can steal from Peter to pay Paul scientifically so
to speak (Mirowski 2013).

Fashion in particular rely on getting everybody, or a selective few, to trend the same
way - that’s the point of the entire enterprise besides the occasional claim to artistic dili-
gence. But even the art scene is tangibly ridden with bubbles: “The bubble that is Con
Art blew up, like the sub-prime mortgage business, in the smoke-and-mirrors world of
financial markets, where fortunes have been made on nothing” says Julian Spalding to
The Independent (March 26, 2012), famous British gallery owner commenting on his
recent book Con Art - Why you ought to sell your Damien Hirst’s while you can (2012).

The concept of bubbles appears in seemingly different spheres. Perhaps it is more
than just terminological coincidence - across spheres bubbles share similar structure
and dynamics - from science to society. Irrational group behavior fuels bubbles. For
instance, individual scientists may have doubts about the merits of bibliometric eval-
uation or excessive publishing practices much in vogue these days. However a strong
public signal aggregated by the previous actions and endorsements of colleagues and
institutions suggesting an aggressive publication strategy and abiding to the regula-
tory rules of evaluation and funding schemes may suppress the personal doubt of the
individual scientist. But when personal information gets suppressed in favor of a pub-
lic signal regulating individual behavior it may in turn initialize a lemming-effect, an
informational cascade. Now, informational cascades have proven robust features in
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the generation of financial bubbles, where “individuals choose to ignore or downplay
their private information and instead jump the bandwagon by mimicking the actions of
individuals acting previously” (Vogel 2010, p. 85).

Informational cascades may thus be considered pivotal to building bubbles - in sci-
ence and elsewhere, and using modern formal logic we have the means for uncovering
their logical structure and dynamics independently of their realm of reign - and that’s
exactly what we are going to do (see Hansen and Rendsvig 2013, Rendsvig and Hen-
dricks 2014, Hansen and Hendricks 2014).
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Abstract

We present a framework for automated planning based on plausibility models, as
well as algorithms for computing plans in this framework. The framework pre-
sented extends a previously developed framework based on dynamic epistemic
logic (DEL), without plausibilities/beliefs. In the pure epistemic framework, one
can distinguish between strong and weak epistemic plans for achieving some, pos-
sibly epistemic, goal. A strong plan guarantees that the agent achieves the goal,
whereas a weak plan promises only the possibility of leading to the goal. Weak
epistemic planning is not satisfactory, as there is no way to qualify which of two
weak plans is more likely to lead to the goal. This seriously limits the practical
uses of weak planning, as the planning agent might for instance always choose a
plan that relies on serendipity. In the present paper we introduce a planning frame-
work with the potential of overcoming this problem. The framework is based on
plausibility models, allowing us to define different types of plausibility planning.
The simplest type of plausibility plan is one in which the goal will be achieved
when all actions in the plan turn out to have the outcomes found most plausible by
the agent. This covers many cases of everyday planning by human agents, where
we—to limit our computational efforts—only plan for the most plausible outcomes
of our actions.
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1 Introduction

Whenever an agent deliberates about the future with the purpose of achieving a goal,
she is engaging in the act of planning. Automated Planning is a widely studied area
of AI dealing with such issues under many different assumptions and restrictions. In
this paper we consider planning under uncertainty (nondeterminism and partial observ-
ability, see Ghallab et al. 2004), where the agent has knowledge and beliefs about the
environment and how her actions affect it. We formulate scenarios using plausibility
models obtained by merging the frameworks in (Baltag and Smets 2006, van Ditmarsch
and Kooi 2008).

Example 1 (The Basement). An agent is standing at the top of an unlit stairwell leading
into her basement. If she walks down the steps in the dark, it’s likely that she will trip.
On the other hand, if the lights are on, she is certain to descend unharmed. There is a
light switch just next to her, though she doesn’t know whether the bulb is broken.

She wishes to find a plan that gets her safely to the bottom of the stairs. Planning in
this scenario is contingent on the situation; e.g. is the bulb broken? Will she trip when
attempting her descent? In planning terminology a plan that might achieve the goal is
a weak solution, whereas one that guarantees it is a strong solution.

In this case, a weak solution is to simply descend the stairs in the dark, risking life
and limb for a trip to the basement. On the other hand, there is no strong solution as
the bulb might be broken (assuming it cannot be replaced). Intuitively, the best plan is
to flick the switch (expecting the bulb to work) and then descend unharmed, something
neither weak nor strong planning captures.

Extending the approach in (Andersen et al. 2012) to a logical framework incorpo-
rating beliefs via a plausibility ordering, we formalise plans which an agent considers
most likely to achieve her goals. This notion is incorporated into algorithms developed
for the framework in (Andersen et al. 2012), allowing us to synthesise plans like the
best one in Example 1.

In the following section we present the logical framework we consider throughout
the paper. Section 3 formalises planning in this framework, and introduces the novel
concept of plausibility solutions to planning problems. As planning is concerned with
representing possible ways in which the future can unfold, it turns out we need a be-
lief modality corresponding to a globally connected plausibility ordering, raising some
technical challenges. Section 4 introduces an algorithm for plan synthesis (i.e., gener-
ation of plans). Further we show that the algorithm is terminating, sound and complete.
To prove termination, we must define bisimulations and bisimulation contractions.
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M M′ M′′

w:h v1:h v2:h u1:h u2:h

Figure 1: Three plausibility models

2 Dynamic Logic of Doxastic Ontic Actions

The framework we need for planning is based on a dynamic logic of doxastic ontic
actions. Actions can be epistemic (changing knowledge), doxastic (changing beliefs),
ontic (changing facts) or any combination. The following formalisation builds on the
dynamic logic of doxastic actions (Baltag and Smets 2006), adding postconditions to
event models as in (van Ditmarsch and Kooi 2008). We consider only the single-agent
case. Before the formal definitions are given, we present some intuition behind the
framework in the following example, which requires some familiarity with epistemic
logic.

Example 2. Consider an agent and a coin biased towards heads, with the coin lying
on a table showing heads (h). She contemplates tossing the coin and realizes that it can
land either face up, but (due to nature of the coin) believes it will land heads up. In
either case, after the toss she knows exactly which face is showing.

The initial situation is represented by the plausibility model (defined later)M and
the contemplation by M′′ (see Figure 1). The two worlds u1, u2 are epistemically
distinguishable (u1 6∼ u2) and represent the observable non-deterministic outcome of
the toss. The dashed directed edge signifies a (global) plausibility relation, where the
direction indicates that she finds u2 more plausible than u1 (we overline proposition
symbols that are false).

Example 3. Consider again the agent and biased coin. She now reasons about shuffling
the coin under a dice cup, leaving the dice cup on top to conceal the coin. She cannot
observe which face is up, but due to the bias of the coin believes it to be heads. She
then reasons further about lifting the dice cup in this situation, and realises that she will
observe which face is showing. Due to her beliefs about the shuffle she finds it most
plausible that heads is observed.

The initial situation is againM. Consider the modelM′, where the solid directed
edge indicates a local plausibility relation, and the direction that v2 is believed over
v1. By local we mean that the two worlds v1, v2 are (epistemically) indistinguishable
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(v1 ∼ v2), implying that she is ignorant about whether h or ¬h is the case.1 Together
this represents the concealed, biased coin. Her contemplations on lifting the cup is
represented by the modelM′′ as in the previous example.

In Example 2 the agent reasons about a non-deterministic action whose outcomes
are distinguishable but not equally plausible, which is different from the initial contem-
plation in Example 3 where the outcomes are not distinguishable (due to the dice cup).
In Example 3 she subsequently reasons about the observations made after a sensing
action. In both examples she reasons about the future, and in both cases the final result
is the modelM′′. In Example 4 we formally elaborate on the actions used here.

It is the nature of the agent’s ignorance that makeM′ andM′′ two inherently dif-
ferent situations. Whereas in the former she is ignorant about h due to the coin being
concealed, her ignorance in the latter stems from not having lifted the cup yet. In gen-
eral we can model ignorance either as a consequence of epistemic indistinguishability,
or as a result of not yet having acted. Neither type subsumes the other and both are
necessary for reasoning about actions. We capture this distinction by defining both lo-
cal and global plausibility relations. The end result is that local plausibility talks about
belief in a particular epistemic equivalence class, and global plausibility talks about
belief in the entire model. We now remedy the informality we allowed ourselves so far
by introducing the necessary definitions for a more formal treatment.

Definition 2.1 (Dynamic Language). Let a countable set of propositional symbols P
be given. The language L(P) is given by the following BNF:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kϕ | Bϕϕ | Xϕ | [E, e]ϕ

where p ∈ P, E is an event model on L(P) as (simultaneously) defined below, and
e ∈ D(E). K is the local knowledge modality, Bϕ the global conditional belief modality,
X is a (non-standard) localisation modality (explained later) and [E, e] the dynamic
modality.

We use the usual abbreviations for the other boolean connectives, as well as for the
dual dynamic modality 〈E, e〉ϕ := ¬ [E, e]¬ϕ and unconditional (or absolute) global
belief Bϕ := B>ϕ. The duals of K and Bϕ are denoted K̂ and B̂ϕ.

Kϕ reads as “the (planning) agent knows ϕ”, Bψϕ as “conditional on ψ, the (plan-
ning) agent believes ϕ”, and [E, e]ϕ as “after all possible executions of (E, e), ϕ holds”.
Xϕ reads as “locally ϕ”.

Definition 2.2 (Plausibility Models). A plausibility model on a set of propositions P is
a tupleM = (W,∼,≤,V), where

1In the remainder, we use (in)distinguishability without qualification to refer to epistemic
(in)distinguishability.
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• W is a set of worlds,

• ∼ ⊆ W ×W is an equivalence relation called the epistemic relation,

• ≤ ⊆ W ×W is a connected well-preorder called the plausibility relation,2

• V : P→ 2W is a valuation.

D(M) = W denotes the domain ofM. For w ∈ W we name (M,w) a pointed plausibil-
ity model, and refer to w as the actual world of (M,w). < denotes the strict plausibility
relation, that is w < w′ iff w ≤ w′ and w′ 6≤ w. ' denotes equiplausibility, that is
w ' w′ iff w ≤ w′ and w′ ≤ w.

In our model illustrations a directed edge from w to w′ indicates w′ ≤ w. By ex-
tension, strict plausibility is implied by unidirected edges and equiplausibility by bidi-
rected edges. For the models in Figure 1, we have v1 ∼ v2, v2 < v1 inM′ and u1 6∼ u2,
u2 < u1 inM′′. The difference between these two models is in the epistemic relation,
and is what gives rise to local (solid edges) and global (dashed edges) plausibility. In
(Baltag and Smets 2006) the local plausibility relation is defined as E:=∼ ∩ ≤; i.e.,
w E w′ iff w ∼ w′ and w ≤ w′. E is a locally well-preordered relation, meaning that it
is a union of mutually disjoint well-preorders. Given a plausibility model, the domain
of each element in this union corresponds to an ∼-equivalence class.

Our distinction between local and global is not unprecedented in the literature, but
it can be a source of confusion. In (Baltag and Smets 2006), ≤ was indeed connected
(i.e. global), but in later versions of the framework (Baltag and Smets 2008) this was
no longer required. The iterative development in (van Ditmarsch 2005) also discuss
the distinction between local and global plausibility (named preference by the author).
Relating the notions to the wording in (Baltag and Smets 2006), ≤ captures a priori
beliefs about virtual situations, before obtaining any direct information about the actual
situation. On the other hand, E captures a posteriori beliefs about an actual situation,
that is, the agent’s beliefs after she obtains (or assumes) information about the actual
world.
M′′ represents two distinguishable situations (v1 and v2) that are a result of rea-

soning about the future, with v2 being considered more plausible than v1. These sit-
uations are identified by restricting M′′ to its ∼-equivalence classes; i.e., M′′ � {v1}

and M′′ � {v2}. Formally, given an epistemic model M, the information cells in M
are the submodels of the formM � [w]∼ where w ∈ D(M). We overload the term and
name any ∼-connected plausibility model on P an information cell. This use is slightly
different from the notion in (Baltag and Smets 2008), where an information cell is an

2A well-preorder is a reflexive, transitive binary relation s.t. every non-empty subset has minimal ele-
ments (Baltag and Smets 2008).
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∼-equivalence class rather than a restricted model. An immediate property of infor-
mation cells is that ≤=E; i.e., the local and global plausibility relations are identical.
A partition of a plausibility model into its information cells corresponds to a localisa-
tion of the plausibility model, where each information cell represents a local situation.
The (later defined) semantics of X enables reasoning about such localisations using
formulas in the dynamic language.

Definition 2.3 (Event Models). An event model on the language L(P) is a tuple
E = (E,∼,≤, pre, post), where

• E is a finite set of (basic) events,

• ∼ ⊆ E × E is an equivalence relation called the epistemic relation,

• ≤ ⊆ E × E is a connected well-preorder called the plausibility relation,

• pre : E → L(P) assigns to each event a precondition,

• post : E → (P → L(P)) assigns to each event a postcondition for each proposi-
tion. Each post(e) is required to be only finitely different from the identity.

D(E) = E denotes the domain of E. For e ∈ E we name (E, e) a pointed event model,
and refer to e as the actual event of (E, e). We use the same conventions for accessibility
relations as in the case of plausibility models.

Definition 2.4 (Product Update). LetM = (W,∼,≤,V) and E = (E,∼′,≤′, pre, post)
be a plausibility model on P resp. event model on L(P). The product update ofM with
E is the plausibility model denotedM⊗E = (W ′,∼′′,≤′′,V ′), where

• W ′ = {(w, e) ∈ W × E | M,w pre(e)},

• ∼′′= {((w, e), (v, f )) ∈ W ′ ×W ′ | w ∼ v and e ∼′ f },

• ≤′′= {((w, e), (v, f )) ∈ W ′ ×W ′ | e <′ f or (e '′ f and w ≤ v)},

• V ′(p) = {(w, e) ∈ W ′ | M,w post(e)(p)} for each p ∈ P.

The reader may consult (Baltag and Moss 2004, Baltag and Smets 2006; 2008, van
Ditmarsch and Kooi 2008) for thorough motivations and explanations of the product
update. Note that the event model’s plausibilities take priority over those of the plausi-
bility model (action-priority update).

Example 4. Consider Figure 2, where the event model E represents the biased non-
deterministic coin toss of Example 2, E′ shuffling the coin under a dice cup, and E′′

lifting the dice cup of Example 3. We indicate ∼ and ≤with edges as in our illustrations
of plausibility models. Further we use the convention of labelling basic events e by
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E E′ E′′

e1:〈>, {h 7→ ⊥}〉

e2:〈>, {h 7→ >}〉

f1:〈>, {h 7→ ⊥}〉

f2:〈>, {h 7→ >}〉

g1:〈¬h, ∅〉

g2:〈h, ∅〉

Figure 2: Three event models

〈pre(e), post(e)〉. We write post(e) on the form {p1 7→ ϕ1, . . . , pn 7→ ϕn}, meaning that
post(e)(pi) = ϕi for all i, and post(e)(q) = q for q < {p1, . . . , pn}.

Returning to Example 2 we see thatM⊗E =M′′ where u1 = (w, e1), u2 = (w, e2).
In E we have that e2 < e1, which encodes the bias of the coin, and e1 6∼ e2 encoding
the observability, which leads to u1 and u2 being distinguishable.

Regarding Example 3 we have thatM⊗ E′ = M′ (modulo renaming). In contrast
to E, we have that f1 ∼ f2, representing the inability to see the face of the coin due to
the dice cup. For the sensing action E′′, we haveM⊗E′ ⊗ E′′ =M′′, illustrating how,
when events are equiplausible (g1 ' g2), the plausibilities ofM′ carry over toM′′.

We have shown examples of how the interplay between plausibility model and event
model can encode changes in belief, and further how to model both ontic change and
sensing. In (Andersen and Bolander 2011) there is a more general treatment of action
types, but here such a classification is not our objective. Instead we simply encode
actions as required for our exposition and leave these considerations as future work.

Among the possible worlds, ≤ gives an ordering defining what is believed. Given
a plausibility model M = (W,∼,≤,V), any non-empty subset of W will have one or
more minimal worlds with respect to ≤, since ≤ is a well-preorder. For S ⊆ W, the set
of ≤-minimal worlds, denoted Min≤S , is defined as:

Min≤S = {s ∈ S | ∀s′ ∈ S : s ≤ s′}.

The worlds in Min≤S are called the most plausible worlds in S . The worlds of
Min≤D(M) are referred to as the most plausible ofM. With belief defined via minimal
worlds (see the definition below), the agent has the same beliefs for any w ∈ D(M).
Analogous to most plausible worlds, an information cellM′ ofM is called most plau-
sible if D(M′)∩Min≤D(M) , ∅ (M′ contains at least one of the most plausible worlds
ofM).

Definition 2.5 (Satisfaction Relation). Let a plausibility modelM = (W,∼,≤,V) on P
be given. The satisfaction relation is given by, for all w ∈ W:
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M,w p iff w ∈ V(p)
M,w ¬ϕ iff notM,w ϕ
M,w ϕ ∧ ψ iffM,w ϕ andM,w ψ
M,w Kϕ iffM, v ϕ for all w ∼ v
M,w Bψϕ iffM, v ϕ for all v ∈ Min≤{u ∈ W | M, u ψ}
M,w Xϕ iffM � [w]∼,w ϕ
M,w [E, e]ϕ iffM,w pre(e) impliesM⊗E, (w, e) ϕ

where ϕ, ψ ∈ L(P) and (E, e) is a pointed event model. We write M ϕ to mean
M,w ϕ for all w ∈ D(M). Satisfaction of the dynamic modality for non-pointed
event models E is introduced by abbreviation, viz. [E]ϕ :=

∧
e∈D(E) [E, e]ϕ. Further-

more, 〈E〉ϕ := ¬ [E]¬ϕ.3

The reader may notice that the semantic clause forM,w Xϕ is equivalent to the
clause for M,w [E, e]ϕ when [E, e] is a public announcement of a characteristic
formula (van Benthem 1998) being true exactly at the worlds in [w]∼ (and any other
world modally equivalent to one of these). In this sense, the X operator can be thought
of as a public announcement operator, but a special one that always announces the
current information cell. In the special case whereM is an information cell, we have
for all w ∈ D(M) thatM,w Xϕ iffM,w ϕ.

3 Plausibility planning

The previous covered a framework for dealing with knowledge and belief in a dynamic
setting. In the following, we will detail how a rational agent would adapt these concepts
to model her own reasoning about how her actions affect the future. Specifically, we
will show how an agent can predict whether or not a particular plan leads to a desired
goal. This requires reasoning about the conceivable consequences of actions without
actually performing them.

Two main concepts are required for our formulation of planning, both of which
build on notions from the logic introduced in the previous section. One is that of states,
a representation of the planning agent’s view of the world at a particular time. Our
states are plausibility models. The other concept is that of actions. These represent
the agent’s view of everything that can happen when she does something. Actions are
event models, changing states into other states via product update.

3Hence, M,w 〈E〉ϕ ⇔ M,w ¬ [E]¬ϕ ⇔ M,w ¬(
∧

e∈D(E) [E, e]¬ϕ) ⇔

M,w
∨

e∈D(E) ¬ [E, e]¬ϕ⇔M,w
∨

e∈D(E) 〈E, e〉ϕ.
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M E M′

w1:mt

w2:mt

e1:〈¬m, {t 7→ ⊥}〉

e2:〈m, {t 7→ >}〉

e3:〈>, {t 7→ ⊥}〉

(w1, e1):mt

(w2, e3):mt

(w2, e2):mt

Figure 3: The situation before and after attempting to pay with a debit card, plus the event model
depicting the attempt. This illustrates that the most plausible information cell can contain the
least plausible world

In our case, the agent has knowledge and beliefs about the initial situation, knowl-
edge and beliefs about actions, and therefore also knowledge and beliefs about the
result of actions.

3.1 Reasoning about actions

Example 5 (Friday Beer). Nearing the end of the month, an agent is going to have an
end-of-week beer with her coworkers. Wanting to save the cash she has on hand for the
bus fare, she would like to buy the beer using her debit card. Though she isn’t certain,
she believes that there’s no money (m) on the associated account. Figure 3 shows this
initial situation asM, where t signifies that the transaction hasn’t been completed. In
this small example her goal is to make t true.

When attempting to complete the transaction (using a normal debit card reader), a
number of different things can happen, captured by E in Figure 3. If there is money on
the account, the transaction will go through (e2), and if there isn’t, it won’t (e1). This is
how the card reader operates most of the time and why e1 and e2 are the most plausible
events. Less plausible, but still possible, is that the reader malfunctions for some other
reason (e3). The only feedback the agent will receive is whether the transaction was
completed, not the reasons why it did or didn’t (e1 ∼ e3 6∼ e2). That the agent finds
out whether the transaction was successful is why we do not collapse e1 and e2 to one
event e′ with pre(e′) = > and post(e′)(t) = m.
M⊗E expresses the agent’s view on the possible outcomes of attempting the trans-

action. The model M′ is the bisimulation contraction of M ⊗ E, according to the
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definition in Section 4.1 (the world (w1, e3) having been removed, as it is bisimilar to
(w1, e1)).
M′ consists of two information cells, corresponding to whether or not the transac-

tion was successful. What she believes will happen is given by the global plausibility
relation. When actually attempting the transaction the result will be one of the infor-
mation cells ofM′, namelyMt = M′ � {(w1, e1), (w2, e3)} orMt = M′ � {(w2, e2)},
in which she will know ¬t and t respectively. As (w1, e1) is the most plausible, we can
say that she expects to end up in (w1, e1), and, by extension, in the information cellMt:
She expects to end up in a situation where she knows ¬t, but is ignorant concerning
m. If, unexpectedly, the transaction is successful, she will know that the balance is
sufficient (m). The most plausible information cell(s) in a model are those the agent
expects. That (w2, e3) is in the expected information cell, when the globally more plau-
sible world (w2, e2) is not, might seem odd. It isn’t. The partitioning of M into the
information cellsMt andMt suggests that she will sense the value of t (¬t holds ev-
erywhere in the former, t everywhere in the latter). As she expects to find out that t
does not to hold, she expects to be able to rule out all the worlds in which t does hold.
Therefore, she expects to be able to rule out (w2, e2) and not (w2, e3) (or w1, e1). This
givesM′ BX(K¬t ∧ B¬m ∧ K̂m): She expects to come to know that the transaction
has failed and that she will believe there’s no money on the account (though she does
consider it possible that there is).

Under the definition of planning that is to follow in Section 3.2, an agent has a
number of actions available to construct plans. She needs a notion of which actions can
be considered at different stages of the planning process. As in the planning literature,
we call this notion applicability.

Definition 3.1 (Applicability). An event model E is said to be applicable in a plausi-
bility modelM ifM 〈E〉>.

Unfolding the definition of 〈E〉, we see what applicability means:

M 〈E〉> ⇔ ∀w ∈ D(M) :M,w 〈E〉> ⇔

∀w ∈ D(M) :M,w ∨e∈D(E) 〈E, e〉 > ⇔

∀w ∈ D(M),∃e ∈ D(E) :M,w 〈E, e〉 > ⇔

∀w ∈ D(M),∃e ∈ D(E) :M,w pre(e) andM⊗E, (w, e) > ⇔

∀w ∈ D(M),∃e ∈ D(E) :M,w pre(e).

This says that no matter which is the actual world (it must be one of those considered
possible), the action defines an outcome. This concept of applicability is equivalent to
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M0

flick desc

w1:tlbsu w2:tlbsu

f1:〈t ∧ ¬s ∧ b, {l 7→ >, s 7→ >}〉

f2:〈t ∧ (s ∨ ¬b), {l 7→ ⊥, s 7→ ¬s}〉

e1:〈t, {t 7→ ⊥}〉

e2:〈t ∧ ¬l, {t 7→ ⊥, u 7→ ⊥}〉

Figure 4: An information cell,M0, and two event models, flick and desc

the one in (Andersen and Bolander 2011). The discussion in (Section 6.6 of de Lima
2007) also notes this aspect, insisting that actions must be meaningful. The same sen-
timent is expressed by our notion of applicability.

Proposition 1. Given a plausibility model M and an applicable event model E, we
have D(M⊗E) , ∅.

The product updateM⊗E expresses the outcome(s) of doing E in the situationM,
in the planning literature called applying E inM. The dynamic modality [E] expresses
reasoning about what holds after applying E.

Lemma 1. LetM be a plausibility model and E an event model. ThenM [E]ϕ iff
M⊗E ϕ.

Proof. M [E]ϕ⇔ ∀w ∈ D(M) :M,w [E]ϕ⇔
∀w ∈ D(M) :M,w

∧
e∈D(E)[E, e]ϕ⇔

∀(w, e) ∈ D(M) ×D(E) :M,w [E, e]ϕ⇔
∀(w, e) ∈ D(M) ×D(E) :M,w pre(e) impliesM⊗E, (w, e) ϕ⇔
∀(w, e) ∈ D(M⊗E) :M⊗E, (w, e) ϕ⇔M⊗ E ϕ. �

Here we are looking at global satisfaction, by evaluating [E]ϕ in all ofM, rather
than a specific world. The reason is that evaluation in planning must happen from the
perspective of the planning agent and its “information state”. Though one of the worlds
of M is the actual world, the planning agent is ignorant about which it is. Whatever
plan it comes up with, it must work in all of the worlds which are indistinguishable to
the agent, that is, in the entire model. A similar point, and a similar solution, is found
in (Jamroga and Ågotnes 2007).

Example 6. We now return to the agent from Example 1. Her view of the initial
situation (M0) and her available actions (flick and desc) are seen in Figure 4. The
propositional letters mean t: “top of stairs”, l: “light on”, b: “bulb working”, s : “switch
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M0⊗ flick

M0⊗ desc

(w1, f1):tlbsu (w2, f2):tlbsu

(w1, e1):tlbsu (w2, e1):tlbsu(w1, e2):tlbsu (w2, e2):tlbsu

Figure 5: The models resulting from applying the actions flick and desc inM0. Reflexive edges
are not shown and the transitive closure is left implicit.

on” and u: “unharmed”. Initially, in M0, she believes that the bulb is working, and
knows that she is at the top of the stairs, unharmed and that the switch and light is off:
M0 Bb ∧ K(t ∧ u ∧ ¬l ∧ ¬s).

flick and desc represent flicking the light switch and trying to descend the stairs,
respectively. Both require being at the top of the stairs (t). f1 of flick expresses that
if the bulb is working, turning on the switch will turn on the light, and f2 that if the
bulb is broken or the switch is currently on, the light will be off. The events are epis-
temically distinguishable, as the agent will be able to tell whether the light is on or
off. desc describes descending the stairs, with or without the light on. e1 covers the
agent descending the stairs unharmed, and can happen regardless of there being light
or not. The more plausible event e2 represents the agent stumbling, though this can
only happen in the dark. If the light is on, she will descend safely. Definition 3.1 and
Lemma 1 let us express the action sequences possible in this scenario.

• M0 〈flick〉 > ∧ 〈desc〉 >. The agent can initially do either flick or desc.

• M0 [flick] 〈desc〉 >. After doing flick, she can do desc.

• M0 [desc] (¬ 〈flick〉 > ∧ ¬ 〈desc〉 >). Nothing can be done after desc.

Figure 5 shows the plausibility models arising from doing flick and desc inM0. Via
Lemma 1 she can now conclude:

• M0 [flick] (Kb ∨ K¬b): Flicking the light switch gives knowledge of whether
the bulb works or not.

• M0 [flick] BKb. She expects to come to know that it works.

• M0 [desc] (K¬t ∧ B¬u). Descending the stairs in the dark will definitely get
her to the bottom, though she believes she will end up hurting herself.
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3.2 Planning

We now turn to formalising planning and then proceed to answer two questions of
particular interest: How do we verify that a given plan achieves a goal? And can we
compute such plans? This section deals with the first question, plan verification, while
the second, plan synthesis, is detailed in Section 4.

Definition 3.2 (Plan Language). Given a finite set A of event models on L(P), the plan
language L(P,A) is given by:

π ::= E | skip | if ϕ then π else π | π; π

where E ∈ A and ϕ ∈ L(P). We name members π of this language plans, and use
if ϕ then π as shorthand for if ϕ then π else skip.

The reading of the plan constructs are “do E”, “do nothing”, “if ϕ then π, else π′”,
and “first π then π′” respectively. In the translations provided in Definition 3.3, the
condition of the if-then-else construct becomes a K-formula, ensuring that branching
depends only on worlds which are distinguishable to the agent. The idea is similar to
the meaningful plans of (de Lima 2007), where branching is allowed on epistemically
interpretable formulas only.

Definition 3.3 (Translation). Let α be one of s, w, sp or wp. We define an α-translation
as a function [·]α : L(P,A)→ (L(P)→ L(P)):

[E]α ϕ := 〈E〉> ∧


[E] XKϕ if α = s
K̂ 〈E〉 XKϕ if α = w
[E] BXKϕ if α = sp
[E] B̂XKϕ if α = wp

[skip]α ϕ := ϕ[
if ϕ′ then π else π′

]
α ϕ := (Kϕ′ → [π]αϕ) ∧ (¬Kϕ′ → [π′]αϕ)

[π; π′]αϕ := [π]α([π′]αϕ)

We call [·]s the strong translation, [·]w the weak translation, [·]sp the strong plausibility
translation and [·]wp the weak plausibility translation.

The translations are constructed specifically to make the following lemma hold,
providing a semantic interpretation of plans (leaving out skip and π1; π2).



266 Don’t Plan for the Unexpected

Lemma 2. LetM be an information cell, E an event model and ϕ a formula of L(P).
Then:

(1) M [E]sϕ iffM 〈E〉> and for each information cellM′ ofM⊗E :M′ ϕ.

(2) M [E]wϕ iffM 〈E〉> and for some information cellM′ ofM⊗E :M′ ϕ.

(3) M [E]spϕ iffM 〈E〉> and for each most plausible information cellM′ of
M⊗E :M′ ϕ.

(4) M [E]wpϕ iffM 〈E〉> and for some most plausible information cellM′ of
M⊗E :M′ ϕ.

(5) M [if ϕ′ then π else π′]αϕ iff
(M ϕ′ impliesM [π]αϕ) and (M 6 ϕ′ impliesM [π′]αϕ).

Proof. We only prove 4 and 5, as 1–4 are very similar. For 4 we have:

M [E]wp ϕ ⇔ M 〈E〉> ∧ [E] B̂XKϕ ⇔Lemma 1

M 〈E〉> andM⊗E B̂XKϕ ⇔

M 〈E〉> and ∀(w, e) ∈ D(M⊗E) :M⊗E, (w, e) B̂XKϕ ⇔Prop. 1

M 〈E〉> and ∃(w, e) ∈ Min≤D(M⊗E) :M⊗E, (w, e) XKϕ ⇔

M 〈E〉> and ∃(w, e) ∈ Min≤D(M⊗E) :M⊗E � [(w, e)]∼, (w, e) Kϕ ⇔

M 〈E〉> and ∃(w, e) ∈ Min≤D(M⊗E) :M⊗E � [(w, e)]∼ ϕ ⇔

M 〈E〉> and in some most plausible information cellM′ ofM⊗E,M′ ϕ.

For if-then-else, first note that:

M ¬Kϕ′ → [π]αϕ ⇔ ∀w ∈ D(M) :M,w ¬Kϕ′ → [π]αϕ ⇔
∀w ∈ D(M) :M,w ¬Kϕ′ impliesM,w [π]αϕ ⇔M is an info. cell

∀w ∈ D(M) : ifM, v ¬ϕ′ for some v ∈ D(M) thenM,w [π]αϕ ⇔
ifM, v ¬ϕ′ for some v ∈ D(M) then ∀w ∈ D(M) :M,w [π]αϕ ⇔
M 6 ϕ′ impliesM [π′]αϕ.

Similarly, we can prove:

M Kϕ′ → [π]αϕ ⇔ M Kϕ′ impliesM [π′]αϕ.

Using these facts, we get:

M [if ϕ′ then π else π′]αϕ ⇔ M (Kϕ′ → [π]αϕ) ∧ (¬Kϕ′ → [π′]αϕ) ⇔
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M Kϕ′ → [π]αϕ andM ¬Kϕ′ → [π′]αϕ ⇔
(M ϕ′ impliesM [π]αϕ) and (M 6 ϕ′ impliesM [π′]αϕ).

�

Using XK (as is done in all translations) means that reasoning after an action is
relative to a particular information cell (as M,w XKϕ ⇔ M � [w]∼,w Kϕ ⇔
M � [w]∼ ϕ).

Definition 3.4 (Planning Problems and Solutions). Let P be a finite set of propositional
symbols. A planning problem on P is a triple P = (M0,A, ϕg) where

• M0 is a finite information cell on P called the initial state.

• A is a finite set of event models on L(P) called the action library.

• ϕg ∈ L(P) is the goal (formula).

A plan π ∈ L(P,A) is an α-solution to P if M0 [π]αϕg. For a specific choice of
α = s/w/sp/wp, we will call π a strong/weak/strong plausibility/weak plausibility-
solution respectively.

Given a π, we wish to check whether π is an α-solution (for some particular α) to
P. This can be done via model checking the dynamic formula given by the translation
[π]α ϕg in the initial state of P.

A strong solution π is one that guarantees that ϕg will hold after executing it (“π
achieves ϕg”). If π is a weak solution, it achieves ϕg for at least one particular sequence
of outcomes. Strong and weak plausibility-solutions are as strong- and weak-solutions,
except that they need only achieve ϕg for all of/some of the most plausible outcomes.

Example 7. The basement scenario (Example 1) can be formalised as the planning
problem PB = (M0, {flick, desc}, ϕg) withM0, flick and desc being defined in Figure 4
and ϕg = ¬t ∧ u. Let π1 = desc. We then have that:

M0 [desc]w (¬t ∧ u)⇔M0 〈desc〉 > ∧ K̂ 〈desc〉 XK(¬t ∧ u)⇔desc is applicable

M0 K̂ 〈desc〉 XK(¬t ∧ u)⇔ ∃w ∈ D(M0) :M0,w 〈desc〉 XK(¬t ∧ u).

Picking w1, we have

M0,w1 〈desc〉 XK(¬t ∧ u)⇔M0 ⊗ desc, (w1, e1) XK(¬t ∧ u)⇔
M0 ⊗ desc � [(w1, e1)]∼ (¬t ∧ u)
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replace r1:〈t ∧ ¬b, {b 7→ >, u 7→ ¬s}〉

Figure 6: Event model for replacing a broken bulb

which holds as seen in Figure 5. Thus, π1 is a weak solution. Further, Lemma 2 tells us
that π1 is not a s/wp/sp solution, as u does not hold in the (most plausible) information
cellM⊗ desc � {(w1, e2), (w2, e2)}.

The plan π2 = flick; desc is a strong plausibility solution, as can be verified by
M0 [π2]sp (¬t∧u). Without an action for replacing the lightbulb, there are no strong
solutions. Let replace be the action in Figure 6, where post(r1)(u) = ¬s signifies
that if the power is on, the agent will hurt herself, and define a new problem P′B =

{M0, {flick, desc, replace}, ϕg). Then π3 = flick; (if ¬l then flick ; replace ; flick) ;
desc is a strong solution (we leave verification to the reader): If the light comes on
after flicking the switch (as expected) she can safely walk down the stairs. If it does
not, she turns off the power, replaces the broken bulb, turns the power on again (this
time knowing that the light will come on), and then proceeds as before.

Besides being an sp-solution, π2 is also a w- and a wp-solution, indicating a hier-
archy of strengths of solutions. This should come as no surprise, given both the formal
and intuitive meaning of planning and actions presented so far. In fact, this hierarchy
exists for any planning problem, as shown by the following result which is a conse-
quence of Lemma 2 (stated without proof).

Lemma 3. Let P = (M0,A, ϕg) be a planning problem. Then:

• Any strong solution to P is also a strong plausibility solution:
M0 [π]s ϕg ⇒M0 [π]sp ϕg.

• Any strong plausibility solution to P is also a weak plausibility solution:
M0 [π]sp ϕg ⇒M0 [π]wp ϕg.

• Any weak plausibility solution to P is also a weak solution:
M0 [π]wp ϕg ⇒M0 [π]w ϕg.

4 Plan synthesis

In this section we show how to synthesise conditional plans for solving planning prob-
lems. Before we can give the concrete algorithms, we establish some technical results
which are stepping stones to proving termination of our planning algorithm, and hence
decidability of plan existence in our framework.
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4.1 Bisimulations, contractions and modal equivalence

We now define bisimulations on plausibility models. For our purpose it is sufficient
to define bisimulations on ∼-connected models, that is, on information cells.4 First
we define a normal plausibility relation which will form the basis of our bisimulation
definition.

Definition 4.1 (Normality). Given is an information cellM = (W,∼,≤,V) on P. By
slight abuse of language, two worlds w,w′ ∈ W are said to have the same valuation if
for all p ∈ P: w ∈ V(p)⇔ w′ ∈ V(p). Define an equivalence relation on W: w ≈ w′ iff
w and w′ has the same valuation. Now define w � w′ iff Min≤([w]≈) ≤ Min≤([w′]≈).
This defines the normal plausibility relation. M is called normal if � = ≤. The
normalisation ofM = (W,∼,≤,V) isM′ = (W,∼,�,V).

Definition 4.2 (Bisimulation). Let M = (W,∼,≤,V) and M′ = (W ′,∼′,≤′,V ′) be
information cells on P. A non-empty relation R ⊆ W ×W ′ is a bisimulation between
M andM′ (andM,M′ are called bisimilar) if for all (w,w′) ∈ R:

[atom] For all p ∈ P: w ∈ V(p) iff w′ ∈ V ′(p).

[forth] If v ∈ W and v � w then there is a v′ ∈ W ′ s.t. v′ �′ w′ and (v, v′) ∈ R.

[back] If v′ ∈ W ′ and v′ � w′ then there is a v ∈ W s.t. v � w and (v, v′) ∈ R.

If R has domain W and codomain W ′, it is called total. If M = M′, it is called an
autobisimulation (onM). Worlds w and w′ of an information cellM = (W,∼,≤,V) are
called bisimilar if there exists an autobisimulation R onM with (w,w′) ∈ R.

We are here only interested in total bisimulations, so, unless otherwise stated, we
assume this in the following. Note that our definition of bisimulation immediately
implies that there exists a (total) bisimulation between any information cell and its
normalisation. Note also that for normal models, the bisimulation definition becomes
the standard modal logic one.5

Lemma 4. If two worlds of an information cell have the same valuation they are bisim-
ilar.

4The proper notion of bisimulation for plausibility structures is explored in more detail by Andersen,
Bolander, van Ditmarsch and Jensen in ongoing research. A similar notion for slightly different types of
plausibility structures is given in (van Ditmarsch 2013, to appear). Surprisingly, Demey does not consider
our notion of bisimulation in his thorough survey (Demey 2011) on different notions of bisimulation for
plausibility structures.

5We didn’t include a condition for the epistemic relation, ∼, in [back] and [forth], simply because we
are here only concerned with ∼-connected models.
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Proof. Assume worlds w and w′ of an information cellM = (W,∼,≤,V) have the same
valuation. Let R be the relation that relates each world ofM to itself and additionally
relates w to w′. We want to show that R is a bisimulation. This amounts to showing
[atom], [forth] and [back] for the pair (w,w′) ∈ R. [atom] holds trivially since w ≈ w′.
For [forth], assume v ∈ W and v � w. We need to find a v′ ∈ W s.t. v′ � w′ and
(v, v′) ∈ R. Letting v′ = v, it suffices to prove v � w′. Since w ≈ w′ this is immediate:

v � w ⇔ Min≤([v]≈) ≤ Min≤([w]≈)
w≈w′
⇔ Min≤([v]≈) ≤ Min≤([w′]≈) ⇔ v � w′. [back]

is proved similarly. �

Unions of autobisimulations are autobisimulations. We can then in the standard
way define the (bisimulation) contraction of a normal information cell as its quotient
with respect to the union of all autobisimulations (Blackburn and van Benthem 2006).6

The contraction of a non-normal model is taken to be the contraction of its normalisa-
tion. In a contracted model, no two worlds are bisimilar, by construction. Hence, by
Lemma 4, no two worlds have the same valuation. Thus, the contraction of an infor-
mation cell on a finite set of proposition symbols P contains at most 2|P| worlds. Since
any information cell is bisimilar to its contraction (Blackburn and van Benthem 2006),
this shows that there can only exist finitely many non-bisimilar information cells on
any given finite set P.

Two information cellsM andM′ are called modally equivalent, writtenM ≡M′,
if for all formulas ϕ in L(P): M ϕ ⇔ M′ ϕ. Otherwise, they are called modally
inequivalent. We now have the following standard result (the result is standard for
standard modal languages and bisimulations, but it is not trivial that it also holds here).

Theorem 1. If two information cells are (totally) bisimilar they are modally equivalent.

Proof. We need to show that if R is a total bisimulation between information cells
M and M′, then for all formulas ϕ of L(P): M ϕ ⇔ M′ ϕ. First we show
that we only have to consider formulas ϕ of the static sublanguage of L(P), that is,
the language without the [E, e] modalities. In (Baltag and Smets 2006), reduction
axioms from the dynamic to the static language are given for a language similar to
L(P). The differences in language are our addition of postconditions and the fact that
our belief modality is defined from the global plausibility relation rather than being
localised to epistemic equivalence classes. The latter difference is irrelevant when only
considering information cells as we do here. The former difference of course means
that the reduction axioms presented in (Baltag and Smets 2006) will not suffice for

6More precisely, letM be a normal information cell and let R be the union of all autobisimulations on
M. Then the contraction M′ = (W′,∼′,≤′,V′) of M has as worlds the equivalence classes [w]R = {w′ |
(w,w′) ∈ R} and has [w]R ≤′ [w′]R iff v ≤ v′ for some v ∈ [w]R and v′ ∈ [w′]R.
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our purpose. van Ditmarsch and Kooi (2008) shows that adding postconditions to the
language without the doxastic modalities only requires changing the reduction axiom
for [E, e] p, where p is a propositional symbol. Thus, if we take the reduction axioms
of Baltag and Smets (2006) and replace the reduction axiom for [E, e] p by the one
in (van Ditmarsch and Kooi 2008), we get reduction axioms for our framework. We
leave out the details.

We now need to show that if R is a total bisimulation between information cellsM
andM′, then for all [E, e]-free formulas ϕ of L(P):M ϕ⇔M′ ϕ. Since R is total,
it is sufficient to prove that for all [E, e]-free formulas ϕ of L(P) and all (w,w′) ∈ R:
M,w ϕ⇔M′,w′ ϕ. The proof is by induction on ϕ. In the induction step we are
going to need the induction hypothesis for several different choices of R,w and w′, so
what we will actually prove by induction on ϕ is this: For all formulas ϕ of L(P), if R
is a total bisimulation between information cellsM andM′ on P and (w,w′) ∈ R, then
M,w ϕ⇔M′,w′ ϕ.

The base case is when ϕ is propositional. Then the required follows immediately
from [atom], using that (w,w′) ∈ R. For the induction step, we have the following cases
of ϕ: ¬ψ, ψ∧γ, Xψ,Kψ, Bγψ. The first two cases are trivial. So is Xψ, as Xψ↔ ψ holds
on any information cell. For Kψ we reason as follows. Let R be a total bisimulation
between information cellsM andM′ with (w,w′) ∈ R. Using that R is total and that

M andM′ are both ∼-connected we get: M,w Kψ ⇔ ∀v ∈ W: M, v ψ
i.h.
⇔ ∀v′ ∈

W ′:M′, v ψ⇔M′,w′ Kψ.

The case of Bγψ is more involved. LetM,M′,R,w and w′ be as above. By sym-
metry, it suffices to proveM,w Bγψ⇒M′,w′ Bγψ. So assumeM,w Bγψ, that
is, M, v ψ for all v ∈ Min≤{u ∈ W | M, u γ}. We need to prove M′, v′ ψ for
all v′ ∈ Min≤′ {u′ ∈ W ′ | M′, u′ γ}. So let v′ ∈ Min≤′ {u′ ∈ W ′ | M′, u′ γ}. By
definition of Min≤′ this means that:

for all u′ ∈ W ′, ifM′, u′ γ then v′ ≤′ u′. (1)

Choose an x ∈ Min≤{u ∈ W | u ≈ u′ and (u′, v′) ∈ R}. We want to use (1) to show that
the following holds:

for all u ∈ W, ifM, u γ then x ≤ u. (2)

To prove (2), let u ∈ W with M, u γ. Choose u′ with (u, u′) ∈ R. The induction
hypothesis implies M′, u′ γ. We now prove that v′ ≤′ Min≤′ ([u′]≈). To this end,
let u′′ ∈ [u′]≈. We need to prove v′ ≤′ u′′. Since u′′ ≈ u′, Lemma 4 implies that
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u′ and u′′ are bisimilar. By induction hypothesis we then get M′, u′′ γ.7 Using
(1) we now get v′ ≤′ u′′, as required. This show v′ ≤′ Min≤′ ([u′]≈). We now have
Min≤′ ([v′]≈) ≤′ v′ ≤′ Min≤′ ([u′]≈), and hence v′ � u′. By [back] there is then a v s.t.
(v, v′) ∈ R and v � u. By choice of x, x ≤ Min≤([v]≈). Using v � u, we now finally get:
x ≤ Min≤([v]≈) ≤ Min≤([u]≈) ≤ u. This shows that (2) holds.

From (2) we can now conclude x ∈ Min≤{u ∈ W | M, u γ} and hence, by original
assumption, M, x ψ. By choice of x there is an x′ ≈ x with (x′, v′) ∈ R. Since
M, x ψ and x′ ≈ x, we can again use Lemma 4 and the induction hypothesis to
conclude M, x′ ψ. Since (x′, v′) ∈ R, another instance of the induction hypothesis
gives usM′, v′ ψ, and we are done. �

Previously we proved that there can only be finitely many non-bisimilar informa-
tion cells on any finite set P. Since we have now shown that bisimilarity implies modal
equivalence, we immediately get the following result, which will be essential to our
proof of termination of our planning algorithms.

Corollary 1. Given any finite set P, there are only finitely many modally inequivalent
information cells on P.

4.2 Planning trees

When synthesising plans, we explicitly construct the search space of the problem as
a labelled and-or tree, a familiar model for planning under uncertainty (Ghallab et al.
2004). Our and-or trees are called planning trees.

Definition 4.3 (Planning Tree). A planning tree is a finite, labelled and-or tree in
which each node n is labelled by a plausibility model M(n), and each edge (n,m)
leaving an or-node is labelled by an event model E(n,m).

Planning trees for planning problems P = (M0,A, ϕg) are constructed as follows:
Let the initial planning tree T0 consist of just one or-node root(T0) withM(root(T0)) =

M0 (the root labels the initial state). A planning tree for P is then any tree that can be
constructed from T0 by repeated applications of the following non-deterministic tree
expansion rule.

Definition 4.4 (Tree Expansion Rule). Let T be a planning tree for a planning problem
P = (M0,A, ϕg). The tree expansion rule is defined as follows. Pick an or-node n in
T and an event model E ∈ A applicable inM(n) with the proviso that E does not label
any existing outgoing edges from n. Then:

7Note that we here use the induction hypothesis for the autobisimulation onM′ linking u′ and u′′, not
the bisimulation R betweenM andM′.
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(1) Add a new and-node m to T with M(m) = M(n) ⊗ E, and add an edge (n,m)
with E(n,m) = E.

(2) For each information cell M′ in M(m), add an or-node m′ with M(m′) = M′

and add the edge (m,m′).

The tree expansion rule is similar in structure to—and inspired by—the expansion
rules used in tableau calculi, e.g. for modal and description logics (Horrocks et al.
2006). Note that the expansion rule applies only to or-nodes, and that an applicable
event model can only be used once at each node.

Considering single-agent planning a two-player game, a useful analogy for plan-
ning trees are game trees. At an or-node n, the agent gets to pick any applicable action
E it pleases, winning if it ever reaches an information model in which the goal for-
mula holds (see the definition of solved nodes further below). At an and-node m, the
environment responds by picking one of the information cells ofM(m)—which of the
distinguishable outcomes is realised when performing the action.

Without restrictions on the tree expansion rule, even very simple planning problems
might be infinitely expanded (e.g. by repeatedly choosing a no-op action). Finiteness
of trees (and therefore termination) is ensured by the following blocking condition.

B The tree expansion rule may not be applied to an or-node n for which there exists
an ancestor or-node m withM(m) ≡ M(n).8

Lemma 5 (Termination). Any planning tree built by repeated application of the tree
expansion rule under condition B is finite.

Proof. Planning trees built by repeated application of the tree expansion rule are
finitely branching: the action library is finite, and every plausibility model has only
finitely many information cells (the initial state and all event models in the action li-
brary are assumed to be finite, and taking the product update of a finite information cell
with a finite event model always produces a finite result). Furthermore, condition B en-
sures that no branch has infinite length: there only exists finitely many modally inequiv-
alent information cells over any language L(P) with finite P (Corollary 1). König’s
Lemma now implies finiteness of the planning tree. �

Example 8. Let’s consider a planning tree in relation to our basement scenario (cf.
Example 7). Here the planning problem is PB = (M0, {flick, desc}, ϕg) withM0, flick
and desc being defined in Figure 4 and ϕg = ¬t ∧ u. We have illustrated the planning

8Modal equivalence between information cells can be decided by taking their respective bisimulation
contractions and then compare for isomorphism, cf. Section 4.1.
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Figure 7: A planning tree T for PB. Each node contains a (visually compacted) plausibility
model. Most plausible children of and-nodes are gray, doubly drawn or-nodes satisfy the goal
formula, and below solved nodes we’ve indicated their strength.

tree T in Figure 7, page 274. The root n0 is an or-node (representing the initial state
M0), to which the tree expansion rule of Definition 4.4 has been applied twice, once
with action E = flick and once with E = desc.

The result of the two tree expansions on n0 is two and-nodes (children of n0) and
four or-nodes (grandchildren of n0). We end our exposition of the tree expansion rule
here, and note that the tree has been fully expanded under the blocking condition B,
the dotted edge indicating a leaf having a modally equivalent ancestor. Without the
blocking condition, this branch could have been expanded ad infinitum.

Let T denote a planning tree containing an and-node n with a child m. The node m
is called a most plausible child of n ifM(m) is among the most plausible information
cells ofM(n).
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Definition 4.5 (Solved Nodes). Let T be any planning tree for a planning problem
P = (M0,A, ϕg). Let α be one of s, w, sp or wp. By recursive definition, a node n in T
is called α-solved if one of the following holds:

• M(n) ϕg (the node satisfies the goal formula).

• n is an or-node having at least one α-solved child.

• n is an and-node and:

– If α = s then all children of n are α-solved.
– If α = w then at least one child of n is α-solved.
– If α = sp then all most plausible children of n are α-solved.
– If α = wp then at least one of the most plausible children of n is α-solved.

Let T denote any planning tree for a planning problem P = (M0,A, ϕg). Below we
show that when an or-node n of T is α-solved, it is possible to construct an α-solution
to the planning problem (M(n),A, ϕg). In particular, if the root node is α-solved, an α-
solution to P can be constructed. As it is never necessary to expand an α-solved node,
nor any of its descendants, we can augment the blocking condition B in the following
way (parameterised by α where α is one of s, w, sp or wp).

Bα The tree expansion rule may not be applied to an or-node n if one of the following
holds: 1) n is α-solved; 2) n has an α-solved ancestor; 3) n has an ancestor
or-node m withM(m) ≡ M(n).

A planning tree that has been built according to Bα is called an α-planning tree. Since
Bα is more strict than B, Lemma 5 immediately gives finiteness of α-planning trees—
and hence termination of any algorithm building such trees by repeated application of
the tree expansion rule. Note that a consequence of Bα is that in any α-planning tree
an α-solved or-node is either a leaf or has exactly one α-solved child. We make use of
this in the following definition.

Definition 4.6 (Plans for Solved Nodes). Let T be any α-planning tree for P =

(M0,A, ϕg). For each α-solved node n in T , a plan π(n) is defined recursively by:

• ifM(n) ϕg, then π(n) = skip.

• if n is an or-node and m its α-solved child, then π(n) = E(n,m); π(m).

• if n is an and-node and m1, . . . ,mk its α-solved children, then

– If k = 1 then π(n) = π(m1).
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– If k > 1 then for all i = 1, . . . , k let δmi denote a formula true inM(mi) but
not in any of theM(m j) .M(mi) and let π(n) =

if δm1 then π(m1) else if δm2 then π(m2) else · · · if δmk then π(mk).

Note that the plan π(n) of a α-solved node n is only uniquely defined up to the
choice of δ-formulas in the if-then-else construct. This ambiguity in the definition of
π(n) will not cause any troubles in what follows, as it only depends on formulas sat-
isfying the stated property. We need, however, to be sure that such formulas always
exist and can be computed. To prove this, assume n is an and-node and m1, . . . ,mk

its α-solved children. Choose i ∈ {1, . . . , k}, and let mn1 , . . . ,mnl denote the subse-
quence of m1, . . . ,mk for whichM(mn j ) . M(mi). We need to prove the existence of
a formula δmi such that M(mi) δmi but M(mn j ) 6 δmi for all j = 1, . . . , l. Since
M(mn j ) . M(mi) for all j = 1, . . . , l, there exists formulas δ j such that M(mi) δ j

but M(mn j ) 6 δ j. We then get that δ1 ∧ δ2 ∧ · · · ∧ δl is true in M(mi) but none of
the M(mn j ). Such formulas can definitely be computed, either by brute force search
through all formulas ordered by length or more efficiently and systematically by using
characterising formulas as in (Andersen et al. 2012) (however, characterising formulas
for the present formalism are considerably more complex than in the purely epistemic
framework of the cited paper).

Let n be a node of a planning tree T . We say that n is solved if it is α-solved for
some α. If n is s-solved then it is also sp-solved, if sp-solved then wp-solved, and if
wp-solved then w-solved. This gives a natural ordering s > sp > wp > w. Note the
relation to Lemma 3. We say that a solved node n has strength α, if it is α-solved but
not β-solved for any β > α, using the aforementioned ordering.

Example 9. Consider again the planning tree T in Figure 7, page 274, for the planning
problem PB = (M0, {flick, desc}, ϕg) with ϕg = ¬t ∧ u. Each solved node has been
labelled by its strength. The reader is encouraged to check that each node has been
labelled correctly according to Definition 4.5. The leafs satisfying the goal formula ϕg

have strength s, by definition. The strength of the root node is sp, as its uppermost
child has strength sp. The reason this child has strength sp is that its most plausible
child has strength s.

We see that T is an sp-planning tree, as it is possible to achieve T from n0 by
applying tree expansions in an order that respects Bsp. However, it is not the smallest
sp-planning tree for the problem, as e.g. the lower subtree is not required for n0 to be
sp-solved. Moreover, T is not a w-planning tree, as Bw would have blocked further
expansion once either of the three solved leafs were expanded.

In our soundness result below, we show that plans of α-solved roots are always
α-solutions to their corresponding planning problems. Applying Definition 4.6 to
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the sp-planning tree T gives an sp-solution to the basement planning problem, viz.
π(n0) = flick; desc; skip. This is the solution we referred to as the best in Example 1:
Assuming all actions result in their most plausible outcomes, the best plan is to flick
the switch and then descend. After having executed the first action of the plan, flick,
the agent will know whether the bulb is broken or not. This is signified by the two
distinct information cells resulting from the flick action, see Figure 7, page 274. An
agent capable of replanning could thus choose to revise her plan and/or goal if the bulb
turns out to be broken.

Theorem 2 (Soundness). Let α be one of s, w, sp or wp. Let T be an α-planning tree
for a problem P = (M0,A, ϕg) such that root(T ) is α-solved. Then π(root(T )) is an
α-solution to P.

Proof. We need to prove that π(root(T )) is an α-solution to P, that is,
M0 [π(root(T ))]α ϕg. Since M0 is the label of the root, this can be restated as
M(root(T )) [π(root(T ))]α ϕg. To prove this fact, we will prove the following
stronger claim:

For each α-solved or-node n in T ,M(n) [π(n)]α ϕg.

We prove this by induction on the height of n. The base case is when n is a leaf (height
0). Since n is α-solved, we must have M(n) ϕg. In this case π(n) = skip. From
M(n) ϕg we can conclude M(n) [skip]α ϕg, that is, M(n) [π(n)]α ϕg. This
covers the base case. For the induction step, let n be an arbitrary α-solved or-node n of
height h > 0. Let m denote the α-solved child of n, and m1, . . . ,ml denote the children
of m. Let mn1 , . . . ,mnk denote the subsequence of m1, . . . ,ml consisting of the α-solved
children of m. Then, by Definition 4.6,

• If k = 1 then π(n) = E(n,m); π(mn1 ).

• If k > 1 then π(n) = E(n,m); π(m) where π(m) =

if δmn1
then π(mn1 ) else if δmn2

then π(mn2 ) else · · · if δmnk
then π(mnk ).

We here consider only the (more complex) case k > 1. Our goal is to prove
M(n) [π(n)]α ϕg, that is, M(n) [E(n,m); π(m)]α ϕg. By the induction hypothe-
sis we haveM(mni )

[
π(mni )

]
α ϕg for all i = 1, . . . , k (the mni are of lower height than

n).

Claim 1. M(mni ) [π(m)]α ϕg for all i = 1, . . . , k.

Proof of claim. Let i be given. We need to prove

M(mni )
[
if δmn1

then π(mn1 ) else · · · if δmnk
then π(mnk )

]
α
ϕg.
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Note that by using item 5 of Lemma 2 it suffices to prove that for all j = 1, . . . , k,

M(mni ) δmn j
impliesM(mni )

[
π(mn j )

]
α
ϕg. (3)

Let j ∈ {1, . . . , k} be chosen arbitrarily. Assume first j = i. By induction hypothesis
we have M(mn j )

[
π(mn j )

]
α
ϕg, and hence M(mni )

[
π(mn j )

]
α
ϕg. From this (3)

immediately follows. Assume now j , i. By the construction of the δ-formulas, either
M(mn j ) ≡ M(mni ) or M(mni ) 6 δmn j

. In the latter case, (3) holds trivially. In case

ofM(mn j ) ≡ M(mni ) we immediately getM(mni )
[
π(mn j )

]
α
ϕg, since by induction

hypothesis we haveM(mn j )
[
π(mn j )

]
α
ϕg. This concludes the proof of the claim.

Note that by definition of the tree expansion rule (Definition 4.4), M(m1), . . . ,
M(ml) are the information cells inM(m).

Claim 2. The following holds:

• If α = s (w), then for every (some) information cell M′ in M(m):
M′ [π(m)]α ϕg.

• If α = sp (wp), then for every (some) most plausible information cell M′ in
M(m): M′ [π(m)]α ϕg.

Proof of claim. We only consider the most complex cases, α = sp and α = wp. First
consider α = sp. LetM′ be a most plausible information cell inM(m). We need to
proveM′ [π(m)]α ϕg. Since, as noted above,M(m1), . . . ,M(ml) are the information
cells in M(m), we must have M′ = M(mi) for some i ∈ {1, . . . , l}. Furthermore, as
M′ is among the most plausible information cells inM(m), mi must by definition be
a most plausible child of m. Definition 4.5 then gives us that mi is α-solved. Thus
mi = mn j for some j ∈ {1, . . . , k}. By Claim 1 we have M(mn j ) [π(m)]α ϕg, and
since M′ = M(mi) = M(mn j ) this gives the desired conclusion. Now consider the
case α = wp. Definition 4.5 gives us that at least one of the most plausible children
of m are α-solved. By definition, this must be one of the mni , i ∈ {1, . . . , k}. Claim 1
gives M(mni ) [π(m)]α ϕg. Since mni is a most plausible child of m, we must have
that M(mni ) is among the most plausible information cells in M(m). Hence we have
proven that [π(m)]α ϕg holds in a most plausible information cell ofM(m).

By definition of the tree expansion rule (Definition 4.4),M(m) =M(n) ⊗ E(n,m).
Thus we can replace M(m) by M(n) ⊗ E(n,m) in Claim 2 above. Using items
1–4 of Lemma 2, we immediately get from Claim 2 that independently of α the
following holds: M(n) [E(n,m)]α [π(m)]α ϕg (the condition M(n) 〈E(n,m)〉 >
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holds trivially by the tree expansion rule). From this we can then finally conclude
M(n) [E(n,m); π(m)]α ϕg, as required. �

Theorem 3 (Completeness). Let α be one of s, w, sp or wp. If there is an α-solution
to the planning problem P = (M0,A, ϕg), then an α-planning tree T for P can be
constructed, such that root(T ) is α-solved.

Proof. First note that we have [skip; π]α ϕg = [skip]α ([π]α ϕg) = [π]α ϕg. Thus, we
can without loss of generality assume that no plan contains a subexpression of the
form skip; π. The length of a plan π, denoted |π|, is defined recursively by: |skip| = 1;
|E| = 1; |if ϕ then π1 else π2| = |π1| + |π2|; |π1; π2| = |π1| + |π2|.

Claim 1. Let π be an α-solution to P = (M0,A, ϕg) with |π| ≥ 2. Then there exists an
α-solution of the form E; π′ with |E; π′| ≤ |π|.

Proof of claim. Proof by induction on |π|. The base case is |π| = 2. We have two cases,
π = if ϕ then π1 else π2 and π = π1; π2, both with |π1| = |π2| = 1. If π is the latter,
it already has desired the form. If π = if ϕ then π1 else π2 then, by assumption on π,
M0

[
if ϕ then π1 else π2

]
α ϕg. Item 5 of Lemma 2 now gives thatM0 ϕ implies

M0 [π1]α ϕg and M0 6 ϕ implies M0 [π2]α ϕg. Thus we must either have
M0 [π1]α ϕg orM0 [π2]α ϕg, that is, either π1 or π2 is an α-solution to P. Thus
either π1; skip or π2; skip is an α-solution to P, and both of these have length |π|. This
completes the base case. For the induction step, consider a plan π of length l > 2 which
is an α-solution toP. We again have two cases to consider, π = if ϕ then π1 else π2 and
π = π1; π2. If π = π1; π2 is an α-solution to P, then π1 is an α-solution to the planning
problemP′ = (M0,A, [π2]α ϕg), asM0 [π1; π2]α ϕg ⇔M0 [π1]α [π2]α ϕg. Clearly
|π1| < l, so the induction hypothesis gives that there is an α-solution (E; π′1) to P′,
with |E; π′1| ≤ |π1|. Then, E; π′1; π2 is an α-solution to P and we have |E; π′1; π2| =

|E; π′1| + |π2| ≤ |π1| + |π2| = |π|. If π = if ϕ then π1 else π2 is an α-solution to P,
then we can as above conclude that either π1 or π2 is an α-solution to P. With both
|π1| < l and |π2| < l, the induction hypothesis gives the existence an α-solution E; π′,
with |E; π′| ≤ |π|. This completes the proof of the claim.

We now prove the theorem by induction on |π|, where π is an α-solution to P =

(M0,A, ϕg). We need to prove that there exists an α-planning tree for P in which the
root is α-solved. Let T0 denote the planning tree for P only consisting of its root node
with label M0. The base case is when |π| = 1. Here, we have two cases, π = skip
and π = E. In the first case, the planning tree T0 already has its root α-solved, since
M0 [skip]α ϕg ⇔ M0 ϕg. In the second case, π = E, we haveM0 [E]α ϕg as
π = E is an α-solution to P. By definition, this means that E is applicable inM0, and
we can apply the tree expansion rule to T0, which will produce:



280 Don’t Plan for the Unexpected

(1) A child m of the root node withM(m) =M0 ⊗ E.

(2) Children m1, . . . ,ml of m, whereM(m1), . . . ,M(ml) are the information cells of
M(m).

Call the expanded tree T1. Since M0 [E]α ϕg, Lemma 2 implies that for ev-
ery/some/every most plausible/some most plausible information cell M′ in M0 ⊗ E,
M′ ϕg (where α = s/w/sp/wp). SinceM(m1), . . . ,M(ml) are the information cells
ofM0⊗E, we can conclude that every/some/every most plausible/some most plausible
child of m is α-solved. Hence also m and thus n are α-solved. The base is hereby
completed.

For the induction step, let π be an α-solution to P with length l > 1. Let T0 denote
the planning tree forP consisting only of its root node with labelM0. By Claim 1, there
exists an α-solution to P of the form E; π′ with |E; π′| ≤ |π|. AsM0 [E; π′]α ϕg ⇔

M0 [E]α [π′]α ϕg, E is applicable in M0. Thus, as in the base case, we can apply
the tree expansion rule to T0 which will produce nodes as in 1 and 2 above. Call
the expanded tree T1. SinceM0 [E]α [π′]α ϕg, items 1–4 of Lemma 2 implies that
for every/some/every most plausible/some most plausible information cell inM0 ⊗ E,
[π′]α ϕg holds. Hence, for every/some/every most plausible/some most plausible child
mi of m, M(mi) [π′]α ϕg. Let mn1 , . . . ,mnk denote the subsequence of m1, . . . ,ml

consisting of the children of m for which M(mni ) [π′]α ϕg. Then, by definition, π′

is an α-solution to each of the planning problem Pi = (M(mni ),A, ϕg), i = 1, . . . , k.
As |π′| < |E; π′| ≤ l, the induction hypothesis gives that α-planning trees T ′i with α-
solved roots can be constructed for each Pi. Let T2 denote T1 expanded by adding each
planning tree T ′i as the subtree rooted atMni . Then each of the nodes mni are α-solved
in T , and in turn both m and root(T2) are α-solved. The final thing we need to check
is that T2 has been correctly constructed according to the tree expansion rule, more
precisely, that condition Bα has not been violated. Since each T ′i has in itself been
correctly constructed in accordance with Bα, the condition can only have been violated
if for one of the non-leaf or-nodes m′ in one of the T ′i s,M(m′) ≡ M(root(T2)). We can
then replace the entire planning tree T2 by a (node-wise modally equivalent) copy of
the subtree rooted at m′, and we would again have an α-planning tree with an α-solved
root. �

4.3 Planning algorithm

In the following, let P denote any planning problem, and α be one of s, w, sp or wp.
With all the previous in place, we now have an algorithm for synthesising an α-solution
to P, given as follows.
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Plan(α,P)
1 Let T be the α-planning tree only consisting of root(T ) labelled by the

initial state of P.
2 Repeatedly apply the tree expansion rule of P to T until no more rules apply

satisfying condition Bα.
3 If root(T ) is α-solved, return π(root(T )), otherwise return fail.

Theorem 4. Plan(α,P) is a terminating, sound and complete algorithm for producing
α-solutions to planning problemsP. Soundness means that if Plan(α,P) returns a plan,
it is an α-solution to P. Completeness means that if P has an α-solution, Plan(α,P)
will return one.

Proof. Termination comes from Lemma 5 (with B replaced by the stronger condition
Bα), soundness from Theorem 2 and completeness from Theorem 3 (given any two
Bα-saturated α-planning trees T1 and T2 for the same planning problem, the root node
of T1 is α-solved iff the root node of T2 is). �

With Plan(α,P) we have given an algorithm for solving α-parametrised planning
problems. The α parameter determines the strength of the synthesised plan π, cf.
Lemma 3. Whereas the cases of weak (α = w) and strong (α = s) plans have been
the subject of much research, the generation of weak plausibility (α = wp) and strong
plausibility (α = sp) plans based on pre-encoded beliefs is a novelty of this paper.
Plans taking plausibility into consideration have several advantages. Conceptually, the
basement scenario as formalised by PB (cf. Example 7) allowed for several weak so-
lutions (with the shortest one being hazardous to the agent) and no strong solutions.
In this case, the synthesised strong plausibility solution corresponds to the course of
action a rational agent (mindful of her beliefs) should take. There are also computa-
tional advantages. An invocation of Plan(sp,P) will expand at most as many nodes as
an invocation of Plan(s,P) before returning a result (assuming the same order of tree
expansions). As plausibility plans only consider the most plausible information cells,
we can prune non-minimal information cells during plan search.

We also envision using this technique in the context of an agent framework where
planning, acting and execution monitoring are interleaved.9 Let us consider the case of
strong plausibility planning (α = sp). From some initial situation an sp-plan is synthe-
sised which the agent starts executing. If reaching a situation that is not covered by the
plan, she restarts the process from this point; i.e. she replans. Note that the information
cell to replan from is present in the tree as a sibling of the most plausible information

9Covering even more mechanisms of agency is situated planning (Ghallab et al. 2004).
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cell(s) expected from executing the last action. Such replanning mechanisms allow for
the repetition of actions necessary in some planning problems with cyclic solutions.

We return one last time to the basement problem and consider a modified replace
action such that the replacement light bulb might, though it is unlikely, be broken. This
means that there is no strong solution. Executing the sp-solution flick; desc, she would
replan after flick if that action didn’t have the effect of turning on the light. A strong
plausibility solution from this point would then be flick; replace; flick; desc.

5 Related and future work

In this paper we have presented α-solutions to planning problems incorporating ontic,
epistemic and doxastic notions. The cases of α = sp/sw are, insofar as we are aware,
novel concepts not found elsewhere in the literature. Our previous paper (Andersen
et al. 2012) concerns the cases α = s/w, so that framework deals only with epistemic
planning problems without a doxastic component. Whereas we characterise solutions
as formulas, Andersen and Bolander (2011) take a semantic approach to strong solu-
tions for epistemic planning problems. In their work plans are sequences of actions,
requiring conditional choice of actions at different states to be encoded in the action
structure itself. By using the L(P,A) we represent this choice explicitly.

The meaningful plans of de Lima (2007, chap. 2) are reminiscent of the work in this
paper. Therein, plan verification is cast as validity of an EDL-consequence in a given
system description. Like us, they consider single-agent scenarios, conditional plans,
applicability and incomplete knowledge in the initial state. Unlike us, they consider
only deterministic epistemic actions (without plausibility). In the multi-agent treatment
(de Lima 2007, chap. 4), action laws are translated to a fragment of DEL with only
public announcements and public assignments, making actions singleton event models.
This means foregoing nondeterminism and therefore sensing actions.

Epistemic planning problems in (Löwe et al. 2011) are solved by producing a se-
quence of pointed epistemic event models where an external variant of applicability
(called possible at) is used. Using such a formulation means outcomes of actions are
fully determined, making conditional plans and weak solutions superfluous. As noted
by the authors, and unlike our framework, their approach does not consider factual
change. We stress that Andersen and Bolander (2011), Löwe et al. (2011), de Lima
(2007) all consider the multi-agent setting which we have not treated here.

In our work so far, we haven’t treated the problem of where domain formulations
come from, assuming just that they are given. Standardised description languages are
vital if modal logic-based planning is to gain wide acceptance in the planning commu-
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nity. Recent work worth noting in this area includes (Baral et al. 2012), which presents
a specification language for the multi-agent belief case.

As suggested by our construction of planning trees, there are several connections
between our approach for α = s and two-player imperfect information games. First,
product updates imply perfect recall (van Benthem 2001). Second, when the game
is at a node belonging to an information set, the agent knows a proposition only if
it holds throughout the information set. Finally, the strong solutions we synthesise
are very similar to mixed strategies. A strong solution caters to any information cell
(contingency) it may bring about, by selecting exactly one sub-plan for each (Aumann
and Hart 1992).

Our work relates to (Ghallab et al. 2004), where the notions of strong and weak so-
lutions are found, but without plausibilites. Their belief states are sets of states which
may be partioned by observation variables. The framework in (Rintanen 2004) de-
scribes strong conditional planning (prompted by nondeterministic actions) with par-
tial observability modelled using a fixed set of observable state variables. Our partition
of plausibility models into information cells follows straight from the definition of
product update. A clear advantage in our approach is that actions readily encode both
nondetermism and partial observability. Jensen (2013) shows that the strong plan exis-
tence problem for the framework in (Andersen et al. 2012) is 2-EXP-complete. In our
formulation, Plan(s,P) answers the same question for P (it gives a strong solution if
one exists), though with a richer modal language.

We would like to do plan verification and synthesis in the multi-agent setting. We
believe that generalising the notions introduced in this paper to multi-pointed plausi-
bility and event models are key. Plan synthesis in the multi-agent setting is undecid-
able (Andersen and Bolander 2011), but considering restricted classes of actions as is
done in (Löwe et al. 2011) seems a viable route for achieving decidable multi-agent
planning. Other ideas for future work include replanning algorithms and learning al-
gorithms where plausibilities of actions can be updated when these turn out to have
different outcomes than expected.
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Abstract
Logics of joint strategic ability have recently received sustained attention in
the logic literature, with the most influential being Coalition Logic (CL) and
Alternating-time Temporal Logic (ATL). However, the semantical treatment of
joint ability claims in these two logics avoids addressing certain epistemic issues
related to coordination amongst rational agents, by apparently relying on an im-
plicit meta-level assumption of (perfectly reliable) communication between coop-
erating agents. Yet such epistemic issues arise naturally in settings relevant to ATL
and CL: these logics are interpreted on structures that model agents as moving
simultaneously, and in such scenarios cooperating agents can be subject to uncer-
tainty concerning the concurrent actions of other agents in the coalition. In this
paper we present a precise syntax and semantics for a variant of CL which we
call Strategic Coordination Logic Mark I (SCL-I). A key feature of this logic is
an operator that aims to capture coalitional ability without the assumption of per-
fect information-sharing between cooperating agents. That is, we use this logic
to study a notion of joint ability that is stricter than that in CL. We compare the
expressive power and validities of SCL-I to that of CL with some technical results.

1 Introduction: information and joint ability

In recent times, a multitude of logics for joint strategic ability have been studied in the
literature, chiefly drawing on a tradition emanating from the closely related Coalition
Logic (CL, Pauly 2001) and Alternating-time Temporal Logic (ATL, Alur et al. 2002).
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In this paper, we introduce a new logic of joint ability, a novel extension of CL. Our
intention in doing so is to explore a quite specific aspect of the interaction between
the joint ability of a coalition and the epistemic status of agents within the coalition.
We locate the general nature of our study with two remarks. First (as is typical in the
logical tradition), we are interested in discussing “ability” in a strong sense: the ability
to guarantee an outcome, a notion closely aligned with that of a “winning strategy”
and, possibly, sincere promise-making (Mele 2003)). Secondly, we are interested in
the semantics of such joint ability claims under situations where agents face a very
specific type of uncertainty: uncertainty generated by the simultaneous moves of other
agents. Following a suggestion in the literature, we call such situations games of almost
perfect information (van der Hoek and Pauly 2007).

In the present section, we present an informal discussion of the conceptual consid-
erations that motivate a logic of the type that interests us. From section 2 onwards, the
discussion will take a more technical turn, as we develop and study our proposed logic
in a systematic fashion.

CL enriches classical propositional logic with a family of coalitional modalities,
with an expression of the form 〈〈A〉〉Xψ intended to mean that the coalition A has the
joint ability to secure the outcome ψ in the next move. Attempts to establish precise
semantics for the coalitional modalities have highlighted a certain ambiguity in the in-
tuitive notion of (joint) ability, however. While ability may be thought of as completely
determined by physical and conventional constraints on the actions of the players, such
readings do not fully capture the subtle epistemic aspects of having a winning strategy.
As has long been recognized in game theory, the information at an agent’s disposal
is an enabling (or disabling) factor with respect to ability (witness the discussion of
information and “uniform strategy” in (Osborne and Rubinstein 1994)). To illustrate,
consider the following variations of the well-known coordinated attack problem (Fagin
et al. 1995).

Example 1 (Almost Perfect Information). Two armies, respectively commanded by
generals a and b, are positioned in separate locations in the hills overlooking a valley.
Below lies their mutual enemy. Individually, each army is not strong enough to defeat
the enemy, but if they attack at the same time, it is guaranteed that they will overcome.
Suppose further that it is common knowledge amongst the generals that (i) the other
army is stationed nearby, (ii) they share the joint goal of defeating the enemy and (iii)
that this can only be accomplished through a coordinated effort. However, suppose that
the generals have no means for communication and have no predetermined agreement
to attack at a certain time. Conclusion: the generals cannot enforce a winning outcome
(although they could each roll the dice and win as a matter of luck).
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Example 2 (Imperfect Information). Imagine a similar scenario to Example 1, with
two variations: suppose first that the generals have a perfectly reliable communication
channel (short-wave radio, let’s say) and can therefore coordinate on a plan of action.
Second, suppose that the enemy’s strength is such that the two armies, even if working
together, can only defeat the enemy with the element of surprise. In this case, victory
is only assured if they can attack the enemy at the precise time that the changing of
the enemy guard occurs. Neither general knows what times the enemy has chosen as
times to change the guard, however. Conclusion: the generals cannot enforce a winning
outcome.

Example 3 (Incomplete Information). Suppose that the generals are able to reliably
communicate, and can therefore coordinate. However, general a has some mistaken
beliefs about the possible outcomes of the strategic interaction: arrogantly, she believes
(falsely) that general b’s army is incompetent and will only hinder an attack. She also
believes (falsely) that her army is strong enough to defeat the enemy single-handedly.
Conclusion: the generals cannot enforce a winning outcome1.

These examples showcase different ways in which lack of information disables
joint ability. To utilize the terminology of the game theorist, Example 2 is a game of
imperfect information, where such a game includes situations where players are not
sure of the current state of the game, due to limitations on memory or observational
powers. Example 3 is an example of a game of incomplete information, where some
of the players are mistaken or uncertain about the structural features of the game,
including possibly the nature of the other players. Finally, of special concern to us
here, Example 1 may be referred to as a game of almost perfect information, following
(van der Hoek and Pauly 2007). In such games, players move simultaneously, and may
thus be unsure “about the actions the other players are simultaneously taking” (van der
Hoek and Pauly 2007, p.1085). The notion of almost perfect information is therefore
closely tied to those of communication and binding agreement.

Such epistemic considerations have inspired the development of logics that marry
considerations of strategic ability and information, such as Alternating-time Tempo-
ral Epistemic Logic (ATEL, van der Hoek and Wooldridge 2003, van der Hoek and
Jamroga 2004). The most natural way to interpret these logics, however, is as pro-
viding tools for discussing ability in the context of games of imperfect information.
Incomplete information and almost perfect information are not addressed directly, ex-

1Is it more accurate to say that the generals do not have the ability to enforce the outcome, or to say that
they have the ability, but they don’t know how to use that ability? To our mind, it makes little difference.
The latter amounts to saying that the generals are not able to make use of their ability to win. However,
denying that one has the ability to use an ability to guarantee an outcome seems essentially equivalent to
merely denying that one has the ability to guarantee that outcome.
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cept insofar as there may be cases where an imperfect information game may be used
to simulate these other modes of uncertainty. The result has been that some important
epistemic issues related to coordination between cooperating agents have received lit-
tle attention in the logic literature on strategic ability, as pointed out by Ghaderi et al.
(2007). This highlights a tension in CL/ATL. The models upon which these logics are
interpreted represent agents as moving simultaneously, with the accompanying possi-
bility that in the situations so modeled limits on information-exchange between agents
could impede coordination. Yet, in the CL/ATL setting, 〈〈A〉〉Xψ is true if there exists
an action for each agent in the coalition such that simultaneous performance of those
actions will guarantee ψ. As Example 1 illustrates, situations may arise where, for a
group of agents to be able to jointly achieve a goal, they must be able to coordinate
their actions, and the achievement of such coordination is not (always) simply a mat-
ter of there existing an action for each agent such that the coalition can ensure their
mutually desired outcome by simultaneously performing those actions. Indeed, it may
happen that there are several incompatible winning joint strategies for the agents, with
the consequence that the agents may need to each select their contributing action with
a view to matching their choice to the choices of the other agents in the coalition. So
information again assumes importance: is an agent in a position such that he can ob-
serve or else predict the choices of the other members of the coalition? The notion
of ability upon which CL/ATL (and close variants such as ATEL) operates indicates a
meta-level commitment to the strong assumption that agents will always have access
to information about the intended moves of all (and only) the members of the coali-
tion to which they belong. This induces the question: can we provide semantics for a
coalitional ability operator that drops this assumption?

In this paper, we take up this challenge. To this end, we introduce a new variant
of CL which we call, generically, Strategic Coordination Logic (SCL). The general
idea behind such a logic is to think of the set of joint actions available at a game state
as itself a universe of possibilities and then use ideas from (dynamic) epistemic logic
to explicitly consider what information an agent will have access to in this universe
when selecting their own individual action. In particular, we will precisely define a
logic of this type we call Strategic Coordination Logic Mark I (SCL-I)2. This logic is
interpreted on precisely the same class of structures as CL, making direct comparison
to this logic viable.

The key feature of SCL-I is that it contains two types of coalitional modality, 〈〈A〉〉
and ((A)). A formula 〈〈A〉〉ψ informally means that A can jointly achieve ψ under the
assumption of perfectly reliable communication. The strategic ability operator 〈〈A〉〉

2The qualification of “Mark I” is itself a strategic move: we think there is scope for future variations
and extensions of the logic we discuss in this paper. In order to pre-emptively avoid introducing increasingly
arcane names for such logics, we establish a numbering scheme from the outset.
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is intended to be equivalent to the strategic ability operator 〈〈A〉〉X in CL. We pro-
vide a precise result to this effect in the paper. More significantly, a formula of the
form ((A))ψ informally means that A can jointly achieve ψ even when the members of
A cannot communicate. The most significant contribution of the present paper is to
supply precise semantics for this operator. According to these semantics, one case in
which ((A))ψ holds is if there is an agent in A that can achieve ψ entirely independently
of what the other agents in A do. More subtly, however, ((A))ψ holds when an agent
in A has an individual action she knows can guarantee ψ only because the other agents
in the coalition can be expected not to choose certain individual actions - namely, no
agent in the coalition will choose to play an individual action she knows would guaran-
tee ¬ψ. This second case, we believe, is an example of significant coordinated action
in which there is no communication. In order for these semantics to be plausible, we
commit to the meta-level assumption that agents in a coalition have common knowl-
edge of solidarity: even if out of communication, it is common knowledge amongst
agents in the coalition which agents are in the coalition, what the common goals are of
the coalition and that all the agents in the coalition will reliably act so as to fulfill those
goals when possible.3

Here is our plan for the rest of the paper. In the next section, we provide, as neces-
sary background, the syntax and semantics of two existing logics pivotal to this paper,
CL and Public Announcement Logic (PAL), where the latter is a type of dynamic epis-
temic logic that will be crucial in our definitions of the strategic ability operators in
SCL-I. In section 3, we provide a series of simple examples of game-like scenarios in-
tended to more precisely test our intuitions concerning joint ability (and coordination)
against the notion of ability at work in standard CL and directly motivate the seman-
tics of a new ability operator. We then develop the syntax and semantics of SCL-I and
discuss the success of this logic in dealing with the examples that open section 3. In
section 4, we present technical results: we compare the expressive power of SCL-I and
CL; and compare the validities of CL and SCL-I (for instance, we demonstrate that the
((A))-operator, unlike the 〈〈A〉〉-operator, is not closed under logical implication).4

3We will also make the assumption of what is sometimes called “complete information” in the game
theory literature: there is no confusion or uncertainty amongst the agents as to the structure of the game,
including the number of states, agents or actions, or the precise outcomes of actions.

4We briefly mention related work. Firstly, we recognize that the study of signals and intentions in game-
like settings is obviously closely related to the issues discussed in this paper. However, we intend to abstract
away from both sorts of complexity. More closely related to the project in this paper is (Ghaderi et al. 2007),
where the epistemic issues of coordination are identified, discussed and a logical theory for coping with
these issues introduced. There are significant differences between this approach and ours, however, both
in emphasis and choice of formal techniques. Notably, the logical theory of Ghaderi et al. (2007) is based
on the extremely expressive formalism known as the situation calculus, while ours stays close to that of
CL/ATL tradition. Another work that is related to our own is (van Benthem 2007), where the machinery of
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2 Technical background: concurrent game structures, coalition
logic and public announcement logic

2.1 Concurrent game structures

We will interpret the formulae of LCL (as we shall present this logic) and LS CL−I on
concurrent game structures. This type of structure is a generalization of labelled tran-
sition systems, aimed at providing sufficient flexibility to represent various structures
of interest to the game theorist.

Definition 2.1 (Concurrent Game Frame). A concurrent game frame (CGF) is a tuple
〈k,Q, d, δ〉, where:

• k is a number of agents. We may thus take the set of agents to be A =

{1, 2, . . . , k}.

• Q is a non-empty set of states.

• d is a function d : Q × A −→ N+, where d(q, a) (written more conveniently
as da(q)) returns a positive integer, representing the number of actions available
to agent a at state q. We identify the actions available to a at q with the set
Da(q) = {1, 2, . . . , da(q)}. A joint action at state q (which we will denote by σq

or sometimes simply by σ, where the context is clear) is a tuple 〈 j1, j2, . . . , jk〉,
where ji ≤ di(q) for every i ≤ k. In other words, a joint action at q is simply a
collection of actions, one for each agent, that may be performed at state q. Given
a joint action σ = 〈 j1, j2, . . . , jk〉, we sometimes write σi to indicate ji. We write
D(q) for the set {1, . . . , d1(q)} × . . . × {1, . . . , dk(q)} of joint actions at q.

• δ, the transition function, is a function that maps a state q and a joint action at q
to a state in Q.

Definition 2.2 (Concurrent Game Structure). A concurrent game structure (CGS) is a
tuple 〈k,Q, d, δ,Π, π〉, namely a concurrent game frame that also includes a countable
set of atomic propositions Π and a labeling function π : Π −→ P(Q) that assigns a set
of states in Q to each atomic proposition.

dynamic epistemic logic is similarly used to study strategic interactions between agents. The most important
difference in the focus of the current work versus (van Benthem 2007) is that the former is less concerned
with sophisticated solution concepts from non-cooperative game theory, and more with coalitional ability,
as abstracted away from agent preference.
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2.2 Syntax and semantics of Coalition Logic

CL will serve as the benchmark logic against which we will compare SCL-I. We now
outline syntax and semantics for CL. The semantics we present differs from the original
semantics presented by (Pauly 2001), which is based on coalition effectivity models.
Instead, we follow semantics based on concurrent game structures, essentially that of
(Alur et al. 2002). Technically, nothing is lost in making this move: it has been shown
that the semantics based on effectivity functions is equivalent to that based on concur-
rent game structures (Goranko and Jamroga 2004).

Definition 2.3 (Syntax of CL). We denote the language of CL by LCL. Let a finite set
of agentsA = {1, 2, . . . , k} and a countable set of atomic propositions Π be given. Then
the recursive definition of the formulae of this language is as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉Xϕ

where A ⊆ A and p ∈ Π.

The intended informal interpretation of the 〈〈A〉〉Xψ is “coalition A has the joint
ability to guarantee the outcome ψ in the next move”. Note that we will illustrate in
due course that it is appropriate to add the qualification “on the assumption of perfectly
reliable communication within the coalition” to each of these informal interpretations.5

The language of CL is interpreted on the class of CGSs in which the sets of agents
and atomic propositions overlap with those of the language. Before we present the
semantics, we require a number of auxiliary notions.

Definition 2.4 (Successor). Given a CGS S, we say that state q′ is a successor of state
q if there is a joint action σ such that δ(q, σ) = q′. We denote the set of successors to
state q by succ(q).

Definition 2.5 (Computation). Given a CGS S, a computation or run or play on S is
an infinite sequence λ = q0q1q2 . . . of states such that qi+1 ∈ succ(qi) for all i ≥ 0. A
q-computation (q-run) is a computation/run where q0 = q. For a computation λ, we use
λ[i] to denote the ith state of λ.

Definition 2.6 (Strategy). Given a CGS S and an agent a ∈ A, a strategy for a on S
is a function f a : Q −→ N+ with the restriction that f a(q) ≤ da(q). Given a coalition

5The reader familiar with CL will note another liberty we have taken in our presentation of the logic:
we use 〈〈A〉〉X for the coalitional modality in the language, as opposed to 〈A〉, in the style of (Pauly 2001).
Our choice of notation is that of the language of ATL, where the “next-time” operator - equivalent to the
coalitional operator in CL - is of the form 〈〈A〉〉X. This is a cosmetic choice, but it serves a function:
readability is enhanced by clearly opposing this operator to the operator 〈〈A〉〉 in the language of SCL-I.
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of agents A, an A-strategy on S is a set of strategies FA = { f a|a ∈ A}. Every A-strategy
that the coalition A follows from state q onwards induces a set of q-computations on Q,
(the outcomes of following that strategy), which we denote by out(q, FA) (or sometimes
out(S, q, FA) if there is possibility of confusion).

Definition 2.7 (Semantics of CL). Let S denote a CGS and q any state in S. Then we
interpret LCL formulae in the following way:

• S, q � p, where p ∈ Π, iff p ∈ π(q).

• S, q � ¬ψ iff S, q 2 ψ.

• S, q � ψ1 ∨ ψ2 iff S, q � ψ1 or S, q � ψ2.

• S, q � 〈〈A〉〉Xψ iff there exists an A-strategy FA such that if λ ∈ out(q, FA) then
S, λ[1] � ψ.

We note again that CL is just the next-time fragment of ATL. We will not hesitate
to exploit this connection when it is useful to import results or definitions originally
framed in the context of ATL.

2.3 Syntax and semantics of PAL

The logic PAL will find utility in our discussion of SCL-I. Roughly, the idea behind
Public Announcement Logic (PAL) is to provide logical tools for reasoning about how
public announcements influence the epistemics of a group of agents: the public an-
nouncement of (true) proposition ϕ updates the epistemic situation for the agents, by
eliminating from their consideration all possible states in which ϕ is not true. See (van
Ditmarsch et al. 2008) for a full discussion.

“Announcement” need not be interpreted as something literally emanating from a
loudspeaker. Generally, an announcement may be understood as an event in which
certain information becomes publicly available, by whatever source. In particular, for
the applications in this paper, a PAL announcement is best interpreted as a common
inference that is made by a group of agents on the strength of common knowledge of
the structure of the game, nature of the players, and so forth, not as an act of commu-
nication.

Definition 2.8 (Syntax of PAL). Let a finite set of agents A and a countable set of
atomic propositions Π be given. We inductively define the language of PAL (with
distributed knowledge operators), which we refer to as LPAL, by way of the following
BNF:
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ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Kaϕ | DAϕ | 〈ϕ〉ϕ

where a ∈ A, A ⊆ A and p ∈ Π. Given operator Ka, we define the dual operator
K̂a by K̂aϕ := ¬Ka¬ϕ. The connectives→ and ∧ may be defined in the usual way.

Informally, the intended interpretation of an expression of the form Kaϕ is “agent
a knows that ϕ”. The intended interpretation of DAϕ is “it is distributed knowledge
amongst the members of A that ϕ holds”. Finally, the intended interpretation of 〈ϕ〉 ψ
is “after announcement of ϕ, it is true that ψ”.

Formulae of this language are interpreted on structures we shall call “multi-agent
epistemic structures”.

Definition 2.9 (Multi-agent Epistemic Structure). Given a finite set of agents A =

{1, . . . , k} , a multi-agent epistemic structure is a tupleM =
〈
S , {∼a}a∈A ,Π,V

〉
, where

• S is a set of possible states.

• For each agent a ∈ A there is an equivalence relation ∼a⊆ S × S (that is, each
relation is reflexive, transitive and symmetric).

• Π is a countable set of atomic propositions

• V : Π −→ P(S ) is a valuation function that associates each atomic proposition
with a set of worlds at which that atomic proposition is true.

Definition 2.10 (Semantics of PAL). Let a finite set of agents A, a countable set of
atomic propositions Π and an accompanying multi-agent epistemic structure M be
given. Let s ∈ S . Given any A ∈ A, let ∼A denote the relation (

⋂
a∈A ∼a), the intersec-

tion of the equivalence relations associated with the members of A.

• M, s � p, for p ∈ Π, iff s ∈ V(p)

• M, s � ¬ϕ iffM, s 2 p

• M, s � ϕ ∨ ψ iffM, s � ϕ orM, s � ψ

• M, s � Kaϕ iff for all t ∈ S : s ∼a t impliesM, t � ϕ

• M, s � DAϕ iff for all t ∈ S : s ∼A t impliesM, t � ϕ

• M, s � 〈ϕ〉ψ iffM, s � ϕ andM|ϕ, s � ψ

whereM|ϕ, called the update ofM with respect to ϕ, is the multi-agent epistemic
structure

〈
S ′,

{
∼′a

}
a∈A ,V

′
〉

with
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Figure 1: On the left, the concurrent game structure S1, as discussed in Example 4; on the right,
the concurrent game structure S2, as discussed in Example 5

• S ′ =
[[
ϕ
]]
M, where

[[
ϕ
]]
M is the extension of ϕ inM

• ∼′a=∼a ∩
([[
ϕ
]]
M ×

[[
ϕ
]]
M

)
• V(p)′ = V(p) ∩

[[
ϕ
]]
M

Note that where confusion is possible, we shall denote the satisfiability relation of
PAL by �PAL, in order to distinguish it from another satisfiability relation.

3 Introducing Strategic Coordination Logic

3.1 Motivating examples

What difference can almost perfect information make to coalitional strategic ability?
We gather data for the semantics of a new ability operator from the following five
examples, some of which will also provide useful counterexamples in due course.

Each example describes a CGS involving two agents a and b. We are interested in
the coalitional ability of these agents at the start state in each structure (represented by
a node with a double border in the accompanying figures). Each agent can play action
0 or action 1. For each example, we appeal to intuition to make a judgement about
the joint ability of the agents, first under the assumption of reliable communication
between the agents, then when supposing this assumption is false.

Example 4. We formalize Example 1 as a simple coordination game S1, depicted on
the left of Figure 1. Suppose that a and b share the same goal, which we denote by ψ.
Now, if both choose action 0 or both choose 1, then they will achieve this goal. On the
other hand, if the agents do not choose matching actions, then they will not achieve ψ.

Can our coalition guarantee the achievement of ψ? A common sense answer starts
by pointing out an ambiguity in our representation: are the two agents able to share
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information with each other? Or are they, like the players in the prisoner’s dilemma,
in a situation where they cannot communicate? Or are they perhaps forced to make
a decision immediately and simultaneously, with there being no time for agreement
amongst themselves, even if they can communicate in principle? With this in mind, the
intuitive assessment of the situation is as follows: if the agents can share information,
then they are able to guarantee the achievement of outcome ψ. If it is assumed that the
agents are not in a position to share information, then it is clear that the agents cannot
guarantee the achievement of outcome ψ.

What assessment follows from the standard semantics of CL? Denote the state at
which the agents choose an action by q. Then, it is true with respect to the semantics of
CL that S, q � 〈〈a,b〉〉 Xψ. CL gives us a satisfactory answer only on the assumption
that the agents can both share information and form binding agreements.

Example 5. Consider the game scenario S2 depicted on right of Figure 1. Here, the
agents only fail to achieve ψ if they both select action 1.

Intuitively, our (rational) agents will be able to coordinate in the above game,
whether or not they are able to communicate. It is instructive to note the intuitive
reasoning required to reach this conclusion. If the agents cannot communicate (but
share solidarity), it seems clear that both will select action 0, since, for either agent,
if that agent plays action 0, she will guarantee the accomplishment of the coalition’s
goal ψ, whatever it is the other agent does. A non-communicating rational agent, un-
der the assumption of solidarity, will always select an individual action that they know
guarantees the success of the coalition, if such an action exists.

Example 6. Consider a game-scenario S3 depicted on the left in Figure 2. Here, there
is only way in which the agents can achieve ψ: by both selecting action 0.

Intuitively, are the agents able to guarantee ψ? The answer, we propose, is “yes”, no
matter whether the agents can communicate or not (though, again, presuming solidarity
and rationality). In this case, the semantics of CL provide a satisfactory assessment.
However, it is instructive to recognize that the reasoning behind this intuitive answer
varies depending on whether or not communication is assumed. If it is assumed that the
agents can communicate, then the agents will settle on the joint action (0, 0). Suppose
that the agents cannot communicate. Supposing solidarity, it seems the agents can
rely on each other to not choose an action (namely, action 1 in both cases) that will
obviously jeopardize their success6.

6There is an undeniable connection to game-theoretic dominance reasoning here. The choice of action
0 is in some sense dominated for each agent.
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Figure 2: On the left, the concurrent game structure S3, as discussed in Example 6; on the right,
the concurrent game structure S4, as discussed in Example 7

Example 7. Consider the game S4 depicted on the right in Figure 2. There are now
two formulae of interest, ψ1 and ψ2, which has the effect of blending some of the con-
siderations from the previous examples. Assume that the agents a and b cannot com-
municate. Are a and b able to enforce outcome ψ1? The answer, intuitively, is ‘yes’,
for similar considerations to Example 5. Similarly, they can achieve ψ2. However, are
the agents able to achieve both ψ1 and ψ2 simultaneously? That is, can they enforce
the goal ψ1 ∧ ψ2? We suggest that with no communication it is intuitively clear that
they cannot achieve this goal. The simplest way to see this is to replace the labeling in
Figure 2 so as to label the states in the model with the formula ψ1 ∧ ψ2 and ¬(ψ1 ∧ ψ2)
where appropriate. It should then strike one that this essentially recreates the situation
in Example 4, where the agents are unable to coordinate. This example illustrates is
that just because disjoint sub-coalitions in a coalition are able to enforce certain goals,
it does not follow, under the assumption of no communication, that the coalition as a
whole is then able to enforce those sub-goals simultaneously. This is in contrast to the
ability operator at work in CL.

Example 8. Consider the game depicted in Figure 3 as the CGS S5. We can im-
mediately note, drawing on our discussions in earlier examples that the coalition can
guarantee the outcome ψ1 but cannot guarantee the outcome ψ2 under the assumption
of a lack of reliable communication.

Now consider the goal ψ1 ∨ ψ2. That is, imagine that the coalition are indifferent
as to which of ψ1 or ψ2 is achieved. According again to our earlier assessments, the
coalition cannot guarantee the outcome ψ1 ∨ ψ2 without communication (we are deal-
ing with a similar situation to Example 4). Of course, the formula ψ1 → (ψ1 ∨ ψ2) is
a propositional validity. We may conclude that despite the fact that, first, it is a log-
ical truth that θ implies ϕ and, second, that the coalition can guarantee θ, it does not
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Figure 3: The concurrent game structure S5 as discussed in Example 8

follow that the coalition can guarantee ϕ - at least under the assumption of a lack of
communication. The ability-with-no-communication operator is not monontonic.

3.2 Syntax and semantics of SCL-I

Informed by the motivating examples from the last section, we now present a logic for
the ((A)) operator.

Definition 3.1 (Syntax of SCL-I). Given a set of agents A and a set of atomic propo-
sitions Π, the language of SCL-I with respect to this set of agents and propositions,
which we denote by LS CL−I(A,Π) (or simply LS CL−I , where the context is clear), is
given inductively by:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉ϕ | ((A))ϕ

where p ∈ Π and A ⊆ A. A formula in the language is a propositional formula if it
is a boolean combination of atoms. A formula in the language is a coalitional formula
if it is of the form ((A))ϕ or 〈〈A〉〉ϕ, where ϕ is any formula in the language.

Connectives such as ∧ and→ may be defined as usual. The intended interpretation
of an expression of the form 〈〈A〉〉ϕ is “coalition A can guarantee the outcome ϕ after
the next move, on the assumption that all members of A can reliably communicate with
one another”. Again, this operator is meant to be essentially equivalent to coalitional
operator of CL. The intended interpretation of ((A))ϕ is “coalition A can guarantee the
outcome ϕ after the next move, even if the members of A cannot communicate with
one another”.
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In order to give semantics for this language, we first introduce the important auxil-
iary notion of a generated epistemic structure. Notice, given some CGS S and state q
in S, that the set D(q) of all joint actions available at q, forms a space of possibilities -
a space of possible joint actions (an action model in the terminology of (van Ditmarsch
et al. 2008)). We may think of the agents as jointly choosing which possibility to actu-
alize, based on each agent’s choice of individual action. What is needed, then, in the
context of the issues under discussion, is some way to represent what information any
given agent will have when making this choice. To this end, we follow (van Benthem
2007) in noticing that the space of possible joint actions can be naturally endowed with
agent-relative indistinguishability relations, thereby generating a multi-agent epistemic
structure. Associate with each possible joint action the propositions which result from
executing that action. Then, on the supposition that each agent can select his own in-
dividual actions but not those of any other agents, we may, for each agent, place an
indistinguishability relation between two joint possible actions just in case that agent
performs the same individual action in those two joint actions. An agent may then be
said to know (that is, accurately predict) that an individual action of theirs will bring
about a certain outcome just in case that outcome is brought about by every joint action
in which the agent chooses that individual action. This provides for knowledge of out-
comes for individual agents under the supposition of no communication. On the other
hand, the effects of communication between agents can be understood as captured by
distributed knowledge.

For technical reasons, a precise definition of generated epistemic structure can only
be offered simultaneously as the semantics of SCL-I, as the definitions are mutually
recursive. However, for ease of exposition, we present the definition of generated epis-
temic structure first. Assume for the next definition, then, that the relation �S CL−I has
already been defined.

Definition 3.2 (Generated Epistemic Structure). Given a CGS S = 〈k,Q, d, δ,Π, π〉
and a state q in S, the epistemic structure generated by 〈S, q〉, which we denote by
MS(q) (or just M(q) or M where the context is clear), is the epistemic structure〈
S , {∼a}a∈A ,Π

+,V
〉

where

• S = D(q);

• for each a ∈ A, the relation ∼a is defined by: for any σ1, σ2 ∈ D(q), it is the case
that σ1 ∼a σ2 iff σa

1 = σa
2;

• Π+ = Π ∪ {ϕ ∈ LS CL−I | ϕ is a coalitional formula};

• for P ∈ Π+,
V(P) = {σ ∈ D(q) | S, δ(q, σ) �S CL−I P} .
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Figure 4: The generated epistemic structureMS1 (q)

Notice that if P ∈ Π, then this amounts to:

V(P) = {σ ∈ D(q) | δ(q, σ) ∈ π(P)} .

As an example, see Figure 4 for the epistemic structure generated by the coordina-
tion game in Example 4.

GivenM(q), an epistemic structure generated by CGS S at point q, the formulae
of LPAL can be interpreted on such a structure using the standard precise semantics.
We intend the informal interpretation of such formulae, in this case, to be slightly non-
standard, however. If ϕ is a propositional formula, we may read M(q), σ � ϕ as “if
σ is jointly chosen to be played, then the joint choice of action to be played results in
ϕ”. The statementM(q), σ � Kaϕ may be read as “if σ is jointly chosen to be played,
then a has enough information to accurately predict (ie. has “knowledge”) that (the
individual action they contribute to) the joint choice of action to be played will result
in ϕ”. With this in mind, the statement M(q), σ � DAϕ may be read as one would
expect. The statementM(q), σ � 〈ψ〉Kaϕ may be read as “if σ is jointly chosen to be
played, then after the announcement that ψ (ie. after the elimination of all joint actions
at which ¬ψ holds), agent a knows that (the individual action they contribute to) the
joint choice of action to be played will result in ϕ”.

Now for the semantics of SCL-I. Like CL, the language is interpreted on the set of
concurrent game structures.

Definition 3.3 (Semantics of SCL-I). Let S denote a CGS and q any state in S. Then,
in the case of atoms and boolean compositions, the interpretation of LS CL−I formulae
is as in the semantics of CL. For coalitional formulae, on the other hand, we have:

• S, q � 〈〈A〉〉ϕ iff there exists a joint move σ ∈ D(q) such that

M(q), σ �PAL DAϕ.
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• S, q � ((A))ϕ iff there exists a joint move σ ∈ D(q) such that

M(q), σ �PAL 〈
∧
a∈A

K̂aϕ〉
∨
a∈A

Kaϕ.

The rationale for the semantics of 〈〈A〉〉 is fairly transparent: a coalition can (coor-
dinate to) guarantee an outcome, under the assumption of communication, just in case
there is a joint action such that it is distributed knowledge amongst the coalition that
their combined contribution to that joint action guarantees their desired outcome, no
matter what the agents outside the coalition do. The interpretation of operators of the
form ((A)) requires some more explanation, however. Assuming solidarity, it may be
commonly inferred by members of the coalition A (ie. “announced”) that no member
of the coalition will choose an individual action that that member knows will guaran-
tee that the coalition will not achieve its aim. More precisely, if we are considering
whether A can jointly achieve ψ, the generated epistemic structure may be updated by
eliminating every state in which the sentence

∨
a∈A Ka¬ψ holds - or, equivalently, it

may be “announced” that
∧

a∈A K̂aψ holds. After this update, if any agent in the coali-
tion now has an individual action that she knows will guarantee success, then this will
be enough to ensure that the coalition’s goal will be achieved. More precisely, if there
exists a possible joint action, in the updated model, of which it is true that

∨
a∈A Kaψ,

then the agents are able to achieve their goal.7

3.3 Application to examples

Consider S1 as discussed in Example 4, with q denoting the state at which the agents
choose an action, k = 2 and A = {a,b}. The generated epistemic structure MS1 (q)
is, again, represented in Figure 4. It is clear that this epistemic structure is unchanged
after the announcement of

∧
a∈A K̂aψ, since there is no possible action in the structure

at which either Ka¬ψ or Kb¬ψ. Further, there is no possible action at which either
Kaψ or Kbψ. In total, we have that for any possible action σ ∈ D(q), it is false that
MS1 (q), σ �PAL 〈

∧
a∈A K̂aψ〉

∨
a∈A Kaψ. Thus, it is false that S1, q � ((A))ψ, as desired.

Nevertheless, it is clearly true that S1, q � 〈〈A〉〉ψ.

7It is unusual to define semantics for a formal logical language using another formal logical language
(except perhaps when the latter is first-order logic). It may be noted, however, that there is nothing essential
about using the language of PAL in the semantics for the coalitional operators in SCL-I: the clauses above
can easily be expressed using only statements about the concurrent game structure, with no application of
PAL sentences or even generated epistemic structures. However, we favour our current approach because
a) using the language of PAL allows us to express cumbersome definitions succinctly, and b) we wish to
emphasize the interesting point that there is utility in using PAL to express notions of strategic ability in
situations of almost perfect information.
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Figure 5: On the left, the generated epistemic structureMS2 (q). On the right, the simple gener-
ated epistemic structureMS3 (q), with update after the announcement of

∧
a∈A K̂aψ

The case of S2, from Example 5, is easy to evaluate. The announcement of∧
a∈A K̂aψ leaves the generated epistemic structureMS2 (q) unchanged (see Figure 5).

Notice, however, that Kaψ is true of 〈0, 0〉, so S2, q � ((A))ψ, as desired.
Now consider S3 as discussed in Example 6, with q again denoting the state at

which the agents choose an action. The generated epistemic structure MS3 (q) is
represented in Figure 5, along with the updated structure after the announcement of∧

a∈A K̂aψ. Since at every possible action other than 〈0, 0〉 either Ka¬ψ or Kb¬ψ, the
structure is reduced to one possible action after this announcement. Since it is then
true of 〈0, 0〉 that Kaψ, we have a possible action σ ∈ D(q) such thatMS3 (q), σ �PAL

〈
∧

a∈A K̂aψ〉
∨

a∈A Kaψ. Thus, it is true that S3, q � ((A))ψ, as desired (not to mention it
is true that S3, q � 〈〈A〉〉ψ).

We leave it to the reader to verify that the semantics of SCL-I matches our intuitive
assessment of the cases discussed in examples 7 and 8.

4 Some technical results

4.1 Expressivity of SCL-I

In this section, we are interested in studying the relative expressivity of SCL in com-
parison to CL. Throughout, we assume that a fixed set of agents A and set of atomic
propositions Π is given. We begin by making precise the intuitively obvious overlap
between the SCL-I and CL. A more pressing question is the following: the motiva-
tion for SCL is to present a new kind of stategic ability operator, and so an associated
sense of strategic ability that is not captured by CL. We must be establish that this goal
has in fact been accomplished. That is, the following question needs to be answered:
is the logic SCL-I able to express, with the ((A)) operator, a property that cannot be
expressed in CL? In other words, is it true that there is no formula (complicated or oth-
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erwise) in CL that is equivalent to a formula of the form ((A))ψ in SCL-I? To answer
this question, we introduce some useful machinery (Ågotnes et al. 2007).

Definition 4.1 (Equivalence of Formulae). LetL1 andL2 be two logical languages that
are interpreted on the same set of models M (in accordance with a given satisfaction
relation for each, respectively �1 and �2). Consider formulae ϕ1 ∈ L1 and ϕ2 ∈ L2.
Then we say that ϕ1 and ϕ2 are equivalent just in case they are true in the same states
(that is, for any M ∈ M and q ∈ M, we have that M, q �1 ϕ1 iff M, q �2 ϕ2). We
denote this by ϕ1 ≡ ϕ2.

Definition 4.2 (Expressive Power). Let two logical languages L1 and L2 that are in-
terpreted in the same class of models be given.

• L2 is at least as expressive as L1 if and only if for every formula ϕ1 ∈ L1 there
is a formula ϕ2 ∈ L2 such that ϕ1 ≡ ϕ2. We denote this by L1 � L2.

• L2 is more expressive than L1 if and only if L1 � L2 but L2 � L1. We denote
this by L1 ≺ L2.

Proposition 1. LCL � LS CL−I .

Proof. It follows by a straightforward induction on the complexity of formulae in LCL

that for any ψ ∈ LCL that ψ ≡ tr(ψ), where tr : LCL −→ LS CL−I is the obvious
translation function. �

In service of our next result, we now present a notion of bisimulation for concurrent
game structures, introduced in (Ågotnes et al. 2007).

Definition 4.3 (Bisimulation For CGSs). Let CGSs
S1 = 〈k,Q1, d1, δ1,Π1, π1〉 and S2 = 〈k,Q2, d2, δ2,Π2, π2〉 be given, with A =

{1, 2, . . . , k}.

1. Let a set of agents A ⊆ A be given. A relation β ⊆ Q1 × Q2 is a (global) A-
bisimulation between S1 and S2, denoted S1 �

A
β S2, iff for any q1 ∈ Q1 and

q2 ∈ Q2, q1βq2 implies that

Local Harmony π1(q1) = π2(q2).

Forth For any A-strategy FA
1 on S1, there exists an A-strategy FA

2 on S2
such that for every computation λ2 ∈ out(S2, q2, FA

2 ) there exists a compu-
tation λ1 ∈ out(S1, q1, FA

1 ) such that λ1[1]βλ2[1].

Back Likewise, for 1 and 2 swapped.
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2. If S1 �
A
β S2 and q1βq2, then we also say that β is a local A-bisimulation between

(S1, q1) and (S2, q2), denoted (S1, q1)�A
β (S2, q2).

3. If β is a A-bisimulation between S1 and S2 for every A ⊆ A, we call it
a (full global) bisimulation between S1 and S2, denoted S1 �β S2. Like-
wise, we define a full local bisimulation between (S1, q1) and (S2, q2), denoted
(S1, q1)�β (S2, q2).

Definition 4.4. For a fixed A ⊆ A, we denote byLCL(Π[A]) the fragment ofLCL(Π,A)
consisting of only those formulae generated by

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈〈A〉〉Xϕ

Theorem 1. If S1 �
A
β S2 and q1βq2, then, for every formula ϕ ∈ LCL(Π[A]), we have

that S1, q1 �CL ϕ iff S2, q2 �CL ϕ .

Proof. See the appendix of (Ågotnes et al. 2007). �

Corollary 1. If S1 �β S2 and q1βq2, then, for every formula ϕ ∈ LCL(Π,A), we have
that S1, q1 �CL ϕ iff S2, q2 �CL ϕ.

With an appropriate notion of bisimulation in hand, a standard strategy for showing
that a language has expressive power beyond that of CL presents itself: if we can
find two models such that 1) the models are bisimilar to each other (and so unable to
be distinguished by CL) and 2) that there is some formula from the language being
compared to CL that holds on the one model but not the other, then we may conclude
that this language can express properties that CL is unable to express. We shall follow
precisely this strategy to show that SCL-I has expressive power beyond that of CL.

Theorem 2. Suppose that |A| ≥ 2. Then LCL ≺ LS CL−I .

Proof. To begin, we assume that k = 2, i.e., that there are only two agents in the
system. Now, consider the CGS S6, as depicted at the top in Figure 6 and the CGS
S3, as discussed in motivating Example 6, and depicted (again) at the bottom of Figure
7. Both are CGSs in which k = 2. In S6, each agent has three moves from which to
choose at the start state - namely, 0, 1 and 2. For the sake of readability, we label the
states in the figure with the joint action that leads to that state.

Now, first, we know from the discussion of Example 6 that S3, q � ((A))ψ, where q
refers to the start state in S3 (for convenience, we refer to the start state in both struc-
tures as q). However, it is straightforward to check that S6, q 2 ((A))ψ: the generated
epistemic model for S6 at q is updated to eliminate all joint actions in which some
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Figure 6: A depiction of the structure S6 (above), the structure S3 (below), and the bisimulation
between them (the broken lines between states)

agent chooses action 2, but this just leaves us with the epistemic structure generated by
S1 in motivating Example 4.

Now, we claim that a full global bisimulation exists between S3 and S6. We depict
this bisimulation with the broken lines between states in the respective structures in
Figure 6 (the start states in S3 and S6 are also related by this relation, but we omit
depicting this in the figure for the sake of readability). It is straightforward, if a bit
laborious, to check that the relation so depicted does in fact constitute a full global
bisimulation between the two structures, and we leave this to the reader. From this we
may conclude that there is no CL formula that can distinguish S3 from S6. Since the
SCL-formula ((A))ψ can distinguish the two structures, we conclude that there is no
equivalent formula in CL for the formula ((A))ψ in SCL-I.

Finally, we drop the assumption that k = 2 and consider a fixed, but arbitrary,
number of agents k, where k ≥ 2. In this case, the structures S3 and S6 can be recreated
with the additional agents by simply assigning only one action at the start states of the
structures to each agent i, where i > 2. The above reasoning can then be reproduced to
achieve the general result. �

4.2 Validities and invalidities

In this section, we consider some signficant validities (and invalidities) of the logic
SCL-I. We remark in passing that it is of interest to compare these systems to the (sound
and complete) axiomatic systems for CL in (Pauly 2001) and ATL in (van Drimmelen
and Goranko 2006).
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Definition 4.5 (Significant Validities for SCL-I). The set of validities for SCL-I in-
cludes all those based on the following schemata, where A, B, {a} ⊆ A:

• 〈〈〉〉-axioms:

⊥〈〈〉〉 : ¬〈〈A〉〉⊥ >〈〈〉〉 : 〈〈A〉〉>

A : ¬〈〈∅〉〉¬ψ→ 〈〈A〉〉ψ

S〈〈〉〉 : 〈〈A〉〉ψ1 ∧ 〈〈B〉〉ψ2 → 〈〈A ∪ B〉〉(ψ1 ∧ ψ2), where A ∩ B = ∅

• (())-axioms:

∅ : ¬ ((∅))>

((A))-coalition-monotonicity: ((A))ψ→ ((A ∪ B))ψ

• Interaction Axioms:

Int1 : ((A))ψ→ 〈〈A〉〉ψ

Int2 : 〈〈a〉〉ψ→ ((a))ψ

Int3 :
(∧

a∈A ¬〈〈a〉〉ψ
)
∧

(∧
a∈A ¬〈〈a〉〉¬ψ

)
→ ¬ ((A))ψ

Int4 : ((B ∪C))ψ ∧
(∧

b∈B ¬〈〈b〉〉¬ψ
)
∧

(∧
c∈C〈〈c〉〉¬ψ

)
→

∨
b∈B((C ∪ {b}))ψ ∨ ((C))ψ

• Rules of Inference:

Modus Ponens: from ψ1 and ψ1 → ψ2, infer ψ2

〈〈A〉〉-monotonicity: from ψ1 → ψ2, infer 〈〈A〉〉ψ1 → 〈〈A〉〉ψ2

((A))-equivalence: from ψ1 ↔ ψ2 infer ((A))ψ1 ↔ ((A))ψ2

It is worth trying to capture informally what the interaction axioms suggest: the
Int1-axiom says that if a coalition can enforce something without being able to com-
municate, then they can enforce it if they are able to communicate; the Int2-axiom says
that when considering the abilities of individual agents, communication powers are ir-
relevant; the Int3-axiom says that, when considering a coalition of agents that can’t
communicate, if none of the agents can act individually to bring about the goal of the
coalition and none of the agents can act individually to avoid actions that will definitely
jeopardize the goal of the coalition, then the coalition is helpless to achieve its goal;
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the Int4-axiom says that if a coalition are unable to communicate yet can achieve some
goal, then there is some subcoalition of the coalition that are able to achieve that goal,
where this subcoalition consists of the agents in the coalition who are able to individu-
ally perform (and therefore avoid) actions that will jeopardize the goal of the coalition
and at most one other member of the coalition. These last two axioms go some way to
capturing the spirit of the dynamic semantics of the ((A)) operator in the language.

Proposition 2 (Soundness). Each above axiom is valid, and each inference rule pre-
serves validity.

Proof. Throughout the proof, let S refer to an arbitrary CGS, q be an arbitrary state in
S andM refer to the generated epistemic structureMS(q).

The proof for each axiom is straightforward if fussy. We prove three of the results
and leave the rest as an exercise for the reader.
∅: for S, q � ((∅))> to hold, there must exist a joint move σ ∈ D(q) such that

M, σ �PAL 〈
∧

a∈∅ K̂a>〉
∨

a∈∅ Ka>. Since
∧

a∈∅ K̂a> ≡ > and
∨

a∈∅ Ka> ≡ ⊥, it follows
that there can be no such move.

Int3: suppose that
S, q �

∧
a∈A

¬〈〈a〉〉ψ

and that
S, q �

∧
a∈A

¬〈〈a〉〉¬ψ.

Now, by definition, there exists σ ∈ D(q) such that M, σ � Ka¬ψ just in case S, q �
〈〈a〉〉¬ψ. Hence, for all σ ∈ D(q) and a ∈ A, we have that M, σ 2 Ka¬ψ. Thus, the
update following the announcement of

∧
a∈A K̂aψ leaves the model unchanged. This

means that S, q � ((A))ψ can hold only if there exists σ ∈ D(q) such thatM, σ � Kaψ
for some a ∈ A. However, there exists σ ∈ D(q) such that M, σ � Kaψ just in case
S, q � 〈〈a〉〉ψ, which is assumed to be false for all a ∈ A. So, for all σ ∈ D(q) and
a ∈ A, it follows thatM, σ 2 Kaψ, and so S, q 2 ((A))ψ.

Int4: suppose that S, q � ((A))ψ and that C = {a ∈ A | S, q � 〈〈a〉〉¬ψ}. From
the former supposition, we may conclude that there exists a and σ∗ ∈ D(q) such that
M|(

∧
a∈A K̂aψ), σ∗ � Kaψ. From the latter supposition, it may be concluded that

C = {a ∈ A | ∃σ ∈ D(q) s.t.M, σ � Ka¬ψ} .

It follows easily that M|(∧a∈A K̂aψ) is the same structure as M|(∧a∈C∪{a} K̂aψ), and so that
M|(

∧
a∈C∪{a} K̂aψ), σ∗ � Kaψ. The result follows.

�
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Proposition 3 (Invalidities). The following are not valid axioms or rules for SCL-I:

(1) ((A))ψ1 ∧ ((B))ψ2 → ((A ∪ B)) (ψ1 ∧ ψ2), where A ∩ B = ∅

(2) ¬ ((∅))¬ψ→ ((A))ψ

(3) from ψ1 → ψ2, conclude ((A))ψ1 → ((A))ψ2

Proof. (1) Motivating Example 7 provides a counter-example: take A = {a} and
B = {b}.

(2) Motiviating Example 4 provides a counter-example: from the ∅-axiom, it follows
that ¬ ((∅))¬ψ is a validity and so true in S1 at q. However, it is false that ((A))ψ
at q.

(3) Motivating Example 8 provides a counter-example: it is valid that ψ1 →

(ψ1 ∨ ψ2), yet for the structure S5 of Example 8 it holds that S5, q � ((A))ψ1 ∧

¬ ((A)) (ψ1 ∨ ψ2).
�

5 Conclusion and further work

We have introduced and motivated a new variation on Coalition Logic, which we have
called Strategic Coordination Logic (Mark I). The purpose of this logic is to deal more
effectively with situations of almost perfect information, and the accompanying effects
on the ability of coalitions of agents to coordinate. We have put forward a precise
syntax and semantics for SCL-I, and provided technical results concerning expressivity
and validity for the logic that illuminate differences between CL and SCL-I.

There is much scope for further research. Certain technical matters are not dealt
with in this paper, such as a presentation of a sound and complete axiom system, or
results on the complexity of model-checking for SCL-I (such results are in our pos-
session, but cannot be presented here due to limitations of space). Another route is
to explore further refinements of Strategic Coordination Logic. For instance, SCL-I
can express joint ability under the assumption of reliable communication within coali-
tions, and under the assumption of a lack of reliable communication within coalitions.
What of intermediate cases, however, such as where certain agents in the coalition can
communicate, but not others?

Acknowledgements Thanks to Dmitry Shkatov, Valentin Goranko, Wes Holliday,
Thomas Icard, and various anonymous referees for helpful comments on earlier ver-
sions of this paper.
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1 Views of computing, from “what” to “how”

This Turing Year has been the occasion for lively debates about the nature of comput-
ing. Are we on the threshold of new styles of computation that transcend the limitations
of the established paradigm? Let us briefly recall three classical themes of the golden
age when Turing and his generation made computation a subject for mathematical in-
quiry, and hand in hand with that, for practical development. First of all, by analyzing
the bare basics of mechanical computing, Turing defined a Universal Machine that can
compute the result of any algorithm on any matching input, when both are presented
in suitably encoded form. This notion then supported the subsequent development of
Recursion Theory, bringing to light both the basic structures and powers of effective
computation, but also its limitations as exemplified in the undecidability of the Halt-
ing Problem. On the basis of this and other, equivalent models proposed at the time,
Church Thesis then claimed that all effectively computable functions over the natural
numbers (a canonical domain that can mimic non-numerical computation by various
encodings going back to Gödel and others), coincide with the ‘recursive functions’, that
can be computed on Turing machines. As the power of this paradigm became clear, it
was suggested in the famous Turing Test that computation might well emulate human
cognition, to the extent that in conversation, humans would not be able to tell whether
they are interacting with another human or a machine.

Now, 80 years later, computer science and information technology have trans-
formed the world of both machines and humans in sometimes wholly unpredictable
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ways. Given the experience obtained over this period, can we spring the bounds of the
classical age, and compute a larger class of functions/problems after all? There are in-
teresting and lively current debates in the US and Europe on this theme, with proposals
ranging from using infinite machines to letting the physical universe do the computing
in its own ways (Cooper and Sorbi 2008, Cooper 2011). I am not going to enter these
debates here, except for one basic comment. It seems important to make a distinction
here between two issues:

(a) What can we compute, and (b) how can we compute it?

Somewhat apodictically, my view is this. I see no evidence in current debates
that we can compute more than before, forcing us to extend the calibration class of
recursive functions. But then, this ‘What’ question is not of great interest. Of much
greater interest is a ‘How’ question, not addressed by Church’s Thesis, namely, what
are natural styles of computing? Or if you insist on ‘what’ questions after all: do not
ask what is computable, but what is computing, viewed as a kind of process producing
characteristic forms of behavior.

Right from its start, the history of computer science has shown an outburst of ideas
on these themes, and this paper will be about one of these: computation as social
agency. My discussion will have a logical slant, reflecting my own work in this area
(van Benthem 2008; 2011), and I am not claiming to represent public opinion in com-
puter science.

2 Computer science as a hot spring of ideas

Before I start with my own theme, here is some very quick background that not all of
my fellow logicians interested in the foundations of computing seem aware of.

Logic and fine-structuring views of computing Turing machines have opaque pro-
grams telling the machine in complete detail what to do in machine code, making heavy
use of that old enemy of perspicuity called ‘go to’ instructions (Dijkstra 1968). Real
computer science took off when higher programming languages were invented, that
represent higher-level ideas on the sort of computation taking place. One can think of
programs in such languages as ‘algorithms’ that describe the essence of some compu-
tational task at some more suitable abstraction level. Different programming languages
have given a wealth of perspectives on this, often drawing on traditions in logic.

For instance, imperative programs like those of Algol or C+ may be viewed as a
‘dynamified’ version of logical formulas in standard formalisms like predicate logic,
telling the machine what sort of results to achieve given certain preconditions. Such
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systems lend themselves well to model-theoretic semantics in the usual logical style
(first-order, modal, or otherwise), witness the development of Hoare Calculus and Dy-
namic Logic. On the other hand, there are functional programming languages like
LISP or Haskell, akin to systems of lambda calculus and type theory, closer to the
proof-theoretic and category-theoretic traditions in logic. And of course, there are
many other styles that do not fall simply into this dichotomy, including object-oriented
programs, logic programs, and so on. The semantics for this large family program-
ming languages have provided a wealth of matching process models that offer many
deep answers to the issue of how we compute.

Distributed computation and process theory One major challenge around 1980
was a theoretical reflection on the practice of distributed computing emerging at the
time. One major development here, moving up the abstraction level beyond program-
ming languages, was the invention of Process Algebra by Milner, Bergstra, and others
(cf. Bergstra and Smolka 2001), an abstract view of processes as graphs modulo some
suitable notion of structural behavioral invariance, often some variant of bisimulation.
While it is true to say that no consensus has emerged on one canonical model of dis-
tributed computation, comparable in breadth of allegiance to Turing machines, a deep
process theory did emerge with many features that have no counterpart in the classi-
cal theory of sequential computing (van Emde Boas 1990). Abstract process theories
are still emerging in the foundations of computation. A noticeable new development
has been the birth of co-algebra, as a theory of computing on infinite streams, tied
to fixed-point logics and category-theoretic methods (Venema 2006; 2007). My point
here is very modest: thinking about the foundational hows of computation is a pro-
ductive line of thought that shows no signs of abating yet1. For instance, in the last
15 years, a striking model for multi-agent distributed computing has been the intro-
duction of game models (Abramsky 2008), and in another paradigm (Thomas et al.
2002), leading to new encounters between computer science, logic, and game theory
(van Benthem 2013a).

3 Computation and social agency

It is often said that Turing took the human out of the term ‘computer’, extracting only
the abstract procedures behind their pencil-and-paper activity. In that light, the Turing

1My subsidiary point is addressed more to some of my fellow logicians, who sometimes think that no
deep insights worth our august attention have ever come out of actual computer science. My point to them
is simply that there is life after Turing: deep thinkers on the foundations of computation such as McCarthy,
Dijkstra, Hoare, Pnueli, Milner, Pratt or Abramsky have a lot to teach us.
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Test then added insult to injury, since the computer thus defined might then even dispel
the mystery of our other intelligent tasks just as well. And even without grand reduc-
tionist aims, it is undeniably true that computational models have proved of immense
value in studying what might be considered typical human activities, such as conversa-
tion as a form of computed information flow driven by natural language functioning as
a programming language (van Benthem 1996). I will mention more examples below.

But there is an opposite stream as well. Much of the history of computer science
can also be seen as a case of the ‘humans striking back’. Here is a mild instance of
this phenomenon. Around 1980, Halpern and others started the TARK tradition of
enlisting the delicate yet powerful understanding that we have of human agents with
knowledge and social activity in support of modeling complex distributed protocols,
how they function, what they do and do not achieve, and what might go wrong with
them (Fagin et al. 1995). Now this may be a case of using metaphors, but the result-
ing revival of epistemic logic, broadly conceived, has had widespread repercussions
in several disciplines. Likewise, and even much earlier, the development of Artifi-
cial Intelligence, though perceived by some as a reductionist replacement exercise, in
fact gradually made computer scientists (and others) aware of the amazing subtlety of
human behavior and skills in problem solving, knowledge acquisition, and social inter-
action. A wealth of logical systems arose out of this that also started influencing other
areas far beyond computer science, including linguistics and philosophy. And finally,
just consider the realities of computing today. What we see all around us are com-
plex societies of humans and machines engaged in new interactive styles of behavior,
nowadays even driven by conscious design of ‘gaming’, and it might even be thought
that the real challenge today is understanding what makes this reality tick, rather than
abstruse discussions about computing at infinity or in the Milky Way.

4 Conquering daily life: conversation as computation

Computational models are widely used in the study of human agency today, so much so,
that the area of multi-agent systems combines features of computer science, epistemol-
ogy, and cognitive science (Leyton-Brown and Shoham 2009). Of the vast literature,
I mention only one current strand as an illustration: ‘dynamic-epistemic logics’ (van
Ditmarsch et al. 2007, van Benthem 2011).

Conversation and information update Simple games are a good setting for study-
ing communication. Three cards “red”, “white”, and “blue” are given to three children:
1 gets red, 2 white, and 3 blue. Each child sees his own card, not the others. Now
2 asks 1 “Do you have the blue card?”, and the truthful answer comes: “No”. Who
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knows what now? Here is what seems the correct reasoning. If the question is genuine,
player 1 will know the cards after it was asked. After the answer, player 2 knows, too,
while 3 still does not. But there is also knowledge about others involved. At the end,
all players know that 1 and 2, but not 3, have learnt the cards, and this is even ‘common
knowledge’ between them.2

The Cards scenario involves a computational process of state change, whose basic
actions are updates shrinking a current range. In the diagrams below, indexed lines
indicate an uncertainty for the relevant agents. Informational events then shrink this
range stepwise:
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The first step is for the presupposition of the question, the second for the answer. In
the final model to the right, both players 1 and 2 know the cards, but 3 does not, even
though he can see that, in both of his remaining eventualities, 1, 2 have no uncertainties
left. �

The geometry of the diagram encodes both knowledge about the facts and knowl-
edge about others: such as 3’s knowing that the others know the cards. The latter
kind is crucial to social scenarios, holding behavior in place. Indeed, at the end of the
scenario, everything described has become common knowledge in the group {1, 2, 3}.3

Dynamic logics of communication ‘Dynamic epistemic’ logics describing this
informa-tion flow, and changes in what agents know from state to state, have been
found on the analogy of program logics in computer science. First, what agents know
about the facts, or each other, at any given state is described by a standard language of
epistemic logic:

p | ¬ϕ | ϕ ∧ ψ | Kiϕ

2This way of understanding the scenario presupposes that questions are sincere as seems reasonable
with children. But our methods also cover the possibly insincere scenario.

3Cf. Fagin et al. 1995 for all these notions in games and computation.
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while the corresponding epistemic models were tuples

M = (W, {∼i| i ∈ G},V)

with a set of relevant worlds W, accessibility relations ∼i and a propositional valu-
ation V for atomic facts. Knowledge is then defined as having semantic information:4

M, s Kiϕ iff for all worlds t ∼i s : M, t ϕ

Common knowledge M, s CGϕ is defined as ϕ’s being true for all t reachable
from s by finite sequences of ∼i steps. If necessary, we distinguish an actual world in
the model.

Update as model change The key idea is now that informational action is model
change. The simplest case is a public announcement !ϕ of hard information: learning
with total reliability that ϕ is the case eliminates all current worlds with P false:

s

To M|ϕ

s ¬ϕ

From M

ϕ

We call this hard information for its irrevocable character: counter-examples are
removed.

This dynamics typically involves truth value change for complex formulas. While
an atom p stays true after update (the physical base facts do not change under com-
munication), complex epistemic assertions may change their truth values: before the
update !p, I did not know that p, afterwards I do. As with imperative programs, this
may result in order dependence. A sequence !¬Kp; !p makes sense, but the permuted
!p; !¬K p is contradictory.

Public announcement logic The dynamic logic PAL arises by extending the epis-
temic language with a dynamic modality for public announcements, interpreted as fol-
lows:

M, s [!ϕ]ψ iff if M, s ϕ, then M|ϕ, s ψ

4These epistemic models encode ‘semantic information’, a widespread notion in science, though other
logical views of information exist (van Benthem and Martinez 2008).
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The system of public announcement logic PAL can be axiomatized completely by
combining a standard logic for the static epistemic base plus a recursion law for knowl-
edge that holds after update, the basic ‘recursion equation’ of the system:

[!ϕ]Kiψ↔ ϕ→ Ki(ϕ→ [!ϕ]ψ)

Dynamics of other events Similar systems exist for updating agents’ beliefs, defined
in terms of truth in the most plausible epistemically accessible worlds. Here the variety
of dynamic events increases. Beliefs can change under hard information, but also under
soft information, where ¬ϕ-worlds are not eliminated, but made less plausible than ϕ-
worlds. And similar methods again work for events modifying agents’ preferences (Liu
2011).

Time and program structure Single events are just atomic actions that bunch to-
gether to form meaningful larger scenarios. Again, computational ideas are essential.
Action and communication involve complex programs with operations of sequential
composition: guarded choice IF THEN ELSE, and iteration WHILE DO. Even parallel
composition || occurs when people act or speak simultaneously. Here is a well-known
illustration:

The Muddy Children “After playing outside, two of a group of three children have
mud on their foreheads.” They can only see the others, and do not know their own
status. Now the Father says: “At least one of you is dirty”. He then asks: “Does anyone
know if he is dirty?” The Children always answer truthfully. What will happen? As
questions and answers repeat, nobody knows in the first round. But in the next round,
each muddy child reasons thus: “If I were clean, the one dirty child I see would have
seen only clean children, and so she would have known that she was dirty at once. But
she did not. So I am dirty, too.” This scenario falls within the above update setting, but
we do not elaborate here. �

Clearly, there is a program here involving sequence, guarded choice and iteration:

! “At least one of you is dirty” ; WHILE not know your status DO (IF not
know THEN “say don’t know” ELSE “say know”)

Temporal limit behavior Another interesting feature is the limit behavior in the puz-
zle, leading to a stable endpoint where updates have no further effect and agents’
knowledge is in equilibrium. In particular, the children have common knowledge of
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their status in the limit model #(M, ϕ) reached by the iterated updates !ϕ of their ig-
norance assertion. So in the end, this statement ‘refutes itself’. In other scenarios,
like game solution procedures, the statement announced is ‘self-fulfilling’, becoming
common knowledge in the limit.5

Limit features of computation over time can be studied in sophisticated fixed-point
logics, but one simple case is just propositional dynamic logic PDL of basic imperative
programs. The resulting setting has vast computational power (Miller and Moss 2005):
the logic PAL with Kleene iteration of updates is Π1

1-complete. Van Benthem (2008)
has a positive interpretation of high complexity results for logics like these, namely
that

conversation has universal computing power: any significant computational prob-
lem can be realized as one of conversation planning.

While this looks attractive as an observation about conversation as a paradigm for
computation in general, there is a catch. The high complexity resides in the logic of
reasoning about conversation, but as discussed in (van Benthem 2011), conversational
algorithms themselves might have low complexity as far as computational procedures
go.6

Our examples and glimpses of wider implications may have shown how computa-
tional notions and techniques arise all the way in a basic human activity like conversa-
tion. For many further examples of ‘communication as computation’, we refer to the
cited literature.

5 Daily life strikes back: computation as conversation

Let us now reverse the perspective. Starting around 1980, Halpern and his colleagues
in what is now sometimes called the TARK community have shown how human
metaphors of knowledge and social interaction, if made precise in logical terms, can be
a powerful tool for specifying and proving properties of complex protocols for multi-
agent systems. The book (Fagin et al. 1995) is a landmark of the resulting program.
But the borderline between a metaphor and the real thing may be thin. Increasingly,
there seems to be a viable view that computing is itself a form of social behavior,
mixing action and information much as humans do. Correspondingly, the same for-
mal objects that act as programs for machines are also ‘plans for humans. The two
essential basic features of human agency then enter our understanding of computation:
one is the knowledge of agents (perhaps also other attitudes, such as their beliefs and

5Limit features of belief revisions over time underlie formal learning theory (Gierasimczuk 2010).
6However, this complexity may go down on extended protocol models that constrain the admissible

sequences of updates in each world.
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preferences), and the other their social interaction. In what follows, we take up these
two themes separately, showing how they enter our view of computing in natural ways.
Our major tool for highlighting these phenomena will be transformations from standard
algorithms to knowledge-based social procedures.

6 Epistemizing computational tasks

This section is about what we call the phenomenon of epistemization, the introduction
of agents’ knowledge at various parts in basic computational tasks.

Epistemizing algorithmic tasks Consider the key planning problem of Graph
Reachability (GR). Given a graph G with points x, y, is there a chain of arrows from x
to y? GR can be solved in Ptime in the size of G: a quadratic-time algorithm finds a
path (Papadimitriou 1994). The same holds for reachability of a point in G satisfying
a goal condition ϕ. The solution algorithm performs two related tasks: determining if
a path exists at all, and giving a concrete way or plan for getting from x to y. We will
now consider various natural ways of introducing knowledge and information in this
setting.

Knowing you made it Suppose an agent is trying to reach a goal region defined by ϕ ,
with only limited observation of the terrain. The graph G is now a model (G,R,∼) with
accessibility arrows, but also the earlier epistemic uncertainty links between nodes. It
is natural to ask for a plan that will lead you to a point that you know to be in the goal
region ϕ. Brafman and Shoham (1993) analyze a robot whose sensors do not tell her
exactly where she is. They then add a knowledge test to the task, inspecting current
nodes to see if we are definitely in the goal region: Kϕ . Given the P− time complexity
of model checking for epistemic logic, the new search task remains P-time.7

Epistemizing social tasks Many algorithmic tasks themselves come from social sce-
narios, witness the area of computational social choice (Endriss and Lang 2006). Here,
too, epistemization makes sense. Think of the basic computational task of merging
orderings. In social choice theory, preferences of individual agents are to be merged
into a preference order for the group as a whole. This way of phrasing started with Ar-
row’s Theorem stating that no social choice procedure exists that satisfies some basic
postulates of unanimity, monotonicity, context independence, and especially, absence

7A general model for epistemic robots relying on possibly limited or defective sensors is proposed in (Su
et al. 2005). This approach has led to new ‘evidence models’ for human agency that are more fine-grained
than the standard epistemic models of this paper.
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of a ‘dictator’, an individual whose preference ranking always coincides with that of
the group. These specifications are completely non-epistemic, which is somewhat sur-
prising, since much of what we consider essential about democratic decision making
has to do with privacy, and what agents may know or not know. But, there is even a
mismatch between the usual base conditions and how they are interpreted intuitively
in terms of agency. The existence of a dictator is problematic if we think of an indi-
vidual who can abuse her powers: but for that, she should know that she is a dictator
- and perhaps, others should also know (or not know) this. Thus, epistemic rethinking
of the very scenario of social choice seems in order, and it is not even clear what a
knowledge-based version of the basic theory would look like.

Other algorithmic tasks where similar points can be made occur in game theory.
Indeed, the move from games of perfect information to games with imperfect informa-
tion (Osborne and Rubinstein 1994) may be considered a case of epistemization in our
sense.

Two aspects of epistemization Our examples show two different aspects of intro-
ducing knowledge. One is that the specifications of what an algorithmic task is to
achieve may come to involve knowledge, like saying we must know we are at the goal,
This does not necessarily mean that the algorithm itself has to be epistemic. Many
social algorithms are purely physical, such as folding ballot slips, though they do have
epistemic effects.

The second step, then, makes the algorithms themselves contain knowledge aspects.
One obvious place where this happens is test conditions for conditional action. We
find it obvious that a computer ‘checks’ in its registers whether, say, x = 1, before
performing an IF THEN task: truth and knowledge are easily confused here. But for
more complex conditions, such as ‘the battery is functioning’, we can only perform
IF THEN instructions if we know which condition holds. And there may be yet more
subtle aspects of knowledge involved. Turing (1937) says a machine should know
which symbol it is reading, and even which state it is in: a rather human form of
introspection.8

Epistemic programs Algorithms with conditions that we know to be true or false
look like human plans. One format for epistemizing standard algorithms is the knowl-
edge programs of Fagin et al. (1995), making actions dependent on conditions like

8Turing himself thinks that these epistemic properties are guaranteed by having only finite sets of sym-
bols and states. This is not the notion of knowledge used in this paper, since it seems to refer more to
perceptual discrimination (cf. Williamson 2000 on the latter notion in epistemology).
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“the agent knows ϕ” that can always be decided given epistemic introspection.9 The
language of the programs now also explicitly contains our earlier epistemic opera-
tors. Knowledge programs make sense in epistemic planning (Bolander and Andersen
2011), and also as definitions for uniform strategies in imperfect information games
(van Benthem 2013a).

A related way of epistemizing programs is offered by the earlier dynamic epis-
temic logics. Public announcements are closely related to ‘test actions’ that remove
all epistemic uncertainty links between ϕ-worlds and ¬ϕ-worlds. The behavior of test
actions, and that of many other ubiquitous informational actions, such as questions and
answers, can be described in exactly the same logical style as before.

Further aspects of epistemization But once we entangle algorithms and knowledge,
many further issues emerge, going beyond just opening a ‘knowledge parameter’ here
and there. For a start, epistemic specifications or programs essentially refer to some
agent performing the task, and then, the nature of those agents becomes a factor.

Different types of agent Epistemic algorithms may work for one type of agent but
not for another. The literature on dynamic epistemic logic has mainly focused on agents
with Perfect Recall who remember everything they knew at earlier stages of the pro-
cess, and who also learn from observation only. But equally important are agents with
bounded memory, such as finite automata. Various assumptions of this kind will be re-
flected in the epistemic logic of action. For instance, Perfect Recall holds for an agent
iff the following commutation law for action and knowledge governs its behavior:

K[a]ϕ→ [a]Kϕ

This says that, if we know beforehand what an action is going to achieve, we will
know its effect afterwards. This is crucial to consciously following a plan, though it can
fail in other circumstances.10 Other axioms that can be written in this language govern
the behavior of finite automata. Clearly, such assumptions about agents influence what
we can expect an epistemic algorithm to achieve - but I am not aware of any general
theory.

Know-how, and knowing a program So far we followed the mainstream of epis-
temic logic in letting knowledge apply to propositions. But our setting suggests a

9Some of the surprising cognitive algorithms in (Gigerenzer and the ABC Research Group 1999) have
this flavor.

10I may know that entering this enticing bar will lead to my swift moral downfall, but once I am inside,
all such thoughts may have left my mind.
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richer view. In addition to propositional knowing-that, there is know-how, embodied in
algorithms, plans and procedures. Knowing how is the subject of much of our learning,
perhaps even more than knowing that. And this know-how is related to an important
notion in our natural language, that of knowing an object. In our setting, one obvious
instance of this is what it means to ‘know a program’. There seems to be no unique
answer as to what this means, but here is a tie with propositional knowledge that seems
relevant.

Suppose that we have an epistemic program or plan, knowing it seems to involve
at least some clear grasp of its execution, not just being lucky. Should the agent know
the plan to be successful: beforehand, and at all stages of its execution? There are
two aspects to this mastery (see van Benthem 2013a) for further discussion and formal
results). Suppose that the agent has an epistemic plan: does it follow that she knows
its effects? It is easy to see that this is not always so, and hence we might use this as
a stronger requirement on epistemized algorithms than we have imposed so far. But
there is also another natural aspect to knowing a plan. Suppose that the agent knows
now what the plan will achieve, will this knowledge persist over time as the plan is
being followed?

Example For an illustration, recall the earlier problem of epistemized graph reacha-
bility. Let the agent at the root of the following graph trying to reach a ϕ-point:

◦ // •ϕ

•

??

��
◦

GG

// ◦

The dotted line says that the agent cannot tell the two intermediate positions apart.
A plan that reaches the goal is Up; Across. But after the first action, the agent no longer
knows where she is, and whether moving Across or Up will reach the ϕ-point. �

Much more can be said about when intermediate knowledge of effects does hold,
but we merely cite one result discussed in (van Benthem 2013a): agents with Perfect
Recall have intermediate knowledge of effects for all knowledge programs in the earlier
sense.

From knowing to understanding In recent discussions, more stringent requirements
have come up concerning knowing a program, sometimes under the heading of under-
standing what one is doing. In addition to propositional knowledge of effects of a plan,
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or parts of it, another key feature is ‘robustness’: counterfactually knowing the effects
of a plan under changed circumstances, or the ability to modify it as needed.11 And
there are yet other tests of understanding a subject, such as a ‘talent for zoom’: being
able to describe a plan at different levels of detail, moving up or down between grain
levels as needed.12

Epistemization in general We will not explore these issues further here, except to
note that epistemizing algorithms seems to open up a rich and interesting area of inves-
tigation. Perhaps the first issue on the agenda here should be to define epistemization
as a general transformation, or a family of these, on traditional algorithms and speci-
fications, whose properties can then be studied as such. The next general issue would
be what happens when we systematically epistemize major existing process theories of
computation, such as process algebra or game semantics (Bergstra and Smolka 2001,
Abramsky 2008).13 There are bits and pieces in the literature, but I am not aware of
general results in this spirit.14

Finally, it should be pointed out that epistemization is a more general phenomenon
than just adding epistemic logic to the world of algorithms. Epistemic logic is one
way of modeling knowledge, based, as we saw, on the notion of semantic information.
However, various other views of information make sense for logic and computation,
including more fine-grained syntactic accounts of information structure as code (van
Benthem and Martinez 2008). The issues that we have raised in this section would still
make sense then.

7 Interaction and games

The second essential feature of social agency that we mentioned earlier was multi-agent
interaction. The typical paradigm for multi-agent action with many-mind knowledge
are games, and what we will do know is look at a ‘social transformation’ of algorithmic
tasks that might be called gamification (van Benthem 2008).

11Counterfactual robustness under a natural range of deviant circumstances is also well-known in the
philosophical literature on definitions of knowledge (see Nozick 1981, Holliday 2012). In that literature,
knowledge gets tied to policies for belief revision and it is an intriguing thought that really understanding a
program or algorithm might also have to do with agents’ beliefs about it.

12Similar issues arise in analyzing what it means for someone to understand a formal proof, and useful
intuitions might be drawn from our experience with mathematical practice.

13Adding epistemic action to process algebra fits its emphasis on communication channels. Explicit
epistemics also makes sense with game semantics of programming languages (Abramsky 2008).

14The earlier dynamic epistemic logics seem relevant to this enterprise, and so does the literature on
computational complexity of epistemic action logics, cf. Halpern and Vardi 1989.
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Multi agent scenarios and knowledge games Reaching a goal and knowing you are
there naturally comes with social variants where, say, others should not know where
you are. In the ‘Moscow Puzzle’ (van Ditmarsch 2002), two players must inform each
other about the cards they have without letting a third party know the solution. More
general knowledge games of this sort have been studied in (Ågotnes and van Ditmarsch
2011). One can think of these as extended semantic explorations of a given epistemic
model, assigning different roles to different parties to model more interesting features
of inquiry.

Reachability and sabotage Turning algorithms into games involves prying things
apart with roles for different agents. Early examples are logic games in the style of
Lorenzen, Ehrenfeucht, or Hintikka (cf. the survey in van Benthem 2013a), where
traditional logical notions now involve a split between a player for truth (proof, anal-
ogy,. . . ) versus a player for falsity (counter-model, difference, . . . ). The strategic
game-theoretic powers of players in such games provide a more fine-structured analysis
of many classical logical notions.

The sabotage game For a more purely algorithmic example, consider again the ear-
lier Graph Reachability, now in a different scenario with two agents. The following
picture gives a travel network between two European capitals of logic and computa-
tion:

Amsterdam train

Brussel plane

Luxemburg Koblenz taxi

S aarbruecken

It is easy to plan trips either way. But what if transportation breaks down, and a
malevolent Demon can cancel connections, anywhere in the network? At every stage
of our trip, let the Demon first take out one connection, while Traveler then follows a
remaining link. This turns a one-agent planning problem into a two-player sabotage
game. Simple game-theoretic reasoning shows that, from Saarbruecken, a German
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Traveler still has a winning strategy, but in Amsterdam, Demon has the winning strat-
egy against the Dutch Traveler.15

Sabotage, logic, and complexity The above suggests a transformation for any algo-
rithmic task to a sabotage game with obstructing players. This raises general questions.
First, there is logic (van Benthem 2005). One can design languages for these games
and players’ strategies in terms of “sabotage modalities” on models with accessibility
relations R:

M, s 〈−〉ϕ iff there is a link (s, t) in R such that M[R B R − {(s, t)}], s ϕ

In these unusual modal logics, models change in the process of evaluation, and
indeed, one can show that sabotage modal logic, though axiomatizable, is undecidable:
somehow the computational content of the logic has increased from standard modal
logic. Next, there is computational complexity (Rohde 2005). For sabotaged Graph
Reachability, the solution complexity of the game jumps from P-time for modal model
checking to Pspace-completeness. This takes a polynomial amount of memory space,
like Go or Chess.16

Still, the game need not always be more complex than the original algorithmic task.

Catch me if you can Now consider another game variant of GR. Obstruction could
also mean that someone tries to stop me en route: “Starting from an initial position
(G, x, y) with me at x and you at y, I move first, then you, and so on. I win if I reach
my goal region in some finite number of moves without meeting you. You win in all
other cases.” This game, too, models realistic situations, such as avoiding some people
at some receptions. The difference with the Sabotage game is that the graph remains
fixed during the game. Sevenster (2006) proves that its computational complexity stays
in P-time.

Adding knowledge and observation again But it also makes sense to combine all
these games with our earlier epistemizations. For instance, sabotage as practiced in
warfare involves limited observation and partial knowledge. If we turn algorithms into
games of imperfect information, solution complexity may increase even further. Jones

15These games also have interesting interpretations in terms of learning, where a Teacher tries to trap a
Student into a certain state of knowledge by blocking all escape routes (Gierasimczuk 2010).

16Ron van der Meyden, p.c., has pointed out that, while the sabotage game gamifies the original reacha-
bility task, there is still an additional issue of how the game solution procedure gamifies the original algorithm
solving the task. Much remains to be understood at this second level.
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(1978) gives a classic complexity jump in such a search task. Sevenster (2006) studies a
broader array of epistemized gamified algorithms, linked with the ‘IF logic’ of Hintikka
and Sandu (1997).

Gamification in general The general program behind these examples would be a
theory of gamifying algorithmic tasks, and the study of their strategic properties as re-
lated to their earlier process properties. We mentioned knowledge games and sabotage
games as specific instances - but as we have said, many further examples of successful
gamification exist in logic and computer science.17 A general understanding of this
phenomenon might profit from current contacts between logic, computer science, and
game theory.

What and how again Some fundamental issues that will play here are related to the
central topics of van Benthem (2013a). One of these is the transition from logics of
programs to logics of strategies. But also, an earlier issue that we raised at the begin-
ning of this paper returns. A fundamental question in the logical foundations of game
theory is when two games are the same. Answers to this question embody a view of a
game as an interactive process, and hence, they embody a view of social computation.
One persistent intuition here has been the possibility of simulating strategies in other
games inside the current one, sometimes even in the brutal form of copying the same
moves. But this computational idea is at the same time an intriguing intuition about the
glue of social behavior.18

While these issues have pure versions, eventually, we want to look at epistemized
ones. This brings us to the theory of imperfect information games (Osborne and Rubin-
stein 1994, Perea 2012). This meshes well with the dynamic epistemic logics that we
have mentioned earlier, since they invite explicit analysis of the informational actions
taking place during the game.19 But there is also another dimension to this. Imperfect
information games have bona fide solutions in terms of Nash equilibria in mixed strate-
gies, letting players play moves with certain probabilities. Thus, perhaps surprisingly,
epistemization and gamification may need foundations in terms of mixtures of logic
and probability theory.20

17One should also mention the practical uses of gamification in the world of computer games, which
seem to have developed very similar aims independently.

18Maybe game-theoretic notions of equivalence also have to depend on the types of agent playing the
games, with their ways of reasoning based on combining belief and preference.

19Van Benthem (2013a) develops this theme at length under the heading of Theory of Play.
20For quite different epistemic aspects of playing games, in terms of required knowledge of strategies,

see van Benthem 2013b.
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8 Foundations: the three pillars of computation once more

What does the more social perspective on computation sketched here tell us about the
original grand questions about computation? We will go in reverse order.

As for the Turing Test, the issue of mimicking, or even replacing, humans by ma-
chines seems tedious and, despite some unholy attractions, ultimately uninteresting.
Given how the world of computation has developed in reality, the real challenge today
is understanding the diverse mixed societies of computers and humans that have sprung
up all around us, and that have vastly increased the behavioral repertoire of humans
(and machines).

More tenable today is the original Church Thesis. Given the close entanglement of
social computation and our use of classical techniques of analysis in logic and com-
plexity theory, we see no need to doubt its “What” answer: the recursive functions
seem fine as the extensional view of what can be computed. But this may be the less
interesting question eventually, if one’s aim is to understand computation. As we said
before, what we really want to understand is the “How” question of what constitutes
computational behavior. And if we take the social perspective of information and inter-
action outlined here seriously, then some very fundamental questions are on the table:
when are two social processes the same, and how do we factor in the essential role of
the agents involved in them? What we really need is a convincing foundational theory
of social behavior, and maybe the focus on computation of this paper will be a good
way of making progress here.21

Finally, let us return to Turing’s original contribution. The Universal Machine was,
and remains, a crucial device for making our thinking about computation sharp, and
allowing, for the first time in history, precise mathematical results on the power and
limitations of what is computable. Can there be a similar universal format for the
behavior produced by social computation in the sense of this paper? We may need a
“new Turing” for this, but my guess is that the answer will come in the form of an
abstract conceptual analysis of what is really means to be a game - beyond the details
of current game theory.22
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