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? ? ? ?
p —p A A= (pV-—p)
pV—p pVp pNVp

I tried very hard but couldn’t find a proof... ???
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Solution: Normal forms

All proofs




Gerhard Gentzen (1909-1945)
“Investigations into logical deduction” (1935)

SQ cut elimination cutfree S Q

sequent calculus

ND .
natural deduction == == —————-—-----——-—-—---- » normalized ND



Sequent Calculus

SQ = a meta-calculus for constructing ND proofs.

Al,...,A, =B
|\ ——

sequent

“there exists a proof of B from assumptions Ay, ...,A,”
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rule in SQ = proof transformation in ND.
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[=A AA=B
A= B

\ AR A

(cut)
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proof in SQ = recipe for constructing an ND-proof.

sequent calculus:

A=A cC==C
A=AVB CAND=C
(AVB) = (CAD),A=C

(AVB) > (CAD)=A > C

natural deduction:

AVB AVB—CAD
CAD
C
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N'=A AA=TI
NA=TI

(cut)

Proofs constructed without cut are particularly nice.

m They have the subformula property:
Only subformulas of the proven theorem appear

m They have no detours, e.g.
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Theorem (Gentzen 1934)

Every proof in L] (and LK,LJ",LK" ) can be rewritten into an equivalent
proof that does not use cuts.

Corollaries:
consistency of CL and IL
decidability of propositional IL
midsequent theorem for prenex formulas

consistency of arithmetic (w/o induction 1934, complete 1936)
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Not normal, as A ¢ subf(p \V —p).
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Revised Gentzen method, v1:

. some calculus .
Find a sequent-caleulus for the logic.

Prove cut-elimination.

A ~ = A ~ N=A...|T, =A,
formula sequent (1935) hypersequent (1971)
~> [Fl,[F2:>F3}:>A1]:>A2 ~ L.
nested sequent (19927)

m S5 and G have a hypersequent system with cut elimination
m Bilnt has a nested sequent system with cut elimination
[ T

Caveat: The more complex the calculus, the less useful is cut-elimination!
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Ciabattoni/Galatos/Terui: From axioms to analytic rules in nonclassical logics
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Kuznets/Lell, : Grafting hyperseq s onto nested sequents
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van der Giessen/Jalali/Kuznets: Extensions of K5: Proof Theory and Uniform Lyndon Interpolation
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A particular cut-restriction

A sequent calculus has the analytic cut property (ACP) if every provable
sequent has a proof using only analytic cuts:

N'=AA T/ A=A .
r=A U A € subf(T, A)

Theorem (Kowalski/Ono 2017)

Let S be a sequent calculus with cut as the only non-analytic rule. TFAE:
S has the global subformula property
S has the local subformula property
S has the analytic cut property



Two cut-restriction results from the literature

Theorem (Takano 1992)

SS has a sequent calculus with the ACP.

Theorem (Kowalski/Ono 2017)

Bilnt has a sequent calculus with the ACP.




A cut-restriction result for intermediate logics

Theorem (Ciabattoni, Ramanayake, L. 2021)

IfIL + A has a cutfree hypersequent calculus, then 1L + A has a sequent
calculus where only set-restricted axiom cuts are needed.

A=A(p,q)
I AN, A\jipj) = B

I'= B

(cut)

:>:(p
where 1;, p; € subf(@).

(Remark: can be generalised to substructural logics)



calculus-free reformulation

Theorem (Ciabattoni, Ramanayake, L. 2021)

IfIL + A has a cutfree hypersequent calculus, then IL + A satisfies a
refined deduction theorem:

n
peIL+A — ((/\A,-) - <p> eIL
i=1
for some set-restricted instances Ay, . . ., A, of A.



proof via projections

hypersequent
hypersequent P | (11
cut elimination calculus
Calculus without cuts
projection 7t
sequent calculus
IL+A with restricted cuts

7t only introduces set-restricted cuts.



The 7t-transformation (1/3)
Assume F € L]+ (p — ¢q) V (¢ — p).

) Y
G|r1,A1:>”1 G|F2,A2:>ﬂ2
GIT, A =TI [T, A =T
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= F
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)
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—L
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e
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w



The mt-transformation (2/3)

) Y
G|ITL, A =TI G| A =TI

GITL, Ay =T1 [T, A =T

com
=F
RIGHT SPLIT

v
Al :>/\A1 G|F2,/\A2:>ﬂ2
—L
G| I . A = T
e
G|-,r2,A1 =T |1, A =11

(A= ALy

w



The mt-transformation (3/3)

LEFT SPLIT RIGHT SPLIT

(A% = AAL = [AAL= Ady — ¢
(A RN SIS - &

=A
=F

Vi

cut

A] y Az g Subf(F)



Recall:

Theorem (Takano 1992)

The sequent calculus for S5 is complete if one admits analytic cuts.

Theorem (Kowalski/Ono 2017)

The sequent calculus for Bilnt is complete if one admits analytic cuts.

analytic > set-restriced



Also C/R/L 2021 (reproving Takano *92)

cut elimination . HSS
HS5 without cuts
projection 7t*
S5
SS with analytic cuts

71* only introduces analytic cuts.



unpublished 2022 (first syntactic proof, reproving Kowalski/Ono 2017)

M, [ =T = A = A I Nest-Bilnt
Nest-Bilnt cut cimination without cuts

projection 7t"

. Bilnt
Bilnt with analytic cuts

7t only introduces analytic cuts.



The general scheme

exotic calculus

cut elimination .
without cuts

exotic calculus

projection

et sequent calculus
cut restriction
Sequent Calculus ********************* 7> with restricted cuts

Q: Can we do without the detour through exotic calculi?



sequent calculus
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for all sequent calculi satisfying #.

Therefore all calculi satisfying ¥ have the ACP.



sequent calculus
sequent calculus ----------=---------- > with analytic cuts

cut restriction

Theorem (Ciabattoni/L../Ramanayake 2023)

There is a sound and terminating algorithm that eliminates non-analytic cuts
for all sequent calculi satisfying #.

Therefore all calculi satisfying ¥ have the ACP.
SS \/ BiInt \/ multi-modal S5/ G4 / BilntS5 ./



The algorithm
All standard cut-reduction steps +
|
C = (Cy, F
Ci<C=>F (=e)
g ) o)
= C,E C,=E (_< ) Cy = Cy,Dy = D, (_} )
=C <C,E R C<C=Di—>D S
=D, > Dy E cu
1o sl r=r
=CLE Ci=C,F (cur)” RS tmlF/Cp < Gl
= (), E, F C, = E (‘[]W F,Di = D )
=EF cu F=D —D, . k

= D; — Dy, E

(c
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The algorithm

All standard cut-reduction steps +

|
C = (Cy, F
Ci<C=F (=)
R Y o)
= C,E C,=E (_< ) Cy = Cy,Dy = D, (_} )
=C <G, E R € =C,= D, — Dy (Cug
= D| — Dy, E
! | F=r
=CLE Ci=C,F (cur)” RS tmlF/Cp < Gl
= (), E, F C, = E ( l]/// F,Di = D )
S EF o F=Di—Dy f,]
=D, > DyE cu

¥ = the substitution is well-defined



A strengthening for S5

The only necessary cut formulas are
I subformulas of the lower sequent of cut
are prefixed with O, and

appear in the scope of another O0.

A(...a(...oC)...)



A strengthening for S5

The only necessary cut formulas are
I subformulas of the lower sequent of cut
are prefixed with O, and

appear in the scope of another O0.

= 0OA,—OA A=A
= OA,00A (3) OA=A gu)t)
= O00A,A

Corollary: No cuts needed for modal depth < 1.
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Revised Gentzen method, v1: Revised Gentzen method, v2:

some calculus 3 eqe ~ale . H
Find as aletus for the logic. Find a sequent calculus for the logic.
Prove cut-elimination. B Prove cut-restriction
m the standard approach m not so well understood
m tons of results m some scattered results,

some recent progress

= lots to do!

Our TODO list

m direct proof of set-boundedness for IL + A

m analytic cuts for K-type rules (relax ¥)
UPDATE: Ciabattoni/Tesi IJICAR 2024

m properties weaker than ACP, e.g. for KS

cyclic proofs



Revised Gentzen method, v1:

some calculus

Find a

Prove cut-elimination.

for the logic.

Revised Gentzen method, v2:
Find a sequent calculus for the logic.
Prove eut-elimination.

cut-restriction




Revised Gentzen method, v1: Revised Gentzen method, v2:
some calculus H . ~ale . :
Find a Jewutus for the logic. Find a sequent calculus for the logic.

L jl Prove eut-elimination.
Prove cut-elimination. B cut-restriction

How are these methods and their results related?
Are they two sides of the same coin?

Or is one of them better?






S5 (Modal logic of equivalence relations)

Ohnishi/Matsumoto 1957

0A = 0A (=)
_= DA, DA (5) A=A (T)
= DA, 0 OA OA = A
= 0—0OA,A (cut)




Bilnt (Bi-Intuitionistic logic)

Rauszer 1975

A<BC=A<B (5,) A=A B=B
A<B=>C—(A<B) ' Y A=A=<B,B
A= B,C— (A<B)

(<r)
(cur)

example due to Pinto/Uustalu 2003



Truth tables
P Q P—Q Q— P (P—=Q)v(Q— P)
R — - =
T F T 1
B T 1 F T
B F T T 1




AV Ordp—A

H Assume fy £ A and fy ¥ OpOp—A.
Hence 3J#; > 1y such that 1] £ Op—A.
Hence Vs < 11, s E A.

Therefore tg = A. 4 (1)

e A
th ——— 11
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AV Ordp—A

H Assume fy £ A and fy ¥ OpOp—A.
Hence 3J#; > 1y such that 1] £ Op—A.
Hence Vs < 11, s E A.

Therefore tg = A. 4 (1)

e SA
ty ——— 1
f’\ //

Not formalizable in an analytic wnubenes) sequent calculus!



AV OpOp—A

Assume 1y ¥ A and ty ¥ OpOp—A.
Case 1: Assume tg = Op—A

m Then df; > fp such that 1y 2 Op—A and 1] E Op—A.
Case 2: Assume 1y £ Op—A

m Then in particular, 7o  A. 7 (1)
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AV OpOp—A

Assume 1y ¥ A and ty ¥ OpOp—A.
Case 1: Assume tg = Op—A

m Then df; > fp such that 1y 2 Op—A and 1] E Op—A.
Case 2: Assume 1y £ Op—A

m Then in particular, 7o  A. 7 (1)

-7 SA
Case 1: th — h Case 2: to
Op—A = Op—A =A,—A
Op—A = OpdpA (DF) = A, 0pA Efui%

= A, 0p0p A



