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A question

Frederick Mosteller,
Fifty Challenging Problems in Probability With Solutions

Problem 4: If one throws a die repeatedly, starting with roll 1,
what is the probability that the first 6 is on an odd numbered
roll?
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FiniteMath 101
We have aMarkov chain with success and fail nodes at the end
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.
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FiniteMath 101
We have aMarkov chain with success and fail nodes at the end
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So the total probability for a success is
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ModifyingMosteller’s text a bit vague,
but it is still inspiring

“But a beautiful way to solve the problem is as follows:
To get the first 6 on an odd numbered roll,
one can either get it on the first roll,
or else fail to get a 6 on the first roll, and
then get the first 6 on an even numbered roll after that.”

Let p be the probability that when we roll repeatedly,
the first 6 is on an odd numbered roll.

Let q be the probability that when we roll repeatedly,
the first 6 is on an even numbered roll.

p = 1
6 + 5

6q

q = 1 − p
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The point: one in effect one is looking at
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But what exactly is the
relation between the two pictures?

. .
.

5/6 1/6

5/6 1/6

5/6 1/6

5/6

5/6

1/6 1/6

For us, this is the important question.

Is the relationship describable in terms that we understand
from other areas?
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Summing a bounded geometric series

Let δ < 1.
Let r0, r1, . . . , rn, . . . be any sequence of elements of [0,1 − δ].

Then there is a unique sum

∞∑
n=0

rnδ
n = r0 + r1δ+ · · ·+ rnδ

n + · · ·

Proof 1: algebraic mathematics
Recall that the infinite sum above is really
the limit of the sequence of finite partial sums

r0, r0 + r1δ, . . . , r0 + r1δ+ · · ·+ rnδ
n, . . .

This is a Cauchy sequence, etc.
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Summing: coalgebraic math
Let X = {x0, x1, . . .} be a set of variables.

Let’s solve the infinite system of equations

x0 = r0 + δ · x1
x1 = r1 + δ · x2

...
xn = rn + δ · xn+1

...

Forget δ for a moment, and regard the system as a map

〈r ,next〉 : X → [0,1 − δ] × X .

(For example, r(x0) = r0, and next(x0) = x1.)

Given 〈r ,next〉, we are after a map solution : X → [0,1] so that

solution(x) = r(x) + δ · solution(next(x))
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Summing: a laMosteller

A beautiful way to think of

∞∑
n=0

rnδ
n

is that it is r0 added to
∑
∞

n=1 rnδn.

Of course
∑
∞

n=1 rnδn is r1 added to
∑
∞

n=2 rnδn.

etc.

What is going on
Instead of thinking of evaluating one infinite sum
we are solving an infinite system of (simple) equations.
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Summing: coalgebraic math
Lemma
For all maps 〈r ,next〉, there is a unique map solution:

X
〈r ,next〉 //

solution
��

[0,1 − δ] × X

[0,1−δ]×solution
��

[0,1] [0,1 − δ] × [0,1]a
oo

where a(x , y) = x + δ · y.

Proof.
The function set Hom(X , [0,1]) has a natural metric:

d(f ,g) = supx∈X |f(x) − g(x)|

This gives a complete metric space.

We have an endofunction

Φ : Hom(X , [0,1])→ Hom(X , [0,1])

given by “going around the square”:

X

f
��

X
〈r ,next〉 //

Φ(f)
��

[0,1 − δ] × X

[0,1]×f
��

[0,1] [0,1] [0,1 − δ] × [0,1]a
oo

One checks that Φ is a contracting map, due to δ < 1.

Then Φ has a unique fixed point,
and any fixed point is a solution to 〈r ,next〉. �
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Towards algebras and coalgebras

The operation on sets

FX = [0,1 − δ] × X

is a functor: for f : X → Y , we have

Ff : [0,1 − δ] × X → [0,1 − δ] × Y

given by Ff(r , x) = (r , f(x)).

Now our system 〈r ,next〉 : X → FX is a coalgebra for F .

And the important map a : [0,1 − δ] × [0,1]→ [0,1] is

a : F [0,1]→ [0,1] a(x , y) = x + δ · y

is an algebra for F .
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The definitions

Let A be a category, and let F : A→A be a functor.

An F-algebra is a morphism of the form a : FA → A .
An F-coalgebra is a morphism of the form a : A → FA .

Example: deterministic automata

(S , s : S → 2 × SA )

are coalgebras of 2 × XA , again on Set.
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Morphisms of algebras and coalgebras
Let (A ,a : FA → A) and (B ,b : FB → B) be algebras.
A morphism is f : A → B in the same underlying category so that

FA a //

Ff
��

A

f
��

FB
b
// B

commutes.

Let (A ,a : A → FA) and (B ,b : B → FB) be coalgebras.
A morphism is f : A → B in the same underlying category so that

A a //

f
��

FA

Ff
��

B
b
// FB

commutes.
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Initial algebras and final coalgebras

initial algebra FA a //

Ff
��

A

f
��

FB
b
// B

A a //

f
��

FA

Ff
��

B
b
// FB final coalgebra
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Example: the natural numbers

The category is Set.

The functor is FX = 1 + X .

An algebra for F is a set A together with a map

1 + A → A

So it is an element a ∈ A and an endo-map f : A → A .

The main example is N = ω, the natural numbers,
with 0 ∈ N, and s : N → N the successor function.

We put s and 0 together to get [0, s] : 1 + N → N.
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Recursion on N is tantamount to Initiality
Recursion on N: For all sets A , all a ∈ A , and all f : A → A ,
there is a unique ϕ : N → A so that

ϕ(0) = a
ϕ(n + 1) = f(ϕ(n)) for all n

Initiality of N: For all (A , [a, f ]), there is a unique homomorphism

ϕ : (N, [0, s]])→ (A , [a, f ])

That is, the diagram below commutes:

1 + N
[0,s] //

1+ϕ
��

N
ϕ

��
1 + A

[a,f ]
// A

Recursion on N may be recast in terms of
maps out of an initial algebra.
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Example: the finite binary trees

The category is Set.

The functor is FX = 1 + (X × X).

An algebra for F is a set A together with a map

[w,a] : 1 + (A × A)→ A

So it is an element w ∈ A and a map a : A × A → A .
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Example: FX = 1 + (X × X)

Recursion Principle for Finite Binary Trees
For all sets A , all w ∈ A , all a : A × A → A ,
there is a unique ϕ : Trees → A
so that ϕ is

one-point tree • 7→ w

t u
7→ a(ϕ(t), ϕ(u))

Recursion Principle for Finite Binary Trees
For all algebras [w,a] : 1 + (A × A)→ A ,
there is a unique ϕ : Trees → A so that

1 + (Trees × Trees)
? //

1+(ϕ×ϕ)
��

Trees

ϕ

��
1 + (A × A)

[w,a]
// A

commutes, where (ϕ × ϕ)(t ,u) = (ϕ(t), ϕ(u)).
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Examples

functor initial algebra
1 + X on Set natural numbers
1 + X2 on Set finite binary trees
1 + (A × X) on Set finite sequences from A
1 + X2 on MS finite binary trees, with metric
1 + X2 on CMS finite and infinite binary trees, with metric

functor final coalgebra
1 + X on Set natural numbers + ∞
1 + X2 on Set finite and infinite binary trees
1 + (A × X) on Set finite and infinite sequences from A

In all these cases, the structure maps are also natural.
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Example: formal languages as a final coalgebra
The category is Set .

The functor is F(S) = 2 × SA , where A is a fixed “alphabet” set.

Coalgebras of 2 × XA are deterministic automata

S s //

ϕ

��

2 × SA

id2×ϕA

��
L

l
// 2 × LA final coalgebra

Let L = P(A ∗) be the set of formal languages over A

The final coalgebra is

L → 2 × LA ,

and is given in terms of Brzozowski derivatives.

The map ϕ takes a state to the language accepted there.
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Query

A lot of interesting structures in discrete mathematics,
starting with the set of natural numbers itself,
are either initial algebras or final coalgebras.

What about continuous mathematics?

What about the set R of reals?
What about [0,1]?

This talk is mainly a progress report on work in this area.

Early references:
“Calculus in Coinductive Form”
D. Pavlović; M.H. Escardo, 1998

“On coalgebra of real numbers”
D. Pavlović, V. Pratt, 1999
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Interlude: corecursive algebras

Fix an endofunctor F : A→A of some category.

An algebra a : FA → A is corecursive
if for every coalgebra b : B → FB
there is a unique coalgebra-to-algebra morphism b† : B → A :

B b //

b†
��

FB

Fb†
��

A FAa
oo

Example
For the functor FX = [0,1] × X , the algebra

a : F [0,1]→ [0,1] a(x , y) = x + δ · y

is corecursive, provided 0 ≤ δ < 1.
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Freyd: [0,1] as a final coalgebra

Let BiP be the category of bi-pointed sets.

These are triples (X ,>,⊥) with X a set and also
>,⊥ ∈ X and > , ⊥.

The bipointed set {>,⊥} is initial, but there is no final object.
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The bipointed set {>,⊥} is initial, but there is no final object.

The functor F : BiP→ BiP

X XX X7→>⊥ >⊥

identify > of left with ⊥ of right

23/51



re-Proof of Freyd’s Theorem
Let’s move from bipointed sets to bipointed metric spaces.

Let i : [0,1]→ F [0,1] = [0,1] be the map

d 1
2dd 1

2d→10 10

a < 1
2 7→ 2a on left

1
2 7→ midpoint

a > 1
2 7→ 2a on right

Note that i is an isometry.

Let X → FX be a coalgebra.

The space
S = homBiP(X , [0,1]).

is a closed subspace of homCMS(X , [0,1]), hence is complete.
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re-Proof of Freyd’s Theorem

d(Ff ,Fg) ≤
1
2

d(f ,g).

We have a contracting endofunction ψ : S → S:
take f : X → [0,1] to i−1

• Ff • e:

X

f
��

X e //

ψ(f)
��

FX

Ff
��

[0,1] [0,1] F [0,1]
i−1
oo

By the Contraction Mapping Thm., there’s a unique f ∗ = ψ(f ∗).

f ∗ is exactly a coalgebra morphism (X ,e)→ ([0,1], i).

Exercise
I’m cheating. But how?

25/51



re-Proof of Freyd’s Theorem

d(Ff ,Fg) ≤
1
2

d(f ,g).

We have a contracting endofunction ψ : S → S:
take f : X → [0,1] to i−1

• Ff • e:

X

f
��

X e //

ψ(f)
��

FX

Ff
��

[0,1] [0,1] F [0,1]
i−1
oo

By the Contraction Mapping Thm., there’s a unique f ∗ = ψ(f ∗).

f ∗ is exactly a coalgebra morphism (X ,e)→ ([0,1], i).

Exercise
I’m cheating. But how?

25/51



More on F : BiP→ BiP

I On BiP, the initial algebra is the dyadic rationals in [0,1].

I On BiP, the final coalgebra is the unit interval
as a set.

I On bipointed metric spaces, the final coalgebra is
the unit interval with the usual metric.
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I On BiP, the initial algebra is the dyadic rationals in [0,1].

I On BiP, the final coalgebra is the unit interval
as a set.

I On bipointed metric spaces, the final coalgebra is
the unit interval with the usual metric.

The final coalgebra turned out to be
the Cauchy completion of the initial algebra.
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Development: fractals as final coalgebras

Building on Hutchinson’s iterated function systems,
fractal subsets of Rn are often described as final coalgebras.

In some (many?) cases those final coalgebras are
completions of the initial algebras.

This has been worked out in a few concrete settings:

I the Sierpinski triangle and the circle(!)
(with Prasit Bhattacharya, Jayampathy Ratnayake, and
Robert Rose)

I the Sierpinski carpet, including complex gluing.
(with Victoria Noquez)
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The Sierpiński Gasket as a Final Coalgebra
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Tripointed sets

L

>

R

A tripointed set is a set X together with distinguished different
elements >, L , and R.

Morphisms are functions preserving >, L , and R.

The initial object I of Tri is {>,L ,R}.
But Tri has no final object.
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The functor F(X) on Tri

Here is a generic tripointed set:

L

>

R

The functor F takes this to 3 copies with identifications as
shown above. In a tripointed metric space:
I all 3 distinguished points have distance 1
I the functor squashes distances by 1/2
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Results
Work of Bhattachaya, Ratnayake, Rose, Manokaran, Jayewardene, Noquez, LM

category initial algebra final coalgebra
Set3 (G,g) its completion (S , s)
Tripointed sets “finite address space” also (S, σ) = the

of the gasket S Sierpinski Gasket
as a subset of R2

Met3
Sh (G,g) (S , s)

short maps

Met3
L (Gρ,g) none exists

Lipschitz maps G with discrete metric

Met3
C (Gρ,g) (S , s) and (S, σ)

continuous maps they are bilipschitz
isomorphic
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Some corecursive algebra structures
related to the reals

For FX = N × X

N × [0,1]
(n,r)7→ n+r

1+n+r // [0,1]

N ×R≥0
(n,r)7→n+ r

1+r // R≥0
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Concerning R≥0

Given e : X → N × X , we want a unique e†:

X e //

e†
��

N × X

N×e†
��

R≥0 N ×R≥0
s(n,r)=n+ r

1+r

oo

Let’s adopt notation for f : X → N × X :

f(x0) = (a0, x1) f(x1) = (a1, x2) · · · f(xn) = (an, xn+1) · · ·

Then we are asking if we can solve the system

x0 = a0 + 1
1+x1

x1 = a1 + 1
1+x2

...
xn = an + 1

1+xn+1
...

x0 = a0 +
1

1 + a1 + 1
1+a2+···

The theory of continued fractions implies that we have
a corecursive algebra.

This point is due to Dusko Pavlović and Vaugh Pratt
in their 1999 paper “On coalgebra of real numbers”
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Example of coalgebraic thinking

What is the sum below?

1

1 +
1

1 +
1
. . .

We are solving the system (=coalgebra)

x =
1

1 + x

and so we get

x† =
−1 +

√
5

2
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More sophisticated example of a proof in this area,
due to Jayampathy Ratnayake 2022

Theorem (Known)

For every sequence (ε0, ε1, . . . , εn, . . .) of digits 1 or −1,

ε0

√
2 + ε1

√
2 + ε2

√
2 + · · · = 2 sin

(
π
2

(
ε0

2
+
ε0ε1

4
+
ε0ε1ε2

8
+· · ·

))
.

For example, √
2 −

√
2 +
√

2 − · · · =
1 +
√

5
2

The point
A proof using final coalgebras and/or corecursive algebras
is arguably easier than the classical proof.

Working out this kind of thing should teach us quite a bit.
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Proof, based on work of Jayampathy Ratnayake

Consider the functor FX = {−1,1} × X .

{−1,1} × [−2,2]
g(ε,x)=ε

√
2+x //

{−1,1}×i
��

[−2,2]

{−1,1} × [−1,1]
f(ε,x)= ε

2 (1+x)
// [−1,1]

i−1(x)=2 sin( π2 x)

OO

Both horizontal maps are corecursive algebra structures.

The vertical map

i(x) =
2
π

arcsin
x
2

is an isomorphism of F-algebras, and

i−1(x) = 2 sin(
π
2

x)
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Proof, based on work of Jayampathy Ratnayake

{−1,1} × {−1,1}ω

{−1,1}×j
��

{−1,1}×k

((

{−1,1}ω
head,tailoo

j
��

k

ww

{−1,1} × [−2,2]
g(ε,x)=ε

√
2+x //

{−1,1}×i
��

[−2,2]

{−1,1} × [−1,1]
f(ε,x)= ε

2 (1+x)
// [−1,1]

i−1

OO

The maps j and k are coalgebra-to-algebra maps from the
streams into the two corecursive algebras.

Then j satisfies

j(ε0, (ε1, ε2, . . .)) = ε0
√

2 + j(ε1, ε2, . . .)

= ε0

√
2 + ε1

√
2 + j(ε2, ε3, . . .)

And k : {1,−1}∞ → {1,−1} satisfies

k (ε0, (ε1, ε2, . . .)) = ε0
2 (1 + k (ε1, ε2, . . .))

= ε0
2 (1 + ε1

2 (1 + k (ε2, ε3, . . .)))

And we also have i−1
• k = j.

This basically gives us the identity we are after.
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Concerning [0,1]

Given e : X → N × X , we want a unique e†:

X e //

e†
��

N × X

N×e†
��

[0,1] N × [0,1]n+r
1+n+r

oo
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Concerning [0,1]

Given e : X → N × X , we want a unique e†:

X e //

e†
��

N × X

N×e†
��

[0,1] N × [0,1]n+r
1+n+r

oo

We can’t use the Contracting Mapping Theorem,
and so more work is needed.

Noquez and I used linear fractional transformations.
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Extracting final coalgebras
from certain corecursive algebras

Lemma (Adámek, Miliius, LM)

Let H be any endofunctor, let (A , α) be a corecursive H-algebra.

Let (B , β) be a fixed point of H which is a subalgebra of A.

Assume that for every coalgebra e : X → HX, the
coalgebra-to-algebra map e† factors through the algebra
morphism m : B → A.

X e //

ê
��

e†

&&

HX

Hê
��

He†

yy

B
β−1

//

m
��

HB

Hm
��

A HAα
oo

Then (B , β−1) is the final coalgebra of H.
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Corecursive algebra
and final coalgebra structures

FX = N × X GX = N × X + 1

corecursive algebra:
carrier R≥0 = reals ≥ 0 R≥0

structure α(n, r) = n + 1
1+r [α,0]

final coalgebra
carrier A = irrationals > 0 R≥0

inverse structure α0 = restriction of α to A [α,0]

structure γ(x) = (bxc, 1
x mod 1 − 1) χ(0) ∈ 1 in G(R≥0)

χ(x) = (x − 1,0) for x ≥ 1 in N
else χ(x) = (bxc, 1

x mod 1 − 1)

final coalgebra
isomorphic copy:

carrier B = irrationals ∩ [0,1] (0,1]

inverse structure β0 = restriction of β to B [β,1], where
β(n, r) = 1/(1 + n + r)

structure δ(x) = (
⌊1

x

⌋
− 1, 1

x mod 1) ρ(1) ∈ 1 in G((0,1])

ρ(x) = ((1/x) − 2,1) if 1/x ∈ N \ {1}
else ρ(x) = (

⌊1
x

⌋
− 1, 1

x mod 1)
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More corecursive algebras and final coalgebra
structures

FX = N × X

corecursive algebra:
carrier I = [0,1]

structure τ(n, r) =
n+r

1+n+r
final coalgebra

carrier [0,1)

inverse structure σ(n, r) =
n+r

1+n+r
structure ζ(x) = (

⌊ x
1−x

⌋
, x

1−x mod 1)

final coalgebra
isomorphic copy:

carrier R≥0

inverse structure θ(n, r) = n + r
1+r

structure ξ(x) = (bxc, x mod 1
1−x mod 1 )

41/51



The “go to” result for initial algebras

Adámek 1974
Assume that A has a colimit L of the initial-algebra sequence

0 ! // F0 F! // F20 F2! // · · ·
Fn−1! // Fn0 Fn! // · · ·

There is a canonical morphism m : L → FL .
Assume also that F : A→A preserves the colimit above.
Then

(L ,m−1)

is an initial F-algebra.
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The “go to” result for initial algebras

Kleene’s Theorem
Let A = (A ,≤) be a poset, and F : A→A be monotone.
Assume that A has a least upper bound L of the a sequence

0 ≤ F0 ≤ F20 ≤ · · · ≤ Fn0 ≤ · · ·

Then L ≤ FL .
Assume also that F : A→A is continuous
or at least preserves the least upper bound above.
Then L is the least fixed point of F .

Adámek 1974
Assume that A has a colimit L of the initial-algebra sequence

0 ! // F0 F! // F20 F2! // · · ·
Fn−1! // Fn0 Fn! // · · ·

There is a canonical morphism m : L → FL .
Assume also that F : A→A preserves the colimit above.
Then

(L ,m−1)

is an initial F-algebra.
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The “go to” result for initial algebras

Adámek 1974
Assume that A has a colimit L of the initial-algebra sequence

0 ! // F0 F! // F20 F2! // · · ·
Fn−1! // Fn0 Fn! // · · ·

There is a canonical morphism m : L → FL .
Assume also that F : A→A preserves the colimit above.
Then

(L ,m−1)

is an initial F-algebra.

Barr 1993
Assume that A has a limit L of the final-coalgebra sequence

1 F1!oo F21F!oo F2!oo · · · Fn1Fn−1!oo · · ·
Fn!oo

There is a canonical morphism m : FL → L .
Assume also that F : A→A preserves the limit above.
Then

(L ,m−1)

is an final F-coalgebra.
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The problem

Getting a final coalgebra a la Barr only works
for a limited class of functors,
leaving out some which come up often.

The first example where this fails
PfinX = the set of finite subsets of X .
For g : X → Y ,

Pfing(A) = g[A ]

for all finite subsets A ⊆ X .

Pfin has a final coalgebra, but it’s not L .
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The functors below all have final coalgebras

Kripke polynomial functors on Set:
adaptation ofWorrell 1995

F ::= Pfin | A | Id |
∏

i∈I Fi |
∐

i∈I Fi | FF ,

where A ranges over constant functors for sets.
and I is an arbitrary index set.
Pfin is the finite power set functor.

Hausdorff polynomial functors on Met (AMM 2023)

F ::= H | A | Id |
∏

i∈I Fi |
∐

i∈I Fi | FF ,

H is the Hausdorff functor.

Vietoris polynomial functors on Haus (AMM 2023)

F ::= V | A | Id |
∏

i∈I Fi |
∐

i∈I Fi | FF ,

V is the Vietoris functor.
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The Hausdorff functor H : Met→Met

Met is the category of extended metric spaces
(allowing d(x , y) = ∞),
and non-expanding maps.

The Hausdorff functor

H : Met→ Met

maps a metric space X
to the space HX of all compact subsets of X
equipped with the Hausdorff distance:

d̄(S ,T) = max
(
supx∈S d(x ,T), supy∈T d(y ,S)

)
,

where d(x ,S) = infy∈S d(x , y).

In particular d̄(∅,T) = ∞ for nonempty compact sets T .

For a non-expanding map f : X → Y we take Hf : S 7→ f [S].
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The Vietoris functor V : Haus → Haus

Let X be a topological space.

VX is the space of compact subsets of X
equipped with the “hit-and-miss” topology.

This topology has as a subbase all sets of the following forms:

U^ = {R ∈ VX : R ∩ U , ∅} (R hits U),
U� = {R ∈ VX : R ⊆ U} (R misses X \ U),

where U ranges over the open sets of X .

VX is the Vietoris space of X ,
also known as the hyperspace of X .
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Cutting a long story short

In Set and Met, we get final coalgebras by taking the limit L of

1 F1!oo F21F!oo F2!oo · · · Fn1Fn−1!oo · · ·
Fn!oo

and taking a second infinite limit

1 F1!oo F21F!oo F2!oo · · · L FLmoo F2L · · ·Fmoo

In this second iteration all of the morphisms are
monomorphisms,

The functors which I mentioned do preserve limits where the
morphisms are monic.
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Closing words

Logicians are very familiar with recursion and induction,
perhaps less so with their “duals” corecursion and coinduction.

Many of the fundamental structures in mathematical logic
happen to be initial algebras:
the natural numbers, or the cumulative hierarchy of sets.

At the same time, there are many compelling structures in
continuous math
that are characterized as final coalgebras:
the Cantor space, the unit interval, fractals, and Harsanyi type
spaces.

This talk was a high-level introduction to the area of coalgebra,
tuned to a logic audience.
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Another angle

Part of the appeal of coalgebra in theoretical computer science
is that it gives a set of tools relevant and applicable to
finitely approximable infinite objects.

These same tools can be pointed back at more
“classical” topics, like those in areas of continuous
mathematics.

This talk is a kind of progress report on this turn.

It has been more like an examination of special topics
and less of a general theory.

50/51



Collaborators

I On initial algebras and terminal coalgebras:
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