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Hilbert’s program

Consistency program:
Mathematical theories use abstract notions: sets,
functions, spaces, etc.
Is their use logically consistent?

Conservativity program:
Does the use of mathematical abstractions make provable new
concrete (combinatorial, number-theoretic) statements?

K. Gödel: Yes
If so, how can we characterize them?
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Turing progressions

A.M. Turing studied the iterative process of extension of theories T
by Gödelian assertions Con(T ).

T0 T1 T2 Tω Tω+1 Tω·2 Tω2

Turing progression

T0 = T , Tα+1 = Tα + Con(Tα),

Tλ = ∪α<λTα, for λ ∈ Lim.

Turing hoped to obtain a classification of all true arithmetical ∀∃
statements according to the stages of this (and similar) processes –
but encountered difficulties.
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Turing’s classification program

A.M. Turing, System of logics based on ordinals (1939):

We might also expect to obtain an interesting classification
of number-theoretic theorems according to “depth”. A
theorem which required an ordinal α to prove it would be
deeper than one which could be proved by the use of an
ordinal β less than α. However, this presupposes more than
is justified.
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The problem of ordinal notations

Ordinals need to be computably represented in arithmetic,
otherwise the axioms of Tα would not be r.e.

Problem
Theories Tα depend on a particular way the ordering is
represented/computed rather than on its isomorphism type α.

Turing, Feferman, Kreisel:
The whole classification idea breaks down because of this problem.
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Restricted Turing’s program

In a restricted context Turing’s approach can still work.

A.M. Turing (1939):
We can still give a certain meaning to the classification into
depths with highly restricted kinds of ordinals. Suppose that
we take a particular ordinal logic Λ and a particular ordinal
formula Ψ representing the ordinal α say (preferably a large
one), and that we restrict ourselves to ordinal formulae of the
form Inf(Ψ, a).a We then have a classification into depths, but
the extents of all the logics which we so obtain are contained in
the extent of a single logic.

aThese formulas define initial segments of α.
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Proof-theoretic analysis by iterated reflection

An approach to Hilbert’s conservativity program:
Generalized Turing progressions Tα can be used to axiomatize
theorems of a given logical complexity level (e.g. Π0

n) of strong
theories U over weak theories T , that is, to obtain
Conservativity results of the form Π0

n(U) = Tα, for suitable
ordinal notations α. Given U, n find α.
Varying n gives us a uniform way of obtaining all the main
types of proof-theoretic analysis results: consistency proofs,
bounds on transfinite induction, provably recursive functions
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Semilattice of Gödelian theories

Gödelian theories S
S r.e., with a fixed Σ1 provability predicate 2S .

GS is the set of all Gödelian extensions of S mod =S .
U ≤S T ⇐⇒ S ` ∀x (2T (x)→ 2U(x));

U =S T ⇐⇒ (U ≤S T and T ≤S U).

Then (GS ,∧S , 1S) is a lower semilattice with 1S = S and
U ∧S T := deductive closure of U ∪ T
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Reflection algebra

Reflection principles

Rn(T ) is an arithmetical sentence expressing “every Σn-sentence
provable in T is true” .

Rn(T ) generalizes the consistency assertion Con(T ) = R0(T ).

Every formula Rn induces a monotone semi-idempotent operator
Rn : T 7−→ S + Rn(T ) on GS .

Reflection algebra of S

is the structure (GS ;∧S , 1S , {Rn : n ∈ ω}).
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Semilattices with monotone operators

SLO are lower semilattices with top equipped with a family of unary
operators A = (A;∧, 1, {3i : i ∈ I}) where each 3i is a monotone
operator.

An operator R : A→ A is:
monotone if x ≤ y implies R(x) ≤ R(y);
semi-idempotent if R(R(x)) ≤ R(x);
closure if R is m., s.i. and x ≤ R(x).
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Transfinite iterations

Def. R : GS → GS is computable if it can be defined by a
computable map on the Gödel numbers of elements of GS .

Suppose (Ω,≺) is an elementary recursive well-ordering and R is a
computable m.s.i. operator on GS .

Theorem
There exist theories Rα(T ) (where α ∈ Ω):
R0(T ) =S T and, if α � 0,

Rα(T ) =S
⋃
{R(Rβ(T )) : β ≺ α}.

Each Rα is computable and m.s.i.. Under some natural additional
conditions the family Rα is unique modulo provable equivalence.
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Conservativity spectra

Let S be a Gödelian extension of EA and (Ω, <) an elementary
recursive well-ordering.

Π0
n+1-ordinal of S , denoted ordn(S), is the sup of all α ∈ Ω

such that S ` Rαn (EA);
Conservativity spectrum of S is the sequence (α0, α1, α2, . . . )
such that αi = ordi (S).

Examples of spectra:
IΣ1 : (ωω, ω, 1, 0, 0, . . . )
PA : (ε0, ε0, ε0, . . . )
PA + PH : (ε20, ε0 · 2, ε0, ε0, . . . )
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Characterizing spectra

Under some naturality conditions on (Ω, <):

Theorem
A sequence ~α = (α0, α1, . . . ) is a conservativity spectrum of some
theory T iff αi+1 ≤ `(αi ), for all i ∈ ω.

Here `(β) = 0 if β = 0, and `(β) = γ if β = δ + ωγ , for some δ, γ.

Remarks
The set of all spectra ~α such that ∀i ∈ ω αi < ε0 is the domain
of the Ignatiev model, a well-known universal Kripke model I
for the closed fragment of Japaridze’s provability logic GLP.
J. Joosten (2016) has shown the injection of I into the set of
spectra of subtheories of PA.
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λ-conservativity spectra

Extended framework (jww with Pakhomov (2022))
1 Expand the language of PA by truth definitions Tα(x), α < λ.
2 Conservatively extend EA by Tarski biconditionals:
∀x (Tα(pϕ(ẋ)q)↔ ϕ(x)) for ϕ ∈ L({Tβ : β < α}).

3 Classes Π1+α and reflection operators Rα, for all α < λ.
4 Reflection algebras (GS ;∧S , 1S , {Rα : α < λ}).
5 Π1+α-ordinals ordα(T ) and conservativity spectra f : λ→ Ω.

Examples of spectra:
ACA : (εε0 , εε0 , . . . ; ε0, ε0, . . . ; 0, . . . )
ACA+ := ACA + ∀X ∃Y Y = X (ω) ≡ PA(T0,T1, . . . ,Tω).
Spectrum: f (α) = ϕ2(ε0) if α < ω2;

f (α) = ε0 if ω2 ≤ α < ω2 + ω.
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Theorem
f : λ→ Ω is a λ-conservativity spectrum iff, for all α, β such that
α + ωβ < λ,

1 `(f (α)) ≥ f (α + 1);
2 `(f (α)) ≥ ϕβ(f (α + ωβ)) if β > 0.

Appeared in Fernández–Joosten (2014) as “`-sequences”.

Veblen functions

ϕ0(β) := ω1+β ;
ϕα+1(β) := β-th fixed point of ϕα;
ϕµ(β) := β-th simultaneous f.p. of {ϕα : α < µ}, if µ ∈ Lim.
Γ0 := the least ordinal > 0 closed under ϕα(β).
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Reflection calculus RC

Strictly positive formulas (= SLO terms)
A ::= > | p | (A ∧ A) | 3nA for n ∈ ω

Sequents A ` B denote inequations ∀~x (A(~x) ≤ B(~x))

RC rules:
1 A ` A; A ` >; if A ` B and B ` C then A ` C ;
2 A ∧ B ` A,B; if A ` B and A ` C then A ` B ∧ C ;
3 if A ` B then 3nA ` 3nB ; 3n3nA ` 3nA;
4 3nA ` 3mA for n > m;
5 3nA ∧3mB ` 3n(A ∧3mB) for n > m.
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Main results on RC

Theorems (E. Dashkov, 2012)
1 A `RC B iff A ` B holds in (GPA;∧PA, 1PA, {Rn : n ∈ ω});
2 RC is polytime decidable;
3 RC enjoys the finite model property.

The first claim is based on Japaridze’s (1986) arithmetical
completeness theorem for provability logic GLP.
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RC 0 as an ordinal notation system

Let RC 0 denote the variable-free fragment of RC .
Let Wn denote the set of all RC 0-formulas with 3i for i ≥ n.
For A,B ∈Wn define:

A ∼ B if A ` B and B ` A in RC 0;
A <n B if B ` 3nA.

Theorem
1 Every A ∈Wn is equivalent to a word (formula without ∧);
2 (Wn/∼, <n) is isomorphic to (ε0, <).
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Conservativity modalities

We consider operators associating with a theory T the theory
generated by its consequences of logical complexity Πn+1:

Πn+1(T ) := {π ∈ Πn+1 : S ` π}.

Notice that each Πn+1 is a closure operator.

RC∇ algebra of S

(GS ;∧S , 1S , {Rn,Πn+1 : n ∈ ω})

Open problem:

Characterize the logic/identities of this structure. Is it (polytime)
decidable?
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The system RC∇

RC∇ is a strictly positive logic with modalities {3n,∇n : n ∈ ω}
(3n for Rn, ∇n for Πn+1).

Axioms and rules:
1 RC for 3n;
2 RC for ∇n;
3 A ` ∇nA; thus, each ∇n satisfies S4+;
4 3nA ` ∇nA;
5 3m∇nA ` 3mA if m ≤ n;
6 ∇n3mA ` 3mA if m ≤ n.
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Isomorphism theorem

Let G0
EA denote the subalgebra of

(GEA;∧EA, 1EA, {Rn,Πn+1 : n ∈ ω}) generated by 1EA.

Theorem

The following structures are isomorphic:
1 G0

EA;
2 The free 0-generated RC∇-algebra;
3 I = (I ,∧I, {3I

n,∇I
n : n ∈ ω}).
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Ignatiev RC∇-algebra

Named after K. Ignatiev who introduced a universal Kripke model
for Japaridze’s logic based on sequences of ordinals (1993).

I is the set of all ω-sequences ~α = (α0, α1, . . . ) such that
αi < ε0 and αi+1 ≤ `(αi ), for all i ∈ ω.
~α ≤I

~β ⇐⇒ ∀i αi ≥ βi .

Fact. The ordering (I ,≤I) is a meet-semilattice.
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Ignatiev RC∇-algebra

We define the functions ∇I
n,3

I
n : I → I .

For each ~α = (α0, α1, . . . , αn, . . . ) let
∇I

n(~α) := (α0, α1, . . . , αn, 0, . . . );
3I

n(~α) := (β0, β1, . . . , βn, 0, . . . ), where βn+1 := 0 and
βi := αi + ωβi+1 , for all i ≤ n.

Fact. The SLO I = (I ,∧I, {3I
n,∇I

n : n ∈ ω}) is an RC∇-algebra.
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Spectra and I

An extension T of EA is bounded, if T is contained in a finite
subtheory of PA.

Theorem

1 Let T be bounded and ~α be the conservativity spectrum of T .
Then ∀n < ω αn+1 ≤ `(αn) and αn < ε0, that is, ~α ∈ I.

2 Let ~α ∈ I, A be a variable-free RC∇-formula corresponding to
~α via the isomorphism, and AEA ∈ G0

EA its arithmetical
interpretation. Then ~α is the conservativity spectrum of AEA.

3 AEA is the weakest theory with the given conservativity
spectrum ~α.
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Encore: expressibility of iterations

Let A ∈Wn and α = on(A) denote its ordinal notation in (Wn, <n).

Theorem
In GEA, ∇nA =EA 3α

n (>).

Theorem
For each n < ω and 0 < α < ε0 there is an RC-formula A(p) s.t.

∀S ∈ GEA 3α
n (S) =EA ∇nA(S).

For example, ∇03130ϕ = 3ω
0ϕ.
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