Rigidity and dynamics

I. Farah (with B. De Bondt, A. Vignati, and W. Brian)

LLAMAS, Amsterdam, October 16, 2024

III. First-order theories of $\mathfrak{B}_n = (\mathcal{P}(n), \sigma_n)$

Let σ_n denote the automorphism of the Boolean algebra $\mathcal{P}(n)$ obtained by cycling its atoms.

Problem

Describe sequences (n(j)) such that the first-order theories of $\langle \mathcal{P}(n(j)), \sigma_{n(j)} \rangle$ converge.

The *monadic second-order logic* is the extension of the first-order logic in which quantification over subsets of the domain is allowed.

The Very Same Problem

Describe sequences (n(j)) such that the monadic second-order theories of (directed) n(j)-cycles converge.

I. Definitions. Reduced product $\mathcal{M} = \prod_i M_i / \mathcal{I}$

Suppose that M_i , for $i \in \mathbb{N}$, are structures in the same language \mathcal{L} and \mathcal{I} is an ideal on \mathbb{N} . For (a_i) and (b_i) in $\prod_i M_i$ let

$$(a_i) =^{\mathcal{I}} (b_i) \Leftrightarrow (\forall^{\mathcal{I}} i) a_i = b_i \qquad (\Leftrightarrow \{i \mid a_i \neq b_i\} \in \mathcal{I}).$$

On the set $\prod_i M_i / \mathcal{I}$ of $=^{\mathcal{I}}$ -equivalence classes $[(a_i)]$, \mathcal{L} -function symbols are interpreted coordinatewise.

I. Definitions. Reduced product $\mathcal{M} = \prod_i M_i / \mathcal{I}$

Suppose that M_i , for $i \in \mathbb{N}$, are structures in the same language \mathcal{L} and \mathcal{I} is an ideal on \mathbb{N} . For (a_i) and (b_i) in $\prod_i M_i$ let

$$(a_i) =^{\mathcal{I}} (b_i) \Leftrightarrow (\forall^{\mathcal{I}} i) a_i = b_i \qquad (\Leftrightarrow \{i \mid a_i \neq b_i\} \in \mathcal{I}).$$

On the set $\prod_i M_i / \mathcal{I}$ of $=^{\mathcal{I}}$ -equivalence classes $[(a_i)]$, \mathcal{L} -function symbols are interpreted coordinatewise. For every \mathcal{L} -relation symbol R(x, y), set

$$R^{\mathcal{M}}([(a_i)], [(b_i)]) \Leftrightarrow (\forall^{\mathcal{I}}i)R^{M_i}(a_i, b_i).$$

(日)(1)</p

(Similarly for *n*-ary relation symbols.)

I. Definitions. Reduced product $\mathcal{M} = \prod_i M_i / \mathcal{I}$

Suppose that M_i , for $i \in \mathbb{N}$, are structures in the same language \mathcal{L} and \mathcal{I} is an ideal on \mathbb{N} . For (a_i) and (b_i) in $\prod_i M_i$ let

$$(a_i) =^{\mathcal{I}} (b_i) \Leftrightarrow (\forall^{\mathcal{I}} i) a_i = b_i \qquad (\Leftrightarrow \{i \mid a_i \neq b_i\} \in \mathcal{I}).$$

On the set $\prod_i M_i / \mathcal{I}$ of $=^{\mathcal{I}}$ -equivalence classes $[(a_i)]$, \mathcal{L} -function symbols are interpreted coordinatewise. For every \mathcal{L} -relation symbol R(x, y), set

$$R^{\mathcal{M}}([(a_i)], [(b_i)]) \Leftrightarrow (\forall^{\mathcal{I}}i)R^{M_i}(a_i, b_i).$$

(Similarly for *n*-ary relation symbols.) In this talk I will consider only the *Frechét ideal*

$$\mathsf{Fin} = \{ A \subseteq \mathbb{N} \mid |A| < \aleph_0 \}.$$

Basic question: Rigidity od reduced products

Suppose that M_i , N_i , for $i \in \mathbb{N}$, are countable structures of the same countable language.

- 1. Can we describe all automorphisms of $\prod_i M_i / \text{Fin}$?
- 2. When is $\prod_i M_i / \operatorname{Fin} \cong \prod_i N_i / \operatorname{Fin}$?

Example

The Boolean group, $\prod_i (\mathbb{Z}/2\mathbb{Z})/$ Fin.

Example

The Boolean group, $\prod_i (\mathbb{Z}/2\mathbb{Z})/Fin$. This is a 2^{\aleph_0} -dimensional vector space over F_2 , the 2-element field.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Example

The Boolean group, $\prod_i (\mathbb{Z}/2\mathbb{Z})/Fin$. This is a 2^{\aleph_0} -dimensional vector space over F_2 , the 2-element field.

- 1. It has $2^{2^{\aleph_0}}$ automorphisms.
- 2. For all ideals ${\mathcal I}$ and ${\mathcal J}$ on ${\mathbb N},$

$$\prod_{i} M_{i}/\mathcal{I} \cong \prod_{i} M_{i}/\mathcal{J} \quad \Leftrightarrow \quad |\mathcal{P}(\mathbb{N})/\mathcal{I}| = |\mathcal{P}(\mathbb{N})/\mathcal{J}|.$$

Example

The Boolean group, $\prod_i (\mathbb{Z}/2\mathbb{Z})/$ Fin. This is a 2^{\aleph_0} -dimensional vector space over F_2 , the 2-element field.

- 1. It has $2^{2^{\aleph_0}}$ automorphisms.
- 2. For all ideals ${\mathcal I}$ and ${\mathcal J}$ on ${\mathbb N},$

$$\prod_i M_i/\mathcal{I} \cong \prod_i M_i/\mathcal{J} \quad \Leftrightarrow \quad |\mathcal{P}(\mathbb{N})/\mathcal{I}| = |\mathcal{P}(\mathbb{N})/\mathcal{J}|.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Example

The Boolean algebra $\prod_i \{0,1\} / Fin$

Example

The Boolean group, $\prod_i (\mathbb{Z}/2\mathbb{Z})/$ Fin. This is a 2^{\aleph_0} -dimensional vector space over F_2 , the 2-element field.

- 1. It has $2^{2^{\aleph_0}}$ automorphisms.
- 2. For all ideals ${\mathcal I}$ and ${\mathcal J}$ on ${\mathbb N},$

$$\prod_i M_i/\mathcal{I} \cong \prod_i M_i/\mathcal{J} \quad \Leftrightarrow \quad |\mathcal{P}(\mathbb{N})/\mathcal{I}| = |\mathcal{P}(\mathbb{N})/\mathcal{J}|.$$

Example

The Boolean algebra $\prod_i \{0,1\} / \operatorname{Fin} \cong \mathcal{P}(\mathbb{N}) / \operatorname{Fin}$.

A case study: Can we describe all automorphisms of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}?$

An almost permutation of $\mathbb N$ is a bijection between cofinite subsets of $\mathbb N.$

Every almost permutation γ defines an automorphism of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$ by

 $\alpha_{\gamma}([A]) = [\gamma[A]].$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Automorphisms of the form α_{γ} are called *trivial*.

A case study: Can we describe all automorphisms of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}?$

An almost permutation of $\mathbb N$ is a bijection between cofinite subsets of $\mathbb N.$

Every almost permutation γ defines an automorphism of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$ by

 $\alpha_{\gamma}([A]) = [\gamma[A]].$

Automorphisms of the form α_{γ} are called *trivial*.

Lemma

The index map

$$\mathsf{index}(lpha_\gamma) = |\mathbb{N} \setminus \mathsf{dom}(\gamma)| - |\mathbb{N} \setminus \mathsf{range}(\gamma)|$$

defines a homomorphism from the group of trivial automorphisms of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$ onto \mathbb{Z} .

CH vs. some forcing extension

Theorem (W. Rudin, 1956)

The Continuum Hypothesis, CH, implies that $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$ has $2^{2^{\aleph_0}}$ nontrivial automorphisms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

CH vs. some forcing extension

Theorem (W. Rudin, 1956)

The Continuum Hypothesis, CH, implies that $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$ has $2^{2^{\aleph_0}}$ nontrivial automorphisms.

Theorem (Shelah, 1979)

In some forcing extension of the universe all automorphisms of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$ are trivial.

Forcing axioms: An alternative to CH

Assume \mathbb{K} is a class of compact Hausdorff spaces and consider a strengthening of the Baire Category Theorem.

 $\mathsf{FA}(\mathbb{K}) \ \text{If} \ \Omega \in \mathbb{K}, \ \text{then an intersection of} \ \aleph_1 \ \text{dense open subsets of} \ \Omega \\ \text{is dense.}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Forcing axioms: An alternative to CH

Assume \mathbb{K} is a class of compact Hausdorff spaces and consider a strengthening of the Baire Category Theorem.

- $\mathsf{FA}(\mathbb{K}) \ \text{If } \Omega \in \mathbb{K}, \ \text{then an intersection of } \aleph_1 \ \text{dense open subsets of } \Omega \\ \text{ is dense.}$
 - Theorem (Foreman-Magidor-Shelah, 1988)

There is a maximal class \mathbb{K} for which $FA(\mathbb{K})$ (known as Martin's Maximum, MM) is relatively consistent with ZFC, modulo large cardinal axioms.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Weaker forcing axioms include Proper Forcing Axiom (PFA), Martin's Axiom (MA). Open Colouring Axiom OCA_T is a consequence of PFA.

Forcing axioms: An alternative to CH

Assume \mathbb{K} is a class of compact Hausdorff spaces and consider a strengthening of the Baire Category Theorem.

 $\mathsf{FA}(\mathbb{K}) \ \text{If} \ \Omega \in \mathbb{K}, \ \text{then an intersection of} \ \aleph_1 \ \text{dense open subsets of} \ \Omega \\ \text{is dense.}$

Theorem (Foreman-Magidor-Shelah, 1988)

There is a maximal class \mathbb{K} for which $FA(\mathbb{K})$ (known as Martin's Maximum, MM) is relatively consistent with ZFC, modulo large cardinal axioms.

Weaker forcing axioms include Proper Forcing Axiom (PFA), Martin's Axiom (MA). Open Colouring Axiom OCA_T is a consequence of PFA.

Theorem

Forcing axioms imply that all automorphisms of $\mathcal{P}(\mathbb{N})/$ Fin are trivial: Shelah–Steprāns (1988, PFA), Veličković (1993, OCA_T+MA), De Bondt–F.–Vignati, 2024 (OCA_T).

The real result behind Rudin's theorem

Lemma

Assume CH.

1. $\prod_i M_i / \text{Fin has } 2^{2^{\aleph_0}}$ automorphisms (most of them nontrivial, for any reasonable definition of trivial automorphisms).

2. $\prod_i M_i / \operatorname{Fin} \cong \prod_i N_i / \operatorname{Fin} \Leftrightarrow \prod_i M_i / \operatorname{Fin} \equiv \prod_i N_i / \operatorname{Fin} (\equiv is elementary equivalence).$

The real result behind Rudin's theorem

Lemma

Assume CH.

- 1. $\prod_i M_i / \text{Fin has } 2^{2^{\aleph_0}}$ automorphisms (most of them nontrivial, for any reasonable definition of trivial automorphisms).
- 2. $\prod_i M_i / \operatorname{Fin} \cong \prod_i N_i / \operatorname{Fin} \Leftrightarrow \prod_i M_i / \operatorname{Fin} \equiv \prod_i N_i / \operatorname{Fin} (\equiv is elementary equivalence).$

Proof.

 $\prod_i M_i / \text{Fin is } \aleph_1 \text{-saturated (Jónsson–Olin, 1968), and by CH,} \\ \aleph_1 = 2^{\aleph_0}.$

Basic question revisited: Rigidity od reduced products

Suppose that M_i , N_i , for $i \in \mathbb{N}$, are countable structures of the same countable language.

- 1. Can we describe all automorphisms of $\prod_i M_i / \text{Fin}$?
- 2. When is $\prod_i M_i / \operatorname{Fin} \cong \prod_i N_i / \operatorname{Fin}$?

Basic question revisited: Rigidity od reduced products

Suppose that M_i , N_i , for $i \in \mathbb{N}$, are countable structures of the same countable language. Assume CH.

1. Can we describe all automorphisms of $\prod_i M_i / \text{Fin}$? No; this is a saturated model.

A D N A 目 N A E N A E N A B N A C N

2. When is $\prod_i M_i / \operatorname{Fin} \cong \prod_i N_i / \operatorname{Fin}$?

By \aleph_1 -saturation, CH reduces 2. to

2' When is $\prod_i M_i / \operatorname{Fin} \equiv \prod_i N_i / \operatorname{Fin}$?

The first-order theory of $\mathcal{M} = \prod_i M_i / \mathcal{I}$

Theorem (Fundamental Theorem on Ultraproducts. Łoś's, 1956)

If \mathcal{I} is a maximal ideal, then every sentence φ satisfies $\mathcal{M} \models \varphi \Leftrightarrow (\forall^{\mathcal{I}} i) \mathcal{M}_i \models \varphi$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The first-order theory of $\mathcal{M} = \prod_i M_i / \mathcal{I}$

Theorem (Fundamental Theorem on Ultraproducts. Łoś's, 1956)

If \mathcal{I} is a maximal ideal, then every sentence φ satisfies $\mathcal{M} \models \varphi \Leftrightarrow (\forall^{\mathcal{I}} i) \mathcal{M}_i \models \varphi$.

Theorem (Feferman–Vaught, 1967) For every \mathcal{I} , the Th(\mathcal{M}) is computable from $\langle Th(M_i) | i \in \mathcal{I} \rangle$ and $\mathcal{P}(\mathbb{N})/\mathcal{I}$.

The first-order theory of $\mathcal{M} = \prod_i M_i / \mathcal{I}$

Theorem (Fundamental Theorem on Ultraproducts. Łoś's, 1956)

If \mathcal{I} is a maximal ideal, then every sentence φ satisfies $\mathcal{M} \models \varphi \Leftrightarrow (\forall^{\mathcal{I}} i) \mathcal{M}_i \models \varphi$.

Theorem (Feferman-Vaught, 1967)

For every \mathcal{I} , the Th(\mathcal{M}) is computable from $\langle Th(M_i) | i \in \mathcal{I} \rangle$ and $\mathcal{P}(\mathbb{N})/\mathcal{I}$.

Theorem (E.A. Palyutin, 1980)

There is a set of formulas (called h-formulas) such that $\mathcal{M} \models \varphi \Leftrightarrow (\forall^{\mathcal{I}} i) M_i \models \varphi$. If $\mathcal{P}(\mathbb{N})/\mathcal{I}$ is an atomless Boolean algebra, then $\mathsf{Th}(\mathcal{M})$ implies

that every formula is a Boolean combination of h-formulas.

The dividing line for non-rigidity (what's so special about $\prod_i (\mathbb{Z}/2\mathbb{Z})/$ Fin?)

Theorem (De Bondt-F.-Vignati, 2024)

1. If $\prod_i M_i$ / Fin has stable theory, then it is 2^{\aleph_0} -saturated. In particular, it has $2^{2^{\aleph_0}}$ (nontrivial) automorphisms, provably in ZFC.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2. If $\prod_i M_i$ / Fin does not have stable theory, then it is not \aleph_2 -saturated.

The dividing line for non-rigidity (what's so special about $\prod_i (\mathbb{Z}/2\mathbb{Z})/$ Fin?)

Theorem (De Bondt-F.-Vignati, 2024)

- 1. If $\prod_i M_i$ / Fin has stable theory, then it is 2^{\aleph_0} -saturated. In particular, it has $2^{2^{\aleph_0}}$ (nontrivial) automorphisms, provably in ZFC.
- 2. If $\prod_i M_i$ / Fin does not have stable theory, then it is not \aleph_2 -saturated.

Theorem (De Bondt-F.-Vignati, 2023)

 $OCA_T + MA$ imply that all isomorphism between reduced products over Fin of models of certain theories are trivial.

Corollary (De Bondt–F.–Vignati, 2023)

Assume $OCA_T + MA$ and that $2 \le |M_i|, |N_i| \le \aleph_0$ for all *i*.

- 1. If M_i , N_i are fields, then $\prod_i M_i / \text{Fin} \cong \prod_i N_i / \text{Fin if and only}$ if there is an almost permutation γ such that $M_i \cong N_{\gamma(i)}$ for all *i*.
- 2. If M_i , N_i are linear orderings then $\prod_i M_i / \text{Fin} \cong \prod_i N_i / \text{Fin}$ if and only if there is an almost permutation γ such that $M_i \cong N_{\gamma(i)}$ for all *i*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

3. If M_i , N_i are sufficiently random graphs then $\prod_i M_i / \text{Fin} \cong \prod_i N_i / \text{Fin if and only if there is an almost}$ permutation γ such that $M_i \cong N_{\gamma(i)}$ for all i.

Corollary (De Bondt-F.-Vignati, 2023)

Assume $OCA_T + MA$ and that $2 \le |M_i|, |N_i| \le \aleph_0$ for all *i*.

- 1. If M_i , N_i are fields, then $\prod_i M_i / \text{Fin} \cong \prod_i N_i / \text{Fin if and only}$ if there is an almost permutation γ such that $M_i \cong N_{\gamma(i)}$ for all *i*.
- 2. If M_i , N_i are linear orderings then $\prod_i M_i / \text{Fin} \cong \prod_i N_i / \text{Fin}$ if and only if there is an almost permutation γ such that $M_i \cong N_{\gamma(i)}$ for all *i*.
- 3. If M_i , N_i are sufficiently random graphs then $\prod_i M_i / \text{Fin} \cong \prod_i N_i / \text{Fin if and only if there is an almost}$ permutation γ such that $M_i \cong N_{\gamma(i)}$ for all i.

Question

Is there a model-theoretic characterization of theories T such that all automorphisms between reduced products of models ot T respect coordinates?

II. Dynamics

Let σ denote the shift on $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$:

$$\sigma([A]) = [\{n+1 \mid n \in A\}].$$

Then $\operatorname{index}(\sigma) = -1$, $\operatorname{index}(\sigma^{-1}) = 1$. For an automorphism α of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$, write \mathfrak{A}_{α} for $(\mathcal{P}(\mathbb{N})/\operatorname{Fin}, \alpha)$.

II. Dynamics

Let σ denote the shift on $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$:

$$\sigma([A]) = [\{n+1 \mid n \in A\}].$$

Then $\operatorname{index}(\sigma) = -1$, $\operatorname{index}(\sigma^{-1}) = 1$. For an automorphism α of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$, write \mathfrak{A}_{α} for $(\mathcal{P}(\mathbb{N})/\operatorname{Fin}, \alpha)$. Theorem (W. Brian, 2024) *CH implies* $\mathfrak{A}_{\sigma} \cong \mathfrak{A}_{\sigma^{-1}}$.

II. Dynamics

Let σ denote the shift on $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$:

$$\sigma([A]) = [\{n+1 \mid n \in A\}].$$

Then $\operatorname{index}(\sigma) = -1$, $\operatorname{index}(\sigma^{-1}) = 1$. For an automorphism α of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$, write \mathfrak{A}_{α} for $(\mathcal{P}(\mathbb{N})/\operatorname{Fin}, \alpha)$. Theorem (W. Brian, 2024) *CH implies* $\mathfrak{A}_{\sigma} \cong \mathfrak{A}_{\sigma^{-1}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Corollary

For all m, n in \mathbb{Z} , we have

- 1. *CH* implies $\mathfrak{A}_{\sigma^m} \cong \mathfrak{A}_{\sigma^n} \Leftrightarrow |m| = |n|$.
- 2. OCA_T implies $\mathfrak{A}_{\sigma^m} \cong \mathfrak{A}_{\sigma^n} \Leftrightarrow m = n$.

Let $\bar{n} = (n(j))_j$ be a sequence in \mathbb{N} such that $\lim_j n(j) = \infty$. Let $\gamma_{\bar{n}}$ be a permutation of \mathbb{N} such that

- 1. $\mathbb{N} = \bigsqcup_{i} J(j)$ is a partition into intervals,
- 2. |J(j)| = n(j) for all *j*,
- 3. $\gamma_{\overline{n}} \upharpoonright J(j)$ is an n(j)-cycle, denoted σ_j .

This determines a trivial automorphism $\alpha_{\bar{n}}$ of $\mathcal{P}(\mathbb{N})/$ Fin. Write $\mathfrak{A}_{\bar{n}} = \mathfrak{A}_{\alpha_{\bar{n}}}$.

Let $\bar{n} = (n(j))_j$ be a sequence in \mathbb{N} such that $\lim_j n(j) = \infty$. Let $\gamma_{\bar{n}}$ be a permutation of \mathbb{N} such that

- 1. $\mathbb{N} = \bigsqcup_{i} J(j)$ is a partition into intervals,
- 2. |J(j)| = n(j) for all *j*,
- 3. $\gamma_{\bar{n}} \upharpoonright J(j)$ is an n(j)-cycle, denoted σ_j .

This determines a trivial automorphism $\alpha_{\bar{n}}$ of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$. Write $\mathfrak{A}_{\bar{n}} = \mathfrak{A}_{\alpha_{\bar{n}}}$.

Let $\mathfrak{B}_n = (\mathcal{P}(n), \sigma_n)$, where σ_n is the automorphism of $\mathcal{P}(n)$ that cycles the atoms.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Let $\bar{n} = (n(j))_j$ be a sequence in \mathbb{N} such that $\lim_j n(j) = \infty$. Let $\gamma_{\bar{n}}$ be a permutation of \mathbb{N} such that

- 1. $\mathbb{N} = \bigsqcup_{i} J(j)$ is a partition into intervals,
- 2. |J(j)| = n(j) for all *j*,
- 3. $\gamma_{\bar{n}} \upharpoonright J(j)$ is an n(j)-cycle, denoted σ_j .

This determines a trivial automorphism $\alpha_{\bar{n}}$ of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$. Write $\mathfrak{A}_{\bar{n}} = \mathfrak{A}_{\alpha_{\bar{n}}}$.

Let $\mathfrak{B}_n = (\mathcal{P}(n), \sigma_n)$, where σ_n is the automorphism of $\mathcal{P}(n)$ that cycles the atoms.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Proposition

 $(\mathcal{P}(\mathbb{N})/\operatorname{Fin}, \alpha_{\bar{n}}) \cong \prod_{j} \mathfrak{B}_{n(j)}/\operatorname{Fin}.$

Let $\bar{n} = (n(j))_j$ be a sequence in \mathbb{N} such that $\lim_j n(j) = \infty$. Let $\gamma_{\bar{n}}$ be a permutation of \mathbb{N} such that

- 1. $\mathbb{N} = \bigsqcup_{i} J(j)$ is a partition into intervals,
- 2. |J(j)| = n(j) for all *j*,
- 3. $\gamma_{\bar{n}} \upharpoonright J(j)$ is an n(j)-cycle, denoted σ_j .

This determines a trivial automorphism $\alpha_{\bar{n}}$ of $\mathcal{P}(\mathbb{N})/\operatorname{Fin}$. Write $\mathfrak{A}_{\bar{n}} = \mathfrak{A}_{\alpha_{\bar{n}}}$.

Let $\mathfrak{B}_n = (\mathcal{P}(n), \sigma_n)$, where σ_n is the automorphism of $\mathcal{P}(n)$ that cycles the atoms.

Proposition

 $(\mathcal{P}(\mathbb{N})/\operatorname{Fin}, \alpha_{\bar{n}}) \cong \prod_{j} \mathfrak{B}_{n(j)}/\operatorname{Fin}.$ In particular, $(\mathcal{P}(\mathbb{N})/\operatorname{Fin}, \alpha_{\bar{n}})$ is countably saturated and CH implies that $\mathfrak{A}_{\bar{m}} \cong \mathfrak{A}_{\bar{n}} \Leftrightarrow \mathfrak{A}_{\bar{m}} \equiv \mathfrak{A}_{\bar{n}}.$

Ghasemi's trick

Proposition (Ghasemi, 2016)

Every sequence (M_i) of first-order structures of the same countable language has a subsequence $(M_{k(i)})$ such that every further subsequence $(M_{l(i)})$ satisfies $\prod_i M_{k(i)} / \text{Fin} \equiv \prod_i M_{l(i)} / \text{Fin}$.

Ghasemi's trick

Proposition (Ghasemi, 2016)

Every sequence (M_i) of first-order structures of the same countable language has a subsequence $(M_{k(i)})$ such that every further subsequence $(M_{l(i)})$ satisfies $\prod_i M_{k(i)} / \text{Fin} \equiv \prod_i M_{l(i)} / \text{Fin}$.

Proof.

Choose k(i) so that $\lim_{i\to\infty} \text{Th}(M_{k(i)})$ exists, apply Feferman–Vaught.

Corollary

There are \bar{m} , \bar{n} such that $\mathfrak{A}_{\bar{m}} \cong \mathfrak{A}_{\bar{n}}$ is independent from ZFC.

This implies that the isomorphism of uniform Roe coronas of some uniformly locally finite metric spaces of asymptotic dimension 1 is independent from ZFC, but never mind that.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The sequence $\operatorname{Th}(\mathfrak{B}_n)$, for $n \in \mathbb{N}$, is recursive. $\operatorname{Th}(\mathfrak{A}_{\overline{n}})$ is decidable by Feferman–Vaught but we don't know what it is.

The sequence $\operatorname{Th}(\mathfrak{B}_n)$, for $n \in \mathbb{N}$, is recursive. $\operatorname{Th}(\mathfrak{A}_{\overline{n}})$ is decidable by Feferman–Vaught but we don't know what it is.

Lemma

For every $d \ge 2$, the assertion $(\forall^{\mathsf{Fin}}i)d|n_i$ is is first-order expressible in $\mathfrak{A}_{\bar{n}}$.

The sequence $\operatorname{Th}(\mathfrak{B}_n)$, for $n \in \mathbb{N}$, is recursive. $\operatorname{Th}(\mathfrak{A}_{\overline{n}})$ is decidable by Feferman–Vaught but we don't know what it is.

Lemma

For every $d \ge 2$, the assertion $(\forall^{\mathsf{Fin}} i)d|n_i$ is is first-order expressible in $\mathfrak{A}_{\bar{n}}$.

Question

Is $\mathfrak{A}_{(2^{2n})} \equiv \mathfrak{A}_{(2^{2n+1})}$?

The sequence $\operatorname{Th}(\mathfrak{B}_n)$, for $n \in \mathbb{N}$, is recursive. $\operatorname{Th}(\mathfrak{A}_{\overline{n}})$ is decidable by Feferman–Vaught but we don't know what it is.

Lemma

For every $d \ge 2$, the assertion $(\forall^{\mathsf{Fin}} i)d|n_i$ is is first-order expressible in $\mathfrak{A}_{\bar{n}}$.

Question

Is
$$\mathfrak{A}_{(2^{2n})} \equiv \mathfrak{A}_{(2^{2n+1})}$$
?

Answer

No.

The following is the best that we can do.

Lemma

For all $0 \le r < d$, the assertion $(\forall^{\mathsf{Fin}} i)n_i \equiv r \pmod{d}$ is first-order expressible in $\mathfrak{A}_{\overline{n}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The following is the best that we can do.

Lemma

For all $0 \le r < d$, the assertion $(\forall^{\mathsf{Fin}}i)n_i \equiv r \pmod{d}$ is first-order expressible in $\mathfrak{A}_{\overline{n}}$.

As before, σ_n is the automorphism of $\mathcal{P}(n)$ obtained by cycling its atoms.

The *monadic second-order logic* is the extension of the first-order logic in which quantification over subsets of the domain is allowed.

Problem

Describe sequences (n_j) such that the first-order theories of $\langle \mathcal{P}(n_j), r_{n_j} \rangle$ converge. Equivalently, describe sequences (n_i) such that the monadic second-order theories of (directed) n_i -cycles converge. For more on corona rigidity see I. Farah, S. Ghasemi, A. Vaccaro, A. Vignati. *Corona rigidity*. arXiv:2201.11618 (2022).

