

A j -translation with Kripke forcing relation

Satoshi Nakata

Graduate School of Informatics, Nagoya University, Japan

LLAMA seminar
ILLC, the University of Amsterdam, February 11, 2026

Key Points of This Talk

- The j -translation have found many applications in proof theory. It also appears in topos theory and realizability theory.

$$\varphi \quad \mapsto \quad \varphi^j$$

- De Jongh and Goodman introduced a realizability with forcing. This has led to various applications.

$$f \Vdash_T n \mathbf{r} \varphi$$

- Our main purpose is to provide a proof-theoretic counterpart of de Jongh-Goodman realizability from the perspective of j -translation.

$$\varphi \quad \mapsto \quad j \Vdash_P \varphi$$

Outline

Introduction: *j*-translation in various contexts

j-translation in **IHoL**

j-translation with Kripke forcing

The corresponding realizability semantics

Outline

Introduction: *j*-translation in various contexts

j-translation in IHoL

j-translation with Kripke forcing

The corresponding realizability semantics

j -translation in Proof theory

- In intuitionistic proof theory, various syntactic translations have provided many insights and applications for decades.
- A typical example is the **negative translation** (or **double negation translation**).

$$\begin{aligned}(R[\vec{x}])^N &:= \neg\neg R[\vec{x}]; & (\varphi \rightarrow \psi)^N &:= \varphi^N \rightarrow \psi^N; \\ (\varphi \wedge \psi)^N &:= \varphi^N \wedge \psi^N; & (\varphi \vee \psi)^N &:= \neg\neg(\varphi^N \vee \psi^N); \\ (\exists x.\varphi)^N &:= \neg\neg(\exists x\varphi^N); & (\forall x.\varphi)^N &:= \forall x\varphi^N.\end{aligned}$$

It is well known that this translation defines a uniform way to embed classical logic **CQC** into intuitionistic logic **IQC**.

Proposition

For any first-order formula φ , $\vdash_{\mathbf{CQC}} \varphi \iff \vdash_{\mathbf{IQC}} \varphi^N$.

- This translation is known as an example of the *j -translation* associated with a nucleus j .

Definition (Nucleus)

A function $j: \text{Fml} \rightarrow \text{Fml}$ on the set of formulas is called a **nucleus** if the following implications are intuitionistically provable:

$$\vdash_{\mathbf{IQC}} \varphi \rightarrow j\varphi;$$

$$\vdash_{\mathbf{IQC}} j(j\varphi) \rightarrow j\varphi;$$

$$\vdash_{\mathbf{IQC}} (\varphi \rightarrow \psi) \rightarrow (j\varphi \rightarrow j\psi); \quad \vdash_{\mathbf{IQC}} (j\varphi)[t/x] \leftrightarrow j(\varphi[t/x]).$$

Definition (Gödel-Gentzen-style j -translation)

Given a nucleus j , the **j -translation** $\varphi^j[\vec{x}]$ of $\varphi[\vec{x}]$ is defined as follows:

$$(R[\vec{x}])^j := \textcolor{red}{j}R[\vec{x}]; \quad (\varphi \rightarrow \psi)^j := \varphi^j \rightarrow \psi^j;$$

$$(\varphi \wedge \psi)^j := \varphi^j \wedge \psi^j; \quad (\varphi \vee \psi)^j := \textcolor{red}{j}(\varphi^j \vee \psi^j);$$

$$(\exists x.\varphi)^j := \textcolor{red}{j}(\exists x\varphi^j); \quad (\forall x.\varphi)^j := \forall x\varphi^j.$$

Various j -translations have found practical applications, such as **relative consistency** and **partial conservation** results.

- $j\varphi := \neg\neg\varphi$ (negative translation)
- $j\varphi := (\varphi \rightarrow A) \rightarrow A$ (A -negative translation)
- $j\varphi := (\varphi \vee A)$ (Friedman translation)
- $j\varphi := (\varphi \rightarrow A) \rightarrow \varphi$ (Peirce translation)

For j -translations, the following properties are fundamental.

Lemma

For any nucleus j and any formula φ ,

1. $\vdash_{\mathbf{IQC}} (j\varphi^j \leftrightarrow \varphi^j)$. (j -closedness)
2. $\vdash_{\mathbf{IQC}} (\mathbf{IQC})^j$. (Soundness for \mathbf{IQC})

Remark: By taking $j = \neg\neg$, we obtain the property that the negative translation embeds **CQC** into **IQC** as a corollary.

j -translation in Topos theory

- The notions of a nucleus and the associated j -translation appear naturally in topos theory. A topos \mathcal{E} is equipped with a subobject classifier Ω . It can interpret various mathematical propositions.
(Topos as a universe of mathematics)
- Lawvere and Tierney investigated logical aspects of topos theory. They showed the following correspondence:

$$\text{a nucleus } j \text{ on } \Omega \quad \overset{1:1}{\longleftrightarrow} \quad \text{a subtopos } \mathcal{E}_j \subseteq \mathcal{E}.$$

In this context, such a nucleus is called a **local operator**.

Proof theory	Topos theory
Fml	subobject classifier Ω
nucleus j	local operator j
j -translation	validity in $\mathcal{E}_j \subseteq \mathcal{E}$
$\vdash j\varphi \rightarrow k\varphi$	$\mathcal{E}_k \subseteq \mathcal{E}_j$

j -translation in Realizability theory

- Hyland's discovery of the **effective topos** $\mathcal{E}ff$ connects the j -translation with realizability theory. The original realizability notion, **Kleene realizability**, is based on Turing computability. The validity in $\mathcal{E}ff$ coincides with Kleene realizability.
($\mathcal{E}ff$ as a universe of computable mathematics)
- For a partial function f on \mathbb{N} , there is a local operator j_f such that:

$$\mathcal{E}ff_{j_f} \models \varphi \iff \varphi \text{ is Kleene realizable relative to } f.$$

In this sense, a local operator is regarded as a generalized oracle.

Proof theory	Topos theory	Realizability theory
Fml	subobject classifier Ω	$\mathcal{P}(\mathbb{N})$
nucleus j	local operator j	generalized oracle j
j -translation	validity in $\mathcal{E}_j \subseteq \mathcal{E}$	j -relative realizability
$\vdash j\varphi \rightarrow k\varphi$	$\mathcal{E}_k \subseteq \mathcal{E}_j$	j is reducible to k

De Jongh-Goodman realizabilityPF : a set of partial functions on \mathbb{N} $f \Vdash_T (n \ r \varphi), \quad \text{where} \quad \begin{cases} f \in \text{PF} \text{ is used as an oracle} \\ T \subseteq \text{PF} \text{ is used as a forcing poset} \end{cases}$

- De Jongh and Goodman independently introduced a **sheaf model of realizability** to prove the following conservation results [de Jongh 69], [Goodman 78].

Theorem (De Jongh's theorem)

If $\vdash_{\text{IPC}} \varphi[\vec{p}]$, then there exist **HA**-formulas $\vec{\sigma}$ such that **HA** $\vdash \varphi[\vec{\sigma}]$.

Theorem (Goodman's theorem)

HA $^\omega + \text{AC}^\omega$ is conservative over **HA**.

- Van Oosten pointed out that this variant can be understood as a **PCA-valued sheaf** [van Oosten 91].

De Jongh-Goodman realizabilityPF : a set of partial functions on \mathbb{N}
 $f \Vdash_T (n \mathbf{r} \varphi)$, where

$f \in \text{PF}$ is used as an **oracle**
 $T \subseteq \text{PF}$ is used as a **forcing poset**

Question

What is a proof-theoretic (or topos-theoretic) counterpart of de Jongh-Goodman realizability?

Proof theory	Topos theory	Realizability theory
Fml	subobject classifier Ω	$\mathcal{P}(\mathbb{N})$
nucleus j	local operator j	generalized oracle j
j -translation	validity in $\mathcal{E}_j \subseteq \mathcal{E}$	j -relative realizability
$\vdash j\varphi \rightarrow k\varphi$	$\mathcal{E}_k \subseteq \mathcal{E}_j$	j is reducible to k
$j \Vdash_P \varphi$		$f \Vdash_T (n \mathbf{r} \varphi)$

Outline

Introduction: *j*-translation in various contexts

j*-translation in **IHoL*

j-translation with Kripke forcing

The corresponding realizability semantics

Our Objective

To provide a syntactic treatment of a nucleus $j \in \text{Fml}^{\text{Fml}}$ and a family $\mathbb{P} \subseteq \text{Fml}^{\text{Fml}}$ of nuclei.

For this purpose, the internal logic of a topos, **Intuitionistic Higher-order Logic (IHoL)**, is suitable.

$$\begin{cases} p \in \text{Fml} \\ j \in \text{Fml}^{\text{Fml}} \\ \mathbb{P} \in \mathcal{P}(\text{Fml}^{\text{Fml}}) \end{cases} \rightsquigarrow \begin{cases} p : \Omega \\ j : P\Omega \\ \mathbb{P} : P(P\Omega) \end{cases} \text{ in IHoL}$$

To explain this, let us briefly recall the basics of **IHoL**.

Definition (Elementary topos)

A category \mathcal{E} is an **(elementary) topos** if it has:

- a terminal object 1 ,
- a subobject classifier $(\Omega, \top: 1 \rightarrow \Omega)$,
- binary products $X \times Y$ for all $X, Y \in \mathcal{E}$,
- power objects $(PX, \in_X: X \times PX \rightarrow \Omega)$ for all $X \in \mathcal{E}$.

Definition (Internal language of a topos)

The **internal language** $\mathcal{L}_{\mathcal{E}}$ of a topos \mathcal{E} consists of:

Sorts $X, Y ::= A \in \mathcal{E} \mid 1 \mid \Omega \mid X \times Y \mid PX,$

Terms $t, s ::= x : X \mid * : 1 \mid \top : \Omega \mid \langle t, s \rangle : X \times Y \mid (t =_X s) : \Omega \mid (t \in_X s) : \Omega \mid \{x : X \mid \varphi\} : PX,$

where φ denotes a term of type Ω .

Every term of type Ω is called **$(\mathcal{L}_{\mathcal{E}}\text{-})\text{formulas}$** .

Fact

- Logical connectives \perp , \wedge , \vee , \rightarrow and quantifiers $\exists x : X$, $\forall x : X$ are definable. For instance, universal quantification are:

$$\forall x : X. \varphi[x] := (\{x : X \mid \varphi[x]\} =_{PX} \{x : X \mid \top\})$$

- For any $\mathcal{L}_{\mathcal{E}}$ -formula $\varphi : \Omega$, the validity $\mathcal{E} \models \varphi$ is defined. The corresponding logic is called **Intuitionistic Higher-order Logic (IHoL)**:

$$\mathcal{E} \models \mathbf{IQC}.$$

$$\mathcal{E} \models \forall y : X. ((y \in_X \{x : X \mid \varphi[x]\}) \leftrightarrow \varphi[y]).$$

- **IHoL** is often referred to as **local set theory**. However, there is a major restriction compared to intuitionistic set theory:

✓ bounded quantification : for all x of type X , ...

✗ unbounded quantification : for all object (set), ...

- In **IHoL**, the power object PX is isomorphic to the exponential Ω^X . In particular, an endomorphism $j: \Omega \rightarrow \Omega$ can be treated as a term of type $P\Omega$.
- Therefore, we can use **quantification over local operators**.

Definition (Local operator, internally)

A formula $\text{is-lop}[j]$ with a free variable $j : P\Omega$ is defined by:

$$\begin{aligned}\text{is-lop}[j] := & \forall p : \Omega(p \rightarrow jp) \wedge \forall p : \Omega.(j(jp) \rightarrow jp) \\ & \wedge \forall p, q : \Omega.((p \rightarrow q) \rightarrow (jp \rightarrow jq)).\end{aligned}$$

We then define $\forall j \in \text{Lop}. \varphi[j] := \forall j : P\Omega. (\text{is-lop}[j] \rightarrow \varphi[j])$.

For simplicity, we restrict our attention to one-sorted first-order formulas.

Definition (\mathcal{L}_X -formula)

For an object $X \in \mathcal{E}$, **\mathcal{L}_X -formulas** are defined by:

$$\varphi, \psi ::= R[\vec{x}] \mid \varphi \wedge \psi \mid \varphi \vee \psi \mid \varphi \rightarrow \psi \mid \exists x : X. \varphi \mid \forall x : X. \varphi.$$

Definition (Internal j -translation in IHoL)

Let \mathcal{E} be an elementary topos and $X \in \mathcal{E}$. For any \mathcal{L}_X -formula $\varphi[\vec{x}]$, we inductively define $\varphi^*[j, \vec{x}]$ as follows:

$$\begin{aligned}
 (R[\vec{x}])^* &:= \textcolor{red}{j} R[\vec{x}]; & (\varphi \rightarrow \psi)^* &:= \varphi^* \rightarrow \psi^*; \\
 (\varphi \wedge \psi)^* &:= \varphi^* \wedge \psi^*; & (\varphi \vee \psi)^* &:= \textcolor{red}{j}(\varphi^* \vee \psi^*); \\
 (\exists y : X. \varphi[\vec{x}, y])^* &:= \textcolor{red}{j}(\exists y : X. \varphi^*[j, \vec{x}, y]); \\
 (\forall y : X. \varphi[\vec{x}, y])^* &:= \forall y : X. \varphi^*[j, \vec{x}, y].
 \end{aligned}$$

For simplicity, we write $\varphi^j[\vec{x}] := \varphi^*[j, \vec{x}]$.

Lemma

For any \mathcal{L}_X -formula φ ,

1. $\mathcal{E} \models \forall j \in \text{Lop}. (j\varphi^j \leftrightarrow \varphi^j)$. (j -closedness)
2. $\mathcal{E} \models \forall j \in \text{Lop}. (\mathbf{IQC})^j$. (Soundness for **IQC**)

Outline

Introduction: *j*-translation in various contexts

j-translation in IHoL

j-translation with Kripke forcing

The corresponding realizability semantics

In I HoL , the standard order on Lop is defined internally. Furthermore, we can express that “ \mathbb{P} is a subset of Lop”.

Definition

For terms $j, k : P\Omega$, and $\mathbb{P} : P(P\Omega)$,

- $(j \leq k) := \forall p : \Omega. (jp \rightarrow kp)$.

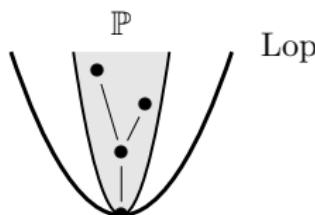
This formula defines an internal poset (Lop, \leq) in \mathcal{E} .

- $(\mathbb{P} \subseteq \text{Lop}) := \forall j : P\Omega. (j \in_{\Omega} \mathbb{P} \rightarrow \text{is-lop}[j])$.

We call \mathbb{P} a **lop-frame** if $\mathcal{E} \models (\mathbb{P} \subseteq \text{Lop})$ holds.

- $(\forall k \geq_{\mathbb{P}} j. \varphi[k]) := \forall k : P\Omega. (k \in_{P\Omega} \mathbb{P} \wedge j \leq k \rightarrow \varphi[k])$.

That is, a lop-frame \mathbb{P} is intended to be an **internal subposet** of Lop:



Definition

Let \mathcal{E} be an elementary topos and $X \in \mathcal{E}$.

For any \mathcal{L}_X -formula φ , we inductively define $j \Vdash_{\mathbb{P}} \varphi$ as follows:

$$\begin{aligned}
 j \Vdash_{\mathbb{P}} (R[\vec{x}]) &\coloneqq \textcolor{red}{j}R[\vec{x}]; \\
 j \Vdash_{\mathbb{P}} (\varphi \wedge \psi) &\coloneqq (j \Vdash_{\mathbb{P}} \varphi) \wedge (j \Vdash_{\mathbb{P}} \psi); \\
 j \Vdash_{\mathbb{P}} (\varphi \vee \psi) &\coloneqq \textcolor{red}{j}((j \Vdash_{\mathbb{P}} \varphi) \vee (j \Vdash_{\mathbb{P}} \psi)); \\
 j \Vdash_{\mathbb{P}} (\varphi \rightarrow \psi[\vec{x}]) &\coloneqq \\
 &\quad \textcolor{blue}{\forall} k \geq_{\mathbb{P}} \textcolor{blue}{j}. ((k \Vdash_{\mathbb{P}} \varphi[\vec{x}]) \rightarrow (k \Vdash_{\mathbb{P}} \psi[\vec{x}])); \\
 j \Vdash_{\mathbb{P}} (\exists y : X. \varphi[\vec{x}, y]) &\coloneqq \textcolor{red}{j}(\exists y : X. j \Vdash_{\mathbb{P}} \varphi[\vec{x}, y]); \\
 j \Vdash_{\mathbb{P}} (\forall y : X. \varphi[\vec{x}, y]) &\coloneqq \textcolor{blue}{\forall} k \geq_{\mathbb{P}} \textcolor{blue}{j} \forall y : X. k \Vdash_{\mathbb{P}} \varphi[\vec{x}, y].
 \end{aligned}$$

$$\varphi : \Omega \quad [\vec{x} : X] \quad \mapsto \quad j \Vdash_{\mathbb{P}} \varphi : \Omega \quad [\mathbb{P} : P(P\Omega), \textcolor{red}{j} : P\Omega, \vec{x} : X].$$

$$j \Vdash_{\mathbb{P}} \varphi \quad = \quad \textcolor{red}{j}\text{-translation} \quad + \quad \textcolor{blue}{\text{Kripke forcing relation on } \mathbb{P}}$$

Lemma

For any \mathcal{L}_X -formula φ ,

1. (**j -closedness**)

$$\mathcal{E} \models \forall \mathbb{P} \subseteq \text{Lop} \forall j \in \text{Lop}. (j(j \Vdash_{\mathbb{P}} \varphi) \leftrightarrow j \Vdash_{\mathbb{P}} \varphi).$$

2. (**Monotonicity**)

$$\mathcal{E} \models \forall \mathbb{P} \subseteq \text{Lop} \forall j \in \text{Lop} \forall k \geq_{\mathbb{P}} j. (j \Vdash_{\mathbb{P}} \varphi \rightarrow k \Vdash_{\mathbb{P}} \varphi).$$

Theorem (N.)

$$\mathcal{E} \models \forall \mathbb{P} \subseteq \text{Lop} \forall j \in \text{Lop}. j \Vdash_{\mathbb{P}} \text{ (IQC)}.$$

Natural numbers object and Heyting arithmetic

Assume that \mathcal{E} has a **natural numbers object** $(N, 0, s)$. Then:

- Every **HA**-formula can be canonically interpreted as an \mathcal{L}_N -formula.

$$\forall x.\varphi \quad \mapsto \quad \forall x : N.\varphi.$$

- Under this interpretation, $\mathcal{E} \models \mathbf{HA}$ holds.

Theorem (N.)

If \mathcal{E} has a natural numbers object,

$$\mathcal{E} \models \forall \mathbb{P} \subseteq \text{Lop} \forall j \in \text{Lop}. j \Vdash_{\mathbb{P}} (\mathbf{HA}).$$

Proof (sketch).

Show that the induction axiom scheme is forced:

$$I_\varphi := \varphi[0] \wedge \forall x : N. (\varphi[x] \rightarrow \varphi[s(x)]) \rightarrow \forall x : N. \varphi[x].$$

- Fix $j \in \text{Lop}$. To show $j \Vdash_{\mathbb{P}} I_\varphi$, assume $k \in \mathbb{P}$ and $j \leq k$.
- $k \Vdash_{\mathbb{P}} (\varphi[0])$ is equivalent to $\forall \ell \geq_{\mathbb{P}} k. \ell \Vdash_{\mathbb{P}} \varphi[0]$.
- $k \Vdash_{\mathbb{P}} (\forall x : N. (\varphi[x] \rightarrow \varphi[s(x)]))$ is equivalent to

$$\forall \ell \geq_{\mathbb{P}} k \forall x : N. (\ell \Vdash_{\mathbb{P}} \varphi[x] \rightarrow \ell \Vdash_{\mathbb{P}} \varphi[s(x)]).$$

- Since N is a natural numbers object, the **induction for $\ell \Vdash_{\mathbb{P}} \varphi[x]$** holds. Hence, we obtain:

$$\begin{aligned} \forall k \geq_{\mathbb{P}} j. (k \Vdash_{\mathbb{P}} (\varphi[0]) \wedge k \Vdash_{\mathbb{P}} (\forall x : N. (\varphi[x] \rightarrow \varphi[s(x)]))) \\ \rightarrow k \Vdash_{\mathbb{P}} (\forall x : N. \varphi[x]). \end{aligned}$$

- This implies $j \Vdash_{\mathbb{P}} I_\varphi$. □

Our translation $j \Vdash_{\mathbb{P}} \varphi$ was based on the Gödel-Gentzen-style.

Alternatively, we can define a translation inspired by the **Kuroda-style j -translation** [van den Berg 19]:

$$j \Vdash_{\mathbb{P}}^K (R[\vec{x}]) := R[\vec{x}];$$

$$j \Vdash_{\mathbb{P}}^K (\varphi \wedge \psi) := (j \Vdash_{\mathbb{P}}^K \varphi) \wedge (j \Vdash_{\mathbb{P}}^K \psi);$$

$$j \Vdash_{\mathbb{P}}^K (\varphi \vee \psi) := (j \Vdash_{\mathbb{P}}^K \varphi) \vee (j \Vdash_{\mathbb{P}}^K \psi);$$

$$j \Vdash_{\mathbb{P}}^K (\varphi \rightarrow \psi[\vec{x}]) :=$$

$$\forall k \geq_{\mathbb{P}} j. ((k \Vdash_{\mathbb{P}}^K \varphi[\vec{x}]) \rightarrow \textcolor{red}{k}(k \Vdash_{\mathbb{P}}^K \psi[\vec{x}]));$$

$$j \Vdash_{\mathbb{P}}^K (\exists y : X. \varphi[\vec{x}, y]) := \exists y : X. j \Vdash_{\mathbb{P}}^K \varphi[\vec{x}, y];$$

$$j \Vdash_{\mathbb{P}}^K (\forall y : X. \varphi[\vec{x}, y]) := \textcolor{blue}{\forall k \geq_{\mathbb{P}} j} \forall y : X. \textcolor{red}{k}(k \Vdash_{\mathbb{P}}^K \varphi[\vec{x}, y]).$$

Proposition

For any \mathcal{L}_X -formula $\varphi[\vec{x}]$,

$$\mathcal{E} \models \forall \mathbb{P} \subseteq \text{Lop} \forall j \in \text{Lop} \forall \vec{x} : X. (j(j \Vdash_{\mathbb{P}}^K \varphi[\vec{x}]) \leftrightarrow j \Vdash_{\mathbb{P}} \varphi[\vec{x}]).$$

Outline

Introduction: *j*-translation in various contexts

j-translation in **IHoL**

j-translation with Kripke forcing

The corresponding realizability semantics

- For details on the **effective topos** $\mathcal{E}ff$, refer to van Oosten's textbook and excellent MSc theses by ILLC students.
- An **HA**-formula $\varphi[\vec{x}]$ is interpreted as a $\mathcal{P}(\mathbb{N})$ -valued function $\llbracket \varphi \rrbracket$:

$$\varphi: N^m \rightarrow \Omega \quad \mapsto \quad \llbracket \varphi \rrbracket: \mathbb{N}^m \rightarrow \mathcal{P}(\mathbb{N}).$$

This interpretation coincides with Kleene realizability in the following sense.

Kleene realizability

Let $n \in \mathbb{N}$.

$$n \mathbf{r} (\varphi \rightarrow \psi) \stackrel{\text{def}}{\iff} \forall m \in \mathbb{N}. (m \mathbf{r} \varphi \implies \Phi_n(m) \mathbf{r} \psi).$$

Proposition

For any **HA**-sentence φ ,

$$\llbracket \varphi \rrbracket \neq \emptyset \iff \{ n \mid n \mathbf{r} \varphi \} \neq \emptyset.$$

Local operators and Lop-frames in $\mathcal{E}ff$

Proposition (Pitts 88)

A function $j: \mathcal{P}(\mathbb{N}) \rightarrow \mathcal{P}(\mathbb{N})$ is a **local operator in $\mathcal{E}ff$** if and only if:

$$\llbracket \text{is-lop}[j] \rrbracket := \bigcap_{p,q \subseteq \mathbb{N}} ((p \rightarrow j(p)) \wedge (jj(p) \rightarrow j(p)) \wedge ((p \rightarrow q) \rightarrow (j(p) \rightarrow j(q)))) \neq \emptyset.$$

Proposition

A function $\mathbb{P}: \mathcal{P}(\mathbb{N})^{\mathcal{P}(\mathbb{N})} \rightarrow \mathcal{P}(\mathbb{N})$ is a **lop-frame in $\mathcal{E}ff$** if and only if:

$$\bigcap_{j \in \mathcal{P}(\mathbb{N})^{\mathcal{P}(\mathbb{N})}} (\mathbb{P}(j) \rightarrow \llbracket \text{is-lop}[j] \rrbracket) \wedge (\text{ "P is relational" }) \neq \emptyset.$$

- For a partial function f , there is a known uniform construction of a local operator j_f .
(Theoretically, j_f is the least operator making the graph of f dense.)
- The validity of the associated j_f -translation coincides with Kleene realizability relative to f .

relativized Kleene realizability PF : a set of partial functions on \mathbb{N}

Let $n \in \mathbb{N}$ and $f \in \text{PF}$.

$$n \mathbf{r}^f (\varphi \rightarrow \psi) \stackrel{\text{def}}{\iff} \forall m \in \mathbb{N}. (m \mathbf{r}^f \varphi \implies \Phi_n^f(m) \mathbf{r}^f \psi).$$

Proposition (essentially, Phoa 89)

For any **HA**-sentence φ ,

$$[\![\varphi^{j_f}]\!] \neq \emptyset \iff \{ n \mid n \mathbf{r}^f \varphi \} \neq \emptyset.$$

De Jongh-Goodman realizability is a special case

De Jongh-Goodman realizability PF : a set of partial functions on \mathbb{N}

Let $n \in \mathbb{N}$, $f \in \text{PF}$, and $T \subseteq \text{PF}$.

$$f \Vdash_T n \mathbf{r} (\varphi \rightarrow \psi) \stackrel{\text{def}}{\iff} \forall g \in T \forall m \in \mathbb{N}. \\ (f \subseteq g \wedge g \Vdash_T m \mathbf{r} \varphi \implies g \Vdash_T \Phi_n^g(m) \mathbf{r} \psi).$$

Theorem (N.)

There exists a uniform construction of a lop-frame \mathbb{P}_T from T .

Assume that T satisfies the following condition:

$$\forall f, g \in T. (f \subseteq g \iff j_f \leq j_g).$$

Then, for any **HA**-sentence φ and any $f \in T$,

$$[j_f \Vdash_{\mathbb{P}_T} \varphi] \neq \emptyset \iff \{n \mid f \Vdash_T n \mathbf{r} \varphi\} \neq \emptyset.$$

Application to semi-classical axioms

Consider separation problems of semi-classical axioms. The j -translation in $\mathcal{E}ff$ has a limitation regarding the **double negated variant**:

$$\neg\neg T := \{ \neg\neg\psi \mid \psi \in T \}$$

Proposition

For any local operator j in $\mathcal{E}ff$ and any theory T ,

$$\mathcal{E}ff \models (\neg\neg T)^j \implies \mathcal{E}ff \models T^j.$$

Therefore, a theory T and its double negated variant $\neg\neg T$ are **never separable by any local operator in $\mathcal{E}ff$** .

However, double negated variants appear naturally in intuitionistic proof theory. [Fujiwara & Kurahashi 21] investigated the strength of the Prenex Normal Form Theorem (PNFT) in the hierarchy of semi-classical arithmetic. They focused on the classes E_n (\approx classical Σ_n) and U_n (\approx classical Π_n):

- **HA + $\Pi_n \vee \Pi_n$ -DNE** proves the PNFT for U_n .
- **HA + Σ_n -DNE + $\neg\neg(\Pi_n \vee \Pi_n$ -DNE)** proves the PNFT for E_n .
- Furthermore, these axioms are necessary in a precise sense.

Thus, these two theories exhibit distinct properties regarding the PNFT.

Theorem (N.)

HA + Σ_n -DNE + $\neg\neg\Pi_n \vee \Pi_n$ -DNE $\not\vdash \Pi_n \vee \Pi_n$ -DNE $(n \geq 1)$.

Proof (sketch).

Let \mathbb{P}_n be the following lop-frame in $\mathcal{E}ff$:

$$\begin{array}{c} j_{\emptyset^{(n)}} \\ \uparrow \\ j_{\emptyset^{(n-1)}}. \end{array}$$

We write $j := j_{\emptyset^{(n-1)}}$ and $j' := j_{\emptyset^{(n)}}$. Then:

- Since $\mathcal{E}ff \models (\Sigma_n\text{-DNE})^j$, $\mathcal{E}ff \models j \Vdash_{\mathbb{P}_n} \Sigma_n\text{-DNE}$.
- Since $\mathcal{E}ff \not\models (\Pi_n \vee \Pi_n\text{-DNE})^j$, $\mathcal{E}ff \not\models j \Vdash_{\mathbb{P}_n} \Pi_n \vee \Pi_n\text{-DNE}$.
- But $\mathcal{E}ff \models (\Pi_n \vee \Pi_n\text{-DNE})^{j'}$, $\mathcal{E}ff \models j \Vdash_{\mathbb{P}_n} \neg\neg\Pi_n \vee \Pi_n\text{-DNE}$.

By the soundness for **HA**, we conclude the separation. \square

Summary

- We have introduced a translation $j \Vdash_{\mathbb{P}} \varphi$ motivated by the sheaf model of realizability.
- Our translation $j \Vdash_{\mathbb{P}} \varphi$ is sound for **IQC** and **HA**.
- De Jongh-Goodman realizability has been related to $j \Vdash_{\mathbb{P}} \varphi$ in $\mathcal{E}ff$.
- In addition, we have found an application to semi-classical axioms.

Makoto Fujiwara and Taishi Kurahashi.
Prenex normal form theorems in semi-classical arithmetic.
Journal of Symbolic Logic, 86(3):1124–1153, 2021.

Nicolas D. Goodman.
Relativized realizability in intuitionistic arithmetic of all finite types.
Journal of Symbolic Logic, 43(1):23–44, 1978.

Wesley Phoa.
Relative computability in the effective topos.
Mathematical Proceedings of the Cambridge Philosophical Society, 106:419–422, 1989.

Andrew M. Pitts.
The Theory of Triposes.
PhD thesis, University of Cambridge, 1981.

Benno van den Berg.
A Kuroda-style j -translation.
Archive for Mathematical Logic, 58(5):627–634, 2019.

Jaap van Oosten.
Realizability: an introduction to its categorical side, volume 152 of Studies in Logic and the Foundations of Mathematics.
Elsevier, 2008.