
A Formally Verified Single Transferable Vote
Scheme with Fractional Values

Milad Ghale, Rajeev Goré, Dirk Pattinson
Australian National University

Rajeev.Gore@anu.edu.au

March 2, 2021

Rajeev.Gore@anu.edu.au

Overview

E2E Verifiabiity Needs Program Verification

Single Transferable Voting (STV) scheme ?

Why is it hard to tally ballots according to STV?

Current computer counting in Australia

Where is the scrutiny and trust ?

Interactive Synthesis of Vote Counting Programs

Results, Features, Further Work, Caveats and Conclusion

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct

Recorded as cast: ballot was not tampered with in transit

Tallied as recorded: voter can verify that ballot was tallied

But ... what if the vote-counting program contains bugs?

Software independence:

Idea 1: vote-counting programs must produce a tallying script

Idea 2: if the tallying script is correct then the result is correct

Idea 3: it is trivial to write a program to check tallying script

That is: provide easily-checkable evidence that this run is correct

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct

Recorded as cast: ballot was not tampered with in transit

Tallied as recorded: voter can verify that ballot was tallied

But ... what if the vote-counting program contains bugs?

Software independence:

Idea 1: vote-counting programs must produce a tallying script

Idea 2: if the tallying script is correct then the result is correct

Idea 3: it is trivial to write a program to check tallying script

That is: provide easily-checkable evidence that this run is correct

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct

Recorded as cast: ballot was not tampered with in transit

Tallied as recorded: voter can verify that ballot was tallied

But ... what if the vote-counting program contains bugs?

Software independence:

Idea 1: vote-counting programs must produce a tallying script

Idea 2: if the tallying script is correct then the result is correct

Idea 3: it is trivial to write a program to check tallying script

That is: provide easily-checkable evidence that this run is correct

E2E Verifiability Needs Program Verification

Cast as intended: voters verify that electronic ballot is correct

Recorded as cast: ballot was not tampered with in transit

Tallied as recorded: voter can verify that ballot was tallied

But ... what if the vote-counting program contains bugs?

Software independence:

Idea 1: vote-counting programs must produce a tallying script

Idea 2: if the tallying script is correct then the result is correct

Idea 3: it is trivial to write a program to check tallying script

That is: provide easily-checkable evidence that this run is correct

What do we mean by voting scheme?

A method for setting out, filling in and counting ballots

STV Ballot Form
Rank any number of candidates

in order of preference.

Alice

Bob

Charlie

Dave

1
2

3

Setting out: order of candidates fixed or
Robson rotated ?

Filling in: write all numbers from 1 to N
or only ones you want ?

Counting: quota required to be elected;
who is weakest candidate ;
how to break ties;
how to transfer a vote;
when to stop counting

Nothing to do with electronic voting . . . yet

In particular, nothing to do with security aspects of e-voting

Single Transferable Vote Counting is Non-trivial

Vacancies: number of candidates that we need to elect
Candidates: number of people standing for election
Quota: how many votes are required to elect a candidate
Ballot: is a vote for highest ranked continuing candidate
Counting: proceeds in rounds
Surplus: ballots are transferred to next continuing candidate
Transfer Value: current value of ballot (possibly ≤ 1)
Eliminate Weakest: but how to break ties

STV Ballot Form
Rank any number of candidates

in order of preference.

Alice

Bob

Charlie

Dave

1
2

3

Rounds: repeat until all seats filled
Tally: all highest preferences
Elected: All candidates with “quota” are

elected
Eliminated: If nobody elected this round then

eliminate weakest candidate
Transfer: compute new transfer values
Autofill: If can seat all remaining cands., do so

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D

Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

A > B > D

votes(A) = 1

A > B > D

votes(A) = 2

A > B > D
D > C

votes(D) = 1

C > D

votes(C) = 1

Elected: A, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

A > B > D

votes(A) = 1

A > B > D

votes(A) = 2

A > B > D
D > C

votes(D) = 1

C > D

votes(C) = 1

Elected: A, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

A > B > D votes(A) = 1
A > B > D votes(A) = 2
A > B > D votes(A) = 3
D > C votes(D) = 1
C > D votes(C) = 1

Elected: A, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

A > B > D

votes(A) = 1

A > B > D

votes(A) = 2

A > B > D
D > C votes(D) = 1
C > D votes(C) = 1

Elected: A

, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

(((
(((hhhhhhA > B > D

votes(A) = 1

(((
(((hhhhhhA > B > D

votes(A) = 2

A > B > D
D > C votes(D) = 1
C > D votes(C) = 1

Elected: A

, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

(((
(((hhhhhhA > B > D

votes(A) = 1

(((
(((hhhhhhA > B > D

votes(A) = 2

�SA > B > D votes(B) = 1
D > C votes(D) = 1
C > D votes(C) = 1

Elected: A

, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

(((
(((hhhhhhA > B > D

votes(A) = 1

(((
(((hhhhhhA > B > D

votes(A) = 2

�SA >��@@B > D votes(D) = 2
D > C

votes(D) = 1

C > D votes(C) = 1

Elected: A

, D

Eliminated: B

Assume no fractional transfers and no autofill

Example Droop Quota: Q =
⌊
totalnumberofballots

seats+1

⌋
+ 1

Candidates: A, B, C , D Q =
⌊

5
2+1

⌋
+ 1 = 2

Seats: 2

Ballots: 5

(((
(((hhhhhhA > B > D

votes(A) = 1

(((
(((hhhhhhA > B > D

votes(A) = 2

�SA >��@@B > D votes(D) = 2
D > C

votes(D) = 1

C > D votes(C) = 1

Elected: A, D

Eliminated: B

Assume no fractional transfers and no autofill

Existing Electronic Vote-counting in Australia

Australian Electoral Commission: proprietary code; not available
for scrutiny; FOI request to publish code denied on grounds of
“security” and “commercial in confidence”

Victorian Electoral Commission: proprietary code; available for
scrutiny; no formal scrutiny to my knowledge

Australian Capital Territory: eVACSTM

I developed by Software Improvements Pty Ltd. using C++
I used since 2001 to count four elections
I counting code used to be available from ACTEC website
I full code available if you sign a non-disclosure agreement

New South Wales Electoral Commission: detailed functional
requirements publicly available; found to comply with legislation
by legal expert from QUT; certified by Birlasoft as passing all
tests; proprietary code; code not available for scrutiny

TMeVACS is a trademark of Software Improvements Pty Ltd.

ACTEC and SoftImp Approach

scrutiny artefacts trust

published legal text

ACTEC SoftImp

��

published?
functional specs

using UML

))
SoftImp

��

ACTEC & SoftImp

evidence? “audited” by BMM: all okay

semi-published computer code

44

NSWEC Approach

scrutiny artefacts trust

published legal text

++

NSWEC

��

legal expert (QUT)

published
47 pages of functional
specs with flow chart

44

))

Vendor

��

evidence?
audited by Birlasoft:

passed all tests

proprietary computer code

44

Bugs in ACT and NSW Counting Modules

ANU logic group: found three bugs in eVACS

programming error: simple for-loop bounds error
ambiguous legal text: break weakest candidate ties by

inspecting previous round where “all candidates have an
unequal number of votes”

programming error: un-initialised boolean: different compilers
give different results

how bad: for every bug, we could generate an election in which
the code gave the wrong result

UniMelb group: found bug in NSWEC code whereby one
candidate’s chances of winning were reduced from 90% to 10%
and she lost the 2015 election! No recourse as the three month
period for a legal challenge had passed.

“Simplifications” in ACT Legislation Are Harmful

ANU logic group: we showed that

Rounding (fractions): errors can become significant
Point of declaring winners: can be significant
“Last parcel” simplication: is just silly
How bad: for every “simplification”, there is an election where

legislation gave the wrong result w.r.t. Vanilla STV
And ... these cases do happen in real elections e.g. Brindabella

Efficient Interactive Synthesis Via Mathematical Proof
scrutiny artefacts trust

published legal text
,,

manual

��
manual

""

(your)
elections expert

published
rules capturing
state transitions

of counting process
manual

//

Coq proof:
correct certificate
implies
correct count

published
functional specs as
formula of typed

higher-order intuitionistic logic

manual 55

automatic!

��

published
Coq

certificate

published
certificate producing

computer code

Minimal STV: Abstract Machine

Three types of states: initial states (all ballots uncounted); final
states (election winners are declared); intermediate states

Data “carried” by non-initial states: 7 items

1 list of currently uncounted ballots;
2-3 tally t and pile p of ballots “for” each candidate;
4-5 elected/eliminated candidate lists (bl1, bl2) requiring

transfer;
6-7 lists of elected e and continuing h candidates

State Transitions: correspond to counting, eliminating,
transferring, electing, and declaring winners as formal rules that
relate a pre-state and a post-state via conditions

Variations: so minimal STV does not define the rules, but rather
postulates minimal conditions that every rule needs to satisfy

Inductive definition of STV machine states in Coq

Inductive mynat : Set :=

| O : mynat (* O is a mynat *)

| S : mynat -> mynat. (* S of a mynat is a mynat *)

Inductive STV_States :=

| initial: list ballot -> STV_States

| state: list ballot

* list (cand -> Q)

* (cand -> list (list ballot))

* (list cand) * (list cand)

* {elected: list cand | length elected <= st}

* {hopeful: list cand | NoDup hopeful}

-> STV_States

| winners: list cand -> STV_States.

Inductive definition of STV machine states in Coq

Inductive mynat : Set :=

| O : mynat (* O is a mynat *)

| S : mynat -> mynat. (* S of a mynat is a mynat *)

Inductive STV_States :=

| initial: list ballot -> STV_States

| state: list ballot

* list (cand -> Q)

* (cand -> list (list ballot))

* (list cand) * (list cand)

* {elected: list cand | length elected <= st}

* {hopeful: list cand | NoDup hopeful}

-> STV_States

| winners: list cand -> STV_States.

Minimal STV: an instance

An instance: of STV is then given by

definitions: rules for counting, electing, eliminating, transfering
proofs: that rules satisfy the respective conditions

Conditions: consist of two parts

applicability: conditions for when the rule is applicable
progress: how the rule changes the state

Prove: three theorems

reduction: every applicable transition reduces “complexity”
liveness: at least one transition from each non-final state
termination: minimal STV terminates

Code Extraction and Certificates

Encoding: into Coq which is based on intuitionistic logic

Constructive proofs: of theorems of the form ∀x∃y , ϕ(x , y)
correspond to lambda-terms

Code Extraction: automatically extract Haskell code

Certificates: the theorems stated so the extracted code produces a
run of the state machine as evidence that the result is correct

Claim: it is easy to write a program to check that the certificate is
correct wrt the rules

Code Extraction and Certificates

Encoding: into Coq which is based on intuitionistic logic

Constructive proofs: of theorems of the form ∀x∃y , ϕ(x , y)
correspond to lambda-terms

Code Extraction: automatically extract Haskell code

Certificates: the theorems stated so the extracted code produces a
run of the state machine as evidence that the result is correct

Claim: it is easy to write a program to check that the certificate is
correct wrt the rules

Example: certificates and checking

Inductive add: mynat -> mynat -> mynat -> Prop :=

| addO: forall n, (add n O n)

| addS: forall n m r, add n m r -> add n (S m) (S r).

addO
add (S O) O (S O)

addS
add (S O) (S O) (S S O)

addS
add (S O) (S S O) (S S S O)

addS
add (S O) (S S S O) (S S S S O)

initial [([a,c,b],1/1),([b,c,a],1/1),([c,a],1/1),([c,b,a],1/1)]
start

state [([a,c,b],1/1),([b,c,a],1/1),([c,a],1/1),([c,b,a],1/1)]; a[0/1] b[0/1] c[0/1]; a[] b[] c[]; ([],[]); []; [a,b,c]
count

state []; a[1/1] b[1/1] c[2/1]; a[[([a,c,b],1/1)]] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[]); []; [a,b,c]
eliminate

state []; a[1/1] b[1/1] c[2/1]; a[[(a,c,b],1/1)]] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[a]); []; [b,c]
transfer-removed

state [([a,c,b],1/1)]; a[1/1] b[1/1] c[2/1]; a[] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[a]); []; [b,c]
count

state []; a[1/1] b[1/1] c[3/1], a[] b[[([b,c,a],1/1)]] c[[(a,c,b],0/1)]]; ([c],[a]); [c]; [b]
elect win

winners [c]

Checking: simple pattern matching on rule definitions

Example: certificates and checking

Inductive add: mynat -> mynat -> mynat -> Prop :=

| addO: forall n, (add n O n)

| addS: forall n m r, add n m r -> add n (S m) (S r).

addO
add (S O) O (S O)

addS
add (S O) (S O) (S S O)

addS
add (S O) (S S O) (S S S O)

addS
add (S O) (S S S O) (S S S S O)

initial [([a,c,b],1/1),([b,c,a],1/1),([c,a],1/1),([c,b,a],1/1)]
start

state [([a,c,b],1/1),([b,c,a],1/1),([c,a],1/1),([c,b,a],1/1)]; a[0/1] b[0/1] c[0/1]; a[] b[] c[]; ([],[]); []; [a,b,c]
count

state []; a[1/1] b[1/1] c[2/1]; a[[([a,c,b],1/1)]] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[]); []; [a,b,c]
eliminate

state []; a[1/1] b[1/1] c[2/1]; a[[(a,c,b],1/1)]] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[a]); []; [b,c]
transfer-removed

state [([a,c,b],1/1)]; a[1/1] b[1/1] c[2/1]; a[] b[[([b,c,a],1/1)]] c[[([c,a],1/1),([c,b,a],1/1)]]; ([],[a]); []; [b,c]
count

state []; a[1/1] b[1/1] c[3/1], a[] b[[([b,c,a],1/1)]] c[[(a,c,b],0/1)]]; ([c],[a]); [c]; [b]
elect win

winners [c]

Checking: simple pattern matching on rule definitions

Features and Further Work

Completed: STV vote-counting and Schulze Method

Exact fractions: our code for STV manipulates fractions exactly

Efficiency: can (STV) count up to 10 million votes with 40
candidates and 20 vacancies in 20 minutes

Certificate: our code produces a (plain text) certificate that
vouches for the correctness of the count

Scrutiny: program to check the certificate is correct w.r.t.
published rules and published ballots is just pattern matching

Trust: you don’t even need to trust the hardware or software since
a correct certificate implies a correct count

Caveat: have to publish all ballots

Further Work: can we extend to STV counting of encrypted ballots

Features and Further Work

Completed: STV vote-counting and Schulze Method

Exact fractions: our code for STV manipulates fractions exactly

Efficiency: can (STV) count up to 10 million votes with 40
candidates and 20 vacancies in 20 minutes

Certificate: our code produces a (plain text) certificate that
vouches for the correctness of the count

Scrutiny: program to check the certificate is correct w.r.t.
published rules and published ballots is just pattern matching

Trust: you don’t even need to trust the hardware or software since
a correct certificate implies a correct count

Caveat: have to publish all ballots

Further Work: can we extend to STV counting of encrypted ballots

Features and Further Work

Completed: STV vote-counting and Schulze Method

Exact fractions: our code for STV manipulates fractions exactly

Efficiency: can (STV) count up to 10 million votes with 40
candidates and 20 vacancies in 20 minutes

Certificate: our code produces a (plain text) certificate that
vouches for the correctness of the count

Scrutiny: program to check the certificate is correct w.r.t.
published rules and published ballots is just pattern matching

Trust: you don’t even need to trust the hardware or software since
a correct certificate implies a correct count

Caveat: have to publish all ballots

Further Work: can we extend to STV counting of encrypted ballots

Why Should We Trust Machine-checked Proof?

scrutiny artefacts trust

published
1930s Alonzo Church’s

typed λ-calculus

INRIA

��

**

peer review

logic community

published
Coq theorem prover:

50K lines of OCaml code

44

person

��

Coq development
team

published
proof checked

by Coq

OO

OCaml compiler
and hardware

Further Work, Caveats and Conclusions:

Verified Certificate Checker: using CakeML to verify our certificate
checker against a formal model of the semantics of C

Other flavours of STV: cover all STV schemes used in Australia

Effort: approximately 4 person-months of work by a Coq novice

Caveat: relies on EMB publishing the ballots in clear text so it is
vulnerable to the Sicilian Attack

Shufflesum: currently trying to synthesise the code

Conclusion: verified synthesis possible for complex e-counting

