Reflection algebras and conservativity spectra

Lev D. Beklemishev

LLAMA Seminar, ILLC, March 8, 2023

Lev D. Beklemishev Reflection algebras and conservativity spectra

4 3 5 4 3

Consistency program:

Mathematical theories use *abstract* notions: sets, functions, spaces, etc. *Is their use logically consistent?*

Conservativity program:

Does the use of mathematical abstractions make provable new *concrete* (combinatorial, number-theoretic) statements?

K. Gödel: Yes

If so, how can we characterize them?

伺 ト イヨ ト イヨト

A.M. Turing studied the iterative process of extension of theories T by Gödelian assertions Con(T).

$$T_0 \qquad T_1 \qquad T_2 \qquad T_\omega \qquad T_{\omega+1} \qquad T_{\omega\cdot 2} \qquad T_{\omega^2}$$

Turing hoped to obtain a classification of all true arithmetical $\forall \exists$ statements according to the stages of this (and similar) processes – but encountered difficulties.

< ロ > < 同 > < 回 > < 回 > < □ > <

A.M. Turing, System of logics based on ordinals (1939):

We might also expect to obtain an interesting classification of number-theoretic theorems according to "depth". A theorem which required an ordinal α to prove it would be deeper than one which could be proved by the use of an ordinal β less than α . However, this presupposes more than is justified. Ordinals need to be computably represented in arithmetic, otherwise the axioms of T_{α} would not be r.e.

Problem

Theories T_{α} depend on a particular way the ordering is represented/computed rather than on its isomorphism type α .

Turing, Feferman, Kreisel:

The whole classification idea breaks down because of this problem.

(4月) (4日) (4日)

In a restricted context Turing's approach can still work.

A.M. Turing (1939):

We can still give a certain meaning to the classification into depths with highly restricted kinds of ordinals. Suppose that we take a particular ordinal logic Λ and a particular ordinal formula Ψ representing the ordinal α say (preferably a large one), and that we restrict ourselves to ordinal formulae of the form $Inf(\Psi, a)$.^a We then have a classification into depths, but the extents of all the logics which we so obtain are contained in the extent of a single logic.

^aThese formulas define initial segments of α .

伺 ト イ ヨ ト イ ヨ ト

An approach to Hilbert's conservativity program:

- Generalized Turing progressions T_{α} can be used to axiomatize theorems of a given logical complexity level (e.g. Π_n^0) of strong theories U over weak theories T, that is, to obtain
- Conservativity results of the form $\prod_{n=1}^{0} (U) = T_{\alpha}$, for suitable ordinal notations α . Given U, n find α .
- Varying *n* gives us a uniform way of obtaining all the main types of proof-theoretic analysis results: consistency proofs, bounds on transfinite induction, provably recursive functions

Gödelian theories S

S r.e., with a fixed Σ_1 provability predicate \Box_S .

 \mathfrak{G}_S is the set of all Gödelian extensions of $S \mod =_S$.

 $U \leq_S T \iff S \vdash \forall x (\Box_T(x) \rightarrow \Box_U(x));$

 $U =_S T \iff (U \leq_S T \text{ and } T \leq_S U).$

Then $(\mathfrak{G}_S, \wedge_S, 1_S)$ is a lower semilattice with $1_S = S$ and $U \wedge_S T :=$ deductive closure of $U \cup T$

伺 ト イ ヨ ト イ ヨ ト

Reflection principles

 $R_n(T)$ is an arithmetical sentence expressing "every \sum_n -sentence provable in T is true".

 $R_n(T)$ generalizes the consistency assertion $Con(T) = R_0(T)$.

Every formula R_n induces a monotone semi-idempotent operator $R_n: T \longmapsto S + R_n(T)$ on \mathfrak{G}_S .

Reflection algebra of S

is the structure $(\mathfrak{G}_{S}; \wedge_{S}, 1_{S}, \{R_{n} : n \in \omega\})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SLO are lower semilattices with top equipped with a family of unary operators $\mathfrak{A} = (A; \land, 1, \{\diamondsuit_i : i \in I\})$ where each \diamondsuit_i is a monotone operator.

An operator $R : \mathfrak{A} \to \mathfrak{A}$ is:

- monotone if $x \le y$ implies $R(x) \le R(y)$;
- semi-idempotent if $R(R(x)) \leq R(x)$;
- closure if R is m., s.i. and $x \le R(x)$.

Def. $R : \mathfrak{G}_S \to \mathfrak{G}_S$ is *computable* if it can be defined by a computable map on the Gödel numbers of elements of \mathfrak{G}_S .

Suppose (Ω, \prec) is an elementary recursive well-ordering and R is a computable m.s.i. operator on \mathfrak{G}_{S} .

Theorem

There exist theories $R^{\alpha}(T)$ (where $\alpha \in \Omega$): $R^{0}(T) =_{S} T$ and, if $\alpha \succ 0$,

 $R^{\alpha}(T) =_{S} \bigcup \{ R(R^{\beta}(T)) : \beta \prec \alpha \}.$

Each R^{α} is computable and m.s.i.. Under some natural additional conditions the family R^{α} is unique modulo provable equivalence.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Def. $R : \mathfrak{G}_S \to \mathfrak{G}_S$ is *computable* if it can be defined by a computable map on the Gödel numbers of elements of \mathfrak{G}_S .

Suppose (Ω, \prec) is an elementary recursive well-ordering and R is a computable m.s.i. operator on \mathfrak{G}_{S} .

Theorem

There exist theories $R^{\alpha}(T)$ (where $\alpha \in \Omega$): $R^{0}(T) =_{S} T$ and, if $\alpha \succ 0$,

 $R^{\alpha}(T) =_{S} \bigcup \{ R(R^{\beta}(T)) : \beta \prec \alpha \}.$

Each R^{α} is computable and m.s.i.. Under some natural additional conditions the family R^{α} is unique modulo provable equivalence.

- A - A - B - A - B - A

Let S be a Gödelian extension of EA and $(\Omega, <)$ an elementary recursive well-ordering.

- Π_{n+1}^{0} -ordinal of S, denoted $ord_{n}(S)$, is the sup of all $\alpha \in \Omega$ such that $S \vdash R_{n}^{\alpha}(EA)$;
- Conservativity spectrum of S is the sequence (α₀, α₁, α₂,...) such that α_i = ord_i(S).

Examples of spectra: $I\Sigma_1$: $(\omega^{\omega}, \omega, 1, 0, 0, ...)$ PA: $(\varepsilon_0, \varepsilon_0, \varepsilon_0, ...)$ PA + PH: $(\varepsilon_0^2, \varepsilon_0 \cdot 2, \varepsilon_0, \varepsilon_0, ...)$ Let S be a Gödelian extension of EA and ($\Omega, <$) an elementary recursive well-ordering.

- Π_{n+1}^{0} -ordinal of S, denoted $ord_{n}(S)$, is the sup of all $\alpha \in \Omega$ such that $S \vdash R_{n}^{\alpha}(EA)$;
- Conservativity spectrum of S is the sequence (α₀, α₁, α₂,...) such that α_i = ord_i(S).

Examples of spectra: $I\Sigma_1: (\omega^{\omega}, \omega, 1, 0, 0, ...)$ PA: $(\varepsilon_0, \varepsilon_0, \varepsilon_0, ...)$ PA + PH: $(\varepsilon_0^2, \varepsilon_0 \cdot 2, \varepsilon_0, \varepsilon_0, ...)$ Under some naturality conditions on $(\Omega, <)$:

Theorem

A sequence $\vec{\alpha} = (\alpha_0, \alpha_1, ...)$ is a conservativity spectrum of some theory T iff $\alpha_{i+1} \leq \ell(\alpha_i)$, for all $i \in \omega$.

Here $\ell(\beta) = 0$ if $\beta = 0$, and $\ell(\beta) = \gamma$ if $\beta = \delta + \omega^{\gamma}$, for some δ, γ .

Remarks

- The set of all spectra $\vec{\alpha}$ such that $\forall i \in \omega \alpha_i < \varepsilon_0$ is the domain of the *Ignatiev model*, a well-known universal Kripke model \mathcal{I} for the closed fragment of Japaridze's provability logic GLP.
- J. Joosten (2016) has shown the injection of \mathcal{I} into the set of spectra of subtheories of PA.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Under some naturality conditions on $(\Omega, <)$:

Theorem

A sequence $\vec{\alpha} = (\alpha_0, \alpha_1, ...)$ is a conservativity spectrum of some theory T iff $\alpha_{i+1} \leq \ell(\alpha_i)$, for all $i \in \omega$.

Here $\ell(\beta) = 0$ if $\beta = 0$, and $\ell(\beta) = \gamma$ if $\beta = \delta + \omega^{\gamma}$, for some δ, γ .

Remarks

- The set of all spectra α such that ∀i ∈ ω α_i < ε₀ is the domain of the *Ignatiev model*, a well-known universal Kripke model *I* for the closed fragment of Japaridze's provability logic GLP.
- J. Joosten (2016) has shown the injection of \mathcal{I} into the set of spectra of subtheories of PA.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Extended framework (jww with Pakhomov (2022))

- **1** Expand the language of PA by truth definitions $T_{\alpha}(x)$, $\alpha < \lambda$.
- Conservatively extend EA by Tarski biconditionals: ∀x (T_α([¬]φ(x)[¬]) ↔ φ(x)) for φ ∈ L({T_β : β < α}).</p>
- Solution Classes $\Pi_{1+\alpha}$ and reflection operators R_{α} , for all $\alpha < \lambda$.
- Reflection algebras (\mathfrak{G}_{S} ; \wedge_{S} , $\mathbf{1}_{S}$, $\{R_{\alpha} : \alpha < \lambda\}$).
- **5** $\Pi_{1+\alpha}$ -ordinals $\operatorname{ord}_{\alpha}(\mathcal{T})$ and conservativity spectra $f : \lambda \to \Omega$.

Examples of spectra: ACA : $(\varepsilon_{\varepsilon_0}, \varepsilon_{\varepsilon_0}, \dots; \varepsilon_0, \varepsilon_0, \dots; 0, \dots)$ ACA⁺ := ACA + $\forall X \exists Y Y = X^{(\omega)} \equiv PA(T_0, T_1, \dots, T_{\omega})$. Spectrum: $f(\alpha) = \varphi_2(\varepsilon_0)$ if $\alpha < \omega^2$; $f(\alpha) = \varepsilon_0$ if $\omega^2 \le \alpha < \omega^2 + \omega$.

イロト イポト イヨト イヨト

Extended framework (jww with Pakhomov (2022))

- **1** Expand the language of PA by truth definitions $T_{\alpha}(x)$, $\alpha < \lambda$.
- Conservatively extend EA by Tarski biconditionals: ∀x (T_α([¬]φ(x)[¬]) ↔ φ(x)) for φ ∈ L({T_β : β < α}).</p>
- Solution Classes $\Pi_{1+\alpha}$ and reflection operators R_{α} , for all $\alpha < \lambda$.
- Reflection algebras (\mathfrak{G}_{S} ; \wedge_{S} , $\mathbf{1}_{S}$, $\{R_{\alpha} : \alpha < \lambda\}$).
- **5** $\Pi_{1+\alpha}$ -ordinals $\operatorname{ord}_{\alpha}(T)$ and conservativity spectra $f : \lambda \to \Omega$.

Examples of spectra: ACA: $(\varepsilon_{\varepsilon_0}, \varepsilon_{\varepsilon_0}, \dots; \varepsilon_0, \varepsilon_0, \dots; 0, \dots)$ ACA⁺ := ACA + $\forall X \exists Y Y = X^{(\omega)} \equiv PA(T_0, T_1, \dots, T_{\omega})$. Spectrum: $f(\alpha) = \varphi_2(\varepsilon_0)$ if $\alpha < \omega^2$; $f(\alpha) = \varepsilon_0$ if $\omega^2 \le \alpha < \omega^2 + \omega$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

 $f: \lambda \to \Omega$ is a λ -conservativity spectrum iff, for all α, β such that $\alpha + \omega^{\beta} < \lambda$,

- $\ \ \, { \ 2 } \ \, \ell(f(\alpha)) \geq \varphi_{\beta}(f(\alpha+\omega^{\beta})) \ \, { \ if } \ \beta > 0.$

Appeared in Fernández-Joosten (2014) as "*l*-sequences".

Veblen functions

•
$$\varphi_0(\beta) := \omega^{1+\beta};$$

- $\varphi_{\alpha+1}(\beta) := \beta$ -th fixed point of φ_{α} ;
- $\varphi_{\mu}(\beta) := \beta$ -th simultaneous f.p. of $\{\varphi_{\alpha} : \alpha < \mu\}$, if $\mu \in \mathsf{Lim}$.

• $\Gamma_0 :=$ the least ordinal > 0 closed under $\varphi_{\alpha}(\beta)$.

- 4 同 1 4 三 1 4 三 1

Theorem

 $f: \lambda \to \Omega$ is a λ -conservativity spectrum iff, for all α, β such that $\alpha + \omega^{\beta} < \lambda$,

- $\ \ \, { \ 2 } \ \, \ell(f(\alpha)) \geq \varphi_{\beta}(f(\alpha+\omega^{\beta})) \ \, { \ if } \ \, \beta > 0.$

Appeared in Fernández-Joosten (2014) as "*l*-sequences".

Veblen functions

- $\varphi_0(\beta) := \omega^{1+\beta};$
- $\varphi_{\alpha+1}(\beta) := \beta$ -th fixed point of φ_{α} ;
- $\varphi_{\mu}(\beta) := \beta$ -th simultaneous f.p. of $\{\varphi_{\alpha} : \alpha < \mu\}$, if $\mu \in \text{Lim}$.
- $\Gamma_0 :=$ the least ordinal > 0 closed under $\varphi_{\alpha}(\beta)$.

- A - A - B - A - B - A

Strictly positive formulas (= SLO terms) $A ::= \top | p | (A \land A) | \diamondsuit_n A$ for $n \in \omega$

Sequents $A \vdash B$ denote inequations $\forall \vec{x} (A(\vec{x}) \leq B(\vec{x}))$

RC rules:

・ロト ・ 同 ト ・ 三 ト ・ 三 ト ・

Theorems (E. Dashkov, 2012)

- $A \vdash_{RC} B$ iff $A \vdash B$ holds in $(\mathfrak{G}_{PA}; \wedge_{PA}, 1_{PA}, \{R_n : n \in \omega\});$
- **2** *RC* is polytime decidable;
- **O** *RC* enjoys the finite model property.

The first claim is based on Japaridze's (1986) arithmetical completeness theorem for provability logic GLP.

周 ト イ ヨ ト イ ヨ

Theorems (E. Dashkov, 2012)

- $A \vdash_{RC} B$ iff $A \vdash B$ holds in $(\mathfrak{G}_{PA}; \wedge_{PA}, 1_{PA}, \{R_n : n \in \omega\});$
- **2** *RC* is polytime decidable;
- **O** *RC* enjoys the finite model property.

The first claim is based on Japaridze's (1986) arithmetical completeness theorem for provability logic GLP.

Let RC^0 denote the variable-free fragment of RC. Let W_n denote the set of all RC^0 -formulas with \diamond_i for $i \ge n$. For $A, B \in W_n$ define:

- $A \sim B$ if $A \vdash B$ and $B \vdash A$ in RC^0 ;
- $A <_n B$ if $B \vdash \Diamond_n A$.

Theorem

- Every $A \in W_n$ is equivalent to a *word* (formula without \wedge);
- $(W_n/\sim,<_n) \text{ is isomorphic to } (\varepsilon_0,<).$

We consider operators associating with a theory T the theory generated by its consequences of logical complexity \prod_{n+1} :

 $\Pi_{n+1}(T) := \{ \pi \in \Pi_{n+1} : S \vdash \pi \}.$

Notice that each Π_{n+1} is a closure operator.

 RC^{∇} algebra of S

 $(\mathfrak{G}_{\mathcal{S}};\wedge_{\mathcal{S}},1_{\mathcal{S}},\{R_n,\Pi_{n+1}:n\in\omega\})$

Open problem:

Characterize the logic/identities of this structure. Is it (polytime) decidable?

RC^{∇} is a strictly positive logic with modalities { $\diamondsuit_n, \nabla_n : n \in \omega$ } (\diamondsuit_n for R_n, ∇_n for Π_{n+1}).

Axioms and rules:

- **RC** for \diamond_n ;
- **2** RC for ∇_n ;
- **③** $A \vdash \nabla_n A$; thus, each ∇_n satisfies $S4^+$;

伺 ト イ ヨ ト イ ヨ ト

Let $\mathfrak{G}_{\mathsf{EA}}^0$ denote the subalgebra of $(\mathfrak{G}_{\mathsf{EA}}; \wedge_{\mathsf{EA}}, 1_{\mathsf{EA}}, \{R_n, \Pi_{n+1} : n \in \omega\})$ generated by 1_{EA} .

Theorem

The following structures are isomorphic: **1** \mathfrak{G}^{0}_{EA} ; **2** The free 0-generated RC^{∇} -algebra; **3** $\mathfrak{I} = (I, \wedge_{\mathfrak{I}}, \{\diamondsuit^{\mathfrak{I}}_{n}, \nabla^{\mathfrak{I}}_{n} : n \in \omega\}).$

Let $\mathfrak{G}_{\mathsf{EA}}^0$ denote the subalgebra of $(\mathfrak{G}_{\mathsf{EA}}; \wedge_{\mathsf{EA}}, 1_{\mathsf{EA}}, \{R_n, \Pi_{n+1} : n \in \omega\})$ generated by 1_{EA} .

Theorem

The following structures are isomorphic:

● 𝔅⁰_{EA};

- **2** The free 0-generated RC^{∇} -algebra;
- $\Im = (I, \wedge_{\mathfrak{I}}, \{\diamond_{n}^{\mathfrak{I}}, \nabla_{n}^{\mathfrak{I}} : n \in \omega\}).$

Named after K. Ignatiev who introduced a universal Kripke model for Japaridze's logic based on sequences of ordinals (1993).

- *I* is the set of all ω -sequences $\vec{\alpha} = (\alpha_0, \alpha_1, ...)$ such that $\alpha_i < \varepsilon_0$ and $\alpha_{i+1} \le \ell(\alpha_i)$, for all $i \in \omega$.
- $\vec{\alpha} \leq_{\mathfrak{I}} \vec{\beta} \iff \forall i \ \alpha_i \geq \beta_i.$

Fact. The ordering $(I, \leq_{\mathfrak{I}})$ is a meet-semilattice.

伺 ト イ ヨ ト イ ヨ ト

Named after K. Ignatiev who introduced a universal Kripke model for Japaridze's logic based on sequences of ordinals (1993).

- *I* is the set of all ω -sequences $\vec{\alpha} = (\alpha_0, \alpha_1, ...)$ such that $\alpha_i < \varepsilon_0$ and $\alpha_{i+1} \le \ell(\alpha_i)$, for all $i \in \omega$.
- $\vec{\alpha} \leq_{\mathfrak{I}} \vec{\beta} \iff \forall i \alpha_i \geq \beta_i.$

Fact. The ordering $(I, \leq_{\mathfrak{I}})$ is a meet-semilattice.

.

We define the functions $\nabla_n^{\mathfrak{I}}, \Diamond_n^{\mathfrak{I}} : I \to I$. For each $\vec{\alpha} = (\alpha_0, \alpha_1, \dots, \alpha_n, \dots)$ let

- $\nabla^{\mathfrak{I}}_{n}(\vec{\alpha}) := (\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, 0, \ldots);$
- $\diamondsuit_n^{\mathfrak{I}}(\vec{\alpha}) := (\beta_0, \beta_1, \dots, \beta_n, 0, \dots)$, where $\beta_{n+1} := 0$ and $\beta_i := \alpha_i + \omega^{\beta_{i+1}}$, for all $i \leq n$.

Fact. The SLO $\mathfrak{I} = (I, \wedge_{\mathfrak{I}}, \{\diamond_n^{\mathfrak{I}}, \nabla_n^{\mathfrak{I}} : n \in \omega\})$ is an RC^{∇} -algebra.

.

We define the functions $\nabla^{\mathfrak{I}}_{n}, \diamondsuit^{\mathfrak{I}}_{n} : I \to I$. For each $\vec{\alpha} = (\alpha_0, \alpha_1, \dots, \alpha_n, \dots)$ let

- $\nabla^{\mathfrak{I}}_{n}(\vec{\alpha}) := (\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, 0, \ldots);$
- $\diamondsuit_n^{\mathfrak{I}}(\vec{\alpha}) := (\beta_0, \beta_1, \dots, \beta_n, 0, \dots)$, where $\beta_{n+1} := 0$ and $\beta_i := \alpha_i + \omega^{\beta_{i+1}}$, for all $i \leq n$.

Fact. The SLO $\mathfrak{I} = (I, \wedge_{\mathfrak{I}}, \{\diamond_n^{\mathfrak{I}}, \nabla_n^{\mathfrak{I}} : n \in \omega\})$ is an RC^{∇} -algebra.

An extension T of EA is *bounded*, if T is contained in a finite subtheory of PA.

Theorem

- Let T be bounded and $\vec{\alpha}$ be the conservativity spectrum of T. Then $\forall n < \omega \ \alpha_{n+1} \leq \ell(\alpha_n)$ and $\alpha_n < \varepsilon_0$, that is, $\vec{\alpha} \in \mathfrak{I}$.
- A_{EA} is the weakest theory with the given conservativity spectrum \(\vec{\alpha}\).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

An extension T of EA is *bounded*, if T is contained in a finite subtheory of PA.

Theorem

- Let T be bounded and $\vec{\alpha}$ be the conservativity spectrum of T. Then $\forall n < \omega \ \alpha_{n+1} \leq \ell(\alpha_n)$ and $\alpha_n < \varepsilon_0$, that is, $\vec{\alpha} \in \mathfrak{I}$.
- ② Let $\vec{\alpha} \in \mathfrak{I}$, *A* be a variable-free RC^{∇} -formula corresponding to $\vec{\alpha}$ via the isomorphism, and $A_{\mathsf{EA}} \in \mathfrak{G}^{0}_{\mathsf{EA}}$ its arithmetical interpretation. Then $\vec{\alpha}$ is the conservativity spectrum of A_{EA} .
- 3 A_{EA} is the weakest theory with the given conservativity spectrum α.

< ロ > < 同 > < 回 > < 回 > < 回 > <

An extension T of EA is *bounded*, if T is contained in a finite subtheory of PA.

Theorem

- Let T be bounded and $\vec{\alpha}$ be the conservativity spectrum of T. Then $\forall n < \omega \ \alpha_{n+1} \leq \ell(\alpha_n)$ and $\alpha_n < \varepsilon_0$, that is, $\vec{\alpha} \in \mathfrak{I}$.
- ② Let $\vec{\alpha} \in \mathfrak{I}$, *A* be a variable-free RC^{∇} -formula corresponding to $\vec{\alpha}$ via the isomorphism, and $A_{\mathsf{EA}} \in \mathfrak{G}^{0}_{\mathsf{EA}}$ its arithmetical interpretation. Then $\vec{\alpha}$ is the conservativity spectrum of A_{EA} .
- A_{EA} is the weakest theory with the given conservativity spectrum $\vec{\alpha}$.

イロト イポト イヨト イヨト

Encore: expressibility of iterations

Let $A \in W_n$ and $\alpha = o_n(A)$ denote its ordinal notation in $(W_n, <_n)$.

Theorem
$\ln \mathfrak{G}_{EA}, \nabla_n A =_{EA} \diamond_n^{\alpha}(\top).$
For each $n < \omega$ and $0 < \alpha < \varepsilon_0$ there is an RC-formula $A(p)$ s.t.
$orall S\in \mathfrak{G}_{EA} \diamond^lpha_n(S) =_{EA} abla_n \mathcal{A}(S).$

For example, $\nabla_0 \diamond_1 \diamond_0 \varphi = \diamond_0^\omega \varphi$.

何 ト イヨ ト イヨト

Encore: expressibility of iterations

Let $A \in W_n$ and $\alpha = o_n(A)$ denote its ordinal notation in $(W_n, <_n)$.

Theorem In \mathfrak{G}_{EA} , $\nabla_n A =_{EA} \diamondsuit_n^{\alpha}(\top)$. Theorem For each $n < \omega$ and $0 < \alpha < \varepsilon_0$ there is an RC-formula A(p) s.t. $\forall S \in \mathfrak{G}_{EA} \diamondsuit_n^{\alpha}(S) =_{EA} \nabla_n A(S)$.

For example, $\nabla_0 \diamondsuit_1 \diamondsuit_0 \varphi = \diamondsuit_0^\omega \varphi$.

伺 ト イ ヨ ト イ ヨ ト