Intuitionistic μ -calculus with the Lewis arrow

LLAMA seminar, University of Amsterdam

Lide Grotenhuis, joint work in progress with Bahareh Afshari 1 May 2024

ILLC, Universiteit van Amsterdam

Introduction

The logic IL_{μ}

Game semantics for IL_{μ}

 ${\sf Guardedness}$

A non-wellfounded proof system for IL_{μ}

Future work

Introduction

 $\psi \equiv \varphi(\psi).$

 $\psi \equiv \varphi(\psi).$

Example. In temporal logic, the formula $A \cup B$ ("A until B") satisfies $A \cup B \equiv B \lor (A \land X(A \cup B))$.

 $\psi \equiv \varphi(\psi).$

Example. In temporal logic, the formula $A \cup B$ ("A until B") satisfies $A \cup B \equiv B \lor (A \land X(A \cup B))$. The modal μ -calculus extends basic modal logic by *fixpoint operators* μ and ν :

- > $\mu X.\varphi(X)$ denotes the least fixpoint of $\varphi(X)$,
- ▶ $\nu X.\varphi(X)$ denotes the greatest fixpoint of $\varphi(X)$.

 $\psi \equiv \varphi(\psi).$

Example. In temporal logic, the formula $A \cup B$ ("A until B") satisfies $A \cup B \equiv B \lor (A \land X(A \cup B))$. The modal μ -calculus extends basic modal logic by *fixpoint operators* μ and ν :

- > $\mu X.\varphi(X)$ denotes the least fixpoint of $\varphi(X)$,
- $\blacktriangleright \nu X.\varphi(X)$ denotes the greatest fixpoint of $\varphi(X)$.

The logic is very expressive with many nice properties such as: decidability, the small model property, a finitary axiomatization, and uniform interpolation.

 $\psi \equiv \varphi(\psi).$

Example. In temporal logic, the formula $A \cup B$ ("A until B") satisfies $A \cup B \equiv B \lor (A \land X(A \cup B))$. The modal μ -calculus extends basic modal logic by *fixpoint operators* μ and ν :

- > $\mu X.\varphi(X)$ denotes the least fixpoint of $\varphi(X)$,
- $\blacktriangleright \nu X.\varphi(X)$ denotes the greatest fixpoint of $\varphi(X)$.

The logic is very expressive with many nice properties such as: decidability, the small model property, a finitary axiomatization, and uniform interpolation.

Non-wellfounded and cyclic proof systems provide natural syntactic characterisations of the modal μ -calculus and its fragments.

Recently, modal fixpoints over an intuitionistic propositional base have gained attention:

- Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues & Fernández-Duque, 2019, 2022);
- ► Intuitionistic common-knowledge logic (Jäger & Marti, 2016);
- ▶ Intuitionistic Gödel-Löb logic (Das, van der Giessen, Marin, 2023).

Recently, modal fixpoints over an intuitionistic propositional base have gained attention:

- Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues & Fernández-Duque, 2019, 2022);
- Intuitionistic common-knowledge logic (Jäger & Marti, 2016);
- ▶ Intuitionistic Gödel-Löb logic (Das, van der Giessen, Marin, 2023).

Our aim. Develop a general framework and proof-theoretic techniques for studying intuitionistic modal fixpoint logics.

In the past, we have studied proof systems for:

- 1. intuitionistic linear-time temporal logic (Afshari, G., Leigh & Zenger, 2023);
- 2. intuitionistic modal logic with the master modality (Afshari, G., Leigh & Zenger, 2024, preprint).

Recently, modal fixpoints over an intuitionistic propositional base have gained attention:

- Intuitionistic linear-time temporal logic (Balbiani, Boudou, Diégues & Fernández-Duque, 2019, 2022);
- Intuitionistic common-knowledge logic (Jäger & Marti, 2016);
- ▶ Intuitionistic Gödel-Löb logic (Das, van der Giessen, Marin, 2023).

Our aim. Develop a general framework and proof-theoretic techniques for studying intuitionistic modal fixpoint logics.

In the past, we have studied proof systems for:

- 1. intuitionistic linear-time temporal logic (Afshari, G., Leigh & Zenger, 2023);
- 2. intuitionistic modal logic with the master modality (Afshari, G., Leigh & Zenger, 2024, preprint).

Current work. We study an intuitionistic version of the modal μ -calculus with a generalisation of the modal \Box , namely the Lewis arrow. We provide game semantics for the logic and a non-wellfounded analytic proof system.

 $\varphi \rightarrow \psi$ " ψ can be inferred from φ ."

 $\varphi \rightarrow \psi$ " ψ can be inferred from φ ."

For the modern modal logician:

 $\varphi \dashv \psi := \Box(\varphi \to \psi).$

So $\Box \varphi \equiv \top \neg \varphi$.

 $\varphi \rightarrow \psi$ " ψ can be inferred from φ ."

For the modern modal logician:

$$\varphi \dashv \psi := \Box(\varphi \to \psi).$$

So $\Box \varphi \equiv \top \neg \varphi$.

In an intuitionistic setting, \neg is **not** interdefinable with \Box .

$$\varphi \rightarrow \psi$$
 " ψ can be inferred from φ ."

For the modern modal logician:

$$\varphi \neg \psi := \Box(\varphi \rightarrow \psi).$$

So $\Box \varphi \equiv \top \neg \varphi$.

In an intuitionistic setting, \neg is **not** interdefinable with \Box .

In intuitionistic provability and preservativity logic (see e.g. lemhof 2003 and Litak & Visser 2017): given a theory T,

 $A \rightarrow_T B$ iff for all Σ_1^0 -sentences S, if $T \vdash S \rightarrow A$ then $T \vdash S \rightarrow B$.

The logic IL_{μ}

Fix some set Prop of propositions/variables. Formulas of IL_{μ} are given by the grammar:

 $\varphi, \psi ::= \bot \mid \top \mid P \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid \varphi \dashv \psi \mid \mu X.\varphi \mid \nu X.\varphi$

with $P, X \in \text{Prop}$ and X positive in φ . We define $\Box \varphi := \top \neg \varphi$.

Note: we add both μ and ν , as these operators are not interdefinable in the intuitionistic case.

Fix some set Prop of propositions/variables. Formulas of IL_{μ} are given by the grammar:

 $\varphi, \psi ::= \bot \mid \top \mid P \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \to \psi \mid \varphi \dashv \psi \mid \mu X.\varphi \mid \nu X.\varphi$

with $P, X \in \text{Prop}$ and X positive in φ . We define $\Box \varphi := \top \neg \varphi$.

Note: we add both μ and ν , as these operators are **not** interdefinable in the intuitionistic case. We consider formulas φ that are clean:

- 1. the free and bound variables are disjoint;
- 2. for each bound variable X there is a unique subformula $\sigma_X X \cdot \delta_X$ of φ .

(Algebraic) semantics of IL_{μ} : bi-relational models

Formulas are evaluated in bi-relational Kripke models $M = (W, \leq, R, V)$, where

- 1. \leq is a partial order (*the intuitionistic relation*),
- 2. $R \subseteq W^2$ (the modal relation),
- 3. if $w \leq vRu$ then wRu (triangle confluence).

(Algebraic) semantics of IL_{μ} : bi-relational models

Formulas are evaluated in bi-relational Kripke models $M = (W, \leq, R, V)$, where

- 1. \leq is a partial order (*the intuitionistic relation*),
- 2. $R \subseteq W^2$ (the modal relation),
- 3. if $w \leq vRu$ then wRu (triangle confluence).

The truth relation for \rightarrow , \dashv and the fixpoint operators is defined by

$M, s \models \varphi \rightarrow \psi$	iff	for all $t \ge s$ if $M, t \models \varphi$, then $M, t \models \psi$,
$\textit{M}, \textit{s} \models \varphi \dashv \psi$	iff	for all <i>sRt</i> if $M, t \models \varphi$, then $M, t \models \psi$,
$\textit{M}, \textit{s} \models \mu\textit{X}.\varphi$	iff	$s\in LFP(arphi_X^M)$,
$M, s \models \nu X. \varphi$	iff	$s \in GFP(\varphi_X^M)$,

where $\varphi_X^M : \mathcal{P}(W) \to \mathcal{P}(W)$ is the function given by $S \mapsto \llbracket \varphi \rrbracket_{V[X \mapsto S]}^M$.

(Algebraic) semantics of IL_{μ} : bi-relational models

Formulas are evaluated in bi-relational Kripke models $M = (W, \leq, R, V)$, where

- 1. \leq is a partial order (*the intuitionistic relation*),
- 2. $R \subseteq W^2$ (the modal relation),
- 3. if $w \leq vRu$ then wRu (triangle confluence).

The truth relation for \rightarrow , \dashv and the fixpoint operators is defined by

$$\begin{array}{lll} M, s \models \varphi \rightarrow \psi & \text{iff} & \text{for all } t \ge s \text{ if } M, t \models \varphi, \text{ then } M, t \models \psi, \\ M, s \models \varphi \neg \psi & \text{iff} & \text{for all } sRt \text{ if } M, t \models \varphi, \text{ then } M, t \models \psi, \\ M, s \models \mu X.\varphi & \text{iff} & s \in LFP(\varphi_X^M), \\ M, s \models \nu X.\varphi & \text{iff} & s \in GFP(\varphi_X^M), \end{array}$$

where $\varphi_X^M : \mathcal{P}(W) \to \mathcal{P}(W)$ is the function given by $S \mapsto \llbracket \varphi \rrbracket_{V[X \mapsto S]}^M$. Crucially, we have

$$\sigma X.\varphi \equiv \varphi[\sigma X.\varphi/X]$$

for $\sigma \in \{\mu, \nu\}$.

A key property of intuitionistic Kripke semantics is monotonicity: if $v \ge w$ and $w \models \varphi$, then $v \models \varphi$.

A key property of intuitionistic Kripke semantics is monotonicity: if $v \ge w$ and $w \models \varphi$, then $v \models \varphi$. To obtain monotonicity for IL_{μ} , models need to satisfy triangle confluence: if $w \le vRu$ then wRu.

A key property of intuitionistic Kripke semantics is monotonicity: if $v \ge w$ and $w \models \varphi$, then $v \models \varphi$. To obtain monotonicity for IL_{μ} , models need to satisfy triangle confluence: if $w \le vRu$ then wRu.

For \Box -formulas, forth-down confluence suffices: if $w \leq vRu$ then $wRs \leq u$ for some s.

A key property of intuitionistic Kripke semantics is monotonicity: if $v \ge w$ and $w \models \varphi$, then $v \models \varphi$. To obtain monotonicity for IL_{μ} , models need to satisfy triangle confluence: if $w \le vRu$ then wRu.

For \Box -formulas, forth-down confluence suffices: if $w \leq vRu$ then $wRs \leq u$ for some s.

Lemma

A \Box -formula φ is valid on all forth-down confluent models iff it is valid on all triangle confluent models.

Proof. Any forth-down confluent model $M = (W, \leq, R, V)$ induces a triangle confluent model $M' = (W, \leq, (R; \leq), V)$ that satisfies $M, w \models \psi$ iff $M', w \models \psi$ for all $w \in W$ and formulas ψ .

A key property of intuitionistic Kripke semantics is monotonicity: if $v \ge w$ and $w \models \varphi$, then $v \models \varphi$. To obtain monotonicity for IL_{μ} , models need to satisfy triangle confluence: if $w \le vRu$ then wRu.

For \Box -formulas, forth-down confluence suffices: if $w \leq vRu$ then $wRs \leq u$ for some s.

Lemma

A \Box -formula φ is valid on all forth-down confluent models iff it is valid on all triangle confluent models.

Proof. Any forth-down confluent model $M = (W, \leq, R, V)$ induces a triangle confluent model $M' = (W, \leq, (R; \leq), V)$ that satisfies $M, w \models \psi$ iff $M', w \models \psi$ for all $w \in W$ and formulas ψ .

As \neg -formulas are **not** monotone for the weaker condition, we obtain that \neg indeed cannot be expressed in terms of \Box .

Game semantics for IL_μ

Game semantics for IL_{μ} : the evaluation game

Given a model $M = (W, \leq, R, V)$ and a clean formula φ , we define an evaluation game $\mathcal{E}(\varphi, M)$ between \exists and \forall to determine which states $s \in W$ satisfy $M, s \models \varphi$.

Intuition: at position ($\psi, s, +$), \exists wants to show that s satisfies ψ , while \forall wants to show the converse.

Game semantics for IL_{μ} : the evaluation game

Given a model $M = (W, \leq, R, V)$ and a clean formula φ , we define an evaluation game $\mathcal{E}(\varphi, M)$ between \exists and \forall to determine which states $s \in W$ satisfy $M, s \models \varphi$.

Position	Player	Admissible moves
$(\top, s, +)$	\forall	Ø
$(\perp, s, +)$	Ξ	Ø
$(P,s,+),\ P\notin BV(\psi),\ s\in V(P)$	\forall	Ø
$(P, s, +), P \notin BV(\psi), s \notin V(P)$	Э	Ø
$(\varphi_1 \land \varphi_2, \boldsymbol{s}, +)$	\forall	$\{(\varphi_i,s,+):i=1,2\}$
$(\varphi_1 \lor \varphi_2, \boldsymbol{s}, +)$	Э	$\{(arphi_i, \pmb{s}, +): i=1,2\}$
$(arphi_1 o arphi_2, m{s}, +)$	\forall	$\{(arphi_1 o arphi_2, oldsymbol{s}, t, +): oldsymbol{s} \leq t\}$
$(arphi_1 o arphi_2, s, t, +)$	Ξ	$\{(\varphi_1,t,-),(\varphi_2,t,+)\}$
$(\varphi_1 \dashv \varphi_2, s, +)$	\forall	$\{(\varphi_1 \dashv \varphi_2, s, t, +) : sRt\}$
$(arphi_1 ext{ } \exists arphi_2, extsf{s}, t, +)$	Ξ	$\{(\varphi_1,t,-),(\varphi_2,t,+)\}$
$(\sigma_X X.\delta_X, s, +)$	-	$\{(\delta_X, s, +)\}$
$(X,s,+)$, $X\in BV(\psi)$	-	$\{(\delta_X, s, +)\}$

Intuition: at position ($\psi, s, +$), \exists wants to show that s satisfies ψ , while \forall wants to show the converse.

Game semantics for IL_{μ} : the evaluation game

Given a model $M = (W, \leq, R, V)$ and a clean formula φ , we define an evaluation game $\mathcal{E}(\varphi, M)$ between \exists and \forall to determine which states $s \in W$ satisfy $M, s \models \varphi$.

Position	Player	Admissible moves
$(\top, s, +)$	\forall	Ø
$(\perp, s, +)$	Ξ	Ø
$(P,s,+)$, $P \notin BV(\psi)$, $s \in V(P)$	\forall	Ø
$(P, s, +)$, $P \notin BV(\psi)$, $s \notin V(P)$	Ξ	Ø
$(\varphi_1 \land \varphi_2, \boldsymbol{s}, +)$	\forall	$\{(arphi_i, s, +): i=1,2\}$
$(\varphi_1 \vee \varphi_2, \boldsymbol{s}, +)$	Ξ	$\{(arphi_i, m{s}, +): i=1,2\}$
$(arphi_1 o arphi_2, m{s}, +)$	\forall	$\{(arphi_1 o arphi_2, {m s}, t, +): {m s} \leq t\}$
$(arphi_1 o arphi_2, m{s}, t, +)$	Ξ	$\{(\varphi_1,t,-),(\varphi_2,t,+)\}$
$(\varphi_1 \dashv \varphi_2, \boldsymbol{s}, +)$	\forall	$\{(\varphi_1 \dashv \varphi_2, s, t, +) : sRt\}$
$(\varphi_1 \dashv \varphi_2, \boldsymbol{s}, t, +)$	Ξ	$\{(\varphi_1,t,-),(\varphi_2,t,+)\}$
$(\sigma_X X.\delta_X, s, +)$	-	$\{(\delta_X, s, +)\}$
$(X,s,+)$, $X\inBV(\psi)$	-	$\{(\delta_X, s, +)\}$

Intuition: at position $(\psi, s, +)$, \exists wants to show that s satisfies ψ , while \forall wants to show the converse.

For negative positions ($\varphi, s, -$), we swap the roles of \exists and \forall . We call + or - the parity of a position.

Let q be a position. A play of $\mathcal{E}(\varphi, M)$ @q is a sequence ρ of positions following the rules of $\mathcal{E}(\varphi, M)$ such that

- 1. $\rho_0 = q$,
- 2. ρ is either infinite or ending in a position with no admissible moves.

Let q be a position. A play of $\mathcal{E}(\varphi, M)$ @q is a sequence ρ of positions following the rules of $\mathcal{E}(\varphi, M)$ such that

- 1. $\rho_0 = q$,
- 2. ρ is either infinite or ending in a position with no admissible moves.

Who wins a play ρ ? We want winning conditions such that: $M, s \models \varphi$ iff \exists has a winning strategy in $\mathcal{E}(\varphi, M) \mathbb{Q}(\varphi, s, +)$.

Let q be a position. A play of $\mathcal{E}(\varphi, M)$ ^Qq is a sequence ρ of positions following the rules of $\mathcal{E}(\varphi, M)$ such that

- 1. $\rho_0 = q$,
- 2. ρ is either infinite or ending in a position with no admissible moves.

Who wins a play ρ ? We want winning conditions such that: $M, s \models \varphi$ iff \exists has a winning strategy in $\mathcal{E}(\varphi, M) \mathbb{Q}(\varphi, s, +)$.

Lemma

Let ρ an infinite play of $\mathcal{E}(\varphi, M)@(\varphi, s, +)$. Then there is a unique, outermost $X_{\rho} \in BV(\varphi)$ that occurs infinitely often in ρ . Moreover, there is a parity $\bullet_{\rho} \in \{+, -\}$ such that every position in ρ with formula X has parity \bullet_{ρ} .

Let q be a position. A play of $\mathcal{E}(\varphi, M)$ ^Qq is a sequence ρ of positions following the rules of $\mathcal{E}(\varphi, M)$ such that

- 1. $\rho_0 = q$,
- 2. ρ is either infinite or ending in a position with no admissible moves.

Who wins a play ρ ? We want winning conditions such that: $M, s \models \varphi$ iff \exists has a winning strategy in $\mathcal{E}(\varphi, M) \mathbb{Q}(\varphi, s, +)$.

Lemma

Let ρ an infinite play of $\mathcal{E}(\varphi, M)@(\varphi, s, +)$. Then there is a unique, outermost $X_{\rho} \in BV(\varphi)$ that occurs infinitely often in ρ . Moreover, there is a parity $\bullet_{\rho} \in \{+, -\}$ such that every position in ρ with formula X has parity \bullet_{ρ} .

Winning conditions: Finite plays are lost by the player who got stuck. An infinite play ρ is won by \exists if $(\sigma_{X_{\rho}}, \bullet_{\rho}) \in \{(\nu, +), (\mu, -)\}$, and won by \forall otherwise.

Theorem

For any clean formula φ and pointed model (M, s), we have M, $s \models \varphi$ iff \exists has a (positional) winning strategy in $\mathcal{E}(\varphi, M)@(\varphi, s, +)$.

Theorem

For any clean formula φ and pointed model (M, s), we have $M, s \models \varphi$ iff \exists has a (positional) winning strategy in $\mathcal{E}(\varphi, M)@(\varphi, s, +)$.

Proof. By induction on φ . We adapt the proof for the classical case, making use of two observations:

- 1. For any position $(\psi, t, +)$: $(\psi, t, +)$ is winning for \exists iff $(\psi, t, -)$ is winning for \forall .
- 2. Every bound variable has a fixed parity in $\mathcal{E}(\varphi, M) \mathbb{Q}(\varphi, s, +)$.

Theorem

For any clean formula φ and pointed model (M, s), we have $M, s \models \varphi$ iff \exists has a (positional) winning strategy in $\mathcal{E}(\varphi, M)@(\varphi, s, +)$.

Proof. By induction on φ . We adapt the proof for the classical case, making use of two observations:

- 1. For any position $(\psi, t, +)$: $(\psi, t, +)$ is winning for \exists iff $(\psi, t, -)$ is winning for \forall .
- 2. Every bound variable has a fixed parity in $\mathcal{E}(\varphi, M)\mathbb{Q}(\varphi, s, +)$.

Remark. There is a preprint by Pacheco (2023) where similar (independently developed) game semantics for an intuitionistic version of the modal μ -calculus are used to show a collapse to modal logic over intuitionistic S5 frames.

Guardedness

In the classical $\mu\text{-calculus, it is well known that every formula is equivalent to a guarded one.$

Given a formula φ and variable X, we call X guarded in φ if every occurrence of X in φ is in the scope of some \neg -operator. A formula φ is guarded if for every subformula $\sigma X.\psi$ of φ , X is guarded in ψ .

In the classical μ -calculus, it is well known that every formula is equivalent to a guarded one.

Given a formula φ and variable X, we call X guarded in φ if every occurrence of X in φ is in the scope of some \neg -operator. A formula φ is guarded if for every subformula $\sigma X.\psi$ of φ , X is guarded in ψ .

We use two results to show that every formula of IL_μ is equivalent to a guarded one:

Theorem (Ruitenburg, 1984)

Let φ be a formula of IPC and X a propositional letter such that X is positive in φ . Define $\varphi_X^0 := X$ and $\varphi_X^{n+1} := \varphi[\varphi_X^n/X]$. Then there exists an N such that $\varphi_X^N \equiv \varphi_X^{N+1}$.

In particular, we have $\mu X.\varphi \equiv \varphi_X^N[\perp/X]$ and $\nu X.\varphi \equiv \varphi_X^N[\top/X]$.

In the classical μ -calculus, it is well known that every formula is equivalent to a guarded one.

Given a formula φ and variable X, we call X guarded in φ if every occurrence of X in φ is in the scope of some \neg -operator. A formula φ is guarded if for every subformula $\sigma X.\psi$ of φ , X is guarded in ψ .

We use two results to show that every formula of IL_μ is equivalent to a guarded one:

Theorem (Ruitenburg, 1984)

Let φ be a formula of IPC and X a propositional letter such that X is positive in φ . Define $\varphi_X^0 := X$ and $\varphi_X^{n+1} := \varphi[\varphi_X^n/X]$. Then there exists an N such that $\varphi_X^N \equiv \varphi_X^{N+1}$.

In particular, we have $\mu X.\varphi \equiv \varphi_X^N[\perp/X]$ and $\nu X.\varphi \equiv \varphi_X^N[\top/X]$.

Lemma ("the golden lemma of the μ -calculus") For any $\varphi(X, Y)$ with X and Y positive, we have

$$\sigma X.\sigma Y.\varphi(X,Y) \equiv \sigma X.\varphi(X,X) \equiv \sigma Y.\sigma X.\varphi(X,Y).$$

Proof. Straightforward by the game semantics!

Every IL_{μ} -formula φ is equivalent to a guarded one.

Every IL_{μ} -formula φ is equivalent to a guarded one.

Proof. By induction on φ . Suppose φ is of the form $\mu X.\psi$ with ψ guarded. Due to unfolding, we may assume that all unguarded occurrences of X in ψ are outside scope of fixpoint operators.

Every IL_{μ} -formula φ is equivalent to a guarded one.

Proof. By induction on φ . Suppose φ is of the form $\mu X.\psi$ with ψ guarded. Due to unfolding, we may assume that all unguarded occurrences of X in ψ are outside scope of fixpoint operators.

Let ζ be obtained from ψ by replacing every unguarded occurrence of X by X_0 and every guarded occurrence of X by X_1 . Then $\mu X.\psi \equiv \mu X_0.\mu X_1.\zeta \equiv \mu X_1.\mu X_0.\zeta$.

Every IL_{μ} -formula φ is equivalent to a guarded one.

Proof. By induction on φ . Suppose φ is of the form $\mu X.\psi$ with ψ guarded. Due to unfolding, we may assume that all unguarded occurrences of X in ψ are outside scope of fixpoint operators.

Let ζ be obtained from ψ by replacing every unguarded occurrence of X by X_0 and every guarded occurrence of X by X_1 . Then $\mu X.\psi \equiv \mu X_0.\mu X_1.\zeta \equiv \mu X_1.\mu X_0.\zeta$.

Let $\hat{\zeta}$ be obtained from ζ by replacing each (maximal) fixpoint or modal subformula χ of ψ by a fresh propositional letter P_{χ} ; by construction, no such χ contains the variable X_0 .

Every IL_{μ} -formula φ is equivalent to a guarded one.

Proof. By induction on φ . Suppose φ is of the form $\mu X.\psi$ with ψ guarded. Due to unfolding, we may assume that all unguarded occurrences of X in ψ are outside scope of fixpoint operators.

Let ζ be obtained from ψ by replacing every unguarded occurrence of X by X_0 and every guarded occurrence of X by X_1 . Then $\mu X.\psi \equiv \mu X_0.\mu X_1.\zeta \equiv \mu X_1.\mu X_0.\zeta$.

Let $\hat{\zeta}$ be obtained from ζ by replacing each (maximal) fixpoint or modal subformula χ of ψ by a fresh propositional letter P_{χ} ; by construction, no such χ contains the variable X_0 .

Then $\hat{\zeta}$ is an IPC formula, so by Ruitenburg's theorem there exists an N such that $\hat{\zeta}_{X_0}^N \equiv \hat{\zeta}_{X_0}^{N+1}$.

Every IL_{μ} -formula φ is equivalent to a guarded one.

Proof. By induction on φ . Suppose φ is of the form $\mu X.\psi$ with ψ guarded. Due to unfolding, we may assume that all unguarded occurrences of X in ψ are outside scope of fixpoint operators.

Let ζ be obtained from ψ by replacing every unguarded occurrence of X by X_0 and every guarded occurrence of X by X_1 . Then $\mu X.\psi \equiv \mu X_0.\mu X_1.\zeta \equiv \mu X_1.\mu X_0.\zeta$.

Let $\hat{\zeta}$ be obtained from ζ by replacing each (maximal) fixpoint or modal subformula χ of ψ by a fresh propositional letter P_{χ} ; by construction, no such χ contains the variable X_0 .

Then $\hat{\zeta}$ is an IPC formula, so by Ruitenburg's theorem there exists an N such that $\hat{\zeta}_{X_0}^N \equiv \hat{\zeta}_{X_0}^{N+1}$.

Let $\overline{\zeta} := \zeta_{X_0}^N[\perp/X_0]$. As none of the χ contains X_0 , note that $\zeta_{X_0}^N$ is identical to the formula obtained from $\hat{\zeta}_{X_0}^N$ by substituting for each P_{χ} its corresponding subformula χ . Since $\hat{\zeta}_{X_0}^N \equiv \hat{\zeta}_{X_0}^{N+1}$, it follows that $\zeta_{X_0}^N \equiv \zeta_{X_0}^{N+1}$, which implies $\mu X_0.\zeta \equiv \zeta_{X_0}^N[\perp/X_0]$.

Every IL_{μ} -formula φ is equivalent to a guarded one.

Proof. By induction on φ . Suppose φ is of the form $\mu X.\psi$ with ψ guarded. Due to unfolding, we may assume that all unguarded occurrences of X in ψ are outside scope of fixpoint operators.

Let ζ be obtained from ψ by replacing every unguarded occurrence of X by X_0 and every guarded occurrence of X by X_1 . Then $\mu X.\psi \equiv \mu X_0.\mu X_1.\zeta \equiv \mu X_1.\mu X_0.\zeta$.

Let $\hat{\zeta}$ be obtained from ζ by replacing each (maximal) fixpoint or modal subformula χ of ψ by a fresh propositional letter P_{χ} ; by construction, no such χ contains the variable X_0 .

Then $\hat{\zeta}$ is an IPC formula, so by Ruitenburg's theorem there exists an N such that $\hat{\zeta}_{X_0}^N \equiv \hat{\zeta}_{X_0}^{N+1}$.

Let $\overline{\zeta} := \zeta_{X_0}^N[\perp/X_0]$. As none of the χ contains X_0 , note that $\zeta_{X_0}^N$ is identical to the formula obtained from $\hat{\zeta}_{X_0}^N$ by substituting for each P_{χ} its corresponding subformula χ . Since $\hat{\zeta}_{X_0}^N \equiv \hat{\zeta}_{X_0}^{N+1}$, it follows that $\zeta_{X_0}^N \equiv \zeta_{X_0}^{N+1}$, which implies $\mu X_0.\zeta \equiv \zeta_{X_0}^N[\perp/X_0]$.

Now $\zeta_{X_0}^N[\perp/X_0]$ only contains guarded occurrences of X_1 , and $\mu X_1 \cdot \zeta_{X_0}^N[\perp/X_0] \equiv \mu X_1 \cdot \mu X_0 \cdot \zeta \equiv \mu X \cdot \psi$.

Every IL_{μ} -formula φ is equivalent to a guarded one.

Proof. By induction on φ . Suppose φ is of the form $\mu X.\psi$ with ψ guarded. Due to unfolding, we may assume that all unguarded occurrences of X in ψ are outside scope of fixpoint operators.

Let ζ be obtained from ψ by replacing every unguarded occurrence of X by X_0 and every guarded occurrence of X by X_1 . Then $\mu X.\psi \equiv \mu X_0.\mu X_1.\zeta \equiv \mu X_1.\mu X_0.\zeta$.

Let $\hat{\zeta}$ be obtained from ζ by replacing each (maximal) fixpoint or modal subformula χ of ψ by a fresh propositional letter P_{χ} ; by construction, no such χ contains the variable X_0 .

Then $\hat{\zeta}$ is an IPC formula, so by Ruitenburg's theorem there exists an N such that $\hat{\zeta}_{X_0}^N \equiv \hat{\zeta}_{X_0}^{N+1}$.

Let $\overline{\zeta} := \zeta_{X_0}^N[\perp/X_0]$. As none of the χ contains X_0 , note that $\zeta_{X_0}^N$ is identical to the formula obtained from $\hat{\zeta}_{X_0}^N$ by substituting for each P_{χ} its corresponding subformula χ . Since $\hat{\zeta}_{X_0}^N \equiv \hat{\zeta}_{X_0}^{N+1}$, it follows that $\zeta_{X_0}^N \equiv \zeta_{X_0}^{N+1}$, which implies $\mu X_0.\zeta \equiv \zeta_{X_0}^N[\perp/X_0]$.

Now $\zeta_{X_0}^N[\perp/X_0]$ only contains guarded occurrences of X_1 , and $\mu X_1 . \zeta_{X_0}^N[\perp/X_0] \equiv \mu X_1 . \mu X_0 . \zeta \equiv \mu X . \psi$. The ν -case is completely analoguous. A non-wellfounded proof system for IL_μ

We consider sequents $\Gamma \Rightarrow \Delta$ of finite sets of clean formulas with the standard interpretation:

 $\bigwedge \Gamma \to \bigvee \Delta.$

We define a non-wellfounded sequent calculus $nwlL_{\mu}$ as follows.

We consider sequents $\Gamma \Rightarrow \Delta$ of finite sets of clean formulas with the standard interpretation:

 $\bigwedge \Gamma \to \bigvee \Delta.$

We define a non-wellfounded sequent calculus $nwlL_{\mu}$ as follows.

For the propositional rules, we use standard multi-conclusion rules for IPC:

$$\begin{array}{ccc} \overline{\Gamma, A \Rightarrow A, \Delta} & \mathrm{id} & \overline{\Gamma, \bot \Rightarrow \Delta} & \bot \\ \\ \overline{\Gamma, A \Rightarrow \Delta} & \overline{\Lambda, B \Rightarrow \Delta} & \wedge \mathrm{L} & \overline{\Gamma \Rightarrow A, \Delta} & \Gamma \Rightarrow B, \Delta \\ \hline \Gamma, A \land B \Rightarrow \Delta & \wedge \mathrm{L} & \overline{\Gamma \Rightarrow A \land B, \Delta} & \wedge \mathrm{R} \\ \\ \hline \overline{\Gamma, A \Rightarrow \Delta} & \Gamma, B \Rightarrow \Delta & \vee \mathrm{L} & \overline{\Gamma \Rightarrow A \land B, \Delta} & \vee \mathrm{R} \\ \hline \overline{\Gamma, A \land B \Rightarrow \Delta} & \vee \mathrm{L} & \overline{\Gamma \Rightarrow A \lor B, \Delta} & \vee \mathrm{R} \\ \hline \overline{\Gamma, A \land B \Rightarrow \Delta} & - \mathrm{L} & \overline{\Gamma, A \Rightarrow B} \\ \hline \overline{\Gamma, A \land B \Rightarrow \Delta} & - \mathrm{L} & \overline{\Gamma, A \Rightarrow B} \\ \hline \overline{\Gamma, A \land B \Rightarrow \Delta} & - \mathrm{R} \end{array}$$

A non-wellfounded proof system for IL_{μ} : rules

Consider the following sound rule for the modality \exists :

$$\frac{A \Rightarrow B, C \quad D, A \Rightarrow B}{\Gamma, C \dashv D \Rightarrow A \dashv B, \Delta} \dashv_1$$

A non-wellfounded proof system for IL_{μ} : rules

Consider the following sound rule for the modality \exists :

$$\frac{A \Rightarrow B, C \quad D, A \Rightarrow B}{\Gamma, C \neg D \Rightarrow A \neg B, \Delta} \neg_1$$

For completeness, we generalize it to the following:

$$\frac{\{\mathcal{D}_j, A \Rightarrow B, \mathcal{C}_j\}_{j \le 2^n}}{\Gamma, \{C_i \dashv D_i\}_{i \le n} \Rightarrow A \dashv B, \Delta} \neg_n$$

where $n \ge 0$, and the sets $\mathcal{D}_1, \ldots, \mathcal{D}_{2^n}$ and $\mathcal{C}_1, \ldots, \mathcal{C}_{2^n}$ enumerate the subsets of $\{D_1, \ldots, D_n\}$ and $\{C_1, \ldots, C_n\}$, respectively, such that

 $D_i \in \mathcal{D}_j$ if and only if $C_i \notin \mathcal{C}_j$.

A non-wellfounded proof system for IL_{μ} : rules

Consider the following sound rule for the modality \exists :

$$\frac{A \Rightarrow B, C \quad D, A \Rightarrow B}{\Gamma, C \neg D \Rightarrow A \neg B, \Delta} \neg_{1}$$

For completeness, we generalize it to the following:

$$\frac{\{\mathcal{D}_j, A \Rightarrow B, \mathcal{C}_j\}_{j \le 2^n}}{\Gamma, \{\mathcal{C}_i \exists D_i\}_{i \le n} \Rightarrow A \exists B, \Delta} \exists_n$$

where $n \ge 0$, and the sets $\mathcal{D}_1, \ldots, \mathcal{D}_{2^n}$ and $\mathcal{C}_1, \ldots, \mathcal{C}_{2^n}$ enumerate the subsets of $\{D_1, \ldots, D_n\}$ and $\{C_1, \ldots, C_n\}$, respectively, such that

 $D_i \in \mathcal{D}_j$ if and only if $C_i \notin \mathcal{C}_j$.

Remark. A (sound) single-conclusion version

$$\frac{A \Rightarrow C_1 \quad D_1, A \Rightarrow C_2 \quad \dots \quad D_1, \dots, D_n, A \Rightarrow B}{\Gamma, \{C_i \exists D_i\}_{i \le n} \Rightarrow A \exists B}$$

is not complete, as it cannot derive the valid formula $\varphi \neg \chi \rightarrow (\psi \neg \chi \rightarrow (\varphi \lor \psi) \neg \chi)$.

For the fixpoint rules, we assume a derivation comes with a mapping $X \mapsto (\sigma_X, \delta_X)$ that associates every bound variable with its corresponding binder and fixpoint formula.

For $\sigma \in \{\mu, \nu\}$, we have the rules

$$\frac{\Gamma, \delta \Rightarrow \Delta}{\Gamma, \sigma X. \delta \Rightarrow \Delta} \sigma L \quad \frac{\Gamma \Rightarrow \delta, \Delta}{\Gamma \Rightarrow \sigma X. \delta, \Delta} \sigma R$$
$$\frac{\Gamma, \delta_X \Rightarrow \Delta}{\Gamma, X \Rightarrow \Delta} XL \quad \frac{\Gamma \Rightarrow \delta_X, \Delta}{\Gamma \Rightarrow X, \Delta} XR$$

This concludes the rules of $nwIL_{\mu}$.

A non-wellfounded proof system for IL_{μ} : derivations and proofs

A derivation T in nwlL_{μ} is a finite or infinite tree labelled according to the rules of nwlL_{μ}.

A non-wellfounded proof system for IL_{μ} : derivations and proofs

A derivation T in nwIL_{μ} is a finite or infinite tree labelled according to the rules of nwIL_{μ}.

Given a path ρ through T, a trace on ρ is a sequence (φ_i, \bullet_i) of formulas and their parity (left/right) following the principal-residual relation.

A non-wellfounded proof system for IL_{μ} : derivations and proofs

A derivation T in nwIL_{μ} is a finite or infinite tree labelled according to the rules of nwIL_{μ}.

Given a path ρ through T, a trace on ρ is a sequence (φ_i, \bullet_i) of formulas and their parity (left/right) following the principal-residual relation.

Similarly to plays, each (non-stagnating) trace τ will contain a unique outermost bound variable X that occurs infinitely often. This X is bound by either μ or ν , and its parity is either left or right.

A non-wellfounded proof system for IL_{μ} : derivations and proofs

A derivation T in nwlL_{μ} is a finite or infinite tree labelled according to the rules of nwlL_{μ}.

Given a path ρ through T, a trace on ρ is a sequence (φ_i, \bullet_i) of formulas and their parity (left/right) following the principal-residual relation.

Similarly to plays, each (non-stagnating) trace τ will contain a unique outermost bound variable X that occurs infinitely often. This X is bound by either μ or ν , and its parity is either left or right.

A derivation T is a proof in nwIL_{μ} if

- 1. every leaf of T is labelled by an axiom;
- 2. every infinite path of T has either a left μ -trace or a right ν -trace.

If φ is provable in nwIL_{μ} then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in $nwlL_{\mu}$.

If φ is provable in nulL_µ then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in $nwIL_{\mu}$.

Proof. By a game-theoretic argument similar to that of Niwiński and Walukiewicz (1996).

• Given a sequent σ , construct a determined two-player game between Prover and Refuter.

If φ is provable in nulL_µ then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in $nwIL_{\mu}$.

- Given a sequent σ , construct a determined two-player game between Prover and Refuter.
- The game is played on a proof search tree. In this tree, the non-invertible rules →R and ¬¬n may only be applied once the invertible rules have been applied to a sufficient degree.

If φ is provable in nwIL_{μ} then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in $nwlL_{\mu}$.

- Given a sequent σ , construct a determined two-player game between Prover and Refuter.
- The game is played on a proof search tree. In this tree, the non-invertible rules →R and ¬¬n may only be applied once the invertible rules have been applied to a sufficient degree.
- A winning strategy for Prover corresponds to a proof of σ .

If φ is provable in nwlL_µ then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in $nwlL_{\mu}$.

- Given a sequent σ , construct a determined two-player game between Prover and Refuter.
- The game is played on a proof search tree. In this tree, the non-invertible rules $\rightarrow R$ and \neg_n may only be applied once the invertible rules have been applied to a sufficient degree.
- A winning strategy for Prover corresponds to a proof of σ .
- From a winning strategy for Refuter, we construct a (pre-)countermodel M for σ by treating a premise of \exists_n as modal successor and a premise of $\rightarrow R$ as intuitionistic successor.

If φ is provable in nwlL_µ then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in $nwlL_{\mu}$.

- Given a sequent σ , construct a determined two-player game between Prover and Refuter.
- The game is played on a proof search tree. In this tree, the non-invertible rules →R and ¬¬n may only be applied once the invertible rules have been applied to a sufficient degree.
- A winning strategy for Prover corresponds to a proof of σ .
- From a winning strategy for Refuter, we construct a (pre-)countermodel M for σ by treating a premise of -3_n as modal successor and a premise of →R as intuitionistic successor.
- We make M satisfy triangle confluence by replacing the modal relation R by the composition \leq ; R.

Future work

We have introduced the logic IL_{μ} and provided adequate game semantics and a complete, analytic non-wellfounded proof system for guarded formulas.

We have introduced the logic IL_{μ} and provided adequate game semantics and a complete, analytic non-wellfounded proof system for guarded formulas.

The next steps:

- Prove completeness for unguarded formulas.
- Use the analytic, non-wellfounded system to obtain a cyclic system with annotations.
- Prove the bounded model property, and thereby decidability.

We have introduced the logic IL_{μ} and provided adequate game semantics and a complete, analytic non-wellfounded proof system for guarded formulas.

The next steps:

- Prove completeness for unguarded formulas.
- Use the analytic, non-wellfounded system to obtain a cyclic system with annotations.
- Prove the bounded model property, and thereby decidability.

Bigger steps:

- Study proof-theoretic properties such as cut-elimination, interpolation...
- Consider different frame conditions.
- Adding diamonds??