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Introduction



Introduction: the modal µ-calculus

Fixpoint modal logics contain formulas that satisfy an equivalence of the form

ψ ≡ φ(ψ).

Example. In temporal logic, the formula A U B (“A until B”) satisfies A U B ≡ B ∨ (A ∧ X(A U B)).

The modal µ-calculus extends basic modal logic by fixpoint operators µ and ν:

➤ µX .φ(X ) denotes the least fixpoint of φ(X ),

➤ νX .φ(X ) denotes the greatest fixpoint of φ(X ).

The logic is very expressive with many nice properties such as: decidability, the small model property, a

finitary axiomatization, and uniform interpolation.

Non-wellfounded and cyclic proof systems provide natural syntactic characterisations of the modal

µ-calculus and its fragments.
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Introduction: intuitionistic fixpoints

Recently, modal fixpoints over an intuitionistic propositional base have gained attention:

➤ Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues & Fernández-Duque, 2019,

2022);

➤ Intuitionistic common-knowledge logic (Jäger & Marti, 2016);

➤ Intuitionistic Gödel-Löb logic (Das, van der Giessen, Marin, 2023).

Our aim. Develop a general framework and proof-theoretic techniques for studying intuitionistic modal

fixpoint logics.

In the past, we have studied proof systems for:

1. intuitionistic linear-time temporal logic (Afshari, G., Leigh & Zenger, 2023);

2. intuitionistic modal logic with the master modality (Afshari, G., Leigh & Zenger, 2024, preprint).

Current work. We study an intuitionistic version of the modal µ-calculus with a generalisation of the

modal □, namely the Lewis arrow. We provide game semantics for the logic and a non-wellfounded

analytic proof system.
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Introduction: the Lewis arrow

Dissatisfied with material implication, Lewis (1912,1914,1918,1932) introduced several axiom systems

(S1-S5) meant to formalize strict implication:

φ J ψ “ψ can be inferred from φ.”

For the modern modal logician:

φ J ψ := □(φ→ ψ).

So □φ ≡ ⊤ J φ.

In an intuitionistic setting, J is not interdefinable with □.

➤ In intuitionistic provability and preservativity logic (see e.g. Iemhof 2003 and Litak & Visser

2017): given a theory T,

A JT B iff for all Σ0
1-sentences S , if T ⊢ S → A then T ⊢ S → B.
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The logic ILµ



Syntax of ILµ

Fix some set Prop of propositions/variables. Formulas of ILµ are given by the grammar:

φ,ψ ::= ⊥ | ⊤ | P | φ ∧ ψ | φ ∨ ψ | φ→ ψ | φ J ψ | µX .φ | νX .φ

with P,X ∈ Prop and X positive in φ. We define □φ := ⊤ J φ.

Note: we add both µ and ν, as these operators are not interdefinable in the intuitionistic case.

We consider formulas φ that are clean:

1. the free and bound variables are disjoint;

2. for each bound variable X there is a unique subformula σXX .δX of φ.
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(Algebraic) semantics of ILµ: bi-relational models

Formulas are evaluated in bi-relational Kripke models M = (W ,≤,R,V ), where

1. ≤ is a partial order (the intuitionistic relation),

2. R ⊆ W 2 (the modal relation),

3. if w ≤ vRu then wRu (triangle confluence).

The truth relation for →, J and the fixpoint operators is defined by

M, s |= φ→ ψ iff for all t ≥ s if M, t |= φ, then M, t |= ψ,

M, s |= φ J ψ iff for all sRt if M, t |= φ, then M, t |= ψ,

M, s |= µX .φ iff s ∈ LFP(φM
X ),

M, s |= νX .φ iff s ∈ GFP(φM
X ),

where φM
X : P(W ) → P(W ) is the function given by S 7→ JφKMV [X 7→S].

Crucially, we have

σX .φ ≡ φ[σX .φ/X ]

for σ ∈ {µ, ν}.
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(Algebraic) semantics of ILµ: monotonicity and confluence properties

A key property of intuitionistic Kripke semantics is monotonicity: if v ≥ w and w |= φ, then v |= φ.

To obtain monotonicity for ILµ, models need to satisfy triangle confluence: if w ≤ vRu then wRu.

v u

w

R

≤
R

v u

w ·

R

≤

R

≤

For □-formulas, forth-down confluence suffices: if w ≤ vRu then wRs ≤ u for some s.

Lemma

A □-formula φ is valid on all forth-down confluent models iff it is valid on all triangle confluent

models.

Proof. Any forth-down confluent model M = (W ,≤,R,V ) induces a triangle confluent model

M ′ = (W ,≤, (R;≤),V ) that satisfies M,w |= ψ iff M ′,w |= ψ for all w ∈ W and formulas ψ.

As J-formulas are not monotone for the weaker condition, we obtain that J indeed cannot be

expressed in terms of □.
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Game semantics for ILµ



Game semantics for ILµ: the evaluation game

Given a model M = (W ,≤,R,V ) and a clean formula φ, we define an evaluation game E(φ,M)

between ∃ and ∀ to determine which states s ∈ W satisfy M, s |= φ.

Intuition: at position (ψ, s,+), ∃ wants to show that s satisfies ψ, while ∀ wants to show the converse.

Position Player Admissible moves

(⊤, s,+) ∀ ∅
(⊥, s,+) ∃ ∅

(P, s,+), P /∈ BV (ψ), s ∈ V (P) ∀ ∅
(P, s,+), P /∈ BV (ψ), s /∈ V (P) ∃ ∅

(φ1 ∧ φ2, s,+) ∀ {(φi , s,+) : i = 1, 2}
(φ1 ∨ φ2, s,+) ∃ {(φi , s,+) : i = 1, 2}
(φ1 → φ2, s,+) ∀ {(φ1 → φ2, s, t,+) : s ≤ t}
(φ1 → φ2, s, t,+) ∃ {(φ1, t,−), (φ2, t,+)}
(φ1 J φ2, s,+) ∀ {(φ1 J φ2, s, t,+) : sRt}
(φ1 J φ2, s, t,+) ∃ {(φ1, t,−), (φ2, t,+)}
(σXX .δX , s,+) - {(δX , s,+)}

(X , s,+), X ∈ BV (ψ) - {(δX , s,+)}

For negative positions (φ, s,−), we swap the roles of ∃ and ∀. We call + or − the parity of a position.
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Game semantics for ILµ: winning conditions

Let q be a position. A play of E(φ,M)@q is a sequence ρ of positions following the rules of E(φ,M)

such that

1. ρ0 = q,

2. ρ is either infinite or ending in a position with no admissible moves.

Who wins a play ρ? We want winning conditions such that: M, s |= φ iff ∃ has a winning strategy in

E(φ,M)@(φ, s,+).

Lemma

Let ρ an infinite play of E(φ,M)@(φ, s,+). Then there is a unique, outermost Xρ ∈ BV (φ) that

occurs infinitely often in ρ. Moreover, there is a parity •ρ ∈ {+,−} such that every position in ρ with

formula X has parity •ρ.

Winning conditions: Finite plays are lost by the player who got stuck. An infinite play ρ is won by ∃ if

(σXρ , •ρ) ∈ {(ν,+), (µ,−)}, and won by ∀ otherwise.
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Game semantics for ILµ: determinacy and adequacy

The game E(φ,M) is a parity game and therefore positionally determined: for every position q, either

∃ or ∀ has a winning strategy in E(φ,M)@q that only depends on the current position.

Theorem

For any clean formula φ and pointed model (M, s), we have M, s |= φ iff ∃ has a (positional) winning

strategy in E(φ,M)@(φ, s,+).

Proof. By induction on φ. We adapt the proof for the classical case, making use of two observations:

1. For any position (ψ, t,+): (ψ, t,+) is winning for ∃ iff (ψ, t,−) is winning for ∀.

2. Every bound variable has a fixed parity in E(φ,M)@(φ, s,+).

Remark. There is a preprint by Pacheco (2023) where similar (independently developed) game

semantics for an intuitionistic version of the modal µ-calculus are used to show a collapse to modal

logic over intuitionistic S5 frames.
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Guardedness: definition

In the classical µ-calculus, it is well known that every formula is equivalent to a guarded one.

Given a formula φ and variable X , we call X guarded in φ if every occurrence of X in φ is in the scope

of some J-operator. A formula φ is guarded if for every subformula σX .ψ of φ, X is guarded in ψ.

We use two results to show that every formula of ILµ is equivalent to a guarded one:

Theorem (Ruitenburg, 1984)

Let φ be a formula of IPC and X a propositional letter such that X is positive in φ. Define φ0
X := X

and φn+1
X := φ[φn

X/X ]. Then there exists an N such that φN
X ≡ φN+1

X .

In particular, we have µX .φ ≡ φN
X [⊥/X ] and νX .φ ≡ φN

X [⊤/X ].

Lemma (“the golden lemma of the µ-calculus”)

For any φ(X ,Y ) with X and Y positive, we have

σX .σY .φ(X ,Y ) ≡ σX .φ(X ,X ) ≡ σY .σX .φ(X ,Y ).

Proof. Straightforward by the game semantics!
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Guardedness: proof

Theorem

Every ILµ-formula φ is equivalent to a guarded one.

Proof. By induction on φ. Suppose φ is of the form µX .ψ with ψ guarded. Due to unfolding, we may

assume that all unguarded occurrences of X in ψ are outside scope of fixpoint operators.

Let ζ be obtained from ψ by replacing every unguarded occurrence of X by X0 and every guarded

occurrence of X by X1. Then µX .ψ ≡ µX0.µX1.ζ ≡ µX1.µX0.ζ.

Let ζ̂ be obtained from ζ by replacing each (maximal) fixpoint or modal subformula χ of ψ by a fresh

propositional letter Pχ; by construction, no such χ contains the variable X0.

Then ζ̂ is an IPC formula, so by Ruitenburg’s theorem there exists an N such that ζ̂NX0
≡ ζ̂N+1

X0
.

Let ζ := ζNX0
[⊥/X0]. As none of the χ contains X0, note that ζNX0

is identical to the formula obtained

from ζ̂NX0
by substituting for each Pχ its corresponding subformula χ. Since ζ̂NX0

≡ ζ̂N+1
X0

, it follows that

ζNX0
≡ ζN+1

X0
, which implies µX0.ζ ≡ ζNX0

[⊥/X0].

Now ζNX0
[⊥/X0] only contains guarded occurrences of X1, and µX1.ζ

N
X0
[⊥/X0] ≡ µX1.µX0.ζ ≡ µX .ψ.

The ν-case is completely analoguous. □
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A non-wellfounded proof system for ILµ: rules

We consider sequents Γ ⇒ ∆ of finite sets of clean formulas with the standard interpretation:∧
Γ →

∨
∆.

We define a non-wellfounded sequent calculus nwILµ as follows.

For the propositional rules, we use standard multi-conclusion rules for IPC:

Γ,A ⇒ A,∆
id

Γ,⊥ ⇒ ∆
⊥

Γ,A,B ⇒ ∆

Γ,A ∧ B ⇒ ∆
∧L

Γ ⇒ A,∆ Γ ⇒ B,∆

Γ ⇒ A ∧ B,∆
∧R

Γ,A ⇒ ∆ Γ,B ⇒ ∆

Γ,A ∨ B ⇒ ∆
∨L

Γ ⇒ A,B,∆

Γ ⇒ A ∨ B,∆
∨R

Γ,A → B ⇒ A,∆ Γ,B ⇒ ∆

Γ,A → B ⇒ ∆
→L

Γ,A ⇒ B

Γ ⇒ A → B,∆
→R
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A non-wellfounded proof system for ILµ: rules

Consider the following sound rule for the modality J:

A ⇒ B,C D,A ⇒ B

Γ,C J D ⇒ A J B,∆
J1

For completeness, we generalize it to the following:

{Dj ,A ⇒ B, Cj}j≤2n

Γ, {Ci J Di}i≤n ⇒ A J B,∆
Jn

where n ≥ 0, and the sets D1, . . . ,D2n and C1, . . . , C2n enumerate the subsets of {D1, . . . ,Dn} and

{C1, . . . ,Cn}, respectively, such that

Di ∈ Dj if and only if Ci /∈ Cj .

Remark. A (sound) single-conclusion version

A ⇒ C1 D1,A ⇒ C2 . . . D1, . . . ,Dn,A ⇒ B

Γ, {Ci J Di}i≤n ⇒ A J B

is not complete, as it cannot derive the valid formula φ J χ→ (ψ J χ→ (φ ∨ ψ) J χ).
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A non-wellfounded proof system for ILµ: rules

For the fixpoint rules, we assume a derivation comes with a mapping X 7→ (σX , δX ) that associates

every bound variable with its corresponding binder and fixpoint formula.

For σ ∈ {µ, ν}, we have the rules

Γ, δ ⇒ ∆

Γ, σX .δ ⇒ ∆
σL

Γ ⇒ δ,∆

Γ ⇒ σX .δ,∆
σR

Γ, δX ⇒ ∆

Γ,X ⇒ ∆
XL

Γ ⇒ δX ,∆

Γ ⇒ X ,∆
XR

This concludes the rules of nwILµ.
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A non-wellfounded proof system for ILµ: derivations and proofs

A derivation T in nwILµ is a finite or infinite tree labelled according to the rules of nwILµ.

Given a path ρ through T , a trace on ρ is a sequence (φi , •i ) of formulas and their parity (left/right)

following the principal-residual relation.

Γ′, φ⇒ ∆′

Γ ⇒ ∆

Similarly to plays, each (non-stagnating) trace τ will contain a unique outermost bound variable X

that occurs infinitely often. This X is bound by either µ or ν, and its parity is either left or right.

A derivation T is a proof in nwILµ if

1. every leaf of T is labelled by an axiom;

2. every infinite path of T has either a left µ-trace or a right ν-trace.
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A non-wellfounded proof system for ILµ: soundness and completeness

Theorem

If φ is provable in nwILµ then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in nwILµ.

Proof. By a game-theoretic argument similar to that of Niwiński and Walukiewicz (1996).

• Given a sequent σ, construct a determined two-player game between Prover and Refuter.

• The game is played on a proof search tree. In this tree, the non-invertible rules →R and Jn may

only be applied once the invertible rules have been applied to a sufficient degree.

• A winning strategy for Prover corresponds to a proof of σ.

• From a winning strategy for Refuter, we construct a (pre-)countermodel M for σ by treating a

premise of Jn as modal successor and a premise of →R as intuitionistic successor.

• We make M satisfy triangle confluence by replacing the modal relation R by the composition ≤;R.
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Future work

We have introduced the logic ILµ and provided adequate game semantics and a complete, analytic

non-wellfounded proof system for guarded formulas.

The next steps:

• Prove completeness for unguarded formulas.

• Use the analytic, non-wellfounded system to obtain a cyclic system with annotations.

• Prove the bounded model property, and thereby decidability.

Bigger steps:

• Study proof-theoretic properties such as cut-elimination, interpolation...

• Consider different frame conditions.

• Adding diamonds??
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