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The Logic of Functional Dependence (LFD)

The logic of functional dependence (LFD) is a highly expressive logic
with many nice meta-properties, most notably it is decidable. However,
decidability was only shown via a detour through quasi-models.

It is interpreted over generalised assignment models just like the logic
of Cylindric Relativized Set Algebras (CRS). Such models have natural
modal companions that can serve as equivalent relational semantics.

On the dependence side, LFD differs radically from dependence logics by
studying the notion of local dependence rather than global dependence.

My contributions were (i) proposing a notion of dependence bisimulation
characterizing LFD and (ii) prove the finite model property.
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Origins
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FOL as a Modal Logic

Recall the Tarskian definition if truth of a first-order formula in a model at
some variable assignment:

M, α |= ∃xϕ iff ∃d ∈ dom(M) s.t. M, α[x := d ] |= ϕ

Equivalently, this can be expressed as

M, α |= ∃xϕ iff ∃β with α =x β and M, β |= ϕ

where =x is the relation of agreeing ’up to x-values’ (for x ∈ V )

s =x t iff s↾V−{x} = t↾V−{x}

for which the quantifier ∃x becomes the ♢-modality!
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Abstract Modal Frames

This gives rise to the following abstract modal pattern for quantification:

M, α |= ∃xϕ iff ∃β s.t. Rxαβ and M, β |= ϕ

In this way, we may think of quantifiers as modalities and vice versa!

Standard first-order models arise by making 3 ’negotiable choices’:
(i) States are identified with variable assignments
(ii) Rx is the specific relation =x of agreeing ’up to x-values’
(iii) All assignments in the function space dom(M)V are available

Without these additional choices, we obtain abstract modal models
M = (A, (Rx)x∈V , I ) where I (Px) ⊆ A for each atomic formula Px

Condition (i) in fact poses no restriction at all s∗(x) := (s, x) (v.B.,1996)
CRS is the logic obtained by giving up (iii) while keeping (i),(ii).
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The Logic of Cylindric Relativized Set Algebras (CRS)

Dependence models are obtained from standard first-order models by
dropping the existential condition (iii) encoding a full Cartesian product

Definition (Dependence Model)

A dependence model M = (M,A) is a pair of a relational structure M and
a team A ⊆ dom(M)V (set of ’available’ variable assignments).

CRS is just a first-order (relational) language (with no substitutions)
where instead of ordinary quantification ∃x we have a polyadic quantifier

(M,A), s |= ∃Xϕ iff ∃t ∈ A with s =X t and (M,A), t |= ϕ

where =X is the relation of ’agreeing up to X ’ (X a set of variables)

s =X t iff s↾V−{x} = t↾V−{x}

The CRS-quantifier ∀{x} collapses to ∀x over full models
(i.e. dependence models (M, dom(M)V ) encoding a standard model)
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CRS and Locality

A disadvantage of this specific way of generalising first-order quantification
is that CRS fails to satisfy a property called Locality, in contrast to FOL

Locality Whether M, s |= ϕ depends only on free(ϕ)

This lead to the following alternative proposal for the CRS-quantifiers
(Marx, Venema), designed to satisfy Locality

(M,A), s |= ∃̃xϕ iff ∃t ∈ A with s =Free(ϕ)−X t and (M,A), t |= ϕ

which still collapses to standard quantification over full models.

However, there are conceptual problems arising from this move; e.g.
∃Xϕ⇝ ∃X (ϕ ∧ z = z) conjoining a tautology changes the meaning of the
formula (witnessing assignment has to agree on z ̸∈ X with s as well)
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Dependence via Assignment Gaps

Both proposals have problems generalizing all desirable properties of
standard quantification to the generalised setting. Moreover, the general
setting has to offer things beyond FOL that they fail to capture...

The ’assignment gaps’ create dependencies between variables!
Contrastingly, in FOL variables are manipulated completely independent of
each other, witnessed by the FOL-validity

(Commutation) ∃x∃yϕ→ ∃y∃xϕ

which fails to be a CRS-validity. But we can only ’see’ dependencies
implicitly with CRS through such failures.

The failure of the above Commutation axiom merely establishes a
dependency in the sense of the negation of independence. Here we will
look at the far stronger notion of functional dependence
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Functional Dependence

A variable y functionally depends on a set of variables X globally if
whenever the values of X are fixed, so is the y -value.

Dependence logics
based on team semantics feature explicit ’dependence atoms’

(M,A) |= = (X , y) iff ∀s ∈ A∀t ∈ A(
∧
x∈X

s(x) = t(x)→ s(y) = t(y))

LFD studies the more fine-grained notion of local dependence:

(M,A), s |= DX y iff ∀t ∈ A(
∧
x∈X

s(x) = t(x)→ s(y) = t(y)

which says that whenever the values of X are fixed to the current values,
then also the y -value will be the same as the current one.

LFD is classical (and decidable), in contrast to dependence logics based on
team semantics ⇝ dependence not intrinsically non-classical
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A Typical Amsterdam Database Example

Row Coffeeshop Specialty Price Location

1 Dampkring Skywalker Moderate Center
2 Paradox Hindu Kush Expensive Center
3 Boerejongens S5 Haze Moderate Center
4 Cheech & Chong’s S5 Haze Cheap West
5 Sensimillia Tbisla Cheap West
6 Greenhouse Hindu Kush Expensive East
7 The Stud Tbisla Cheap East

global dependencies:
Coffeeshop → {Specialty, Price, Location}
{Specialty, Location} → {Price, Coffeeshop}
local dependencies:
Location → Price at rows 4,5
Specialty → Price at rows 1,2,5,6,7
Speciality → Location at row 1 only
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The Logic of Functional
Dependence
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What is to come?

We saw some proposals for generalizing first-order quantification to
dependence models, and the concept of local dependence with an example.

We go on to introduce the logic LFD and go into the proof of completeness
and decidability from the original paper. We will need these for the proofs
later on and they will connect LFD to the Guarded Fragment (GF).

Then we can dive into the proof of the finite model property via Herwig’s
theorem, indicating where and how it differs from Grädel’s result for GF.

Time permitting, we may go into more detail about the relation between
CRS and LFD, and how LFD solves an open problem from (van Benthem,
1996) or even dependence bisimulations.
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Syntax

Fix a finite set of variables V and a relational signature τ .

Definition (Syntax)

The language LFD[V , τ ] over (V , τ) is recursively defined by:

φ ::= Px | ¬φ | φ ∧ φ | DXφ | DX y

where X ⊆ω V y ∈ V , P ∈ τ and x = (x1, ..., xn) ∈ V ar(P).

We pronounce the dependence atom DX y as ”y (locally) depends on X”
and the dependence quantifier DXφ as ”X (locally) determines truth of φ”

Furthermore, we abbreviate DXY :=
∧

y∈Y Dxy and EXφ := ¬DX¬φ.
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Semantics

Simply recall the definition of a dependence model!

Definition (Dependence Models)

A dependence model M is a pair M = (M,A) of a relational first-order
structure M, together with a fixed team A ⊆ MV .

This time, instead of the relation =x of agreeing ’up to x-values’ we take
=X as our fundamental update relation:

s =X t iff s ↾ X = t ↾ X

The semantics clauses are as follows (Booleans as usual):

s |= Px iff s(x) ∈ IM(P)

s |= DXφ iff t |= φ holds for all t ∈ A with s =X t

s |= DX y iff s =X t implies s =y t for all t ∈ A.
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LFD satisfies Locality

For every φ ∈LFD, we define its free variables by:

free(DX y) = X

free(DXφ) = X

free(Px1...xn) = {x1, ..., xn}
free(¬φ) = free(φ)

free(φ ∧ ψ) = free(φ) ∪ free(ψ)

In contrast to CRS, LFD does satisfy Locality! (just like FOL)

(Locality): If s =X t then s |= φ iff t |= φ, whenever free(φ) ⊆ X
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First-Order Translation

Let V be finite and V ′ a set of copies with enumerations v, v′ resp.

tr(Px) := Px
tr commutes with ¬,∧
tr(DXψ) := ∀z(Av → tr(ψ))

tr(DX x) := ⊤X (
∧

x∈X x = x) (for x ∈ X )

tr(DX y) := ∀z∀z ′((Av ∧ Av [z ′/z ])→ y = y ′) (for y ̸∈ X )

e.g. if V = {x , y , z} we have tr(DxRxy) = ∀yz(Axyz → Rxy) and
tr(Dxy) = ∀yz∀y ′z ′((Axyz ∧ Axy ′z ′)→ y = y ′)
The correspondence M = (M,A)⇝ T (M) is one-to-one, where

IT (M)(A) := {s(v) | s ∈ A}

Theorem (Baltag & Van Benthem, 2021)

M, s |= ψ iff T (M), s |= tr(ψ)
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Consequences

It follows that ψ and tr(ψ) are equi-satisfiable and so LFD inherits
Compactness, Löwenheim-Skolem properties and recursive
enumerability of its validities from FOL.

Note that tr maps into the GF except for tr(DXy) ! The same
translation reduces CRS-SAT to GF-SAT (van Benthem, 2005).

Our observation suggest building on Grädel’s proof of the fmp for GF,
which uses Herwig’s theorem on extending partial isomorphisms.

We deviate from Grädel’s approach by using quasi-models (here called
’type models’) rather than a Scott Normal form.
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Compactness, Löwenheim-Skolem properties and recursive
enumerability of its validities from FOL.

Note that tr maps into the GF except for tr(DXy) ! The same
translation reduces CRS-SAT to GF-SAT (van Benthem, 2005).

Our observation suggest building on Grädel’s proof of the fmp for GF,
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Type Models

The closure Ψ of an LFD-formula ψ is defined as the closure of {ψ}
under subformulas, single negations and all DX y for X , y occurring in ψ.

Then ∆ ⊆ Ψ is a type (for Ψ) if it satisfies:

(a) ¬ψ ∈ ∆ iff ψ ̸∈ ∆ (d) DX x ∈ ∆ for all x ∈ X

(b) (ψ ∧ χ) ∈ ∆ iff ψ ∈ ∆ and χ ∈ ∆ (e) DXY ,DYZ ∈ ∆ implies

(c) if DXψ ∈ ∆, then ψ ∈ ∆ DXZ ∈ ∆

∆ ∼X ∆′ iff {ψ ∈ ∆ | free(ψ) ⊆ D∆
X } = {ψ ∈ ∆′ | free(ψ) ⊆ D∆

X }

where D∆
X = {y ∈ V | DX y ∈ ∆} the dependence-closure of X w.r.t ∆.

A type model is a set of (Ψ-)types M such that:

(e) if EXψ ∈ ∆ then ∃∆′ ∈M with ∆ ∼X ∆′ and ψ ∈ ∆

(f) ∼∅ is the universal relation on M
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Representing Type Models as Dependence Models

Dependence models induce type models {type(s) | s ∈ A}.

Conversely,
every type model can be ’represented’ as a dep. model of bounded
tree-width. Completeness and decidability are then immediate.

Fix a type ∆0. For every path π = (∆0 ∼X1 ... ∼Xn ∆n) (lh(π) = n + 1
and last(π) = ∆n) through M one associates a path-assignment vπ.

if π = (∆0) is the root, vπ = (π, v) for all v ∈ V

if π = (π′ ∼X last(π)), vπ(v) = (π′, x) if v ∈ D
last(π)
X

vπ(v) = (π, v) if v ̸∈ D∆n
X

The collection of such paths forms a tree under ⪯. For every node π there
is a |V |-sized guarded submodel vπ[V ]
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Bounded Tree-width Model: Drawing the Frame

(drawing)
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Representing Type Models as Dependence Models

We can build a model M of bounded tree-width on such objects (π, x) by:

u ∈ I (P) iff u = vπ(x) for some vπ ∈ A with Px ∈ last(π)

Together with our team A this is a dependence model M = (M,A) which
represents M, i.e. {type(vπ) | vπ ∈ A} = M.

Theorem (Truth Lemma)

M, vπ |= ψ iff ψ ∈ last(π)

This holds because for each type ∆ ∈M there is a path π∆ = (∆0 ∼∅ ∆)
such that type(vπ∆

) = last(π∆) = ∆ by the above truth lemma.

The fmp asks whether every type model can be represented by a finite
dependence model!

Raoul Koudijs (ILLC Amsterdam) Finite Model Property for LFD 1 December 2021 21 / 42



Representing Type Models as Dependence Models

We can build a model M of bounded tree-width on such objects (π, x) by:

u ∈ I (P) iff u = vπ(x) for some vπ ∈ A with Px ∈ last(π)

Together with our team A this is a dependence model M = (M,A) which
represents M, i.e. {type(vπ) | vπ ∈ A} = M.

Theorem (Truth Lemma)

M, vπ |= ψ iff ψ ∈ last(π)

This holds because for each type ∆ ∈M there is a path π∆ = (∆0 ∼∅ ∆)
such that type(vπ∆

) = last(π∆) = ∆ by the above truth lemma.

The fmp asks whether every type model can be represented by a finite
dependence model!

Raoul Koudijs (ILLC Amsterdam) Finite Model Property for LFD 1 December 2021 21 / 42



Representing Type Models as Dependence Models

We can build a model M of bounded tree-width on such objects (π, x) by:

u ∈ I (P) iff u = vπ(x) for some vπ ∈ A with Px ∈ last(π)

Together with our team A this is a dependence model M = (M,A) which
represents M, i.e. {type(vπ) | vπ ∈ A} = M.

Theorem (Truth Lemma)

M, vπ |= ψ iff ψ ∈ last(π)

This holds because for each type ∆ ∈M there is a path π∆ = (∆0 ∼∅ ∆)
such that type(vπ∆

) = last(π∆) = ∆ by the above truth lemma.

The fmp asks whether every type model can be represented by a finite
dependence model!

Raoul Koudijs (ILLC Amsterdam) Finite Model Property for LFD 1 December 2021 21 / 42



Comparison to GF

An entirely similar construction for GF is given in (Andréka, Németi & van
Benthem, 1998).

”Grädel”: Cut the generating tree after the finite stage after which no
new types are created. Apply Herwig’s theorem, making all local
symmetries into global ones. Then there is a guarded-bisimulates between
this finite model and our infinite unravelling.

Me: Cut at level 3 and apply Herwig’s theorem w.r.t. a special choice of
symmetries. Encode dependence formulas with atoms RX ,yx and use extra
conditions guaranteed by the theorem to ensure dependencies will be
respected in the process of extension. Then there is a dependence
bisimulation between the finite Herwig extension and our infinite bounded
tree-width model.

There is also a proof of the fmp through the modal semantics using am
even stronger version of Herwig’s theorem
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High level Description of the Proof

Observe that, since there are only finitely many types, there is some finite
stage after which no new types are created. We cut our model that deep.

We cut M at height 3 as each type ∆ ∈M occurs as type(vπ∆
) for the

path π∆ = (∆0 ∼∅ ∆). Call the resulting dependence model Mcut

We want to apply Herwig’s theorem to T (Mcut), making sure the
Herwig extension will respect the interpretation of dependence atoms in
the underlying types.

The key idea is to use fresh atomic formulas RX ,yx to encode the
dependence atoms DX y . If we can show that RX ,yx↔ DX y holds in the
Herwig extension, we would be done by Grädel’s result.
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Herwig’s theorem

We have to go beyond Grädel’s use of Herwig’s theorem.

Theorem (Herwig)

Let σ be a finite relational language, C a finite σ-structure and p1, ..., pk
partial isomorphisms on C. Then there exists a finite extension C+ of C
that satisfies the following conditions:

(i) Every pi extends to a unique automorphism p̂i of C
+

[ inducing a subgroup ⟨p̂1, ..., p̂k⟩ of Aut(C+) ]

(ii) If a tuple c from C+ is guarded or a singleton, then there exists an
automorphism f ∈ ⟨p̂1, ..., p̂k⟩ such that for each ci ∈ c , f (ci ) ∈ C.

(iii) If ∃f ∈ ⟨p̂1, ..., p̂k⟩ and c , c ′ ∈ C such that f (c) = c ′, then either
f = id or there is a unique p ∈ ⟨p1, ..., pk⟩ such that p̂ = f

we make a choice of partial isomorphisms and make crucial use of (iii).
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We have to go beyond Grädel’s use of Herwig’s theorem.

Theorem (Herwig)

Let σ be a finite relational language, C a finite σ-structure and p1, ..., pk
partial isomorphisms on C. Then there exists a finite extension C+ of C
that satisfies the following conditions:

(i) Every pi extends to a unique automorphism p̂i of C
+

[ inducing a subgroup ⟨p̂1, ..., p̂k⟩ of Aut(C+) ]

(ii) If a tuple c from C+ is guarded or a singleton, then there exists an
automorphism f ∈ ⟨p̂1, ..., p̂k⟩ such that for each ci ∈ c , f (ci ) ∈ C.

(iii) If ∃f ∈ ⟨p̂1, ..., p̂k⟩ and c , c ′ ∈ C such that f (c) = c ′, then either
f = id or there is a unique p ∈ ⟨p1, ..., pk⟩ such that p̂ = f

we make a choice of partial isomorphisms and make crucial use of (iii).

Raoul Koudijs (ILLC Amsterdam) Finite Model Property for LFD 1 December 2021 24 / 42



Herwig’s theorem
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Cut-Off Model: Expansion and Partial Isomorphisms

pπ : vπ(v) 7→ vπ∆
(v) I (RX ,y ) := {s(x) | s ∈ A}

where last(π) = ∆
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The Herwig Extension

By Herwig’s theorem we obtain a dependence model M+
cut = (M+

cut ,A
+
cut)

w.r.t. the partial iso’s pπ : vπ(v) 7→ vπ∆
(v) for lh(π) = 3, last(π) = ∆.

Crucially, it follows that s(v) 7→ vπ(v) of level 2 under some f ∈ ⟨p̂1, ..., p̂k⟩

(drawing)
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Key Lemmas

We let type(s) = last(π) for s
f7→ vπ of level 2. This is well-defined by (iii)

and properties of ⟨p1, .., pk⟩, and note that type(vπ) = last(π).

Lemma (Type Lemma)

For all s, t ∈ A+
cut , s =X t implies type(s) ∼X type(t)

Lemma (Encoding lemma)

M+
cut , s |= RX ,yx↔ DX y ∀s ∈ A+

cut

(←) follows from  Los-Tarski as witnesses for ¬DX y in the type are given
in one-step.(→) is the most non-trivial part of the proof and uses (iii) and
properties of ⟨p1, ..., pk⟩
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Encoding Lemma Proof

Lemma

If p ∈ ⟨p1, ..., pk⟩ is such that pvπ =X vπ′ , there are vρ, vρ′ ∈ Acut with
vπ =X vρ, vπ′ =X vρ′ and pvρ = vρ′ which implies that last(ρ) = last(ρ′).

[Dxy ∈ last(σ) and vσ =X vσ′ implies vσ =y vσ′ for vσ, vσ′ ∈ Acut ]
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Finite Model Property via Bisimulation

Phil Pützstück and me independently proposed equivalent definitions of
dependence bisimulations characterizing LFD as a fragment of FOL.

We finish the proof by giving a dependence bisimulation

Z := {(s, vπ) ∈ A+
cut × A | type(s) = last(π)}

between the finite Herwig extension M+
cut and the infinite unravelling M.

It follows that M+
cut is a finite dependence model representing M.

Theorem (Finite Model Property)

LFD has the finite model property (w.r.t. the intended semantics)
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Extra Topics
(time permitting)
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Comparing LFD and CRS: Axiomatization

The authors provide a complete Hilbert-style axiomatization as
well as a complete sequent-calculus with a restricted form of cut-elimination
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Comparing LFD and CRS: Axiomatization

CRS (without substitutions) is completely axiomatized by poly-modal S5
for the ∃X modalities plus the schemata

Px→ ∀YPx, ¬Px→ ∀Y¬Px where no y ∈ Y occurs in x

for each atomic formula Px (where ∀Y is shorthand for ¬∃Y¬)

Observe that [D-Elim] is just (T) and

[D-Introduction] φ→ DXφ whenever free(φ) ⊆ X

boils down to a couple of relevant instances,including

Px1...xn → D{x1,...,xn}Px1...xn (schema)

¬Px1...xn → D{x1,...,xn}¬Px1...xn (schema)

DXφ→ DXDXφ (4)

¬DXφ→ DXDXφ (5)
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Comparing LFD and CRS: Translations

Over a finite set V of variables, CRS-quantifiers and dependence
quantifiers are inter-definable:

∀Xϕ ≡ DV−Xϕ DXϕ ≡ ∀V − Xϕ

Even the local versions are inter-definable with dependence quantifiers:

∀̃Xϕ ≡ DFree(ϕ)−Xϕ DXϕ ≡ ∀Free(ϕ)−X (ϕ ∧ ⊤X )

where ⊤X is any tautology in variables X (e.g.
∧

x∈X x = x)

For an infinite V , the two notions seem to be independent;
DV−xφ and ∀V − Xφ are not formulas if V is infinite.
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Modal Semantics

We now turn to the modal perspective on LFD, to see how it challenges
CRS’s update relation =x as the right way of representing abstract modal
models/frames as dependence models.

A general relational model is a structure A = (A,∼X ,DX y ,Px) s.t.

(1) All ∼X are equivalence relations

(2) {(X , y) | s ∈ ||DX y ||} satisfies Projection and Transitivity

(3) ||Px|| is a union of sets of the form [s]X

(4) ∼∅ is the universal relation

(5) ||DX y || ⊆ {s ∈ A | [s]X ⊆ [s]y}
(6) ∼X∪Y ⊆ ∼X ∩ ∼Y

A standard relational model is a a general relational model A where
(5),(6) are equalities, then all information is carried by the reduct
A = (A,∼x ,Px) because the interpretations for ∼X and DX y are
determined by the relations ∼x for x ∈ V .
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Correspondences

If M = (M,A) is a dependence model then rel(M) = (A,=x ,Px) is an
equivalent standard relational model.

If A is a standard relational model then dep(A) = (M,A∼) is an
equivalent dependence model, with assignments s∼ ∈ A∼:

s∼(x) = [s]x

Similarly, it can be show that the non-standard general relational models
can be unravelled into standard ones via modal techniques

Theorem (Baltag & Van Benthem, 2021)

Type models, dependence models and standard and general relational
models all provide equivalent semantics for LFD
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Representing Abstract Modal Models

Call the skeleton of a dependence model M = (M,A) the abstract modal
model (A, (=x)x∈V , I ) induced by it. What characterizes the skeletons?

Theorem (Van Benthem, 1996)

An abstract modal frame (A, (Rx)x∈V ) is isomorphic to the frame of a
skeleton iff all Rx are equivalence relations and satisfy certain ’path
principles’ on the sequential compositions

But what if we drop (ii) insistence on the update relation =x?

Let us think of the skeletons in a new way! Skel∗(M) = (A, (=x)x∈V , I )
1

Theorem (Now, 2021)

An abstract modal model (A, (Rx)x∈V , I ) is isomorphic to a skeleton∗ iff
(i) each Rx is an equivalence relation and (ii) ||Px|| is a union of sets of
the form [s]X = {t ∈ A | (s, t) ∈

⋂
x∈X Rx}

1The path principles for =X are duals of the inclusions ∼X ∩ ∼Y⊆∼X∪Y ,∼X⊆∼x .
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Dependence Bisimulations

Dependence bisimulations can be equivalently defined in at 2 ways.

Phil lets the [atom] clause run over dependence atoms as well, and has one
pair of zigzag clauses (let V s,t = {v | s =v t})

[forth] For each t ∈ A there is some t ′ ∈ A′ with s ′ =V s,t t ′ and (t, t ′) ∈ Z

while i chose for a purely relation [atom] clause and designed extra
conditions on the zigzag clauses to ensure preservation of DX y

[forth+] For each t ∈ A there is some t ′ ∈ A with s ′ =V s,t t ′, (t, t ′) ∈ Z
and V s,t is dependence-closed at s ′

Theorem (Pützstuck, me, 2020)

LFD is the dependence bisimulation-invariant fragment of FOL

My definition allows for more efficient algorithms for bisimilarity checking
that are not exponential in |V |.
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Theorem (Pützstuck, me, 2020)

LFD is the dependence bisimulation-invariant fragment of FOL

My definition allows for more efficient algorithms for bisimilarity checking
that are not exponential in |V |.

Raoul Koudijs (ILLC Amsterdam) Finite Model Property for LFD 1 December 2021 37 / 42



Dependence Bisimulations

Dependence bisimulations can be equivalently defined in at 2 ways.
Phil lets the [atom] clause run over dependence atoms as well, and has one
pair of zigzag clauses (let V s,t = {v | s =v t})

[forth] For each t ∈ A there is some t ′ ∈ A′ with s ′ =V s,t t ′ and (t, t ′) ∈ Z

while i chose for a purely relation [atom] clause and designed extra
conditions on the zigzag clauses to ensure preservation of DX y

[forth+] For each t ∈ A there is some t ′ ∈ A with s ′ =V s,t t ′, (t, t ′) ∈ Z
and V s,t is dependence-closed at s ′
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Invariance

Proof:
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Conclusion
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Summary

We have discussed the origins of LFD arising from the study of generalised
assignment models and CRS. If time has permitted it we have seen how
LFD is a sense dual to CRS, and how it solves an open problem posed by
Johan in 2005. The connection with dependence logics remains relatively
unexplored...

We introduced LFD and proved completeness and decidability via an
infinite representation of type models. Then we went through the proof of
the fmp through Herwig’s theorem, pinpointing the differences with GF.

The size of the Herwig extension is non-elementary in case of unbounded
arities, but in our case it can be bounded by a |V |-tower of exponentials.
The modal proof of the fmp ensures maximal arity 2. One may also find
smaller models using an appropriate notion of Rosati cover as with GF.
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Further Work

A major open question concerns the computational complexity of LFD.
We are currently looking at polynomial-reductions to and from GF k -SAT .

One can also look at local versions of other dependency atoms, such as
independence and inclusion. Phil Pütztstück has shown that LFD
extended with either of these becomes undecidable. However, is the pure
logic of independence decidable?.

Design a fixpoint extension of LFD and prove its decidability.

I also want to study more closely the relation between named relational
databases and dependence models, i.e. LFD as a query-language.

knowledge wh-, mixed readings, dynamic logic of group-readings, logic of continuous dependence, causality,
strategic dependence, dynamical systems........
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Hajnal Andréka, István Németi & Johan van Benthem

Modal Languages and Bounded Fragments of Predicate Logic (1998)

Alexandru Baltag & Johan van Benthem

A Simple Logic of Functional Dependence (2021)
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