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The modal p-calculus extends basic modal logic by fixpoint operators 11 and v:
» uX.p(X) denotes the least fixpoint of p(X),
» vX.p(X) denotes the greatest fixpoint of ¢(X).

The logic is very expressive with many nice properties such as: decidability, the small model property, a
finitary axiomatization, and uniform interpolation.
Non-wellfounded and cyclic proof systems provide natural syntactic characterisations of the modal

p-calculus and its fragments.
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2022);
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» Intuitionistic Godel-L&b logic (Das, van der Giessen, Marin, 2023).
Our aim. Develop a general framework and proof-theoretic techniques for studying intuitionistic modal
fixpoint logics.

In the past, we have studied proof systems for:

1. intuitionistic linear-time temporal logic (Afshari, G., Leigh & Zenger, 2023);
2. intuitionistic modal logic with the master modality (Afshari, G., Leigh & Zenger, 2024, preprint).
Current work. We study an intuitionistic version of the modal p-calculus with a generalisation of the

modal [J, namely the Lewis arrow. We provide game semantics for the logic and a non-wellfounded
analytic proof system.
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Dissatisfied with material implication, Lewis (1912,1914,1918,1932) introduced several axiom systems
(S1-S5) meant to formalize strict implication:

Y3y “1) can be inferred from ¢.”

For the modern modal logician:

¢ 3¢ :=0(p = ¢).
SoOp=T 3.
In an intuitionistic setting, 3 is not interdefinable with .

» In intuitionistic provability and preservativity logic (see e.g. lemhof 2003 and Litak & Visser
2017): given a theory T,

A 31 B iff for all Z?-sentences S,f TS —Athen THS — B.
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Fix some set Prop of propositions/variables. Formulas of IL,, are given by the grammar:
=L |T|PloAY|oVY|o—=9P|p3¢|puXep|vXe

with P, X € Prop and X positive in ¢. We define Ly := T 3 .

Note: we add both p and v, as these operators are not interdefinable in the intuitionistic case.

We consider formulas ¢ that are clean:

1. the free and bound variables are disjoint;

2. for each bound variable X there is a unique subformula oxX.0x of .
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The truth relation for —, 3 and the fixpoint operators is defined by

M,sEp—1 iff forallt>sif Mt} ¢, then M,t =1,
M,sk=p 31 iff forall sRtif M,t = ¢, then M, t =1,
M,s|=puX.p iff s LFP(oY),
M,sl=vX.o iff se& GFP(oY),

where ¥ : P(W) — P(W) is the function given by S — [[cp]]’\\;’[XHS].

Crucially, we have

oX.p = ploX.p/X]

for o € {u,v}.
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For [J-formulas, forth-down confluence suffices: if w < vRu then wRs < u for some s.

Lemma
A O-formula ¢ is valid on all forth-down confluent models iff it is valid on all triangle confluent
models.

Proof. Any forth-down confluent model M = (W, <, R, V) induces a triangle confluent model
M = (W, <, (R; <), V) that satisfies M, w |= 1 iff M', w |= 4 for all w € W and formulas ).

As -3-formulas are not monotone for the weaker condition, we obtain that -3 indeed cannot be
expressed in terms of [.



Game semantics for 1L,




Game semantics for IL,: the evaluation game

Given a model M = (W, <, R, V) and a clean formula ¢, we define an evaluation game &(p, M)
between 3 and V to determine which states s € W satisfy M, s = ¢.

Intuition: at position (¢, s, +), 3 wants to show that s satisfies v, while V wants to show the converse.



Game semantics for IL,: the evaluation game

Given a model M = (W, <, R, V) and a clean formula ¢, we define an evaluation game &(p, M)
between 3 and V to determine which states s € W satisfy M, s = ¢.

Intuition: at position (¢, s, +), 3 wants to show that s satisfies v, while V wants to show the converse.

Position Player Admissible moves
(T,s,+) \ 0
(L,s,+) 3 0
(P,s,+), P ¢ BV(¢), s V(P) A 0
(P,s,+), P ¢ BV(v), s ¢ V(P) 3 0
(p1 A p2,5,4) v {(pi,s,+) 1 i=1,2}
(p1V 2,s,+) 3 {(pirs, +):i=1,2}
(b1 = 2,5, +) v {(p1 = p2,s,t,+) : s < t}
(901 — 2,5, t7+) 3 {(¢17t7_)7(9027t7+)}
(1 3 ¥2,5,+) v {(p1 3 p2,s,t,+) : sRt}
(p1 8 @2,5,t,+) 3 {1, t, =), (2, 1, +)}
(UxX.éx,S,-‘r) - {(5x,5,+)}
(X,s,+), X € BV(¥) - {(dx,s,+)}




Game semantics for IL,: the evaluation game

Given a model M = (W, <, R, V) and a clean formula ¢, we define an evaluation game &(p, M)
between 3 and V to determine which states s € W satisfy M, s = ¢.

Intuition: at position (¢, s, +), 3 wants to show that s satisfies v, while V wants to show the converse.

Position Player Admissible moves
(T,s,+) \ 0
(L,s,+) 3 0
(P,s,+), P ¢ BV(¢), s V(P) A 0
(P,s,+), P ¢ BV(v), s ¢ V(P) 3 0
(p1 A p2,5,4) v {(pi,s,+) 1 i=1,2}
(p1V 2,s,+) 3 {(pirs, +):i=1,2}
(b1 = 2,5, +) v {(p1 = p2,s,t,+) : s < t}
(901 — 2,5, t7+) 3 {(¢17t7_)7(9027t7+)}
(1 3 ¥2,5,+) v {(p1 3 p2,s,t,+) : sRt}
(p1 8 @2,5,t,+) 3 {1, t, =), (2, 1, +)}
(UxX.éx,S,-‘r) - {(5x,5,+)}
(X,s,+), X € BV(¥) - {(dx,s,+)}

For negative positions (p, s, —), we swap the roles of 3 and V. We call 4+ or — the parity of a position.
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Let g be a position. A play of £(p, M)@q is a sequence p of positions following the rules of (¢, M)
such that

1. po=gq,

2. p is either infinite or ending in a position with no admissible moves.

Who wins a play p? We want winning conditions such that: M,s |= ¢ iff 3 has a winning strategy in
E(p, M)O(p, s, +).

Lemma
Let p an infinite play of E(p, M)®@(p,s,+). Then there is a unique, outermost X, € BV () that
occurs infinitely often in p. Moreover, there is a parity o, € {+, —} such that every position in p with

formula X has parity e,,.

Winning conditions: Finite plays are lost by the player who got stuck. An infinite play p is won by 3 if
(0x,,95) € {(v,+), (1, =)}, and won by V otherwise.
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The game £(p, M) is a parity game and therefore positionally determined: for every position g, either
3 or V has a winning strategy in £(¢, M)@gq that only depends on the current position.
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The game £(p, M) is a parity game and therefore positionally determined: for every position g, either
3 or V has a winning strategy in £(¢, M)@gq that only depends on the current position.

Theorem

For any clean formula ¢ and pointed model (M, s), we have M, s |= ¢ iff 3 has a (positional) winning
strategy in E(o, M)@(p, s, +).

Proof. By induction on . We adapt the proof for the classical case, making use of two observations:

1. For any position (1, t,+): (¢, t,+) is winning for 3 iff (¢, t, —) is winning for V.
2. Every bound variable has a fixed parity in £(p, M)Q(yp, s, +).

Remark. There is a preprint by Pacheco (2023) where similar (independently developed) game
semantics for an intuitionistic version of the modal p-calculus are used to show a collapse to modal
logic over intuitionistic S5 frames.

10



Guardedness




Guardedness: definition

In the classical p-calculus, it is well known that every formula is equivalent to a guarded one.

Given a formula ¢ and variable X, we call X guarded in ¢ if every occurrence of X in ¢ is in the scope
of some 3-operator. A formula ¢ is guarded if for every subformula 0 X.1 of ¢, X is guarded in .

11



Guardedness: definition

In the classical p-calculus, it is well known that every formula is equivalent to a guarded one.

Given a formula ¢ and variable X, we call X guarded in ¢ if every occurrence of X in ¢ is in the scope
of some 3-operator. A formula ¢ is guarded if for every subformula 0 X.1 of ¢, X is guarded in .

We use two results to show that every formula of IL,, is equivalent to a guarded one:

Theorem (Ruitenburg, 1984)

Let ¢ be a formula of IPC and X a propositional letter such that X is positive in @. Define ©% = X

and %™ = @[p%/X]. Then there exists an N such that o = i+,

In particular, we have uX.o = X[ L/X] and vX.¢ = X [T /X].

11



Guardedness: definition

In the classical p-calculus, it is well known that every formula is equivalent to a guarded one.

Given a formula ¢ and variable X, we call X guarded in ¢ if every occurrence of X in ¢ is in the scope
of some 3-operator. A formula ¢ is guarded if for every subformula 0 X.1 of ¢, X is guarded in .

We use two results to show that every formula of IL,, is equivalent to a guarded one:

Theorem (Ruitenburg, 1984)

Let ¢ be a formula of IPC and X a propositional letter such that X is positive in @. Define ©% = X
and %™ = @[p%/X]. Then there exists an N such that o = i+,
In particular, we have uX.o = X[ L/X] and vX.¢ = X [T /X].

Lemma (“the golden lemma of the p-calculus™)

For any (X, Y) with X and Y positive, we have

oX.aY.p(X,Y)=cX.o(X,X)=0cY.cX.o(X,Y).

Proof. Straightforward by the game semantics!
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Proof. By induction on . Suppose ¢ is of the form pX.1) with 1) guarded. Due to unfolding, we may
assume that all unguarded occurrences of X in 1) are outside scope of fixpoint operators.

Let ¢ be obtained from v by replacing every unguarded occurrence of X by Xy and every guarded
occurrence of X by Xi. Then puX.¢ = puXo.uX1.¢ = pXi.pX0.C.

Let (A be obtained from ¢ by replacing each (maximal) fixpoint or modal subformula x of ¢ by a fresh
propositional letter Py; by construction, no such x contains the variable Xp.

Then CA is an IPC formula, so by Ruitenburg’s theorem there exists an N such that CA)'}IO = AQ’O“.

Let ¢ := C)’}/O [L/Xo]. As none of the x contains Xo, note that CQ’O is identical to the formula obtained
from CA)/}/O by substituting for each P, its corresponding subformula x. Since QAXO = @'}’0“, it follows that
X, = G, which implies 1Xo.¢ = (3 [L/Xa].

Now C)'}’O [L/Xo] only contains guarded occurrences of Xi, and qu.C)’}’O [L/X0] = uX1.puXo.C = puX.ap.

The v-case is completely analoguous. |
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A non-wellfounded proof system for IL,,: rules

We consider sequents [ = A of finite sets of clean formulas with the standard interpretation:
AT —=\VA

We define a non-wellfounded sequent calculus nwlL,, as follows.
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A non-wellfounded proof system for IL,,: rules

We consider sequents [ = A of finite sets of clean formulas with the standard interpretation:
AT —=\VA

We define a non-wellfounded sequent calculus nwlL,, as follows.

For the propositional rules, we use standard multi-conclusion rules for IPC:

WEY W YN
AB=A Fr=AA [=B,A
LAAB= A N F=AAB,A
A=A IB=A = ABA
rAave=a v r=aAve,a 'R
NMA—-B=AA [B=A A= B
— R

ASB=A r—A>BA
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A non-wellfounded proof system for IL,,: rules

Consider the following sound rule for the modality -3:

A=B,C D,A=B 4
C3D=A3BA
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C3D=A3BA

For completeness, we generalize it to the following:

{Dj,A= B,Cj}j<on
F,{C; =3 Di}iS" = A3 B,A

n

where n > 0, and the sets Dy, ..., Do and Ci, ..., Con enumerate the subsets of {Ds, ..., D,} and
{G, ..., Cy}, respectively, such that

D; € Dj if and only if G ¢ Cj.
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Consider the following sound rule for the modality -3:

A=B,C D,A=B 4
C3D=A3BA

For completeness, we generalize it to the following:

{Dj,A= B,Cj}j<on
F,{C; =3 Di}iS" = A3 B,A

n

where n > 0, and the sets Dy, ..., Do and Ci, ..., Con enumerate the subsets of {Ds, ..., D,} and
{G, ..., Cy}, respectively, such that

D; € Dj if and only if G ¢ Cj.

Remark. A (sound) single-conclusion version

A= G D1,A=>C2 Dl,...,Dn,AiB
r,{C,'—?;D,‘},'S,,:>A—38

is not complete, as it cannot derive the valid formula ¢ 3 x — (¥ 3 x — (¢ V¢) 3 x).
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A non-wellfounded proof system for IL,,: rules

For the fixpoint rules, we assume a derivation comes with a mapping X — (ox, dx) that associates
every bound variable with its corresponding binder and fixpoint formula.

For o € {u, v}, we have the rules

ré=A 0 r=94A
FoXo=a Y T=oxon °F

Iox=A M= dx,A

rx=a" " T=xa"

This concludes the rules of nwlL,,.
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A non-wellfounded proof system for IL,: derivations and proofs

A derivation T in nwlL, is a finite or infinite tree labelled according to the rules of nwlL,,.
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A non-wellfounded proof system for IL,: derivations and proofs

A derivation T in nwlL, is a finite or infinite tree labelled according to the rules of nwlL,,.

Given a path p through T, a trace on p is a sequence (yj, ®;) of formulas and their parity (left/right)
following the principal-residual relation.

M o= A

(

M= A
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following the principal-residual relation.

)

M o= A

(

M= A

Similarly to plays, each (non-stagnating) trace 7 will contain a unique outermost bound variable X
that occurs infinitely often. This X is bound by either p or v, and its parity is either left or right.
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A non-wellfounded proof system for IL,: derivations and proofs

A derivation T in nwlL, is a finite or infinite tree labelled according to the rules of nwlL,,.

Given a path p through T, a trace on p is a sequence (yj, ®;) of formulas and their parity (left/right)
following the principal-residual relation.

)

M o= A

(

M= A

Similarly to plays, each (non-stagnating) trace 7 will contain a unique outermost bound variable X
that occurs infinitely often. This X is bound by either p or v, and its parity is either left or right.

A derivation T is a proof in nwlL,, if

1. every leaf of T is labelled by an axiom;

2. every infinite path of T has either a left p-trace or a right v-trace.
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A non-wellfounded proof system for IL,: soundness and completeness

Theorem

If ¢ is provable in nwlL,, then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in nwiL,,.

Proof. By a game-theoretic argument similar to that of Niwiriski and Walukiewicz (1996).
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premise of 3, as modal successor and a premise of —R as intuitionistic successor.
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Theorem

If ¢ is provable in nwlL,, then it is valid on triangle models.

Theorem

Every guarded formula valid on triangle models is provable in nwiL,,.

Proof. By a game-theoretic argument similar to that of Niwiriski and Walukiewicz (1996).
e Given a sequent o, construct a determined two-player game between Prover and Refuter.

e The game is played on a proof search tree. In this tree, the non-invertible rules —R and 3, may
only be applied once the invertible rules have been applied to a sufficient degree.

e A winning strategy for Prover corresponds to a proof of o.

e From a winning strategy for Refuter, we construct a (pre-)countermodel M for o by treating a
premise of 3, as modal successor and a premise of —R as intuitionistic successor.

We make M satisfy triangle confluence by replacing the modal relation R by the composition <; R.
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Future work




We have introduced the logic IL, and provided adequate game semantics and a complete, analytic
non-wellfounded proof system for guarded formulas.

18



We have introduced the logic IL, and provided adequate game semantics and a complete, analytic
non-wellfounded proof system for guarded formulas.

The next steps:

e Prove completeness for unguarded formulas.
e Use the analytic, non-wellfounded system to obtain a cyclic system with annotations.

e Prove the bounded model property, and thereby decidability.
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We have introduced the logic IL, and provided adequate game semantics and a complete, analytic
non-wellfounded proof system for guarded formulas.

The next steps:

e Prove completeness for unguarded formulas.

e Use the analytic, non-wellfounded system to obtain a cyclic system with annotations.

e Prove the bounded model property, and thereby decidability.

Bigger steps:

e Study proof-theoretic properties such as cut-elimination, interpolation...
e Consider different frame conditions.

e Adding diamonds??
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