$\widehat{\text { IIIII }}$ UNIVERSITEIT GENT

On provability logic of Heyting Arithmetic

Mojtaba Mojtahedi (Ghent University)

May 10, 2023

Provability Logic

- \square as provability.
- Gödel 1933: Based on BHK.

Provability Logic: more precise

$\mathrm{PL}(T):=$ Provability logic of $T:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma T \vdash \sigma_{T} A\right\}$

Provability Logic: more precise

$\mathrm{PL}(T):=$ Provability logic of $T:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma T \vdash \sigma_{T} A\right\}$

- $\sigma_{T}(p):=\sigma(p)$ for atomics.
- σ_{T} commutes with boolean connectives.
- $\sigma_{T}(\square A):=\operatorname{Pr}_{T}\left(\left\ulcorner\sigma_{T} A\right\urcorner\right)$.

Solovay 1976

The Provability logic of PA is GL

- All theorems of classical propositional logic.
- $\mathrm{K}:=\square(A \rightarrow B) \rightarrow(\square A \rightarrow \square B)$.
- Löb $:=\square(\square A \rightarrow A) \rightarrow \square A$. Implies $\square A \rightarrow \square \square A$.
- modus ponens: $A, A \rightarrow B / B$.
- Necessitation: $A / \square A$.

Kripke semantics GL

GL is sound and complete for finite transitive irreflexive Kripke models.

Solovay's proof (roughly)

- Soundness: known since 1955 by Löb.

Solovay's proof (roughly)

- Soundness: known since 1955 by Löb.
- GL $\nvdash A$.
- $\mathcal{K}, w \not \vDash A$.
- $f: \mathbb{N} \longrightarrow W$ and $f(0):=$ root.
- $f(n) \prec f(n+1)$ iff $n+1$ proves this fact that f will not remain at $f(n+1)$.
- $\sigma(p):=\bigvee_{w \models p}(\lim f=w)$.
- PA $\nvdash \sigma_{T}(A)$.

Σ_{1}-substitutions

$\mathrm{PL}_{\Sigma}(T):=\Sigma_{1}$-Provability logic of $T:=\left\{A \in \mathcal{L}_{\square}: \forall \sigma T \vdash \sigma_{T} A\right\}$

Theorem (Visser)
$\mathrm{PL}_{\Sigma}(\mathrm{PA})=\mathrm{GLC}_{\mathrm{a}}:=\mathrm{GL}+p \rightarrow \square p$ for atomic p 's.

Proof.

Similar to the original proof, except for

$$
\sigma(p):=\bigvee_{w \models p}(\exists x f(x)=w)
$$

Reduction of provability logics

Theorem (Ardeshir \& M. 2015)

One may reduce the arithmetical completeness of GL to the one for GLCa.

Proof.

Let $\mathrm{GL} \vdash A$. Then find a Kripke counter model of A. Then transform it to a Kripke model of $\mathrm{GLC}_{\mathrm{a}}$ which refutes $\alpha(A)$ for some propositional substitution α. Thus GLC $\mathrm{C}_{\mathrm{a}} \nvdash \alpha(A)$. Finally use arithmetical completeness of $\mathrm{GLC}_{\mathrm{a}}$ and obtain σ such that PA $\nvdash \sigma \alpha(A)$.

Generalizations

- Relative provability logics: $\operatorname{PL}(T, S)$. Artemov, Visser, Beklemishev and Gaparidze. (1980-1989)

Generalizations

- Relative provability logics: $\mathrm{PL}(T, S)$. Artemov, Visser, Beklemishev and Gaparidze. (1980-1989)
- Poly-modal Provability Logic.

Gaparidze, Beklemishev, Pakhomov, Bezhanishvili, Icard, Gabelaia and ... (1986-)

- Interpretability logic. $A \triangleright B$

Visser, Berarducci, de Jongh, Veltman, Shavrukov and ... (1980-1990)

- Provability logic of weak systems of arithmetic (bounded arithmetic).

Generalizations

- Relative provability logics: $\mathrm{PL}(T, S)$.

Artemov, Visser, Beklemishev and Gaparidze. (1980-1989)

- Poly-modal Provability Logic.

Gaparidze, Beklemishev, Pakhomov, Bezhanishvili, Icard, Gabelaia and ... (1986-)

- Interpretability logic. $A \triangleright B$

Visser, Berarducci, de Jongh, Veltman, Shavrukov and ... (1980-1990)

- Provability logic of weak systems of arithmetic (bounded arithmetic).
- Provability logic of Heyting Arithmetic HA.

Provability logic of HA

- A. Visser 1980 first considered this.
- Since then many partial related results where obtained. We review them later.
- Main source for difficulty: HA-verifiable admissible rules.

$$
\frac{\neg A \rightarrow(B \vee C)}{(\neg A \rightarrow B) \vee(\neg A \rightarrow C)}
$$

Admissible rules

- $A \stackrel{\sim}{\tau} B$ iff $\forall \alpha(\mathrm{T} \vdash \alpha(A) \Rightarrow \mathrm{T} \vdash \alpha(B))$.

- In the provability logic of HA, the above rule reflected as:

$$
\square(\neg A \rightarrow(B \vee C)) \rightarrow \square((\neg A \rightarrow B) \vee(\neg A \rightarrow C)) .
$$

- Why not classically interesting?

$$
\left.A\right|_{\mathrm{cpc}} B \quad \text { iff } \quad \mathrm{CPC} \vdash A \rightarrow B
$$

Admissible rules of IPC

- For every $A \underset{\text { rac }}{ } B$ we have $\square A \rightarrow \square B$ in $\mathrm{PL}(\mathrm{HA})$.
- What are the admissible rules of IPC? Decidable?
(H. Friedman 1975)

Admissible rules of IPC

- For every $A \underset{\text { rac }}{ } B$ we have $\square A \rightarrow \square B$ in $\mathrm{PL}(\mathrm{HA})$.
- What are the admissible rules of IPC? Decidable?
(H. Friedman 1975)

Decidability: Rybakov 1997.
Axiomatization: Visser and de Jongh (??).
Completeness proof: Iemhoff 2001.

The system $\lceil T, \Delta \rrbracket$

Axioms: Define $\{A\}_{\Delta}(E):= \begin{cases}E & : E \in \Delta \\ A \rightarrow E & : \text { otherwise }\end{cases}$

$$
\begin{gathered}
\frac{\mathrm{T} \vdash A \rightarrow B}{A \triangleright B}[\mathrm{~T}] \\
\frac{A=\bigwedge_{i=1}^{n}\left(E_{i} \rightarrow F_{i}\right) \quad B=\bigvee_{i=n+1}^{n+m}\left(F_{i}\right)}{(A \rightarrow B) \triangleright \bigvee_{i=1}^{n+m}\{A\}_{\Delta}\left(E_{i}\right)} \mathrm{V}(\Delta)
\end{gathered}
$$

Rules:

$$
\begin{array}{lc}
\frac{A \triangleright B \quad A \triangleright C}{A \triangleright(B \wedge C)} \text { Conj } & \frac{A \triangleright B \quad B \triangleright C}{A \triangleright C} \text { Cut } \\
\frac{A \triangleright C \quad B \triangleright C}{(A \vee B) \triangleright C} \operatorname{Disj} & \frac{A \triangleright B \quad(D \in \Delta)}{(D \rightarrow A) \triangleright(D \rightarrow B)} \operatorname{Mont}(\Delta)
\end{array}
$$

Admissible Rules of IPC

Theorem (Iemhoff 2001)

Theorem (Visser 2002)

$A \overbrace{\mathbb{T C}} B$ iff $\llbracket \mathrm{IPC},\{\top, \perp\} \rrbracket \vdash A \triangleright B$ iff $\square A \rightarrow \square B \in \mathrm{PL}(\mathrm{HA})$.

What else in PL(HA)?
 ? (Disjunction property)

- DP means that if a disjunction is derivable, then either of them are derivable.
- IPC, IQC and HA has DP.
- $\mathrm{CPC} \vdash p \vee \neg p$ while $\mathrm{CPC} \nvdash p$ and $\mathrm{CPC} \nvdash \neg p$.
- $\square(A \vee B) \rightarrow(\square A \vee \square B) \in \mathrm{PL}(\mathrm{HA})$?
- H. Friedman 1975: No!
- D. Leivant 1975: $\square(A \vee B) \rightarrow \square(\square A \vee \square B) \in \mathrm{PL}(\mathrm{HA})$.
- Above axiom together with reflection implies DP.

What else in PL(HA)? (Markov Rule)

$\forall S \in \Sigma_{1}($ HA $\vdash \neg \neg S$ implies $\mathrm{HA} \vdash S)$.

What else in PL(HA)? (Markov Rule)

$$
\forall S \in \Sigma_{1} \quad(\mathrm{HA} \vdash \neg \neg S \quad \text { implies } \quad \mathrm{HA} \vdash S)
$$

Theorem (Visser 1981)

$$
\square \neg \neg \square A \rightarrow \square \square A \in \mathrm{PL}(\mathrm{HA}) .
$$

Theorem (Visser 1981)

The letterless fragment of $\mathrm{PL}(\mathrm{HA})$ is decidable.

PL(HA): the axiomatization

Let us define the Leivant's axiom schema as follows: (Le): $A \triangleright \square A$ for every A and B.

Theorem (M. 2022)
$\mathrm{iGLH}:=\mathrm{iGL}+\{\square A \rightarrow \square B: \llbracket \mathrm{iGL}, \square \rrbracket \mathrm{Le} \vdash A \triangleright B\}=\mathrm{PL}(\mathrm{HA})$.

PL(HA): the axiomatization

Let us define the Leivant's axiom schema as follows:

$$
\text { (Le): } A \triangleright \square A \text { for every } A \text { and } B
$$

Theorem (M. 2022)
$\mathrm{iGLH}:=\mathrm{iGL}+\{\square A \rightarrow \square B: \llbracket \mathrm{iGL}, \square \rrbracket \mathrm{Le} \vdash A \triangleright B\}=\mathrm{PL}(\mathrm{HA})$.

Theorem (Ardeshir \& M. 2018)

$\mathrm{iGLC}_{\mathrm{a}} \mathrm{H}_{\sigma}:=\mathrm{iGLC} \mathrm{a}_{\mathrm{a}}+\left\{\square A \rightarrow \square B: \llbracket \mathrm{iGLC}_{\mathrm{a}}\right.$, atomb $\left.\rrbracket \mathrm{Le} \vdash A \triangleright B\right\}=$ $\mathrm{PL}_{\Sigma}(\mathrm{HA})$

Arithmetical soundness

The arithmetical soundness of this system in a more general setting, namely Σ_{1}-preservativity, was already known by Visser, de Jongh and Iemhoff (2001).

Arithmetical Completeness of iGLH

(1) Let $\mathrm{iGLH} \nvdash A$.
(2) find some α s.t. $\mathrm{iGLC}_{\mathrm{a}} \mathrm{H}_{\sigma} \nvdash \alpha(A)$.
(3) use arithmetical completeness of $\mathrm{i} \mathrm{GLC}_{\mathrm{a}} \mathrm{H}_{\sigma}$ to find σ s.t. HA $\nvdash \sigma \alpha(A)$.

- We first need a finite, or at least well-behaved Kripke semantics.
- Iemhoff already provided a semantic for an extension of iGLH in the language with binary modal operator.
- Iemhoff's semantics are not finite.
- At least we failed to use it for the purpose of reduction.
- We provided a finite mixed semantic which is a combination of derivability and Kripke-style validity.
- It well fits for preservativity.

Preservativity

$A \underset{\widetilde{\mathrm{~T}}}{\stackrel{\Gamma}{2}} B$ iff for every $E \in \Gamma(\mathrm{~T} \vdash E \rightarrow A$ implies $\mathrm{T} \vdash E \rightarrow B)$

Preservativity

$A \underset{\widetilde{\mathrm{~T}}}{\stackrel{\Gamma}{2}} B$ iff for every $E \in \Gamma(\mathrm{~T} \vdash E \rightarrow A$ implies $\mathrm{T} \vdash E \rightarrow B)$

Theorem (M. 2022)

$\llbracket \mathrm{iGL}, \square \rrbracket \mathrm{Le} \vdash A \triangleright B$ iff $A \underset{\text { ici }}{\stackrel{\Sigma}{r}} B$.
$\Gamma:=\mathrm{C} \downarrow \mathrm{SN}(\square)$
Roughly, Γ is the set of modal propositions which could be projected to a NNIL-proposition.

NNIL(par)-fication

It is a relativised version of Ghilardi's unification for IPC. (1999)

Projectivity: standard definition

A is projective iff there is some θ s.t. IPC $\vdash \theta(A)$ and $A \vdash_{\text {IPC }} \theta(x) \leftrightarrow x$ for every variable x.

Theorem

A projective unifier is a most general unifier.

Proof.

Consider some α s.t. IPC $\vdash \alpha(A)$. Then $\alpha(A) \vdash \alpha \theta(x) \leftrightarrow \alpha(x)$. This means that $\alpha \theta=\theta$, hence θ is more general than α.

Theorem (Ghilardi 1999)

For every A there is a best approximation of A by finite disjunctions of projective propositions $\bigvee \Pi(A)$. Moreover

$$
A \mid{\underset{\mathrm{Trc}}{ }} \bigvee \Pi(A)
$$

NNIL(par)-projectivity

A is NNIL(par)-projective if there is some θ and $B \in \mathrm{NNIL}($ par $)$ s.t. IPC $\vdash \theta(A) \leftrightarrow B$ and $A \vdash_{\mathrm{IPC}} \theta(x) \leftrightarrow x$ for every var x.

Theorem (M. 2022)

For every A there is a best approximation of A by finite disjunctions of projective propositions $\bigvee \Pi(A)$. Moreover

$$
A \stackrel{\stackrel{1 P C}{2}_{N(m a r)}^{N} \bigvee \Pi(A)}{ }
$$

Theorem (M. 2022)

Axiomatizing modal preservativity

Theorem

$\mathrm{iGLH}(\Gamma, \mathrm{T}):=\mathrm{iGL}+\{\square A \rightarrow \square B: A \underset{\widetilde{\mathrm{~T}}}{\stackrel{\nwarrow}{\widetilde{ }} B\}}$

Mixed semantic for iGLH($\mathrm{\Gamma}, \mathrm{~T})$

- Roughly speaking, a mixed semantic is a usual Kripke model for intuitionistic modal logic, which is augmented by a family of propositions $\left\{\varphi_{w}\right\}_{w \in W}$ with
- $\varphi_{w} \in \Gamma$,
- $\mathcal{K}, w \Vdash \phi_{w}$,
- $\mathcal{K}, w \Vdash \square A$ iff for every $u \sqsupset w$ we have T, $\Delta_{w}, \varphi_{u} \vdash A$.

Thanks For Your Attention

