Definable Henselian valuations in positive residue characteristic

Margarete Ketelsen, Universität Münster, margarete.ketelsen@uni-muenster.de

Joint work with Simone Ramello (Münster) and Piotr Szewczyk (Dresden)

07.02.2024 LLAMA Seminar, ILLC of the University van Amsterdam

§ Motivation

Let \(p \) be a prime, \(\mathbb{Z} \subseteq \mathbb{Q} \). Define:

\[\psi(a) = \max \{ n \in \mathbb{N} : p^n \text{ divides } a \} \]

An extended \(\psi \) to \(\mathbb{Q} \):

\[\psi\left(\frac{a}{b} \right) = \psi(a) - \psi(b) \in \mathbb{Z}, \quad \psi(0) = \infty \]

\(\psi \) induces a metric on \(\mathbb{Q} \):

\[d(x,y) = p^{-\psi(x-y)} \in \mathbb{R}_0^+ \]

(Counter-) intuition: \(x, y \in \mathbb{Q} \) are close to each other if

\[\psi(x-y) \text{ is small} \]

Completing yields \((\mathbb{Q}_p, \psi) \), the field of \(p \)-adic numbers

\(\psi : \mathbb{Q}_p \rightarrow \mathbb{Z} \cup \{ \infty \} \)

Special subclass, the \(p \)-adic integers

\[\mathbb{Z}_p = \{ x \in \mathbb{Q}_p : \psi(x) = 0 \} \]

Fact (J. Robinson) \(p > 2 \)

\[\mathbb{Z}_p = \{ x \in \mathbb{Q}_p : 3y \in \mathbb{Q}_p (1 + px^2 - y^2) \} \]

i.e. \(\mathbb{Z}_p \) is \(\mathbb{Z} \)-\(\mathbb{Q} \)-definable in \(\mathbb{Q}_p \)

§ Valuations

Def. An ordered abelian group \((\Gamma, +, \leq) \) is a group \((\Gamma, +) \) together with a total order \(\leq \) on \(\Gamma \) such that + and \(\leq \) are compatible,

\[a \leq b \implies ac \leq bc \text{ for all } a, b, c \in \Gamma \]

We introduce a symbol \(\infty \) with the usual rules, e.g.

\[\forall a \in \Gamma : a \leq \infty, \quad a + a = a_0 = \infty \]

\[\infty + a = \infty, \quad \infty + \infty = \infty \]

Examples

* \((\mathbb{Z}, \leq) \), \((\mathbb{Q}^+, \leq) \), \((\mathbb{R}, \leq) \)

* in general subgroups of \(\mathbb{R} \)

* \((\mathbb{Z} \times \mathbb{Z}, \leq) = (\mathbb{Z}, \leq) \times (\mathbb{Z}, \leq) \)

* \((\mathbb{Q}, \leq) \) is \(\mathbb{Z} \)-linearly ordered by \(\leq \)

* complementation addition:

\[(a_0, b_0) \leq (a_2, b_2) \iff a_1 = a_2 \text{ or } (a_1 - a_2 \text{ and } b_1 = b_2) \]
Def. Let \mathbb{K} be a field. A valuation on \mathbb{K} is a surjective map $v : \mathbb{K} \to \Gamma \cup \{\infty\}$ where $(\Gamma, +, \cdot)$ is an ordered abelian group and such that:

1. $v(x) = \infty \iff x = 0$ for all $x \in \mathbb{K}$
2. $v(xy) = v(x) + v(y)$ for all $x, y \in \mathbb{K}$
3. $v(xy) \geq \min\{v(x), v(y)\}$ for all $x, y \in \mathbb{K}$

We say (\mathbb{K}, v) is a valued field.

Γ is called the value group of (\mathbb{K}, v), also write $\mathbb{K}=v^{-1}(\Gamma)$. Γ

Recall the intuition: "close to 0 \iff big valuation.

Examples:
- (\mathbb{Q}, v_p), (\mathbb{Q}_p, v_p) have value group \mathbb{Z}
- $(\mathbb{K}, v_{\text{triv}})$, $v_{\text{triv}} : \mathbb{K} \to \mathbb{Q} \cup \{\infty\}$
 $v_{\text{triv}}(x) = \begin{cases} 0 & \text{if } x = 0 \\ \infty & \text{if } x \neq 0 \end{cases}$

Def. (\mathbb{K}, v) valued field:
- $\mathcal{O}_v = \{x \in \mathbb{K} : v(x) = 0\}$, the valuation ring
- is a local ring with unique maximal ideal $m_v = \{x \in \mathbb{K} : v(x) > 0\}$
- $\mathbb{K}_v = \mathcal{O}_v/m_v$, the residue field

Thus a valued field has three characteristics: $\text{char}(\mathbb{K})$ & $\text{char}(\mathbb{K}_v)$
- $\text{char}(\mathbb{K}) = \text{char}(\mathbb{K}_v) = 0$ "equicharacteristic 0"
- $\text{char}(\mathbb{K}) = p \neq \text{char}(\mathbb{K}_v)$ "mixed characteristic" p
- $\text{char}(\mathbb{K}) = \text{char}(\mathbb{K}_v) = p$ "positive characteristic/p p" p

Remark. One can retrieve the valuation up to an isomorphism of ordered abelian groups.

$$v \in \mathcal{O}_v \quad \xrightarrow{\phi_{\mathcal{O}_v}} \quad e \quad \xrightarrow{\sigma} \quad G_{\mathcal{O}_v}$$

$\text{ord}_{\mathcal{O}_v}$

Have $1:1$ correspondence:

$\{\text{valuations on } \mathbb{K}/\mathcal{O}_v\} \leftrightarrow \{\text{valuation rings on } \mathbb{K}\}$

Def. We say v is definable if \mathcal{O}_v, v is $\mathcal{L}(\mathbb{K})$-definable.

Examples:
- (\mathbb{Q}, v_p): $\mathcal{O}_p = \mathbb{Z}_p$ = $\left\{ \frac{a}{b} : a, b \in \mathbb{Z}, \text{p does not divide } b \right\} \subseteq \mathbb{Q}$
- $m_v = \mathbb{Z}_p$
- $\mathbb{Q}_p = \mathbb{Z}_p/\mathbb{Z}_p = \mathbb{Z}_p - F_p$
- (\mathbb{Q}_p, v_p): $\mathcal{O}_p = \mathbb{Z}_p$, the p-adic integers, $\mathcal{O}_p v_p = F_p$
- $(\mathbb{K}, v_{\text{triv}})$: $\mathcal{O}_v = \mathbb{K}$, $m_{v_{\text{triv}}} = \{0\}$, $K_{v_{\text{triv}}} = K/\mathcal{O}_v = K$

Def. (\mathbb{K}, v) valued field is called Henselian if there is a unique valuation v on \mathbb{K}/\mathcal{O}_v extending v.

Examples:
- (\mathbb{Q}, v_p) not Henselian, (\mathbb{Q}_p, v_p) Henselian
- $(\mathbb{K}, v_{\text{triv}})$ always Henselian.

A field \mathbb{K} is called Henselian if there is at least one non-trivial Henselian valuation on \mathbb{K}.
Section (4) Given a field K, when is there a definable non-trivial henselian valuation on K?

→ K should be henselian

→ K should not be separably closed
 (separably closed fields are stable, and in stable structure
 no non-trivial valuation is definable)

§ The canonical henselian valuation

Recall the value group can be higher rank ($\neq R$)
 → can have proper non-trivial convex subgroups $\Delta \subseteq \Gamma$

Example $\Gamma = R$: $10$3 and Γ are the only convex subgroups $\Gamma \subseteq \mathbb{Z}$

$\Gamma = \mathbb{Z}$, \mathbb{Z}, $\mathbb{Z} \times \mathbb{Z}$, $10 \mathbb{Z}$

$\Delta = \mathbb{Z} \times \mathbb{Z}$, $10 \mathbb{Z}$

 correspondence: $\{\text{convex subgroups of } \mathbb{V}_K\} \leftrightarrow \{\text{rings}\}$
 (rings are always valuation rings)

Def $H(K) = \{\sigma, \epsilon \in K: \sigma \text{ henselian} \}$

→ $H_1(K) = \{\sigma, \epsilon \in H(K): \epsilon$ not separably closed $\}$

→ $H_2(K) = \{\sigma, \epsilon \in H(K): \epsilon$ separably closed $\}$

$H(K)$ is partially ordered by the covering relation/inclusion

Fact: the valuations in H_2 are coarsely ordered and coarser than (coverings) of the valuations in H_1

Picture:

Def the canonical henselian valuation on K, \mathbb{V}_K, is
 → the finest valuation in H_1, if $H_1 \neq \emptyset$
 → the coarsest valuation in H_2, otherwise

The answer to (4) depends on properties of \mathbb{V}_K

P1. $\text{char}(K) > 0$ and only need $\Gamma = \emptyset$

Theorem (Jahnke-Keininger, 2017; K-Ramello-Seceley, 2024)

K henselian, not separably closed

If $\text{char}(K) = 0$, assume K is perfect

If $\text{char}(K) = p > 0$, $\text{char}(K) = p > 0$, then assume \mathbb{V}_K is semi-perfect.

Then,

→ K admits a non-trivial definable henselian valuation

1. K not henselian

2. $\text{char}(K)$ not definable

3. \mathbb{V}_K not definable

4. $\text{char}(K)$ not definable

5. \mathbb{V}_K not definable

6. $\text{char}(K)$ not definable

\[\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c} \hline \text{property} & 1 & 2 & 3 & 4 & 5 & 6 \\ \hline \text{valuation} & \text{yes} & \text{yes} & \text{yes} & \text{yes} & \text{yes} & \text{yes} \\ \hline \text{existence} & \text{no} & \text{no} & \text{no} & \text{no} & \text{no} & \text{no} \\ \hline \end{array} \]
§ Defect

Fact (fundamental inequality)
(K\!,v) \text{- henselian, L/k finite extension } \implies \text{unique extension v to L}

\[[L:K] = (vL: vK)[L:vK] \]

(XX)

Def \ ((K\!,v) \in (L,v)) \text{ is defect} \iff \text{ (XX) is an equality}

(K\!,v) \text{ defect} \iff \text{all its finite extensions are}

Otherwise: Defect

Example \ \text{char(K) = 0 } \implies \text{ (K\!,v) defectless}

From now on, assume \ \text{char(K) > 0}

Def (Hochster-Parshin) \ Let (K\!,v) \subseteq (L,v) \text{ be a Galois defect extension of degree p. Let Gal(L/K) = \langle \sigma \rangle}

\[\Sigma_L = \{ \sigma^i \in \text{Gal}(L/K) \mid \sigma^i \in L^v \} \subseteq vL = vK\]

We say \ ((K\!,v) \in (L,v)) \text{ has independent defect if there is an element H \subseteq_{\text{finite}} vK \text{ s.t.}

- vK/H has no smallest positive element
- \Sigma_L = \{ \alpha \in vK \mid \alpha > 0 \}

Proof Idea \ (\text{of } (5) \implies \text{ a non-trivial defect, val})

Assume \ (K\!,v) \text{ has defect } (5)

Find a Galois defect extension of degree p:

\[K \subseteq K' \subseteq L \]

Perfect/Semi-Perfect \implies \text{ has independent defect}

\[\Sigma_L \text{ & the coarsening of } \sigma \text{ corresponding to } H \]

are "essentially" \text{-definable} (Beth's definability theorem)

yields a non-trivial definable henselian valuation on K.