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III. First-order theories of Bn = (P(n), σn)

Let σn denote the automorphism of the Boolean algebra P(n)
obtained by cycling its atoms.

Problem
Describe sequences (n(j)) such that the first-order theories of
〈P(n(j)), σn(j)〉 converge.

The monadic second-order logic is the extension of the first-order
logic in which quantification over subsets of the domain is allowed.

The Very Same Problem

Describe sequences (n(j)) such that the monadic second-order
theories of (directed) n(j)-cycles converge.



I. Definitions. Reduced product M =
∏

i Mi/I

Suppose that Mi , for i ∈ N, are structures in the same language L
and I is an ideal on N. For (ai ) and (bi ) in

∏
i Mi let

(ai ) =I (bi )⇔ (∀I i)ai = bi (⇔ {i | ai 6= bi} ∈ I).

On the set
∏

i Mi/I of =I -equivalence classes [(ai )], L-function
symbols are interpreted coordinatewise.

For every L-relation symbol R(x , y), set

RM([(ai )], [(bi )])⇔ (∀I i)RMi (ai , bi ).

(Similarly for n-ary relation symbols.)
In this talk I will consider only the Frechét ideal

Fin = {A ⊆ N | |A| < ℵ0}.
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Basic question: Rigidity od reduced products

Suppose that Mi ,Ni , for i ∈ N, are countable structures of the
same countable language.

1. Can we describe all automorphisms of
∏

i Mi/Fin?

2. When is
∏

i Mi/Fin ∼=
∏

i Ni/Fin?



A tale of two examples

Example

The Boolean group,
∏

i (Z/2Z)/Fin.

This is a 2ℵ0-dimensional vector space over F2, the 2-element field.

1. It has 22ℵ0 automorphisms.

2. For all ideals I and J on N,∏
i

Mi/I ∼=
∏
i

Mi/J ⇔ |P(N)/I| = |P(N)/J |.

Example

The Boolean algebra
∏

i{0, 1}/Fin ∼= P(N)/Fin.
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A case study: Can we describe all automorphisms of
P(N)/Fin?

An almost permutation of N is a bijection between cofinite subsets
of N.
Every almost permutation γ defines an automorphism of
P(N)/Fin by

αγ([A]) = [γ[A]].

Automorphisms of the form αγ are called trivial.

Lemma
The index map

index(αγ) = |N \ dom(γ)| − |N \ range(γ)|

defines a homomorphism from the group of trivial automorphisms
of P(N)/Fin onto Z.
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CH vs. some forcing extension

Theorem (W. Rudin, 1956)

The Continuum Hypothesis, CH, implies that P(N)/Fin has 22ℵ0

nontrivial automorphisms.

Theorem (Shelah, 1979)

In some forcing extension of the universe all automorphisms of
P(N)/Fin are trivial.
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Forcing axioms: An alternative to CH
Assume K is a class of compact Hausdorff spaces and consider a
strengthening of the Baire Category Theorem.

FA(K) If Ω ∈ K, then an intersection of ℵ1 dense open subsets of Ω
is dense.

Theorem (Foreman–Magidor–Shelah, 1988)

There is a maximal class K for which FA(K) (known as Martin’s
Maximum, MM) is relatively consistent with ZFC, modulo large
cardinal axioms.

Weaker forcing axioms include Proper Forcing Axiom (PFA),
Martin’s Axiom (MA). Open Colouring Axiom OCAT is a
consequence of PFA.

Theorem
Forcing axioms imply that all automorphisms of P(N)/Fin are
trivial: Shelah–Steprāns (1988, PFA), Veličković (1993,
OCAT+MA), De Bondt–F.–Vignati, 2024 (OCAT).
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The real result behind Rudin’s theorem

Lemma
Assume CH.

1.
∏

i Mi/Fin has 22ℵ0 automorphisms (most of them nontrivial,
for any reasonable definition of trivial automorphisms).

2.
∏

i Mi/Fin ∼=
∏

i Ni/Fin ⇔
∏

i Mi/Fin ≡
∏

i Ni/Fin
(≡ is elementary equivalence).

Proof.∏
i Mi/Fin is ℵ1-saturated (Jónsson–Olin, 1968), and by CH,
ℵ1 = 2ℵ0 .
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Basic question revisited: Rigidity od reduced products

Suppose that Mi ,Ni , for i ∈ N, are countable structures of the
same countable language.

1. Can we describe all automorphisms of
∏
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2. When is
∏
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By ℵ1-saturation, CH reduces 2. to

2’ When is
∏

i Mi/Fin ≡
∏
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Suppose that Mi ,Ni , for i ∈ N, are countable structures of the
same countable language. Assume CH.

1. Can we describe all automorphisms of
∏

i Mi/Fin? No; this is
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The first-order theory of M =
∏

i Mi/I

Theorem (Fundamental Theorem on Ultraproducts.  Loś’s,
1956)

If I is a maximal ideal, then every sentence ϕ satisfies M |= ϕ ⇔
(∀I i)Mi |= ϕ.

Theorem (Feferman–Vaught, 1967)

For every I, the Th(M) is computable from 〈Th(Mi ) | i ∈ I〉 and
P(N)/I.

Theorem (E.A. Palyutin, 1980)

There is a set of formulas (called h-formulas) such that
M |= ϕ ⇔ (∀I i)Mi |= ϕ.
If P(N)/I is an atomless Boolean algebra, then Th(M) implies
that every formula is a Boolean combination of h-formulas.
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The dividing line for non-rigidity
(what’s so special about

∏
i(Z/2Z)/Fin?)

Theorem (De Bondt–F.–Vignati, 2024)

1. If
∏

i Mi/Fin has stable theory, then it is 2ℵ0-saturated. In

particular, it has 22ℵ0 (nontrivial) automorphisms, provably in
ZFC.

2. If
∏

i Mi/Fin does not have stable theory, then it is not
ℵ2-saturated.

Theorem (De Bondt–F.–Vignati, 2023)

OCAT + MA imply that all isomorphism between reduced products
over Fin of models of certain theories are trivial.
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Corollary (De Bondt–F.–Vignati, 2023)

Assume OCAT + MA and that 2 ≤ |Mi |, |Ni | ≤ ℵ0 for all i .

1. If Mi ,Ni are fields, then
∏

i Mi/Fin ∼=
∏

i Ni/Fin if and only
if there is an almost permutation γ such that Mi

∼= Nγ(i) for
all i .

2. If Mi ,Ni are linear orderings then
∏

i Mi/Fin ∼=
∏

i Ni/Fin if
and only if there is an almost permutation γ such that
Mi
∼= Nγ(i) for all i .

3. If Mi ,Ni are sufficiently random graphs then∏
i Mi/Fin ∼=

∏
i Ni/Fin if and only if there is an almost

permutation γ such that Mi
∼= Nγ(i) for all i .

Question
Is there a model-theoretic characterization of theories T such that
all automorphisms between reduced products of models ot T
respect coordinates?
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II. Dynamics

Let σ denote the shift on P(N)/Fin:

σ([A]) = [{n + 1 | n ∈ A}].

Then index(σ) = −1, index(σ−1) = 1.
For an automorphism α of P(N)/Fin, write Aα for (P(N)/Fin, α).

Theorem (W. Brian, 2024)

CH implies Aσ
∼= Aσ−1 .

Corollary

For all m, n in Z, we have

1. CH implies Aσm ∼= Aσn ⇔ |m| = |n|.
2. OCAT implies Aσm ∼= Aσn ⇔ m = n.
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From this point on, all results are due to Brian–F.

Let n̄ = (n(j))j be a sequence in N such that limj n(j) =∞.
Let γn̄ be a permutation of N such that

1. N =
⊔

j J(j) is a partition into intervals,

2. |J(j)| = n(j) for all j ,

3. γn̄ � J(j) is an n(j)-cycle, denoted σj .

This determines a trivial automorphism αn̄ of P(N)/Fin. Write
An̄ = Aαn̄ .

Let Bn = (P(n), σn), where σn is the automorphism of P(n) that
cycles the atoms.

Proposition

(P(N)/Fin, αn̄) ∼=
∏

j Bn(j)/Fin.
In particular, (P(N)/Fin, αn̄) is countably saturated and
CH implies that Am̄

∼= An̄ ⇔ Am̄ ≡ An̄.
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Ghasemi’s trick

Proposition (Ghasemi, 2016)

Every sequence (Mi ) of first-order structures of the same countable
language has a subsequence (Mk(i)) such that every further
subsequence (Ml(i)) satisfies

∏
i Mk(i)/Fin ≡

∏
i Ml(i)/Fin.

Proof.
Choose k(i) so that limi→∞ Th(Mk(i)) exists, apply
Feferman–Vaught.

Corollary

There are m̄, n̄ such that Am̄
∼= An̄ is independent from ZFC.

This implies that the isomorphism of uniform Roe coronas of some uniformly locally finite metric spaces of

asymptotic dimension 1 is independent from ZFC, but never mind that.
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First-order theories of An̄ and of Bn = (P(n), σn)

The sequence Th(Bn), for n ∈ N, is recursive. Th(An̄) is decidable
by Feferman–Vaught but we don’t know what it is.

Lemma
For every d ≥ 2, the assertion (∀Fini)d |ni is is first-order
expressible in An̄.

Question
Is A(22n) ≡ A(22n+1)?

Answer
No.
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III (again). First-order theories of An̄ and of
Bn = (P(n), σn)

The following is the best that we can do.

Lemma
For all 0 ≤ r < d , the assertion (∀Fini)ni ≡ r (mod d) is first-order
expressible in An̄.

As before, σn is the automorphism of P(n) obtained by cycling its
atoms.
The monadic second-order logic is the extension of the first-order
logic in which quantification over subsets of the domain is allowed.

Problem
Describe sequences (nj) such that the first-order theories of
〈P(nj), rnj 〉 converge.
Equivalently, describe sequences (ni ) such that the monadic
second-order theories of (directed) ni -cycles converge.
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For more on corona rigidity see
I. Farah, S. Ghasemi, A. Vaccaro, A. Vignati. Corona rigidity.
arXiv:2201.11618 (2022).


