Appendix 00

On the hierarchy of linearity axioms with respect to logic and arithmetic*

Makoto Fujiwara

Department of Applied Mathematics, Faculty of Science Division I, Tokyo University of Science

(Partly joint work with Hajime Ishihara, Takako Nemoto, Nobu-Yuki Suzuki and Keita Yokoyama)

LAMMA Seminar@ILLC 19 March 2025

^{*}This work is supported by JSPS KAKENHI Grant Numbers JP19J01239, JP20K14354 and JP23K03205.

A Case Study on Linearity Axioms

Logical Principles

The following principles are classically valid but not provable in intuitionistic theories:

PEM (the principle of excluded middle) : $\varphi \lor \neg \varphi$; DML (the De Morgan law) : $\neg(\varphi \land \psi) \rightarrow \neg \varphi \lor \neg \psi$; DNE (the double negation elimination) : $\neg \neg \varphi \rightarrow \varphi$;

WPEM (the weak principle of excluded middle) : $\neg \varphi \lor \neg \neg \varphi$; WDML (the weak De Morgan law) : $\neg (\neg \varphi \land \neg \psi) \rightarrow \neg \neg \varphi \lor \neg \neg \psi$.

Introduction A Meta-theorem for Separation by Kripke Models A

A Case Study on Linearity Axioms

Arithmetical hierarchy over $HA + \Sigma_{n-1}$ -DNE

Remark. In constructive mathematics, Σ_1 -PEM, Σ_1 -DML and Σ_1 -DNE are known as **LPO**, **LLPO** and Markov's principle respectively.

Introduction A Me

A Case Study on Linearity Axioms

Arithmetical hierarchy over $HA + \Sigma_{n-1}$ -DNE

By sophisticated use of proof interpretations and models of finite-type arithmetic, one can obtain a lot of saparation results between the Σ_1 -fragements of the logical principles over HA.

Separation by Kripke Models (for n = 1)

 $\neg \neg p \rightarrow p$ is not valid in IPC-Kripke model $\mathcal{K}_0 = (\mathcal{K}_0, \leq_0, \Vdash_0)$:

 $\begin{array}{c} P & 1 \\ & & \\ & & \\ & & \\ & & 0 \end{array}$

On the other hand, $\neg q \lor \neg \neg q$ is valid in any Kripke model with the frame K_0 .

Introduction 00000000

A Proof of HA + WLEM $\nvDash \Sigma_1^0$ -DNE

- Let $\exists x A_0(x)$ be $\exists x \operatorname{Proof}_{\mathsf{PA}}(x, \lceil 0 = 1 \rceil)$.
- Consider the following Kripke model \mathcal{K}_0^{HA} of HA:

$$\mathcal{M} \quad 1 \\ | \\ 0 .$$

where the domain and evaluation for 0 are given by the standard model ω of PA and those for 1 are given by a non-standard model \mathcal{M} of PA + $\exists x A_0(x)$.

- Then $\mathcal{K}_0^{\mathsf{HA}} \nvDash \neg \neg \exists x \mathcal{A}_0(x) \to \exists x \mathcal{A}_0(x).$
- On the other hand, a schema $\neg \varphi \lor \neg \neg \varphi$ is valid in \mathcal{K}_0^{HA} .
- By the soundness of Kripke semantics for intuitionistic predicate logic, we have HA + WPEM ⊭ Σ⁰₁-DNE.

Separation by a Kripke Model refuting WPEM

 $\neg p \lor \neg \neg p$ is not valid in IPC-Kripke model $\mathcal{K}_1 = (\mathcal{K}_1, \leq_1, \Vdash_1)$:

On the other hand, $\neg(q \land r) \rightarrow \neg q \lor \neg r$ and $\neg \neg s \rightarrow s$ are valid in any Kripke model with the frame K_1 such that the evaluation for 2 is the same as that for 0.

Introduction 00000000

$\mathsf{HA} + \Sigma_1^0 \text{-} \mathsf{DML} + \Sigma_1^0 \text{-} \mathsf{DNE} \nvDash \Sigma_1^0 \text{-} \mathsf{WPEM}$

- Let $\exists x A_0(x)$ be $\exists x \operatorname{Proof}_{\mathsf{PA}}(x, \lceil 0 = 1 \rceil)$.
- Consider the following Kripke model \mathcal{K}_1^{HA} of HA:

where the domain and evaluation for 0 and 2 are given by the standard model ω of PA and those for 1 are given by a non-standard model \mathcal{M} of PA + $\exists x A_0(x)$.

- Then $\mathcal{K}_1^{\mathsf{HA}} \nvDash \neg \exists x \mathcal{A}_0(x) \lor \neg \neg \exists x \mathcal{A}_0(x)$.
- On the other hand, the schemata Σ₁⁰-DML and Σ₁⁰-DNE (for Σ₁⁰-formulae) are valid in K₁^{HA}.
- By the soundness of Kripke semantics for intuitionistic predicate logic, we have
 HA + Σ⁰₁-DML + Σ⁰₁-DNE ⊭ Σ⁰₁-WPEM.

Separation by a Kripke Model refuting DML

$$eg (p \lor q) \rightarrow \neg p \lor \neg q$$
 is not valid in IPC-Kripke model $\mathcal{K}_2 = (\mathcal{K}_2, \leq_2, \Vdash_2)$:

On the other hand, $\neg \neg r \rightarrow r$ is valid in any Kripke model with the frame K_2 such that the evaluation for 3 is the same as that for 0.

Introduction 0000000

A Case Study on Linearity Axioms

Appendix

$\mathsf{HA} + \Sigma_1^0 \text{-} \mathsf{DNE} \nvDash \Sigma_1^0 \text{-} \mathsf{DML}$

- Let ∃xA₀(x) and ∃xB₀(x) be Σ₁-formulae which are independent and consistent with PA.
- Consider the following Kripke model \mathcal{K}_2^{HA} of HA:

where the domain and evaluation for 0 and 3 are given by ω and those for 1 and 2 are given by non-standard models \mathcal{M}_1 and \mathcal{M}_2 s.t. $\mathcal{M}_1 \models_c \mathsf{PA} + \exists x A_0(x) + \neg \exists x B_0(x)$ and $\mathcal{M}_2 \models_c \mathsf{PA} + \exists x B_0(x) + \neg \exists x A_0(x)$ respectively. **•** $\mathcal{K}_2^{\mathsf{HA}} \nvDash \neg (\exists x A_0(x) \land \exists x B_0(x)) \rightarrow \neg \exists x A_0(x) \lor \neg \exists x B_0(x).$ **•** Σ_1^0 -DNE is valid in $\mathcal{K}_2^{\mathsf{HA}}$.

By the soundness of Kripke semantics for intuitionistic predicate logic, we have HA + Σ⁰₁-DNE ⊭ Σ⁰₁-DML.

9 / 24

Last Slide of my Talk at ILLC on 28 June 2019

 An ongoing joint work with Hajime Ishihara, Takako Nemoto, Nobu-Yuki Suzuki and Keita Yokoyama:

We are trying to construct a general machinery to apply the simple Kripke models which separate the logical principles in propositional logic for the separations of the Σ_1^0 -restrictions of the logical principles in arithmetic.

A Case Study on Linearity Axioms

Appendix 00

Meta-theorem. (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

Let $\mathcal{K} = (\mathcal{K}, \leq, \Vdash)$ be a finite IPC-Kripke model s.t. the induced frame $(I_{\mathcal{K}}, \leq_{\mathcal{K}})$ is a rooted tree and the induced extended frame $\mathcal{E}_{\mathcal{K}}$ is locally directed. If $\mathcal{K} \not\models \varphi$, then for all n,

 $\mathsf{HA} + \Sigma_{n-1} \operatorname{PEM} + L(K, \leq)^* + \Sigma \operatorname{-} T(\mathcal{E}_{\mathcal{K}}) \not\vdash \Sigma_n \operatorname{-} \varphi.$

A crucial idea underlying this meta-theorem is to restrict possible evaluations on the Kripke frame by using the **extended frame** generated by a given Kripke model.

 $[k] := \{k' \in \mathcal{K}_1 \mid k \in U \leftrightarrow k' \in U \text{ for any evaluation set } U \text{ of } \mathcal{K}_1\}.$

A Case Study on Linearity Axioms

Appendix 00

Definition (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

An extended frame $\mathcal{E} = ((K, \leq), f, (I, \leq_I))$ is a triple of frames (K, \leq) and (I, \leq_I) , and a monotone mapping f between them, that is, $k \leq k'$ implies $f(k) \leq_I f(k')$ for each $k, k' \in K$.

■ Each IPC-Kripke model *I* = (*I*, ≤_{*I*}, ⊩) induces an IPC-Kripke model *K*_{E,*I*} = (*K*, ≤, ⊩_{E,*I*}) by defining

$$k \Vdash_{\mathcal{E}, \mathcal{I}} p :\Leftrightarrow f(k) \Vdash p$$

for each $k \in K$ and propositional variable p.

A propositional formula φ is valid on E if K_{E,I} ⊨_{E,I} φ for each IPC-Kripke model I = (I, ≤_I, ⊨), that is, for each valuation ⊩ on (I, ≤_I); we then write E ⊨ φ.

• For an extended frame \mathcal{E} , define $T(\mathcal{E}) := \{ \varphi \mid \mathcal{E} \models \varphi \}.$

Remark

• For a frame
$$(K, \leq)$$
, the set

$$L(K,\leq) = \{\varphi \mid (K,\leq) \models \varphi\}$$

of propositional formulae is an intermediate propositional logic.

In contrast, for an extended frame *E*, *T*(*E*) is not an intermediate propositional logic in general. In particular, *T*(*E*) may not be closed under substitution.

Let K = (K, ≤, ⊢) be an IPC-Kripke model, and define a set Φ_K of upward closed subsets of K by

$$\Phi_{\mathcal{K}} := \{\{k \in K \mid k \Vdash p\} \mid p \in \mathcal{V}\}.$$

• Define binary relations $\preceq_{\mathcal{K}}$ and $\sim_{\mathcal{K}}$ on \mathcal{K} by

$$k \preceq_{\mathcal{K}} k' :\Leftrightarrow k \in U \text{ implies } k' \in U \text{ for all } U \in \Phi_{\mathcal{K}},$$

 $k \sim_{\mathcal{K}} k' :\Leftrightarrow k \preceq_{\mathcal{K}} k' \text{ and } k' \preceq_{\mathcal{K}} k.$

- Then ≤_K is a preorder and ~_K is an equivalence relation on K.
- Let I_K := K / ~_K, [k]_K ≤_K [k']_K :⇔ k ≤_K k',
 f_K(k) := [k]_K, where [k]_K (we sometimes suppress the subscript K) is the equivalence class of k w.r.t. ~_K.
- Then *E_K* := ((*K*, ≤), *f_K*, (*I_K*, ≤_K)) is an extended frame, and we call it the extended frame generated by the IPC-Kripke model *K*.

Introd	uction
0000	0000

A Case Study on Linearity Axioms

Appendix 00

Definition

For a propositional formula φ[p₁,..., p_m], Σ_n-φ denotes a schema φ[χ₁/p₁,..., χ_m/p_m], where χ₁,..., χ_m are Σ_n-formulae of HA, and Σ-φ denotes the following schema of HA :

$$\forall x(\psi_1(x) \lor \neg \psi_1(x)) \land \ldots \land \forall x(\psi_m(x) \lor \neg \psi_m(x)) \\ \rightarrow \varphi[\exists x\psi_1(x)/p_1, \ldots, \exists x\psi_m(x)/p_m].$$

- For an extended frame \mathcal{E} , Σ - $T(\mathcal{E})$ is the schema (of HA) consisting of Σ - φ where $\varphi \in T(\mathcal{E})$.
- For $k \in K$, let $\uparrow k$ denote $\{k' \in K \mid k \leq k'\}$.
- An extended frame *E* is locally directed if *f*⁻¹(↑*i*) ∩ ↑*k* is directed for all *i* ∈ *I* and *k* ∈ *K*, that is, for each *i* ∈ *I* and *k* ∈ *K*, if *I*, *I'* ∈ *f*⁻¹(↑*i*) ∩ ↑*k*, then there exists *I''* ∈ *f*⁻¹(↑*i*) ∩ ↑*k* such that *I''* ≤ *I* and *I''* ≤ *I'*.

A Meta-theorem for Separation by Kripke Models 000000 \bullet

A Case Study on Linearity Axioms

Appendix 00

Meta-theorem. (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

Let $\mathcal{K} = (\mathcal{K}, \leq, \Vdash)$ be a finite IPC-Kripke model s.t. the induced frame $(I_{\mathcal{K}}, \leq_{\mathcal{K}})$ is a rooted tree and the induced extended frame $\mathcal{E}_{\mathcal{K}}$ is locally directed. If $\mathcal{K} \not\models \varphi$, then for all n,

 $\mathsf{HA} + \Sigma_{n-1} \operatorname{PEM} + L(\mathcal{K}, \leq)^* + \Sigma \operatorname{-} \mathcal{T}(\mathcal{E}_{\mathcal{K}}) \not\vdash \Sigma_n \operatorname{-} \varphi,$

where $L(K, \leq)^*$ is the set of schemata of $\varphi[\psi_1/p_1, \ldots, \psi_m/p_m]$ for propositional formulae $\varphi[p_1, \ldots, p_m] \in L(K, \leq)$.

A Meta-theorem for Separation by Kripke Models 000000 \bullet

A Case Study on Linearity Axioms

Appendix 00

Meta-theorem. (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

Let $\mathcal{K} = (\mathcal{K}, \leq, \Vdash)$ be a finite IPC-Kripke model s.t. the induced frame $(I_{\mathcal{K}}, \leq_{\mathcal{K}})$ is a rooted tree and the induced extended frame $\mathcal{E}_{\mathcal{K}}$ is locally directed. If $\mathcal{K} \not\models \varphi$, then for all n,

 $\mathsf{HA} + \Sigma_{n-1} \operatorname{PEM} + L(\mathcal{K}, \leq)^* + \Sigma \operatorname{-} \mathcal{T}(\mathcal{E}_{\mathcal{K}}) \not\vdash \Sigma_n \operatorname{-} \varphi,$

where $L(K, \leq)^*$ is the set of schemata of $\varphi[\psi_1/p_1, \ldots, \psi_m/p_m]$ for propositional formulae $\varphi[p_1, \ldots, p_m] \in L(K, \leq)$.

Corollary. (De Jongh's theorem)

If $\varphi[p_1..., p_m] \notin IPC$, then $HA \nvDash \varphi[\chi_1/p_1, ..., \chi_m/p_m]$ for some Σ_1 -formulae $\chi_1, ..., \chi_m$ of HA.

A Meta-theorem for Separation by Kripke Models 000000 \bullet

A Case Study on Linearity Axioms

Appendix 00

Meta-theorem. (Ishihara-Nemoto-Suzuki-Yokoyama-F. 2023)

Let $\mathcal{K} = (\mathcal{K}, \leq, \Vdash)$ be a finite IPC-Kripke model s.t. the induced frame $(I_{\mathcal{K}}, \leq_{\mathcal{K}})$ is a rooted tree and the induced extended frame $\mathcal{E}_{\mathcal{K}}$ is locally directed. If $\mathcal{K} \not\models \varphi$, then for all n,

 $\mathsf{HA} + \Sigma_{n-1} \operatorname{PEM} + L(\mathcal{K}, \leq)^* + \Sigma \operatorname{-} \mathcal{T}(\mathcal{E}_{\mathcal{K}}) \not\vdash \Sigma_n \operatorname{-} \varphi,$

where $L(K, \leq)^*$ is the set of schemata of $\varphi[\psi_1/p_1, \ldots, \psi_m/p_m]$ for propositional formulae $\varphi[p_1, \ldots, p_m] \in L(K, \leq)$.

Corollary. (De Jongh's theorem)

If $\varphi[p_1..., p_m] \notin IPC$, then HA $\nvDash \varphi[\chi_1/p_1, ..., \chi_m/p_m]$ for some Σ_1 -formulae $\chi_1, ..., \chi_m$ of HA.

Observation.

The Σ_n -substitution instances of PEM, WPEM, DML, WDML, DNE can be separated uniformly by the technique.

Introduction 00000000

A Case Study on Linearity Axioms

Appendix

A Case Study: 6 Linearity Axioms

$$LIN_{1}: (\varphi \to \psi) \lor (\psi \to \varphi);$$

$$LIN_{2}: (\varphi \to \neg \psi) \lor (\neg \psi \to \varphi).$$

$$LIN_{3}: (\neg \varphi \to \neg \psi) \lor (\neg \psi \to \neg \varphi);$$

$$LIN_{4}: (\neg \varphi \to \neg \neg \psi) \lor (\neg \neg \psi \to \neg \varphi);$$

$$LIN_{5}: (\neg \neg \varphi \to \neg \neg \psi) \lor (\neg \neg \psi \to \neg \neg \varphi);$$

$$LIN_{6}: (\varphi \to \neg \neg \psi) \lor (\neg \neg \psi \to \varphi).$$

Fact. (Hierarchy of Intermediate Propositional Logics)

$$\begin{split} \text{PEM} &= \text{DNE} \supsetneq \text{LIN}_1 \supsetneq \text{WPEM} = \text{DML} = \text{WDML} = \text{LIN}_2 \\ &= \text{LIN}_3 = \text{LIN}_4 = \text{LIN}_5 = \text{LIN}_6. \end{split}$$

Derivations and Substitutions

A set **L** of propositional formulae s.t. IPC \subseteq **L** \subseteq CPC is called **intermediate propositional logic** if the following hold:

1 if $\varphi \rightarrow \psi$ and φ are in L, then ψ is in L;

2 if φ is in **L**, then any substitution instance of φ is in **L**.

Introduction

A Case Study on Linearity Axioms

$HA + \Sigma_n$ -DML + Σ_{n-1} -DNE $\vdash \Sigma_n$ -LIN₁.

Proof. Fix Σ_n -formulae φ_1 and φ_2 . W.I.o.g, assume n > 0. We show $(\varphi_1 \rightarrow \varphi_2) \lor (\varphi_2 \rightarrow \varphi_1)$ within HA + Σ_n -DML + Σ_{n-1} -DNE. Let φ_1 and φ_2 be $\exists x \varphi'_1(x)$ and $\exists x \varphi'_2(x)$ where $\varphi'_1(x)$ and $\varphi'_2(x)$ are Π_{n-1} -formulae respectively. Consider the following formulae:

$$\begin{aligned} \psi_1(x) &\equiv & \varphi_1'(x) \land \forall y \leq x \neg \varphi_2'(y); \\ \psi_2(x) &\equiv & \varphi_2'(x) \land \forall y \leq x \neg \varphi_1'(y). \end{aligned}$$

Then we have HA $\vdash \neg(\exists x\psi_1(x) \land \exists x\psi_2(x))$ trivially. Since $\neg \varphi'_2(y)$ and $\neg \varphi'_1(y)$ are equivalent to some $\sum_{n=1}^{\infty}$ -formulae respectively in the presence of $\sum_{n=1}$ -DNE, we have that $\forall y < x \neg \varphi'_2(y)$ and $\forall y < x \neg \varphi'_1(y)$ are equivalent to some $\sum_{n=1}$ -formulae respectively. Therefore we have that $\exists x \psi_1(x)$ and $\exists x \psi_2(x)$ are equivalent to some \sum_n -formulae respectively in our theory. Applying \sum_{n} -DML, we have $\neg \exists x \psi_1(x) \lor \neg \exists x \psi_2(x)$. In the former case, if $\varphi'_1(x)$, then we have $\neg \forall y \leq x \neg \varphi'_2(y)$, equivalently, $\neg \neg \exists y < x \varphi'_2(y)$. Then we have $\exists y \leq x \varphi'_2(y)$ by using $\sum_{n=1}^{n-1}$ -DML and Σ_{n-2} -DNE. Thus we have shown $\exists x \varphi'_1(x) \to \exists x \varphi'_2(x)$. In the latter case, we have $\exists x \varphi'_2(x) \rightarrow \exists x \varphi'_1(x)$ similarly.

Introduction 00000000

A Case Study on Linearity Axioms

Arithmetical hierarchy over $HA + \Sigma_{n-1}$ -DNE

 $\Sigma_1\text{-}\text{LIN}_6: (\exists x A_0(x) \to \neg \neg \exists y B_0(y)) \lor (\neg \neg \exists y B_0(y) \to \exists x A_0(x)).$

A Case Study on Linearity Axioms

Appendix 00

Theorem.

 $\mathsf{HA} + \Sigma_n\text{-}\mathrm{DML} + \Sigma_{n-1}\text{-}\mathrm{PEM} \not\vdash \Sigma_n\text{-}\mathrm{LIN}_6.$

Proof Sketch.

Apply the above-mentioned meta-theorem to the IPC-Kripke model $\mathcal{K}_3 = (\mathcal{K}_3, \leq_3, \Vdash_3)$ given in the following figure:

Hierarchy of Our Axioms w.r.t Logic & Arithmetic

An Example which is not an Intermediate Logic

The theory $T(\mathcal{E}_{\mathcal{K}_1})$ generated by the previous IPC-Kripke model \mathcal{K}_1 is not closed under substitution:

- It is straightforward to see $LIN_1 \in T(\mathcal{E}_{\mathcal{K}_1})$.
- LIN₂ \notin T ($\mathcal{E}_{\mathcal{K}_1}$): Consider a IPC-Kripke model $\mathcal{I} := (I_{\mathcal{K}_1}, \leq_{\mathcal{K}_1}, \Vdash)$ with [0] \nvDash q, r but [1] \Vdash q, r. Then we have

$$\mathbb{D} \nvDash_{\mathcal{E}_{\mathcal{K}_1}, \mathcal{I}} (q
ightarrow \neg r) \lor (\neg r
ightarrow q).$$

Introduction 00000000

References

- Y. Akama, S. Berardi, S. Hayashi, and U. Kohlenbach. An arithmetical hierarchy of the law of excluded middle and related principles, Proceedings of LICS'04, pp. 192–201, 2004.
- 2 M. Fujiwara and T. Kurahashi, Refining the arithmetical hierarchy of classical principles, Mathematical Logic Quarterly, 68(3), 318–345, 2022.
- 3 M. Fujiwara, H. Ishihara, T. Nemoto, N-Y. Suzuki and K. Yokoyama, Extended frames and separations of logical principles. Bull. Symb. Log. 29(3), 311–353, 2023.
- M. Fujiwara, On the hierarchy of linearity axioms, Preprint, 2025.