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Classical Translations



Double Negation Translation

Figure 1: Kurt Gödel (1906-1978); Valery Glivenko (1897-1940)

Definition
Given φ ∈ LCPC we define the double negation translation into LIPC , as follows:
1. K(p) = ¬¬p and K(⊥) = ⊥;
2. K(φ ∧ ψ) = K(φ) ∧ K(ψ);
3. K(¬φ) = ¬K(φ).

Theorem (Glivenko,1929)
For every formula φ, φ ∈ CPC if and only if K(φ) ∈ IPC.
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Godel-McKinsey-Tarski Translation

Figure 2: Alfred Tarski (1901-1983); J.C.C. McKinsey (1908-1953)

Definition
Given φ ∈ LIPC we define the Godel-McKinsey-Tarski (GMT) translation into S4, as fol-
lows:
1. GMT(p) = □p and GMT(⊥) = ⊥;
2. GMT(φ ∧ ψ) = GMT(φ) ∧ GMT(ψ) and GMT(φ ∨ ψ) = GMT(φ) ∨ GMT(ψ);
3. GMT(φ→ ψ) = □(GMT(φ) → GMT(ψ)).

Theorem (Godel,1933, McKinsey-Tarski, 1948)
For every formula φ ∈ LIPC , φ ∈ IPC if and only if GMT(φ) ∈ S4.
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Blok-Esakia and Modalisation

In the case of the GMT translation much more is true:

Definition
Let L ∈ Ext(IPC) and M ∈ NExt(S4). We say that M is a modal companion of L if:

φ ∈ L ⇐⇒ GMT(φ) ∈ M.

Theorem (Blok, 1976, Esakia 1976)
There is an isomorphism between the lattices Ext(IPC) and NExt(S4.Grz), mappings log-
ics to their greatest modal companion.

Figure 3: Wim Blok (1947-2003); Leo Esakia (1934-2010)

This makes the GMT translation very robust, and a very useful tool for the parallel
analysis of modal and intuitionistic logic.

More broadly it reflects a vision of non-classical logic as modalised classical logic.
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Strong Translations

Slogan: Strong translations preserve and reflect many properties of the systems in
question, and can be defined uniformly on extensions.

Ex.: Decidability, Finite Model Property, Tabularity, Completeness, Definability, etc.

Slogan: Strong translations correspond to “smooth transformations” of the classes of
models of our logical systems.

Example
In the case of the double negation translation, given a poset P seen as a Kripke frame,
the corresponding Boolean model is obtained by looking at Max(P).

• • •

• • •

⇒

• • •

Figure 4: Transformation from Int. Model to Classical Model
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Strong Translations (cont.)

Example
In the case of the GMT translation, given a preordered set P, seen as a transitive and
reflexive Kripke frame, the corresponding intuitionistic logic is obtained by taking the
skeleton:

• • •

• •

•

⇒

• • •

•

•

Figure 5: Transformation from S4 model to Int. Model

Intuition: identifying points in a cluster alters only some local properties; erasing
worlds destroys global properties.
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Orthologic, Ortholattices, Or-
thospaces



Ortholattices

Definition
An algebra O = (O,∧,∨,⊥ , 0, 1) is said to be an ortholattice when (O,∧,∨, 0, 1) is a
bounded lattice, and ⊥ satisfies the following properties for every a, b ∈ O:
1. (a ∧ b)⊥ = a⊥ ∨ b⊥ and (a ∨ b)⊥ = a⊥ ∧ b⊥ ;
2. a ∧ a⊥ = 0 and a ∨ a⊥ = 1
3. (a⊥)⊥ = a.

These are the same axioms of Boolean algebras except for distributivity.

Example

•

•

• • ••

•

•

•

•

•

•

•

Figure 6: Examples of Ortholattices (MO3 and Benzene)
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Orthologic

Definition
Let LO be the language of ortholattices. Let ⊢, be a binary consequence relation in this
language. Then we say that ⊢ is an orthologic if it is closed under uniform substitution,
and satisfies the following axioms, for all φ, ψ, χ ∈ LO :
1. For a finite set of formulas Γ, Γ ⊢ φ if and only if

∧
Γ ⊢ φ

2. φ ∧ ψ ⊢ φ; φ ∧ ψ ⊢ ψ

3. φ ⊢ φ⊥⊥ ; φ⊥⊥ ⊢ φ

4. φ ∧ ¬φ ⊢ ψ

5. If φ ⊢ ψ and φ ⊢ χ, then φ ⊢ ψ ∧ χ

6. If φ ⊢ ψ and ψ ⊢ χ then φ ⊢ χ

7. If φ ⊢ ψ then ψ⊥ ⊢ φ⊥

We denote by O the minimal orthologic.

Theorem
There is a dual isomorphism between Ext(O), the lattice of extensions of orthologic, and
Var(Ort), the lattice of varieties of ortholattices.
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Orthoframes and orthomodels

Definition
Let (X, R) be a set equipped with a binary reflexive, symmetric relation, such that when-
ever x ̸= y, there is some z such xRz and¬(yRz) or vice-versa. We call this an orthoframe.

We write
U⊥ := {x : ∀y ∈ U,¬(xRy)}

for the orthogonal complement of U.
Given an orthoframe (X,⊥), we say that a subset U is regular if U⊥⊥ = U.

Given an orthoframe (X,⊥), a valuation V : Prop → Reg(X) taking values in the regular
subsets of X is called an orthomodel. We writeM The Kripke semantics of
orthomodels is defined as follows:

1. M, x ⊩ p iff x ∈ V(p);
2. M, x ⊩ φ ∧ ψ iffM, x ⊩ φ andM, x ⊩ ψ;
3. M, x ⊩ φ⊥ iff whenever xRy thenM, y ⊮ φ.

Theorem (Goldblatt, 1974)
Orthologic is sound and complete with respect to orthoframes.
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The Goldblatt Translation

Figure 7: Robert Goldblatt (1949-)

KTB := K⊕ □p → p⊕ p → □♢p

Definition (Goldblatt Translation)
For φ ∈ LO we define the Goldblatt translation:
1. G(p) = □♢G(p)
2. G(φ ∧ ψ) = G(φ) ∧ G(ψ)
3. G(φ⊥) = □¬G(φ)

Theorem
For every formula (φ, ψ) ∈ LO we have that φ ∈ O if and only if G(φ) → G(ψ) ∈ KTB.
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Goldblatt Translation

Theorem
For every formula (φ, ψ) ∈ LO we have that φ ∈ O if and only if G(φ) → G(ψ) ∈ KTB.

Proof.
(Sketch) Given an orthomodel (X, R, V), we can see it as a model of KTB, such that
(X,⊥, V) ⊩ φ if and only if (X, R, V) ⊩ G(φ).

Conversely, given a model (X, R, V) of KTB we can take a loop-skeleton:

x ≡ y ⇐⇒ ∀z(xRz ↔ yRz)

Using this we form a quotient X∗ := X/ ≡, with a relation [x]R[y] if and only if xRy, and
[x] ∈ W(p) if and only if x ∈ □♢V(p). And we have that (X∗, R,W) ⊩ φ if and only if
(X, R, V) ⊩ G(φ).
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Analysing the Goldblatt Translation



A Disillusionment

Despite early enthusiasm with this logic, this line of work went quiet after a while.

In the early 2000’s, Miyazaki produced a detailed analysis of the translation, hinting at
the kind of theory present in the GMT translation.

16



A Disillusionment

Despite early enthusiasm with this logic, this line of work went quiet after a while.

In the early 2000’s, Miyazaki produced a detailed analysis of the translation, hinting at
the kind of theory present in the GMT translation.

16



Modal Companions

Definition
Let O ∈ Λ(O) and L ∈ NExt(KTB). We say that L is a KTB-companion of O if:

(φ, ψ) ∈ O ⇐⇒ G(φ) → G(ψ) ∈ L

Theorem (Miyazaki, 2004)
The following hold:
1. For each L ∈ NExt(KTB), there is a logic O ∈ Λ(O) such that L is the modal
companion of O; this assignment preserves Kripke completeness, tabularity and
FMP.

2. For each orthologic O ∈ Λ(O) with the FMP, there is a logic L ∈ NExt(KTB) such
that L is the modal companion of O; this assignment preserves tabularity and FMP.
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In Search of a Blok-Esakia

Miyazaki never followed up on this work. It is reasonable to ask whether one could
have a theory fully analogous to the GMT case, i.e., including a Blok-Esakia-style
isomorphism.

The following seems to never have been written down:

Theorem
There does not exist an isomorphism between Ext(O) and any lattice of extensions of
KTB.

Proof.
By a classic result in the theory of ortholattices, and a result of Miyazaki, we know that
the bottom of the lattices of varieties look as follows:

•

•

• •

Triv

BA

MO3 Be

•

•

•

Triv

BA

2− B

Figure 8: Bottom of the lattice of varieties
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Dashing Hopes

It is possible to show that the situation is in fact radically different from the case of
GMT.

The essential reason involved here seems to be the fact that the transformations on
the models are not smooth.

Indeed, unlike in the KTB case, to a single ortholattice there could correspond
multiple orthoframes; both of the following are transformed into Benzene frames:

• • •

• • • • •

•

Figure 9: Two Benzene frames
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Dashing Hopes (cont’d.)

We were able to show that if this translation was strong – which is measured in
categorical terms – then there would need to be a p-morphism between the two
previous frames. This does not exist, as can be inspected.

The formal treatment of this goes through by relating translations with adjunctions.
The property which fails above is that the unit of the adjunction is not an
isomorphism, i.e., the left adjoint is not fully faithful.
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Expanding the Signature of Ortho-
lattices



Problems of Duality

The phenomenon that we saw – that a translation might fail to be smooth – seems to
be baked in to the duality-theoretic and algebraic tools we use to analyse the logic.

In big part this is due to a mismatch in expressivity. Orthologic is very weak: it does
not have an implication, and it lacks almost all natural abstract-algebraic properties.

On the other hand, by adding specific implications outside the signature the situation
can be made better.

The precise nature of the phenomenon at play is not yet clear to me. But by reverse
engineering some well-known situations, I think I can make my point that there is
indeed something happening here.
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engineering some well-known situations, I think I can make my point that there is
indeed something happening here.
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Inventing Pseudocomplemented Distributive Lattices

Imagine that we had just discovered pseudocomplemented distributive lattices –
bounded distributive lattices of type D = (D,∧,∨,¬, 0, 1) where the negation satisfies
the following property:

a ∧ c = 0 ⇐⇒ a ≤ ¬c

We also found that these could be modelled using posets (P,≤), in the usual way:
taking valuations V : Prop → Up(P), and the semantic clause

(P, V), x ⊩ ¬φ ⇐⇒ ∀y ≥ x, (P, V), y ⊮ φ

Being experienced modal logicians, we notice that this is very similar to the S4 modal
system, and rush to translate this to that system with the following translation:

1. T(p) = □p and T(⊥) = ⊥ and T(⊤) = ⊤;
2. T(φ ∧ ψ) = T(φ) ∧ T(ψ) and T(φ ∨ ψ) = T(φ) ∨ T(ψ);
3. T(¬φ) = □¬T(φ).
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Inventing Pseudocomplemented Distributive lattices (cont’d)

However, we start to notice a few problems:

1. We can define the pre-linearly ordered S4-frames – they are just given by
□(□p → q) ∨ □(□q → p) – but these cannot be defined because the natural
notion of p-morphism does not preserve linearity!

2. You find that the natural semantic transformations – algebraic, duality-theoretic –
appear to work in the finite case, but do not extend to the infinite case.

3. Eventually you find that there is not isomorphism between the lattices of
pseudocomplemented distributive lattices and the extensions of any extension of
S4 – the former is countable whilst the latter is of size continuum.

What is wrong with this picture?
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The Role of Implication

In the Goldblatt translation we are missing an implication connective. Is there such a
connective?

Key idea: orthologic as a logic of “mutual consistency”: xRy = states at x and y are
mutually consistent.

This invites a Kripkean implication (already alluded to, in some form, by Dalla-Chiara).

The intended meaning:

a ↪→ b := “ In all worlds that are consistent with the present, if a holds, then b holds.

This generates a different class of structures, called in my thesis Orthoimplicative
systems.
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Adding implications to Goldblatt

When adding this implication, and extend the translation we obtain an extended
Goldblatt translation into a specific extension of KTB, the transformations become
smooth, and much more can be said.

Theorem (Lazy Blok-Esakia Correspondence)
There exists a surjective homomorphism between NExt(KTBsob) and Ext(Ort→), which
witnesses a strong translation and preserves properties such as tabularity, FMP, lo-
cal tabularity, amongst others, and an injective homomorphism Λ(Ort→) to Λ(KTBsob)
which preserves Kripke completeness amongst other properties.

It is left open whether this map is an isomorphism.
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Thank you!
Questions?
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Some Results on Ortholattices with Kripkean Implication

Some facts obtained about these structures:

1. Their theory is conservative over ortholattices.
2. Every finite ortholattice, and every (infinite-dimensional) Hilbert space, admits
the structure of such an implication.

3. The proposed duality allows for great simplification in reasoning (See board).
4. It satisfies a well-defined universal property:

c ≤ a → b ⇐⇒ a ≤ c⊥ ∨ b

5. It allows the description of natural objects such as the centre of an orthomodular
lattice; this defines a sound translation from classical logic into orthoimplicative
logic.

6. Some recent connections: in the case of atomistic ortholattices, the duality we
introduced restricts to a known class of graphs called stiff graphs.

28


	Classical Translations
	Orthologic, Ortholattices, Orthospaces
	Analysing the Goldblatt Translation
	Expanding the Signature of Ortholattices
	Appendix

