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Non-normal modal logics

Non-normal modal logics
Lack some modal axioms or rules validated by the normal modal logic K.

Why non-normal modal logics

Normal modal logics are incompatible with possible interpretation of [J:
Epistemic, deontic, agency, high probability, ...

3/44



Problems with monotonicity

A— B

RM UA — 0B

» Epistemic logic and logical omniscience: “If someone knows Peano’s
axioms, then she knows that Fermat's conjecture is true.”

» Deontic explosion: If a normative code contains a self-inconsistent
obligation, then everything is obligatory.

» Deontic paradoxes: Gentle murder p., Ross p., good Samaritan p., p. of
free choice permissions, ... (cf. McNamara 2006):

Norm:
Norm:
Fact:

Valid statement:
By RM:

Consequence:

O-(Smith.Murders.John)
Smith.Murders.John — O(Smith. Murders.JJohn. Gently)
Smith.Murders.John

Smith.Murders.John.Gently — Smith.Murders.John
O(Smith.Murders.John.Gently) — O(Smith. Murders.John)

O(Smith.Murders. John)

444



Problems with agglomeration

C ODAANOB—UO(AAB)
» Deontic logic and conflicting obligations: Contradicting obligations do not
imply the obligation to realise a contradiction.

» Agency logic and incompatible actions: Possibility to do A and possibility
to do B does not imply possibility to do A A B.

» Majority logic: In most cases A and in most cases B does not imply in
most cases A A B.

5/44



Problems with necessitation

A

RN A

» Epistemic logic and omniscience: The agent knows all valid statements.

» Deontic logic: All tautologies are obligatory.
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Non-normal modal logics: Classical cube

A:=p|L|-A|ANA|AVA|A— A|DA

Basic system

A< B
CPL + RE TA 0B
Extensions by adding any combination of:

M O(AAB) — OA or Rmﬁ

C ODAANOB—DO(AAB)
A

N OT or RN A

MCN (K)
MC — ! ~ MN » 8 non-equivalent systems.
™~ M / » M/C/N derivable only if they explicitly

belong to the axiomatisation.

|
ECN
_-17 ~o » Top system coincides with K.
EC~ EN
E
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Non-normal modal logics

A modal logic is

» congruential if it contains RE;

» monotonic if it contains RE and M;

> if it contains RE, M, and C;

» normal if it contains RE, M, C, and N.
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Non-normal modal logics: Extending the classical cube

The classical cube can be extended with further principles

Axioms
T OA—A D —(OAAO-A) P —-OL
Rules
RD?‘:éggé}g%j’ RDY ﬁa;:tﬁ§;tﬁ%C)
RD; ~(AANBACAD)

~(OAAOBAOC AOD)

» T: Factivity of knowledge, success of agent actions

> D, P, RD;: No contradicting/self-inconsistent/incompatible obligations.

Remark: Non-iterative axioms/rules.
With iteration of modalities (e.g. axioms 4, 5, B) it gets more complicated.
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“Deontic” non-normal modal logics with D, P,

\ Normal: 1 system

MCD = MCP = MCD; : - ‘ Non-normal:

ECND = ECNP Sl LT a big family
‘ N S 7Y MND

ECP = ECD;}  ~~. n \
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Standard neighbourhood semantics (Scott 1970, Montague 1970)

Standard neighbourhood models
M= W,N,V), where
» WV non-empty set of worlds.
» V valuation function Atm — P(W).
> A neighbourhood function W — PP(W).

Intuition: N assigns to every world the formulas which
are necessary/known /obligatory/... in it:

[ wi-OA iff [A] € N(w)

*p w - Op

°q & w I Og
w o

N
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Standard neighbourhood semantics (Scott 1970, Montague 1970)

Standard neighbourhood models
M= W,N,V), where
» WV non-empty set of worlds.
» V valuation function Atm — P(W).
> A neighbourhood function W — PP(W).

[ wi-OA iff [A] € N(w) ]

Model conditions for extensions

M) If « € M(w) and o C 3, then 8 € N(w).
Q) If a, 8 € N(w), then anN B € N(w).

N) W e N(w).

T) If « € N(w), then w € a.

P) 0 & N(w).

D) If @« € N(w), then W\ a ¢ N(w).

RDY)  If aiy...,an € N(w), then ar N ... Ny # 0.

Characterisation (Chellas 1980)
CEEA iff E'FA
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Standard neighbourhood semantics (Scott 1970, Montague 1970)

Standard neighbourhood models
M= W,N,V), where
» WV non-empty set of worlds.
» V valuation function Atm — P(W).
> A neighbourhood function W — PP(W).

[ wi-OA iff [A] € N(w) ]

Behaves badly with nesting of modalities
(4) IfaeN(w), then {v]aecN(v)}eN(w).
(5) Kag¢N(w), then {v|a ¢ N(v)} € N(w).
(B) Ifwea,then {v|W\a¢gN(v)}eN(w).
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Alternative semantics for monotonic systems

3V-neighbourhood models for monotonic systems
M = (W, N,V), where

» W non-empty set of worlds.

» V valuation function Atm — P(W).

> N neighbourhood function W — PP(W).

[ wlFOA iff  thereis @ € N(w) s.t. o C [A]. ]

ep . w - Cp
v
w o

N
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Complexity of satisfiability problem

Satisfiability problem
Given a formula A and a logic E*, establish whether A is satisfiable in a
neighbourhood model for E*.
Complexity (Vardi 1989)
The satisfiability problem for E* is
» NP-complete for the logics without without axiom C;
» in PSPACE with axiom C (explicit hardness for MC™).
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Bi-neighbourhood semantics
for reasoning with partial information
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Bi-neighbourhood semantics

e p o —p
L] o L] L] e] o [e] [e]
L] o L L] [e] (e} [e] [e]
° ° o L] [e] (e} [e] [¢]
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Bi-neighbourhood semantics

o [e] [e] o
o [e] [e] [e]
(e} [e] [e] [e]

€ N(w)
4
w - Op

Neighbourhood semantics requires exact determination of truth sets.
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Bi-neighbourhood semantics

p is true p? p is false
—_— — —_—
[ ] [ ] [ ] [ [ ] o o o
[ ] [ ] [ ] [ ] [ ] o o o
[ ] [ ] [ ] [ ] [ ] o o o
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Bi-neighbourhood semantics
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Bi-neighbourhood semantics

e p o p
«

L] e]

L] [e]

L] [e]

[ wli-Op iff  thereis (o, 8) € N(w) s.t. « C [p] and B C [-p]. ]

15/ 44



Bi-neighbourhood semantics (D., Olivetti, Negri 2018)

Bi-neighbourhood semantics
M= (W,N,V), where W # 0; V : Atm — P(W); and
» N bi-neighbourhood function W — P(P(W) x P(W)).

[ wl-OA iff  thereis (o, 8) € N(w) s.t. o C [A] and 3 C [-A]. ]

Conditions for extensions
(M) If (a, B) € N(w), then 8 = 0.
N) There is « C W such that for all w € W, (o, 0) € N (w).
) If (a, B), (7,9) € N(w), then (an~,BUS) € N(w).
) If (o, B) € N(w), then w € a.
) If (o, B) € N(w), then o # ().
) If (o, 8), (7,0) € N(w), thenanNy £Bor BN #D.
(RD})  If (a1, 1)y ey (atny Bn) € N(w), then 1 N ... Ny # 0.

Characterisation
CELEA iff E*FA
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Bi-neighbourhood semantics

[ wli-OA iff  thereis (o, 8) € N(w) s.t. o C [A] and 3 C [-A]. ]

Bi-neighbourhood models can be seen as
» A semantics for NNMLs.

» An underspecification of neighbourhood models:

> (a, B) as lower and upper bounds of standard neighbourhoods:
» Equivalent standard models definable with

Na(w) = {7 | there is (o, B) € Npi(w) s.t. « Ty C W)\ S}

» A reduction of congruential modality to a dyadic monotonic modality
(3V-semantics):

A— C B— D

= RM

Mz := CPL + FMo = a8y = 9(C/D)

(OA)° = Q(A° /=A%),

EFA iff MyF A°
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Proof theory

» Study of logics from a purely syntactic point of view
» Establish properties of the logics by looking at the form of the proofs

» Implementation of automated theorem prover
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Sequent calculus G3cp for classical logic

> Sequent: = A, where ', A are multisets (lists/sets) of formulas.
> Ai,...,A, = B "B is derivable from the assumptions Aj, ..., A,".
> Formula interpretation: «(I = A) = AT — \/ A.

Rules
o - r=AA MLAB= A
init LL 2 ’ =
Fpop A Ni=a LT A8 Y“Tare=sa
A= A rB=A F=AA rB=A A= A
LV L— R=
rAVB= A NA—B=A MN=-AA
y [=ABA LY r=58A R, _A=B.A
VT AVBA A FT=AAB A T T=ASBA

Derivation: Tree with initial sequents as leaves

q,p=rgq q,r,p=r
g rp=rp .9 rp=>r
P—q,q—>rp=>r L—

(P=>q)AN(@—r),p=r
(p=a)AN(@—=r)=p—r
S((p=aA(@—=r)—=(p—r)

L—

LA
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Sequent calculus G3cp for classical logic

> Sequent: = A, where ', A are multisets (lists/sets) of formulas.
> Ai,...,A, = B "B is derivable from the assumptions Aj, ..., A,".
> Formula interpretation: «(I = A) = AT — \/ A.

Rules
o - r=AA MLAB= A
init LL 2 ’ =
Fpop A Ni=a LT A8 Y“Tare=sa
A= A rB=A F=AA rB=A A= A
LV L— R=
rAVB= A NA—B=A MN=-AA
y [=ABA LY r=58A R, _A=B.A
VT AVBA A FT=AAB A T T=ASBA

Completeness
l—(;3cp M= A iff FepL /\ r— \/ A
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Syntax meets semantics

» Failed branches give countermodels

p=p p=4q q=p qg=4q
RA RA
pP=pAq q=pAg Ly
pVqg=pAgq
=pVg—>pANqg

R—

Countermodels:
(i) p—1,g—0. (i) p—0 g1

» (Un)derivability: A failed branch for = A gives a countermodel for A.
» Satisfiability: A failed branch for A = gives a model for A.
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Syntax meets semantics

» Failed branches give countermodels

A key property: all rules are invertible
If the conclusion is derivable, then the premisses are derivable.

In concrete:
» Order of rule applications does not matter:

p=p p=4q q=p q=4
R R
A pP=pAgq q=pAgq Ly A
pPVg=pAg R
= pVg—pAg
same as
pP=pP q=p pP=4q q9=4
L L
v pPVqg=p pPVg=gq RA v
pPVg=pAgq

=>pVg—>pAq R—

= One proof search is enough to establish derivability/satisfiability.
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Syntax meets semantics

» Failed branches give countermodels

A key property: all rules are invertible

If the conclusion is derivable, then the premisses are derivable.
» Order of rule applications does not matter:

= One proof search is enough to establish derivability.

Complexity of derivability /satisfiability problem via proof search

» Branches have polynomial lenght w.r.t. the size of the initial sequent
(key property: rules are analytic: the premisses have lower complexity than
the conclusion).

» One failed branch is sufficient for satisfiability.
= NP/coNP decision procedure for satisfiability /derivability.
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Desiderata on proof system for NNMLs

» Terminating proof search procedure of optimal complexity.

» Countermodel generation: Obtain directly a countermodel from a single

failed proof.
countermodel
5
g v Vv Vv v X
]
L3
Q
<]
=
a
Q
3
£
S
% 3 A r3A
DERIVABLE NOT DERIVABLE

» Modular: Fixed set of basic rules & Extensions obtained by adding suitable
rules.
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Sequent calculi for non-normal modal logics

G3cp extended with modal rules (Lavendhomme & Lucas 2000):

E A= B B= A M A= B N = A
NoA=0OB,A NOA=0B,A M=0AA
Ai,...,An =B B=A .. B=A, MC A1, ..., An = B
r,0As,....0A, = 0B,A r,O0As,....,04,=0B,A
G3.E.=E G3M: =M
G3.EC.=C G3.MC := MC
G3.EN:=E+N G3.MN :=M+N

G3.ECN:=C+N G3.MCN := MC + N.

» Structural rules admissible and syntactic cut elimination.

» Analyticity and termination of proof search.
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Sequent calculi for non-normal modal logics

G3cp extended with modal rules (Lavendhomme & Lucas 2000):

E A= B B= A M A= B N = A
NoA=0OB,A NOA=0B,A M=0AA
Ai,...,An =B B=A .. B=A, MC A1, ..., An = B
M OA;, ..., 0A4A,=0B,A r,O0As,....,04,=0B,A
But:

» Not modular: The calculi of stronger systems modify the rules for the
weaker systems.
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Sequent calculi for non-normal modal logics

G3cp extended with modal rules (Lavendhomme & Lucas 2000):

E A= B B= A M A= B N = A
NoA=0OB,A NOA=0B,A M=0AA
Ai,...,An =B B=A .. B=A, MC A1, ..., An = B
M OA;, ..., 0A4A,=0B,A r,O0As,....,04,=0B,A
But:

» Not modular.
» Modal rules are not invertible:

> A single failed proof doesn’t imply non-derivability.

non derivable

———— init

PEXEYS pa=e
pPAG=T " v, PAqg=q

O(pAq)=UOr,0Op O(pAgq)=0r,0p

R
O(pAg)=0rvOp v O(pAqg)=0rvOp
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Sequent calculi for non-normal modal logics

G3cp extended with modal rules (Lavendhomme & Lucas 2000):

E A= B B= A M A= B N = A
NoA=0OB,A NOA=0B,A M=0AA
Ai,...,An =B B=A .. B=A, MC A1, ..., An = B
M OA;, ..., 0A4A,=0B,A r,O0As,....,04,=0B,A
But:

» Not modular.

» Modal rules are not invertible:
> A single failed proof doesn’t imply non-derivability.
»> Need of backtracking.

—
non derivable g
[al
=
p.a=r 8 pg=q Mt
LA = P, q q LA
pPAG=Tr ® pPAg=q
—

O(pAq)=0Or,0Op O(pAgq)=0r,0Oq

O(pAg)=0OrvOp
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Sequent calculi for non-normal modal logics

G3cp extended with modal rules (Lavendhomme & Lucas 2000):

E A= B B= A M A= B N = A
NoA=0OB,A NOA=0B,A M=0AA
Ai,...,An =B B=A .. B=A, A1, ..., An = B

r,0A,..,0A, = OB, A MC T 54, .0A, = 0B.A

But:
» Not modular.
» Modal rules are not invertible
» Complex countermodel extraction for non-valid formulas
(Lavendhomme & Lucas 2000):
»> Needs to keep track of all possible applications of modal rules.

> Makes use of analytic cut:
r=AA NNA= A

M= A
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Further proof systems for non-normal modal logics

1957 Ohnishi, Matsumoto Gentzen calculus for MCT
1983 Fitting Prefixed tableaux for M
1999 Governatori, Luppi Labelled tableaux for monotonic logics
2000 Lavendhomme, Lucas Gentzen calculi for the classical cube
2005/2011 Indrzejczak Gentzen calculi for extensions of
the classical cube
2007 Indrzejczak Prefixed tableaux calculi
2014/2020  Orlandelli Gentzen calculi for P, D
2015 Gilbert, Maffezioli Labelled sequent calculi based on
multi-relational semantics
2015/2019 Lellmann, Pimentel Nested/linear nested sequent calculi
2017 Negri Labelled sequent calculi based on
neighbourhood semantics
2018 D., Olivetti, Negri Labelled sequent calculi based on

bi-neighbourhood semantics

2019 Chen et al. Display calculi for monotonic logics
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A hypersequent calculus
for non-normal modal logics
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Hypersequents with blocks (D., Lellmann, Olivetti, Pimentel 2021)

Sequent calculi extended with additional structural connectives

Block: (X), where ¥ multiset of formulas.
Sequent: T, (X1), ..., (Xn) = A.
Hypersequent: T1 = A1 ...|[h= An.
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Hypersequents with blocks (D., Lellmann, Olivetti, Pimentel 2021)

Sequent calculi extended with additional structural connectives
Block: (X), where ¥ multiset of formulas.
Sequent: T, (X1), ..., (Xn) = A.
Hypersequent: T1 = A1 ...|[h= An.

Formula interpretation
> (A1, .., An)) = 0(AL A LA A).

> (M (Z1), ey (Em) = A) = AT A /\jSmD/\Zj = VA,
» No formula interpretation for hypersequents.

Semantic interpretation
> wikT = A iff wliFl = A).
> MET=A iff wikT = A for every w of M.
> METi= A1 |Th=A, iff MET, = A;forsomeic€{l,..,n}.
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Hypersequents with blocks (D., Lellmann, Olivetti, Pimentel 2021)

Sequent calculi extended with additional structural connectives

Block: (X), where ¥ multiset of formulas.
Sequent: T, (X1), ..., (Xn) = A.
Hypersequent: T1 = A1 ...|[h= An.

Advantage of blocks
» Modular definition of the calculi.

» Extensions simply defined by rules handling blocks.

Advantage of hypersequents

P All rules are invertible.

» Decision procedure by a single proof.
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Hypersequent calculi H.E*

Propositional rules (examples)

GIT,AANB,AB= A G|T=AAABA G|T=BAABA
A

LA GIT,ANB=A G|T=AAB,A

Modal rules for the classical cube

G| T, OA (A) = A Gg|IM(X)=>0B,A|~=B
L G|T,OA= A RCm G|T,(X)=0B,A
oo SN0 =084 5= B {G|T,(Z)=0B,A | B= Alacr
Gg|r(x)=08,A
GIT,(T)=A G T, (X)), (M, (M= A

gir=n gIr(x,m=a2a

Modal rules for further extensions (examples)

gir,(x),r=24a Pg|r,<z>:>A|)::>
gIr(x) =24 gIr,(x) =24
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Semantic intuition

» Components represent the worlds of a model.

» Blocks represent truth sets belonging to the neighbourhood:
(A) =~ [A] € N(w).

» Rules express semantic conditions. Examples:

G| OA (A = A

w - DA = [A] € N(w).

GIT,OA= A
GIT,(T)y=A 7
—GTsa [T] =W e N(w).
gIr,(x),(m,xm=A4A [AZ]IAN] € N(w) =
gIr(x,m=A IANZINIAN] € N(w).

» Cumulative rules: A saturated hypersequent contains all information to
build a countermodel.
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Hypersequents and backtracking

Without hypersequents

—
non derivable o
[e]
-3
LA Pa=r g P,q=q ':'/t\
ROm PAg=Tr @ pPAG=q ROm
(pAq)=0r,0q — (pAq)=0r,0q

O(pAq) = 0Or,0Oq

With hypersequents
(pAq)=0r,0q|p,g=r|p,qg=q
(pAq)=0r,0q|p,g=r|pAqg=q

(pAq)=U0r,0q|p.g=r
(pAq)=0r,0q|pAqg=r

(pAq)=0r,0Oq
O(pAgq)=0r,0Oq

LA
ROm

RCOm

LO
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Properties of H.E*

» Syntactic proof of admissibility of structural rules and cut

Lk GgIr=A Rwk GgIr=A Ewk G L G|TN ¢, 0= A
wk ——— =1
G e=a T GIT= AN gir=a " grs=a
GIT=AAA GIr=A|r=A G| (©,A A=A
Lctr Ectr ctr
Gg|Ir=AA Gg|r=A G| (0,A) = A
G|T,(0,A) =A GIFr=AA GIT,A= A
Bmgl cut
G|l (©,A A=A Gg|r=2A

GlE=A {G| A= B}gex g|Ir{A=A
gIr (=24

su

> Soundness and completeness w.r.t. E* (via simulation of sequent calculi)

We now consider
» Countermodel extraction

» Complexity of proof search
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

N7

AceT;
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

N TN

AcT; Ac Ay
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

NN

AcT; A@éﬁUA,- Ac Ay
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,
.
\

AcT; A@éﬁUA,- Ac Ay

i-A
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

NN

AcT; A@éﬁUA,- Ac Ay

| |

i-A kI A
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

NN

AcT; A@éﬁUA,- Ac Ay

|

i-A ? kI A
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

NN

AcT; A¢T;UA; Ac Ag

| |

i-A ? kI A

Impossible to determine [A].
= Impossible to define directly a standard model.
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

1st solution

Saturate with analytic cut:
GIT=AA GIAT=A
GIr=A

cut

Pros
» Fixes the extension of every subformula

» Constructs a standard neighbourhood model

Cons

» Strong increase in complexity
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

2nd solution

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

A A@éﬁUA,- AE‘A/( A
? I A

A* C [A] A C Al
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

2nd solution

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

A A@éﬁUA,- A€e Ay
? I A
AT C [A] A” C [-A]

:’Q: Bi-neighbourhood semantics!
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Countermodel extraction from saturated hypersequent

» Every component corresponds to a world.
» Formulas in [ are true, formulas in A are false.

2nd solution

F1:>A1|F2:>A2|F3:>A3|F4:>A4\F5:>A5|...|F,,:>A,,

A A@éﬁUA,- A€e Ay
? I A
AT C [A] A” C [-A]

[ (A e, — (A",A")eN(m)
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Example of countermodel

Open branch of failed proof of K in H.EC

saturated
O(p — q),0p, (p = q),{p),(p =~ q,p) =>Tqlag=plp—qg=q,p
O(p — q),0p,(p = q),{p),(p—~q,p) = Tq|qg=p|lp—qg=q
O(p — q),0p,(p — a),{p),{p =~ q,p) = 0q|qg=p
O(p — q),0p,(p — q),(p),(p = q,p) = Ogq
O(p — q),0p,(p = q), (p) = Oq L
O(p — q),0p = Oq

L—
RO

RO
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Example of countermodel

Open branch of failed proof of K in H.EC

W = 1 2 3

O(p — q),0p, (p = q),(p),(p—=q,p) =gl qg=>p|lp—=q9=q,p
O(p — q),0p, (p = q),(p),(p—q,p)=Tq|lg=plp—qg=gq
O(p — q),0p,(p — q),(p),{p > q,p) =0q|q=p
O(p — q),0p, (p = q),(p), (P — q.p) = Uq

O(p — q),0p,(p = q), (p) = Ogq

O(p — q),0p = Ogq

RO

RO

2
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Example of countermodel

Open branch of failed proof of K in H.EC

W = 1 2 3

O(p — q),0p, (p = a),(p),(p—=q,p) =>Tqlqg=p|lp—q9=q,p
O(p — q),0p, (p = q),(p),(p—q,p)=Tq|lg=plp—qg=gq
O(p — q),0p,(p — q),(p),{p > q,p) =0q|q=p
O(p — q),0p, (p = q),(p), (P — q.p) = Uq

O(p — q),0p,(p = q), (p) = Ogq

O(p — q),0p = Ogq

RO
RO

2

Bi-neighbourhood countermodel

> W ={1,2,3}.
N1 = {(p=agp—q), = {({3},0),
> (p*5p7), (0,{2,3}),
(p—=aq.pp—aqp )} (0,{2,3})}.
> N(2) = N(3) = 0.
> V(p) = 0,V(q) = {2}.
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Proof search and its complexity

Proof search strategy for a hypersequent H

» Bottom-up proof search with simple redundancy check: a rule is not
applied if the premiss is already contained in the hypersequent (needed
because rules are cumulative).

» Complexity upper bound for NNMLs determined by the cost of
construction of a proof search tree T for = A.

Complexity for the logics without axiom C

» Maximal length of a hypersequent occurring in 7 is polynomial (wrt #)
(by counting the possible formulas, blocks and components in it).

» Maximal length of a branch of 7 is polynomial.
» Cost of redundancy check is polynomial.

= The hypersequent calculi provide a coNP decision procedure for the
derivability problem.
Vs. complexity for the logics with axiom C
» n O-subformulas = 2" blocks.
» T can contain hypersequents of exponential size wrt H.

= Sub-optimal proof-search. 2/



From syntactical to semantical properties

Logics without axiom C

1. Complexity of proof search + direct countermodel extraction

= NP decision procedure for the satisfiability problem (proof search for A =)

2. Polynomial size of saturated hypersequents 4+ 1-1 correspondence between
components-worlds and blocks-neighbourhood sets

= Polysize model property for bi-neighbourhood semantics (constructive
proof): every satisfiable formula has a model of polynomial size (counting
both W and N).

3. Indirect polysize model property for neighbourhood semantics, considering
a trasformation from bi-neighbourhood to standard models.

From semantical to negative syntactical properties, for logics with C
Conjecture: Satisfiable formulas of size n whose models have at least 2" worlds.
Known for K (Blackburn et al. 2001).

= No PSPACE proof search procedure is possible that explicitly constructs a
countermodel.
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WM prolog implementation (D., Olivetti, Pozzato 20

NONNORMAL MODALLOGIC: ©F OEM OEN ©OEC OEMN @EMC OENC ©EMNC

| (box(a A b)) -> (box(a)

abanb=a | (anb),0anb) = O(a),OfaAb) —Ofa)

anb=a | (@Ab,D@AY = O@.0@AD - 0@ -
run HYPNO T " - MOg

RESULT: VALID

RUN HYPNO BUILD A DERIVATION

COUNTERMODEL FOR ((BOX(A)) " (BOX(B))) -> (BOX(A B))

RESULT: NOT VALID W=3.2.1) V(a)=(3}, V(b)={2}

ST For all other atomic variables P (if any), V(P)=@
N (NON-MONOTONIC CASE):
N(3)=0
N(2)=0

N(1)={([2].[3]).([31.[2)}

\.

http://193.51.60.97:8000/HYPNO/
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Main reference so far:

TD, B. Lellmann, N. Olivetti, E. Pimentel.
Hypersequent calculi for non-normal modal and deontic logics: Countermodels
and optimal complexity. JLC 2021.

More recently, application of these methods/results to
> Agency logics of "“bringing-it-about-that” (BIAT logics)
(with Charles Grellois and Nicola Olivetti)

» More expressive languages: modal description logics
(with Andrea Mazzullo, Ana Ozaki and Nicolas Troquard)

» Combinations of NNMLs
(work in progress with Andrea Mazzullo)
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Combinations of NNMLs
(work in progress)
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Combinations of NNMLs (1)

» Hypersequent rules are modular and context independent.

= Can be immedately extended to multimodal setting.

Fusions (axiomatic definition)

Given NNMLs Ly, ...,L, in L, ..., L0, (sharing atoms and boolean
connectives), their fusion L1 & ... @ L, is the smallest logic in Lo, o,
containing Ly U ... UL, and closed under the rules of Ly, ..., L,.

Semantics for fusions Ly & ... L,
n-neighbourhood models (W, N1, ..., N5, V), where each N; satisfies the
conditions for L;.

» Note: independently axiomatizable logics. Not true for all NNMLs
(Fajardo & Finger 2005).
» General results for normal Ls (Wolter 1998), NNML fusions less studied.
» From the hypersequent calculus we obtain:
» Proof search and countermodel extraction extended to fusions.

> w/o axiom C, proof search is still (co)NP.
= Fusions of NP NNMLs are NP (vs. e.g. S5).
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Combinations of NNMLs (1)

Back to formula interpretation

» No formula interpretation for hypersequents.

» Semantically, a hypersequent is a disjunction of validities:
METi= A1 .| Th=A, iff MET, = A;forsomeie€{l,..,n}

» Non-normal modalities are not strong enough.

We add a universal modality
> M,wlFUA iff forall v, M,v I A.
(M= Ay [Th= An) =UAT = VAV VUAT =V An).
> We add hypersequent rules for S5 (Restall 2005, Poggiolesi 2008):

HITLUA= A, A= HIT=UAA|=A
HITLUA=A|Z =N H|T = UAA
H|TUA A= A

CUHITUAS A
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Combinations of NNMLs (1)

» Fusions of logics also sharing the symbol /.
» n-neighbourhood models, with w I- U A iff v IF A for all v.

» Proof search is still NP (w/o axiom C)
» Same countermodel extraction, gives models with U universal modality.
= Completeness of the calculus wrt n-neighbourhood models.

= NP-completeness of satisfiability problem (w/o axiom C).

» Equivalent axiomatic systems (via full formula interpretation).
> Additional axioms (examples):
EY UA— B)AUB = A) - UOA—T;B) N UA = UDA
MY U(A — B) — U(O,A — 0O,B) PY U-A — U-,A
= Indirect completeness of axiom systems wrt n-neighbourhood models.

Note: Almost immediate, no need of (e.g.) generated submodels.

39/44



BIAT agency logics
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BIAT agency logics

Basic priciples of BIAT

» Actions as results, means do not matter.

» Focus on responsibility, e.g. “ET.

Two modalities: Does & Can, indexed by agents
> E;A “Agent i b..at. A"
> C;A "Agent i is capable of b.i.a.t. A”.

BIAT axioms (Elgesem 1997)

» Principle of success: (Tg) E/A— A

» Principle of aggregation: (Cg) E/AAE;B — Ei(AA B)

» Do implies Can: (Intgc) E;A— C/A

» Principle of possibility: (Pc) —C;L

» Principle of avoidability: (Q¢) -C;T

» Actions are not sensitive to their syntactic formulation:
(RE) gaoes  (RE) TaocE
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BIAT agency logics

Strictly non-normal
» No monotonicity: FA— B # EE/A— E;B (otherwise E;A— E;T)
» No necessitation: FA # EEA (otherwise E;T)
= Incompatibile with normal modalities.

> Contains the negation of necessitation: F —E; T
» No normal extension is possible.

Semantics
> Selection function models (Elgesem 1997)
> Neighbourhood models (Governatori & Rotolo 2005)
» Bi-neighbourhood models

Extensions

> With attempted actions (Jones & Parent 2007), time (Troquard 2019),
coalitions (Troquard 2014), actions by means/dyadic modalities
(McNamara 2019).

» We give calculus for basic logic, coalitions and dyadic modalities
(D., Grellois, Olivetti 2023).
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Back to the calculus

» Propositional rules and rules for each modality (as before)
> Rules for interaction (example)
GIT (D (D) =4
G (I =A

Intgc
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Back to the calculus

» Propositional rules and rules for each modality (as before)

» Rules for interaction

» Blocks allow analytic rules for the relation between BIAT modalities.
» By modularity:
> Rules for ifferent BIAT modalities independend from each other.

> Easy definition of calculi for extensions.
> e.g. rules of basic calculus + rules for coalitions (examples):

o o G EE (Me (B Mo, = 4
GIT (X5 =A Be GIT (D)5 (Mg =A
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Back to the calculus

» Propositional rules and rules for each modality (as before)

» Rules for interaction

» Blocks allow analytic rules for the relation between BIAT modalities.
» Modularity

» Termination of proof search and countermodel extraction
= Decidability of satisfiability problem for BIAT logics
Note: exponential models because of the rule
gIr ()7 M (Emi=a
G| T (D)F (Mi=A
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Conclusions

» Good match of bi-neighbourhood semantics and partial information given
by hypersequent proof search.
» From syntactical to semantical properties:
» Complexity of the satisfiability problem.
» Polysize model property.
» Also in contrapositive way:

» Exponential models for C ~» No optimal calculus giving
countermodels.

» Application to fusions, combinations with universal modality, BIAT logics.

Main open problem

> Iterative axioms, e.g. 4, 5, B (no cut-free calculus at all in some cases).
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Conclusions

» Good match of bi-neighbourhood semantics and partial information given
by hypersequent proof search.
» From syntactical to semantical properties:
» Complexity of the satisfiability problem.
» Polysize model property.
» Also in contrapositive way:

» Exponential models for C ~» No optimal calculus giving
countermodels.

» Application to fusions, combinations with universal modality, BIAT logics.

Main open problem

> Iterative axioms, e.g. 4, 5, B (no cut-free calculus at all in some cases).

Thank you!
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