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Key Points of This Talk

e The j-translation have found many applications in proof theory.
It also appears in topos theory and realizability theory.

o = ¢
e De Jongh and Goodman introduced a realizability with forcing.
This has led to various applications.

flFrnre

e Our main purpose is to provide a proof-theoretic counterpart of de
Jongh-Goodman realizability from the perspective of j-translation.

e = Jlpo
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Introduction
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j-translation in Proof theory

e In intuitionistic proof theory, various syntactic translations have
provided many insights and applications for decades.
e A typical example is the negative translation (or double negation

translation).
(RIE)" = —-Rl@) (e o) =N =,
(P AT =GN AN (V) = (N v N,
@r.o)N = ——(FzeN): (Vo) = VapN.

It is well known that this translation defines a uniform way to embed
classical logic CQC into intuitionistic logic IQC.

Proposition
For any first-order formula ¢, Fcqc ¢ <= Figqc ¢*.

e This translation is known as an example of the j-translation

associated with a nucleus j.
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Definition (Nucleus)

A function j: Fml — Fml on the set of formulas is called a nucleus if
the following implications are intuitionistically provable:

FiQc ¥ — j; Fiqc j(iy) — j»;
Fige (9 = ¥) = (e — j¥); Fiqe (Jo)[t/z] < j(elt/x]).

Definition (Godel-Gentzen-style j-translation)

Given a nucleus j, the j-translation ¢’ [Z] of ¢[Z] is defined as follows:

(R =jR[Ed; (o= 9) = =,
(P ADY = AYT; (o V) =(e? V)
(Fz.p) = jCae?); (Vo) = Vapl.
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Various j-translations have found practical applications, such as relative
consistency and partial conservation results.

o jpi=—p (negative translation)
e jo=(p—>A)—> A (A-negative translation)
e jo=(pVA) (Friedman translation)
e jp=(p—=>A) = (Peirce translation)

For j-translations, the following properties are fundamental.

Lemma

For any nucleus j and any formula ¢,
1. Fiqc (J¢? < ¢7). (j-closedness)
2. F1qc (1QC)’. (Soundness for IQC)

Remark: By taking 7 = ——, we obtain the property that the negative
translation embeds CQC into IQC as a corollary.
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j-translation in Topos theory

e The notions of a nucleus and the associated j-translation appear
naturally in topos theory. A topos £ is equipped with a subobject
classifier 2. It can interpret various mathematical propositions.
(Topos as a universe of mathematics)

e Lawvere and Tierney investigated logical aspects of topos theory.
They showed the following correspondence:

anucleus jon <%  a subtopos & CE.

In this context, such a nucleus is called a local operator.

Proof theory Topos theory
Fml subobject classifier €2
nucleus j local operator j

Jj-translation validity in £ C £
Eie — ke & C&;
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j-translation in Realizability theory

e Hyland's discovery of the effective topos Eff connects the
j-translation with realizability theory. The original realizability
notion, Kleene realizability, is based on Turing computability.

The validity in Eff coincides with Kleene realizability.
(&ff as a universe of computable mathematics)
e For a partial function f on N, there is a local operator j; such that:

Effi; E ¢ <= ¢ is Kleene realizable relative to f.

In this sense, a local operator is regarded as a generalized oracle.

Proof theory Topos theory Realizability theory
Fml subobject classifier Q P(N)
nucleus j local operator j generalized oracle j

j-translation validity in £ C £ j-relative realizability
Fie = ke & C & j is reducible to k
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De Jongh-Goodman realizability ~PF : a set of partial functions on N

f € PF is used as an oracle

flkr (nr @), where {

T C PF is used as a forcing poset

e De Jongh and Goodman independently introduced a sheaf model
of realizability to prove the following conservation results
[de Jongh 69], [Goodman 78].

Theorem (De Jongh's theorem)

If /ipc @[], then there exist HA-formulas & such that HA f ¢[5].

Theorem (Goodman's theorem)

HAY 4+ ACY is conservative over HA.

e Van Oosten pointed out that this variant can be understood as a
PCA-valued sheaf [van Oosten 91].
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De Jongh-Goodman realizability ~PF : a set of partial functions on N

f € PF is used as an oracle

T C PF is used as a forcing poset

What is a proof-theoretic (or topos-theoretic) counterpart of de
Jongh-Goodman realizability?

flkr (nr ), where {

Proof theory Topos theory Realizability theory
Fml subobject classifier P(N)
nucleus j local operator j generalized oracle j

j-translation validity in £ C £ j-relative realizability
Fie— ke & CE&; j is reducible to k
VAm X% flkr (nr )
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Our Objective

To provide a syntactic treatment of a nucleus j € Fml™™ and a family
P C Fml™ of nuclei.

For this purpose, the internal logic of a topos, Intuitionistic
Higher-order Logic (IHoL), is suitable.

p € Fml p:Q
j € Fml™! ~ LG PQ in THoL
P € P(Fml"™) P: P(PQ)

To explain this, let us briefly recall the basics of IHoL.
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Definition (Elementary topos)

A category £ is an (elementary) topos if it has:
e a terminal object 1,
e a subobject classifier (2, T: 1 — Q),
e binary products X x Y for all X, Y €€,
e power objects (PX,ex: X x PX — Q) for all X € €.

Definition (Internal language of a topos)

The internal language L¢ of a topos £ consists of:
Sorts X, Y :=Ael|1|Q| X xY | PX,
Terms t,si=x: X [«: 1| T:Q|{,s): X XY |(t=xs):Q|
(texs):Q|{z:X|p}: PX,

where ¢ denotes a term of type €.

Every term of type  is called (Lg-)formulas.
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e Logical connectives 1, A, V, — and quantifiers 3z : X, Vx : X are
definable. For instance, universal quantification are:

Ve : Xple] = {z: X | olz]}=px {z: X |T})

e For any Lg-formula ¢ : Q, the validity £ = ¢ is defined.
The corresponding logic is called Intuitionistic Higher-order Logic
(IHoL):
£ EIQC.
EREVy: X.((yex {z: X|plal}) < ely)).

e THoL is often referred to as local set theory. However, there is a
major restriction compared to intuitionistic set theory:

v bounded quantification : for all x of type X, - --

xunbounded quantification : for all object (set), - - -
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e In THoL, the power object PX is isomorphic to the exponential
QX In particular, an endomorphism j: Q — Q can be treated as a
term of type PS).

e Therefore, we can use quantification over local operators.

Definition (Local operator, internally)
A formula is-lop[j] with a free variable j : PQ) is defined by:
is-lop[j] :=Vp: Q(p — jp) AVp: Q.(§(jp) — Jjp)
AVp,q : Q.((p — q) = (Jp — jq))-
We then define Vj € Lop.¢[j] := V5 : PQ.(is-lop[j] — ¢[j])-
For simplicity, we restrict our attention to one-sorted first-order formulas.
Definition (£ x-formula)

For an object X € &, Lx-formulas are defined by:

e, ¥ :=R[T] | oAV [V |p 29 |Tz: Xp|Vr: X
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Definition (Internal j-translation in THoL)

Let £ be an elementary topos and X € £. For any L x-formula ¢[Z], we
inductively define ¢*[4, Z] as follows:

(R[Z)" = jRI[Z); (p = ¥)* = p* = P*;
(P AY)" =" AY* (V)" =j(e* V§*);
By : XoolZ, )" =Ty : X.0*[5, T, v));
(Vy : X.p[Z,9])* = Vy : X.0*[},Z,y].

o [Z:X] — " [j:PQ,Z:X]

=] . —

For simplicity, we write ©/[Z] == ¢*[j, 7]

Lemma

For any L x-formula ¢,
1. £ V) € Lop.(jp? < 7). (j-closedness)
2. £ =Vj € Lop.(IQC). (Soundness for IQC)
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In THoL, the standard order on Lop is defined internally. Furthermore,
we can express that “P is a subset of Lop”.

Definition
For terms j,k : P}, and P : P(PQ),

o (j<k):=Vp:Q.(jp— kp).
This formula defines an internal poset (Lop, <) in &.

o (PCLop)=VYj:PQ(je€qP — isloplj]).
We call P a lop-frame if £ = (P C Lop) holds.

o (Vk >p j.p[k]) =Vk: PQ.(k €epa PAj<k— ¢[k]).

That is, a lop-frame P is intended to be an internal subposet of Lop:

Lop
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Let £ be an elementary topos and X € €.
For any Lx-formula ¢, we inductively define j IFp ¢ as follows:

J ke (R[Z]) = jR[Z];

Jlke (@ AY) = (G ke ) A (G IFp ¥);

JlFe (0 V) =G IFp 0) V (§ IFp ¥));
jlre (o — [a]) =

Vk >p j.((k Ik @[Z]) — (K IFp 9[2]));
Jle Qy : Xopld,y]) = j(Jy : X.j ke o[Z, y]);
jlkp (Vy : X.o[Z,y]) = Vk >p jVy : Xk IFp ©[Z, y].

0:Q [Z:X] = jlpe:Q [P:P(PQ),j: PQ,Z: X].

jlFp o = j-translation + Kripke forcing relation on P
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Lemma

For any L x-formula ¢,

1. (j-closedness)
E E VP C LopVj € Lop.(j(j IFp ) ¢ j IFp ©).
2. (Monotonicity)

E E VP C LopVj € LopVk >p j.(j IFp ¢ — k IFp ¢).

Theorem (N.)

& E VP C LopVj € Lop.j IFp (IQC).
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Natural numbers object and Heyting arithmetic

Assume that £ has a natural numbers object (V,0,s). Then:

e Every HA-formula can be canonically interpreted as an £y-formula.
V.o +— Va:N.p.

e Under this interpretation, £ = HA holds.

Theorem (N.)

If £ has a natural numbers object,

E E VP C LopVj € Lop.j IFp (HA).
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Proof (scketch).

Show that the induction axiom scheme is forced:

I, = ¢[0] AVz : N.(p[x] = ¢[s(x)]) = Vo : N.o[z].

Fix j € Lop. To show j IFp I, assume k € P and j < k.
k IFp (¢[0]) is equivalent to V¢ >p k.0 IFp [0].
klFp (Vo : N.(¢[z] — ¢[s(x)])) is equivalent to

Ve >p kVx : N.(¢ IFp plz] = £ 1Fp o[s(x)]).

Since N is a natural numbers object, the induction for ¢ I-p ¢[z]
holds. Hence, we obtain:

Vk Zp j.(k Ik (0[0]) Ak ke (V2 : N.(¢lz] = @ls(2)]))
— klkp (Vo : N.p[z])).

e This implies j IFp I,. g
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Our translation j IFp ¢ was based on the Godel-Gentzen-style.
Alternatively, we can define a translation inspired by the Kuroda-style
j-translation [van den Berg 19]:

j I (R[7]) = R[Z);
FIFE (P A) = (J IFE @) A (G IFE 9);
JIFE (p V) = (5 @)V (§ IFE ¥);
jlke (o= [F]) =
Vk >p j.((k 5 @[Z]) = k(k 5 9[E));
JIFE Gy Xl y]) =Ty : X.GIFE @[Zy];
G IS (Vy - X[, y]) = VEk >p jVy : X.E(k IHS o[Z,y]).

For any L x-formula ¢[Z],

£ |E VP C LopVj € LopVZ : X.(j(j FE o[&]) > j IFp o[Z]).
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e For details on the effective topos Eff, refer to van Oosten’s
textbook and excellent MSc theses by ILLC students.

e An HA-formula ¢[Z] is interpreted as a P(N)-valued function [¢]:
e: N = Q = [¢]: N* — P(N).

This interpretation coincides with Kleene realizability in the
following sense.

Kleene realizability

Let n € N.

nr(<p—>¢)£Vm€N.(mr<p = P, (m)r).

Proposition

For any HA-sentence ¢,
[l #0 <= {n|nre}#0.
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Local operators and Lop-frames in Eff

Proposition (Pitts 88)

A function j: P(N) — P(N) is a local operator in Eff if and only if:

is-lop[s]] == () ((p = 4(p)) A (Gi(p) — §(p))
P,qCN

AN —q) — (1(p) = 4(2))) # 0.

Proposition
A function P: P(N)?®™) — P(N) is a lop-frame in Eff if and only if:

ﬂ (P(5) — [is-lop[7]]) A ( “P is relational” ) # 0.

JEPN)PM
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e For a partial function f, there is a known uniform construction of a
local operator jy.
(Theoretically, js is the least operator making the graph of f dense.)
e The validity of the associated j;-translation coincides with Kleene
realizability relative to f.
relativized Kleene realizability =~ PF : a set of partial functions on N
Let n € Nand f € PF.

nrd (p =) g}VmEN.(m o = @/ (m)rf ).

Proposition (essentially, Phoa 89)

For any HA-sentence ¢,

[ 1#0 = {n|nrlp}#0.
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De Jongh-Goodman realizability is a special case

De Jongh-Goodman realizability PF : a set of partial functions on N
Let n e N, f € PF, and T C PF.

Vg € TVm € N.
fII—an(<p—>w)<g> g "
(fCgNhglrrmr o = glbp @I (m) r ).

Theorem (N.)

There exists a uniform construction of a lop-frame Py from T'.
Assume that 7" satisfies the following condition:

VigeT(fSg < jr<Jg)
Then, for any HA-sentence ¢ and any f € T,

liglrer @] #0 <= {n| flkrnre} #0.
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Application to semi-classical axioms

Consider separation problems of semi-classical axioms. The j-translation
in £ff has a limitation regarding the double negated variant:

T = (| € T)

Proposition

For any local operator j in £ff and any theory T,

&ff B (--T)Y = &ff ETV.

Therefore, a theory T and its double negated variant ——7T" are never
separable by any local operator in Eff.
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However, double negated variants appear naturally in intuitionistic proof
theory. [Fujiwara & Kurahashi 21] investigated the strength of the Prenex
Normal Form Theorem (PNFT) in the hierarchy of semi-classical
arithmetic. They focused on the classes E,, (= classical ,,) and
U,(~ classical II,,):
e HA +1I, VII,-DNE proves the PNFT for U,,.
e HA + X,,-DNE + ——(II,, VIL,-DNE) proves the PNFT for E,,.
e Furthermore, these axioms are necessary in a precise sense.

Thus, these two theories exhibit distinct properties regarding the PNFT.
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Theorem (N.)
HA +%,-DNE + ——II, VII,-DNE I/ II,, V I,-DNE (n > 1).

Proof (scketch).

Let P,, be the following lop-frame in Eff:

Jo
T

Jp(n—1)-

We write j := jgm-1 and j' := jymy. Then:
e Since &ff | (S,-DNE)Y, &ff = j IFp, ,-DNE.
e Since &ff £~ (11, Vv Hn—DNE)j, Eff ¥ j kp, 11, V 11,,-DNE.
e But &ff E (II,, V Hn—DNE)j/, Eff E jlkp, =11, VII,,-DNE.
By the soundness for HA, we conclude the separation. O
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Summary

We have introduced a translation j IFp ¢ motivated by the sheaf
model of realizability.

e Our translation j IFp ¢ is sound for IQC and HA.

De Jongh-Goodman realizability has been related to j IFp ¢ in Eff.

In addition, we have found an application to semi-classical axioms.

33/34



in IHoLL ] | realizabilit

Makoto Fujiwara and Taishi Kurahashi.
Prenex normal form theorems in semi-classical arithmetic.
Journal of Symbolic Logic, 86(3):1124-1153, 2021.

Nicolas D. Goodman.
Relativized realizability in intuitionistic arithmetic of all finite types.
Journal of Symbolic Logic, 43(1):23-44, 1978.

Wesley Phoa.
Relative computability in the effective topos.
Mathematical Proceedings of the Cambridge Philosophical Society, 106:419-422, 1989.

Andrew M. Pitts.
The Theory of Triposes.

PhD thesis, University of Cambridge, 1981.

Benno van den Berg.
A Kuroda-style j-translation.
Archive for Mathematical Logic, 58(5):627-634, 2019.

Jaap van Oosten.
Realizability: an introduction to its categorical side, volume 152 of Studies in Logic and the

Foundations of Mathematics.

Elsevier, 2008.

34/34



	Introduction: j-translation in various contexts
	j-translation in IHoL
	j-translation with Kripke forcing
	The corresponding realizability semantics
	

