Value groups of finitely ramified henselian valued fields and model completeness

Anna De Mase

Università degli Studi della Campania "Luigi Vanvitelli"

17 January 2023

Transfer principles

- Model completeness for hens vf (0,p) valued in a Z-group
- Model completeness for hens vf (0,p) valued in an oag with finite spines
- Model completeness for hens vf (0,p) valued in an oag with spine of order type ω and no colours

Valued fields

Let K be a field and G a totally ordered abelian group. A *valuation* over K is a surjective map

 $v: K \longrightarrow G \cup \{\infty\}$

satisfying the following conditions:

•
$$v(a) = \infty \iff a = 0;$$

•
$$v(ab) = v(a) + v(b);$$

•
$$v(a+b) \ge min\{v(a), v(b)\}.$$

 $O = \{x \in K \mid v(x) \ge 0\}$ is the valuation ring. It is a local ring with unique maximal ideal $M = \{x \in K \mid v(x) > 0\}$. The quotient O/M = k is the *residue field* of the valuation v.

Cases:

• **2.** *char K* = 0, *char k* = *p*;

• **3.** *char K* = *char k* = *p*.

A (1) > A (1) > A

Valued fields

Let K be a field and G a totally ordered abelian group. A *valuation* over K is a surjective map

$$v: K \longrightarrow G \cup \{\infty\}$$

satisfying the following conditions:

•
$$v(a) = \infty \iff a = 0;$$

•
$$v(ab) = v(a) + v(b);$$

•
$$v(a+b) \ge min\{v(a), v(b)\}.$$

 $O = \{x \in K \mid v(x) \ge 0\}$ is the valuation ring. It is a local ring with unique maximal ideal $M = \{x \in K \mid v(x) > 0\}$. The quotient O/M = k is the *residue field* of the valuation v.

Cases:

• **2.** *char K* = 0, *char k* = *p*;

Examples

1. Let *p* be a prime. The field of *p*-adic numbers

$$\mathbb{Q}_{p} = \left\{ \boldsymbol{a} = \sum_{i \geq k}^{\infty} a_{i} \boldsymbol{p}^{i} \mid \boldsymbol{k} \in \mathbb{Z}, a_{i} \in \{0, \dots, p-1\} \right\}$$

with the valuation $v_p(a) = min\{i \mid a_i \neq 0\}$ (the *p*-adic valuation) with values in \mathbb{Z} and residue field \mathbb{F}_p .

2. Let *k* be a field and *G* an ordered abelian group. The valued field of *generalized power series* (or *Hahn field*)

$$k((G)) = \left\{ a = \sum_{g \in G} a_g t^g \mid a_g \in k, \text{ for all } g \in G \text{ and } supp(a) \text{ is well ordered} \right\}$$

with the valuation $v_t(a) = min\{g \mid a_g \neq 0\}$ (the *t*-adic valuation) with values in *G* and residue field *k*.

Examples

1. Let *p* be a prime. The field of *p*-adic numbers

$$\mathbb{Q}_{p} = \left\{ \boldsymbol{a} = \sum_{i \geq k}^{\infty} a_{i} \boldsymbol{p}^{i} \mid \boldsymbol{k} \in \mathbb{Z}, a_{i} \in \{0, \dots, p-1\} \right\}$$

with the valuation $v_p(a) = min\{i \mid a_i \neq 0\}$ (the *p*-adic valuation) with values in \mathbb{Z} and residue field \mathbb{F}_p .

2. Let *k* be a field and *G* an ordered abelian group. The valued field of *generalized power series* (or *Hahn field*)

$$k((G)) = \left\{ a = \sum_{g \in G} a_g t^g \mid a_g \in k, \text{ for all } g \in G \text{ and } supp(a) \text{ is well ordered}
ight\}$$

with the valuation $v_t(a) = min\{g \mid a_g \neq 0\}$ (the *t*-adic valuation) with values in *G* and residue field *k*.

Valued fields

Definition

A valued field is henselian if its valuation extends uniquely to every algebraic extension.

Remark. (\mathbb{Q}_{p}, v_{p}) is henselian.

Theorem (Hensel's Lemma)

Suppose K is a pseudo-complete valued field, then it is henselian.

Definition

Let *K* be a valued field. We say that *K* is finitely ramified if char(k) = p and $|\{v(x) : 0 < v(x) \le v(p)\}| = e < \infty$. In particular, if e = 1 the field is unramified. The element with minimal positive valuation is called uniformizer.

< < >> < </p>

Model completeness for hens vf (0,p) valued in a Z-group Model completeness for hens vf (0,p) valued in an oag with finite spines Model completeness for hens vf (0,p) valued in an oag with spine of order type a

< < >> < <</p>

AKE - equicharacteristic zero

$$\begin{array}{l} \text{Consider } \mathfrak{L}_{\textit{rings}} = \{+, \cdot, 0, 1\}, \ \mathfrak{L}_{\textit{oags}} = \{+, 0, \leq\}, \text{ and} \\ \mathfrak{L}_{\textit{vf}} = (\mathfrak{L}_{\textit{Rings}}, \mathfrak{L}_{\textit{oags}}, \mathfrak{L}_{\textit{rings}}, \textit{v}, \textit{res}). \end{array}$$

Theorem (Ax-Kochen/Ershov principle)

Let (K_1, v_1) , (K_2, v_2) be two henselian valued field whose residue fields k_1, k_2 have characteristic 0 and let G_1, G_2 be their value groups. Then

$$K_1 \equiv_{vf} K_2 \text{ iff } k_1 \equiv_{rings} k_2 \text{ and } G_1 \equiv_{oag} G_2$$

Theorem (Ax-Kochen/Ershov principle (∠-version))

Let $(K_1, v_1), (K_2, v_2)$ be two henselian valued field whose residue fields k_1, k_2 have characteristic 0 and let G_1, G_2 be their value groups. Then

$$K_1 \preceq_{vf} K_2$$
 iff $k_1 \preceq_{rings} k_2$ and $G_1 \preceq_{oag} G_2$

Model completeness for hens vf (0,p) valued in a Z-group Model completeness for hens vf (0,p) valued in an oag with finite spines Model completeness for hens vf (0,p) valued in an oag with spine of order type ω

ヘロン 人間 とくほとく

AKE - mixed characteristic

Theorem (Bélair)

Let $(K_1, v_1), (K_2, v_2)$ be two unramified henselian valued field with perfect residue fields k_1, k_2 and let G_1, G_2 be their value groups. Then

 $K_1 \preceq_{vf} K_2$ iff $k_1 \preceq_{rings} k_2$ and $G_1 \preceq_{oag} G_2$

Theorem (Anscombe-Jahnke)

Let $(K_1, v_1), (K_2, v_2)$ be two unramified henselian valued field with arbitrary residue fields k_1, k_2 and let G_1, G_2 be their value groups. Then

$$K_1 \preceq_{vf} K_2$$
 iff $k_1 \preceq_{rings} k_2$ and $G_1 \preceq_{oag} G_2$

Question: Does the transfer hold for valued fields with (finite) ramification? **Answer**: In general, no.

Model completeness for hens vf (0,p) valued in a Z-group Model completeness for hens vf (0,p) valued in an oag with finite spines Model completeness for hens vf (0,p) valued in an oag with spine of order type ω

< <p>> < <p>> < <p>> <</p>

Index

2

Transfer principles

- Model completeness for hens vf (0,p) valued in a Z-group
- Model completeness for hens vf (0,p) valued in an oag with finite spines
- Model completeness for hens vf (0,p) valued in an oag with spine of order type ω and no colours

Model completeness for hens vf (0,p) valued in a Z-group Model completeness for hens vf (0,p) valued in an oag with finite spines Model completeness for hens vf (0,p) valued in an oag with spine of order type ω

< < >> < <</p>

Definition

An ordered abelian group is called a \mathbb{Z} -group if it is elementarily equivalent to \mathbb{Z} as an ordered abelian group.

Proposition

The theory of \mathbb{Z} as an ordered abelian group has quantifier elimination in the Presburger language $\mathfrak{L}_{pres} = \{+, 0, 1, \leq, \equiv_m\}_{m \in \mathbb{N}}$, where 1 is a constant for the minimal positive element and $a \equiv_m b$ iff $a - b \in m\mathbb{Z}$.

< < >> < <</p>

Theorem (Derakhshan-Macintyre)

Let K be a Henselian valued field of mixed characteristic (0, p) with finite ramification $e \ge 1$. Suppose the value group of K is a \mathbb{Z} -group. If the theory of the residue field k is model complete in the language of rings, then the theory of K is model complete in the language of rings.

Some observations

(i) let k be a field. If Th(k) is model complete in L_{rings}, then k is perfect.

(ii) Let *K* be an henselian valued field of mixed characteristic (0, p) and ramification index *e*, and let n > e be an integer coprime with *p*. Then the valuation ring is existentially definable by the formula

$$\exists y(1+\rho x^n=y^n),$$

and the maximal ideal is existentially definable by the formula

$$\exists y(1+\frac{1}{p}x^n=y^n).$$

Some observations

- (i) let k be a field. If Th(k) is model complete in L_{rings}, then k is perfect.
- (ii) Let *K* be an henselian valued field of mixed characteristic (0, p) and ramification index *e*, and let n > e be an integer coprime with *p*. Then the valuation ring is existentially definable by the formula

$$\exists y(1+px^n=y^n),$$

and the maximal ideal is existentially definable by the formula

$$\exists y(1+\frac{1}{p}x^n=y^n).$$

Model completeness for hens vf (0,p) valued in a Z-group Model completeness for hens vf (0,p) valued in an oag with finite spines Model completeness for hens vf (0,p) valued in an oag with spine of order type α

< <p>> < <p>> < <p>> <</p>

Index

2 Transfer principles

- Model completeness for hens vf (0,p) valued in a Z-group
- Model completeness for hens vf (0,p) valued in an oag with finite spines
- Model completeness for hens vf (0,p) valued in an oag with spine of order type ω and no colours

Oags with finite spines

Let *G* be an oag. For each positive integer *n* we recall the definition of the spine S_n :

Definition

For $n \in \mathbb{N}$ and $a \in G \setminus nG$, let H_a be the largest convex subgroup of G such that $a \notin H_a + nG$; set $H_a = 0$ if $a \in nG$. Define $S_n := G/\sim$, with $a \sim a'$ iff $H_a = H_{a'}$. and let $s_n : G \longrightarrow S_n$ be the canonical projection. For $\alpha = s_n(a) \in S_n$, define $\overline{H_\alpha} := H_a$. Since the system of convex subgroups of an ordered abelian group are linearly ordered, S_n is an interpretable set linearly ordered by $\alpha \leq \alpha'$ if $\overline{H_\alpha} \subseteq \overline{H_{\alpha'}}$. The structure $(S_n, <)$ is called the n-spine of G.

Model completeness for hens vf (0,p) valued in a Z-group Model completeness for hens vf (0,p) valued in an oag with finite spines Model completeness for hens vf (0,p) valued in an oag with spine of order type a

< < >> < <</p>

Oags with finite spines

Definition

If G is an oag such that for each $n \in \mathbb{N}$, $|S_n|$ is finite, G is said to have finite spines.

Remark. All the $\overline{H_{\alpha}}$ are definable in \mathfrak{L}_{oag} and, moreover, if *G* is a group with finite spines, then $\{\overline{H}_{\alpha} | \alpha \in S_n, n \in \mathbb{N}\}$ are all the definable convex subgroups of *G*.

 \implies *G* has only finitely or countably many definable convex subgroups that we denote with $(H_i)_{i \in I}$, where *I* is a finite or countable set of indexes.

• • • • • • • • • • • •

Proposition (Halevi-Hasson/Farré)

Let G be an ordered abelian group with finite spines and let $\{H_i\}_{i \in I}$ be its definable convex subgroups for some I finite or countable. Then G has quantifier elimination in the the language:

 $\mathfrak{L} = \mathfrak{L}_{oag} \cup \{ (x =_{H_i} y + j\mathbf{1}_i)_{i \in I, j \in \mathbb{Z}}, (x \equiv_m^{H_i} y + j\mathbf{1}_i)_{i \in I, j \in \mathbb{Z}, m \in \mathbb{N}} \}$

where $j1_i$ is j times a representative $1_i \in G$ of the minimal positive element of the quotient G/H_i , if it exists, 0 otherwise.

Model completeness for hens vf (0,p) valued in a Z-group Model completeness for hens vf (0,p) valued in an oag with finite spines Model completeness for hens vf (0,p) valued in an oag with spine of order type a

< < >> < <</p>

Model completeness

Proposition (D.M.)

Let G be an ordered abelian group with finite spines and let $(H_i)_{i \in I}$ be its definable convex subgroups. Then G is model complete in the language:

$$\mathfrak{L}^*_{oag} = \{0, +, -, \leq, (j\mathbf{1}_i + H_i)_{j=0,1; i \in I}\},\$$

where $1_i \in G$ is a representative of the minimal element of the quotient G/H_i if it is discrete, 0 otherwise.

Model completeness for hens vf (0,p) valued in a Z-group Model completeness for hens vf (0,p) valued in an oag with finite spines Model completeness for hens vf (0,p) valued in an oag with spine of order type ω

< < >> < <</p>

Model completeness with value group with finite spines

Theorem (D.M.)

Let K be an Henselian valued field of mixed characteristic (0, p), finite ramification $e \ge 1$, and value group G with finite spines. If the theory of the residue field k is model complete in the language of rings, then the theory of K is model complete in the language $\mathfrak{L}^*_{Ring} = \{0, +, \cdot, 1, A_{i,j}\}_{j=0,1;i\in I}$ where $A_{i,j}$ is a predicate such that

$$A_{i,j}^{\mathcal{K}} = \{ a \in \mathcal{K} | v(a) = j \mathbf{1}_i^{\mathcal{G}} \mod H_i \},\$$

where the $(H_i)_{i \in I}$ are the definable convex subgroups of G and $1_i \in G$ is a representative for the minimal element of the quotient G/H_i if it is discrete, 0 otherwise.

イロト イヨト イヨト イ

Proof

Let $(K_1, v_1), (K_2, v_2) \models Th(K)$ (assume \aleph_1 -saturation), such that $K_1 \subseteq K_2$ in \mathfrak{L}^*_{Ring} . Claim: $(K_1, v_1) \preceq (K_2, v_2)$ in \mathfrak{L}^*_{Rings} . Note that:

- let Δ be the minimal convex subgroup of G. Then Th(G/Δ) is model complete in L^{*}_{oaa};
- $k_1 \preceq k_2$ implies $\mathring{K}_1 \preceq \mathring{K}_2$;
- AKE in the equicharacteristic 0 case obtained by coarsening holds resplendently considering an expansion of the language of groups;
- The languages ($\mathfrak{L}^*_{\textit{Ring}}, \mathfrak{L}_{\textit{oag}}, \mathfrak{L}_{\textit{ring}}, v, res$) and ($\mathfrak{L}_{\textit{Ring}}, \mathfrak{L}^*_{\textit{oag}}, \mathfrak{L}_{\textit{ring}}, v, res$) are bi-interpretable.
- the valuation is still \exists and \forall -definable by the same formula;

Example. Hahn series in one variable

Consider the field of Hahn series $\mathbb{Q}_p((t^{\mathbb{Z}}))$ and the valuation

$$\mathsf{val}:\mathbb{Q}_{p}((t^{\mathbb{Z}}))\longrightarrow\mathbb{Z} imes\mathbb{Z}$$

such that

$$O_{val} = \{x | val(x) \ge 0\} = \{x | v_t(x) > 0 \text{ or } v_t(x) = 0 \land v_p(ac_t(x)) \ge 0\}.$$

By the Theorem, $Th((\mathbb{Q}_p((t^{\mathbb{Z}})), val))$ is model complete in the language of rings together with two predicates A_0, A_1 such that

$$\begin{array}{ll} \mathcal{A}_{0}^{\mathbb{Q}_{p}((t^{\mathbb{Z}})))} &= \{x \mid val(x) \in \{0\} + \mathbb{Z}\} \\ &= \left\{x \mid x = \sum_{i \geq 0} a_{i}t^{i}, a_{0} \neq 0\right\} = \mathbb{Q}_{p} + (t)^{>0}. \end{array}$$

$$A_{1}^{\mathbb{Q}_{p}((t^{\mathbb{Z}}))} = \{ x \mid val(x) = (1,0) \mod (\{0\} + \mathbb{Z}) \} \\ = \left\{ x \mid x = \sum_{i \ge 1} a_{i}t^{i}, a_{1} \neq 0 \right\} = (t)^{>0}.$$

Model completeness for hens vf (0,p) valued in a Z-group Model completeness for hens vf (0,p) valued in an oag with finite spines Model completeness for hens vf (0,p) valued in an oag with spine of order type α

Example. Hahn series with many variables

We can consider the valuation

$$val_n: \mathbb{Q}_p((t_1^{\mathbb{Z}})) \dots ((t_n^{\mathbb{Z}})) \longrightarrow \bigoplus_{i=1}^{n+1} \mathbb{Z}^n$$

such that

$$O_{val_n} = \bigcup_{i=0}^n O^i,$$

where

$$\begin{array}{lll} O^n = & \{x \mid v_{t_n}(x) > 0\} \\ O^{n-1} = & \{x \mid v_{t_n}(x) = 0 \land v_{t_{n-1}}(ac_{t_n}(x)) > 0\} \\ & \vdots \\ O^0 = & \{x \mid v_{t_n}(x) = 0 \land v_{t_{n-1}}(ac_{t_n}(x)) = 0 \land \dots \\ & \land v_{t_1}(ac_{t_2}(\dots(ac_{t_n}(x)))) = 0 \land v_p(ac_{t_1}(\dots(ac_{t_n}(x))\dots)) > 0\} \end{array}$$

Example. Hahn series with many variables

By the Theorem, the theory of the valued field $\mathcal{K} = (\mathbb{Q}_p((t_1^{\mathbb{Z}})) \dots ((t_n^{\mathbb{Z}})), val_n)$ is model complete in the language of rings together with predicates $A_{i,j}$, $i = 1, \dots, n, j = 0, 1$, such that

$$\begin{array}{ll} \mathcal{A}_{i,0}^{\mathcal{K}} &= \{ x \in \mathcal{K} \mid val_n(x) \in \mathcal{H}_i \} \\ &= \{ x \in \mathcal{K} \mid x \in O^i \land v_{t_i}(ac_{t_{i+1}}(\dots(ac_{t_n}(x))..)) = 0 \}. \end{array}$$

$$\begin{array}{ll} \mathcal{A}_{i,1}^{\mathcal{K}} &= \{ x \in \mathcal{K} \mid val_n(x) = \boldsymbol{c}_i^G \mod H_i \} \\ &= \{ x \in \mathcal{K} \mid x \in O^i \land v_{t_i}(\boldsymbol{ac}_{t_{i+1}}(\ldots(\boldsymbol{ac}_{t_n}(x))..)) = 1 \}. \end{array}$$

Model completeness for hens vf (0,p) valued in a Z-group Model completeness for hens vf (0,p) valued in an oag with finite spines Model completeness for hens vf (0,p) valued in an oag with spine of order type ω

< <p>> < <p>> < <p>> <</p>

Index

2 Transfer principles

- Model completeness for hens vf (0,p) valued in a Z-group
- Model completeness for hens vf (0,p) valued in an oag with finite spines
- Model completeness for hens vf (0,p) valued in an oag with spine of order type ω and no colours

The theory of the lexicographic sum of Z

Example. Assume that $(G_{\gamma})_{\gamma \in \Gamma}$ is a family of non-trivial archimedean ordered abelian groups, where $(\Gamma, <)$ is an ordered set. Consider the Hahn product

$$H = \{f \in \prod_{\gamma \in \Gamma} G_{\gamma} : f \text{ has well ordered support}\}.$$

Then the induced structure on the spine of *H* is $(\Gamma, <, C_{\phi})_{\phi \in \mathfrak{L}_{oag}}$, where C_{ϕ} are unary predicates.

We focus on oag with spine (ω , <), and no colours. Example: $\bigoplus_{i \in \omega^*} \mathbb{Z}$.

• • • • • • • • • • • • •

Let $\mathfrak L$ be the language consisting of

- the main sort G with $+, -, 0, <, \equiv_m (m \in \mathbb{N})$;
- an auxiliary sort Γ with $<, 0, \infty, s : \Gamma \longrightarrow \Gamma$;

•
$$val^n: G \longrightarrow \Gamma (n \in \mathbb{N}, n \neq 1),$$

- an unary predicate $=^{\bullet} k_{\bullet}$ on *G* for each $k \in \mathbb{Z} \setminus \{0\}$,
- an unary predicate $\equiv_m^{\bullet} k_{\bullet}$ on *G* for each $m \ge 2$ and $k \in \{1, \dots, m-1\}$.

QE

Fact

Let G be an oag with spine ω and no colours. Then the theory of G has quantifier elimination in \mathfrak{L} , where

- $\Gamma = \omega \cup \{\infty\}$,
- s(n) = n + 1,
- for every a ∈ G, valⁿ(a) := minsupp(a mod nG) if a ∉ nG, valⁿ(a) := ∞ otherwise (or equivalently valⁿ(a) is the index i of the largest convex subgroup H_i such that a ∉ H_i + nG),
- for every a ∈ G, a =[•] k_• if a + H_i is k times the minimal element of G/H_i for some i ∈ G,
- for every a ∈ G, a ≡[•]_m k_• if a + H_i is congruent modulo m to k times the minimal element of G/H_i for some convex subgroup H_i.

< □ > < □ > < □ > < □ >

Model completeness

Proposition (D.M.)

Let G be an oag with spine ω and no colours. Then the theory of G is model complete in the one sorted language \mathfrak{L} consisting of

+, −, 0, <,

- for every $n, m \in \mathbb{N}$ a relation symbol $|^{n,m}$,
- for every $n, m \in \mathbb{N}$ a binary predicate $\overline{s}^{n,m}$,
- an unary predicate =• 1.

where

•
$$x|^{n,m}y \iff val^n(x) \le val^m(y),$$

•
$$\overline{s}^{n,m}(x,y) \iff val^m(y) = s(val^n(x)),$$

 for every a ∈ G, a =• 1, if a + H_i is the minimal element of G/H_i for some convex subgroup H_i.

• • • • • • • • • • • •

Model completeness with value group an oag with spine ω and no colours

Theorem (D.M.)

Let K be an Henselian valued field with the same properties and value group an oag G with spine ω and no colours. If Th(k) is m.c. in \mathfrak{L}_{rings} , then Th(K) is m.c. in \mathfrak{L}_{rings} together with

- for every $n, m \in \mathbb{N}$ a relation symbol $||^{n,m}$,
- for every $n, m \in \mathbb{N}$ a binary predicate $\n,m ,
- an unary predicate A,

where

- for every $x, y \in K$, $x ||^{n,m} y \iff val^n(v(x)) \le val^m(v(y))$,
- for every $x, y \in K$, $(x, y) \iff val^m(v(y)) = s(val^n(v(x)))$,
- $A^{\kappa} = \{x \in K \mid v(x) = \mathbf{1}_{\bullet}\}.$

Example infinite many variables

This language gives model completeness for the following valued field. Consider the field of Hahn series over \mathbb{Q}_p in infinitely many indeterminates

$$\mathcal{K} = \bigcup_{n \in \mathbb{N}} \mathbb{Q}_p((t_1^{\mathbb{Z}})) \dots ((t_n^{\mathbb{Z}})).$$

We can define, from the valuations val_n over $\mathbb{Q}_p((t_1^{\mathbb{Z}})) \dots ((t_n^{\mathbb{Z}}))$, a valuation val_{∞} over \mathcal{K} with values in $\bigoplus_{i < \omega^*} \mathbb{Z}$, such that

$$O_{\mathit{val}_\infty} = igcup_{\mathit{n} \in \mathbb{N}} O_{\mathit{val}_n}.$$