
0-1 laws in graded finite model theory

Carles Noguera

Department of Information Engineering and Mathematics
University of Siena

San Niccolò, via Roma 56
53100 Siena, Italy

Joint work with Guillermo Badia



Mathematical Fuzzy Logic

MFL, as conceived by Petr Hájek (and many others) is a subdiscipline of
Mathematical Logic, specializing in the study of certain many-valued
logics: those that can be thought as having a linear order of truth-values.
They’re interesting in the study of graded properties, i.e. properties that
are a matter of more-or-less such as red, old, tall, or rich.
Examples: Łukasiewicz, Gödel–Dummett, and infinitely-valued Product
logics.



Handbook of Mathematical Fuzzy Logic

Volumes 37, 38 and 58, of Studies in Logic, Mathematical Logic and
Foundations, College Publications, 2011 and 2015.



Mathematical Fuzzy Logic: the general setting – 1

Standard semantics over the unit interval [0, 1].

Order-based connectives ∨ = max and ∧ = min.

Truth-constants for total truth (1) and total falsity (0).

Another conjunction & interpreted by a (left-continuous) t-norm: binary
commutative, associative, monotone function on [0, 1].

An implication given by the residuum of the t-norm:
𝑎 & 𝑏 ⩽ 𝑐 if, and only if, 𝑎 ⩽ 𝑏 → 𝑐.



Mathematical Fuzzy Logic: the general setting – 2

Examples of continuous t-norms and their residua:

𝑎 &[0,1]G 𝑏 = min{𝑎, 𝑏},
𝑎 &[0,1]� 𝑏 = max{𝑎 + 𝑏 − 1, 0},
𝑎 &[0,1]Π 𝑏 = 𝑎𝑏 (standard product of reals),

𝑎 →[0,1]G 𝑏 =
{

1, if 𝑎 ⩽ 𝑏,
𝑏, otherwise,

𝑎 →[0,1]� 𝑏 =
{

1, if 𝑎 ⩽ 𝑏,
1−𝑎+𝑏, otherwise,

𝑎 →[0,1]Π 𝑏 =
{

1, if 𝑎 ⩽ 𝑏,
𝑏/𝑎, otherwise.

A t-norm has a residuum iff it is left-continuous.

MTL: logic of left-continuous t-norms.



Algebraic semantics

MTL-algebras are algebraic structures of the form
𝑨 = ⟨𝐴,∧𝑨,∨𝑨,&𝑨,→𝑨, 0

𝑨
, 1

𝑨⟩ such that

⟨𝐴,∧𝑨,∨𝑨, 0
𝑨
, 1

𝑨⟩ is a bounded lattice,

⟨𝐴,&𝑨, 1
𝑨⟩ is a commutative monoid,

for each 𝑎, 𝑏, 𝑐 ∈ 𝐴, we have:

𝑎 &𝑨 𝑏 ⩽ 𝑐 iff 𝑏 ⩽ 𝑎 →𝑨 𝑐, (residuation)

(𝑎 →𝑨 𝑏) ∨𝑨 (𝑏 →𝑨 𝑎) = 1
𝑨 (prelinearity)

𝑨 is called an MTL-chain if its underlying lattice is linearly ordered.

𝑩2, the two-valued algebra of classical logic, is an extreme example of
MTL-chain.



Example: the algebra of Łukasiewicz 3-valued logic

The algebra Ł3 = ⟨{0, 1
2 , 1},∧

Ł3 ,∨Ł3 ,&Ł3 ,→Ł3 , 0, 1⟩ such that

∧Ł3 (𝑥, 𝑦) = min{𝑥, 𝑦}
∨Ł3 (𝑥, 𝑦) = max{𝑥, 𝑦}
&Ł3 (𝑥, 𝑦) = max{0, 𝑥 + 𝑦 − 1}
→Ł3 (𝑥, 𝑦) = min{1, 1 − 𝑥 + 𝑦}



Example: the algebra of Gödel 4-valued logic

The algebra G4 = ⟨{0, 1
3 ,

2
3 , 1},∧

G4 ,∨G4 ,&G4 ,→G4 , 0, 1⟩ such that

∧G4 (𝑥, 𝑦) = &G4 (𝑥, 𝑦) = min{𝑥, 𝑦}
∨G4 (𝑥, 𝑦) = max{𝑥, 𝑦}
and for →G4 :

→G4 (𝑥, 𝑦) =
{

1 if 𝑥 ⩽ 𝑦

𝑦 otherwise.



Going first-order – 1

Usual classical syntax with a signature 𝜏 = ⟨P,F, ar⟩
Semantics as in Mostowski, Rasiowa, Hájek tradition ⟨𝑨,M⟩ where:

𝑨 is an algebra of truth-values (for the propositional language)
M = ⟨𝑀, ⟨𝑃M⟩𝑃∈P , ⟨𝐹M⟩𝐹∈F⟩, where

𝑀 is a non-empty set
𝐹M is a function 𝑀𝑛 → 𝑀 for each 𝑛-ary function symbol 𝐹 ∈ F.
𝑃M is a function 𝑀𝑛 → 𝐴, for each 𝑛-ary predicate symbol 𝑃 ∈ P

An 𝔐-evaluation of the object variables is a mapping v: 𝑉 → 𝑀

∥𝑥∥𝔐v = v(𝑥),
∥𝐹 (𝑡1, . . . , 𝑡𝑛)∥𝔐v = 𝐹M (∥𝑡1∥𝔐v , . . . , ∥𝑡𝑛∥𝔐v ),
∥𝑃(𝑡1, . . . , 𝑡𝑛)∥𝔐v = 𝑃M (∥𝑡1∥𝔐v , . . . , ∥𝑡𝑛∥𝔐v ),
∥◦(𝜑1, . . . , 𝜑𝑛)∥𝔐v = ◦𝑨(∥𝜑1∥𝔐v , . . . , ∥𝜑𝑛∥𝔐v ),

∥(∀𝑥)𝜑∥𝔐v = inf⩽𝑨{∥𝜑∥𝔐v[𝑥→𝑚] | 𝑚 ∈ 𝑀},
∥(∃𝑥)𝜑∥𝔐v = sup⩽𝑨{∥𝜑∥

𝔐
v[𝑥→𝑚] | 𝑚 ∈ 𝑀}.



Going first-order – 2

Notion of safe structure, where truth values of all formulas are defined.

Notion of model: For each v, ∥𝜎∥𝔐v = 1
𝑨
.

As in classical logic, we have:

axiomatic Hilbert-style presentation
completeness theorem

P. Hájek and P. Cintula. On theories and models in fuzzy predicate logics. Journal of
Symbolic Logic, 71(3):863–880, 2006.
P. Cintula and C.N. A Henkin-Style Proof of Completeness for First-Order
Algebraizable Logics, Journal of Symbolic Logic, 80(1):341–358, 2015.



Model theory

Modern logic (and set theory) was developed since the late nineteenth
century in connection with important efforts to provide foundations of
mathematics [Frege, Cantor, Hilbert, Russell, etc.]
In the twentieth century mathematical logic evolved into, among others,
the branch of model theory: the systematic study of mathematical
structures by means of formal languages (mostly, but not only, first-order
logic) [Löwenheim, Skolem, Tarski, Fraïssé, Łoś, etc.]
The second half of the twentieth century has seen a growing interest in
the connections between mathematical logic and computer science,
which, among many other crucial developments, has justified an
increased interest in finite mathematical structures.



The goal of this talk – 1

This talk will link together Mathematical Fuzzy Logic and Finite Model
Theory by considering a specific technical problem:

given a sentence in a first-order fuzzy logic, is there a truth-value
that the sentence gets almost surely in finite structures?

A positive answer to this problem is what we will call a 0-1 law,
generalizing a notion from finite model theory based on two-valued logic.



The goal of this talk – 2

Using different methods, we will generalize the result below to any
finitely-valued fuzzy logic:

Robert Kosik and Christian Fermüller (2009): Almost sure degrees of truth
and finite model theory of Łukasiewicz fuzzy logic, International Journal
of the Computer, the Internet and Management 17 (SP1), 20.1-20.5

We will also lift the technical restriction in that paper demanding that the
number of truth values be a power of 2.



The classical 0-1 law – 1

In 1950, Rudolf Carnap showed, for finite signatures with only unary
relation symbols and a first-order formula 𝜑, that the fraction of
structures with domain {1, . . . , 𝑛} making 𝜑 true always converges to 0
or 1 as 𝑛 tends to ∞.
In 1973 (published in the JSL in 1976), Ronald Fagin obtained the result
for arbitrary finite relational signatures.



Non-triviality and usefulness of the law

Second-order logic does not satisfy a 0-1 law.

The sentence

(∃𝑋) ((∀𝑥)𝑋𝑥𝑥 ∧ (∀𝑥, 𝑦) (𝑋𝑥𝑦 → 𝑋𝑦𝑥) ∧ (∀𝑥, 𝑦, 𝑧) ((𝑋𝑥𝑦 ∧ 𝑋𝑦𝑧) → 𝑋𝑥𝑧)

∧(∀𝑥) (∃𝑦)=1(𝑋𝑥𝑦 ∧ 𝑦 ≠ 𝑥))

is true in exactly the finite structures with an even domain, so the fraction of
structures with domain {1, . . . , 𝑛} making 𝜑 true does not converge to a limit
as 𝑛 tends to ∞.

Hence, we can’t axiomatize the class of even structures in first-order logic.



The classical 0-1 law – 2

1969: Y.V. Glebskii, D.I. Kogan, M.I. Liogonki and V. Talanov had
already proven Fagin’s result (though it remained mostly unknown).
1980: Talanov proves the 0-1 law for first-order logic with the transitive
closure operator.
1982: Walter Oberschelp extends Fagin’s 0-1 law to parametric classes.
1985: Andreas Blass, Yuri Gurevich and Dexter Kozen prove the 0-1 law
for first-order logic with the fixpoint operador.
1990: Phokion Kolaitis and Moshe Vardi prove the 0-1 law for infinitary
first-order logic with bounded variables.
1994: Joseph Halpern and Bruce Kapron study the 0-1 law for modal
logics and axiomatize the formulas that are true in almost all finite
models.



Structures over finite MTL-chains

Fix a finite non-trivial MTL-chain 𝑨. Safeness is for free.

For each value 𝑎 of 𝑨, we will have a truth-constant 𝑎 to denote it. Also, we
consider signatures with crisp equality ≈.

Structures: 𝔐 = ⟨𝑨,M⟩.

⟨𝑨,M⟩ ≡𝑠 ⟨𝑨,N⟩ means that for every 𝜏-sentence 𝜎, ∥𝜎∥ ⟨𝑨,M⟩ = ∥𝜎∥ ⟨𝑨,N⟩

(strongly elementarily equivalent structures).



An infinitary language

We call the first-order language described with the above semantics L 𝑨
𝜔𝜔 .

We can close L 𝑨
𝜔𝜔 under infinitary lattice disjunctions and conjunctions, e.g.

by allowing formulas
∧

𝑖∈𝐼 𝜑𝑖 and
∨

𝑖∈𝐼 𝜑𝑖 (where 𝐼 has any cardinality) with
the following semantics:

∥∧𝑖∈𝐼 𝜑𝑖 ∥𝑨M,𝑣 = inf{∥𝜑𝑖 ∥𝑨M,𝑣 | 𝑖 ∈ 𝐼};
∥∨𝑖∈𝐼 𝜑𝑖 ∥𝑨M,𝑣 = sup{∥𝜑𝑖 ∥𝑨M,𝑣 | 𝑖 ∈ 𝐼}.

We call the resulting language and semantics L 𝑨
∞𝜔 . If, furthermore, we allow

only 𝑘 ⩾ 1 many variables in our formulas, we obtain L 𝑘𝑨
∞𝜔 .

We will give 0-1 laws for L 𝑨
𝜔𝜔 and L 𝑘𝑨

∞𝜔 .



Compactness – 1

We have a compactness property for first-order languages with semantics
given over a fixed finite MTL-chain (Pilar Dellunde 2014): every finitely
satisfiable set of sentences is satisfiable.

Compactness is not preserved in general when dealing with infinite MTL
algebras: Hájek showed that product predicate logic with the standard
semantics on the interval [0, 1] is not compact.



Compactness – 2

Observe that when we restrict ourselves to the study of models with finite
domains, compactness breaks apart. It is easy to see that the infinite theory

(∀𝑥1) (𝑥1 < 𝑥1 → 0)

(∀𝑥1, 𝑥2, 𝑥3) (𝑥1 < 𝑥2 ∧ 𝑥2 < 𝑥3 → 𝑥1 < 𝑥3)

(∃𝑥1, . . . , 𝑥𝑛) (
∧

1⩽𝑖< 𝑗⩽𝑛

𝑥𝑖 < 𝑥 𝑗) (for all 𝑛 ⩾ 1)

is finitely satisfiable on finite models but not satisfiable.



Partial isomorphisms

Let ⟨𝑨,M⟩ and ⟨𝑨,N⟩ be 𝜏-structures, 𝑝 be a partial mapping from 𝑀 to 𝑁 . We say
that 𝑝 is a partial isomorphism from ⟨𝑨,M⟩ to ⟨𝑨,N⟩ if

1 𝑝 is injective,
2 for every 𝑛-ary functional symbol 𝐹 ∈ F and every 𝑑1, . . . , 𝑑𝑛 ∈ 𝑀 such that
𝑑1, . . . , 𝑑𝑛, 𝐹M (𝑑1, . . . , 𝑑𝑛) ∈ dom(𝑝),

𝑝(𝐹M (𝑑1, . . . 𝑑𝑛)) = 𝐹N (𝑝(𝑑1), . . . 𝑝(𝑑𝑛)),

3 for every 𝑛-ary predicate symbol 𝑃 ∈ P and 𝑑1, . . . , 𝑑𝑛 ∈ 𝑀 such that
𝑑1, . . . , 𝑑𝑛 ∈ dom(𝑝),

𝑃M (𝑑1, . . . , 𝑑𝑛) = 𝑃N (𝑝(𝑑1), . . . , 𝑝(𝑑𝑛)).



Finitely isomorphic structures

Two 𝜏-structures ⟨𝑨,M⟩ and ⟨𝑨,N⟩ are said to be finitely isomorphic, written
⟨𝑨,M⟩ � 𝑓 ⟨𝑨,N⟩, if there is a sequence ⟨𝐼𝑛 | 𝑛 < 𝜔⟩ with the following
properties:

1 Every 𝐼𝑛 is a non-empty set of partial isomorphisms from ⟨𝑨,M⟩ to
⟨𝑨,N⟩.

2 For each 𝑛 < 𝜔, 𝐼𝑛+1 ⊆ 𝐼𝑛.
3 (Forth-property) For every 𝑝 ∈ 𝐼𝑛+1 and 𝑚 ∈ 𝑀 , there is a 𝑝′ ∈ 𝐼𝑛 such

that 𝑝 ⊆ 𝑝′ and 𝑚 ∈ dom(𝑝′).
4 (Back-property) For every 𝑝 ∈ 𝐼𝑛+1 and 𝑛 ∈ 𝑁 , there is a 𝑝′ ∈ 𝐼𝑛 such

that 𝑝 ⊆ 𝑝′ and 𝑛 ∈ rg(𝑝′).

Proposition 1 (Dellunde, García-Cerdaña, C.N., 2018)
In L 𝑨

𝜔𝜔 with 𝜏 finite, we have: if ⟨𝑨,M⟩ � 𝑓 ⟨𝑨,N⟩, then ⟨𝑨,M⟩ ≡𝑠 ⟨𝑨,N⟩.



𝑘-potentially isomorphic structures

Given an integer 𝑘 ⩾ 1, two 𝜏-structures ⟨𝑨,M⟩ and ⟨𝑨,N⟩ are said to be
𝑘-potentially isomorphic, written ⟨𝑨,M⟩ �𝑘 ⟨𝑨,N⟩, if there is a set 𝐼 of
partial isomorphisms with the following properties:

1 𝐼 is a non-empty set of partial isomorphisms from ⟨𝑨,M⟩ to ⟨𝑨,N⟩.
2 𝐼 is downward-closed: if 𝑝 ∈ 𝐼 and 𝑝′ ⊆ 𝑝, then 𝑝′ ∈ 𝐼.
3 If 𝑝 ∈ 𝐼 and |dom(𝑝) | < 𝑘 ,

1 (Forth-property) for every 𝑚 ∈ 𝑀 , there is a 𝑝′ ∈ 𝐼 such that 𝑝 ⊆ 𝑝′ and
𝑚 ∈ dom(𝑝′).

2 (Back-property) for every 𝑛 ∈ 𝑁 , there is a 𝑝′ ∈ 𝐼 such that 𝑝 ⊆ 𝑝′ and
𝑛 ∈ rg(𝑝′).

Proposition 2
Given 𝑘 ⩾ 1 and a finite 𝜏, we have: if ⟨𝑨,M⟩ �𝑘 ⟨𝑨,N⟩, then
∥𝜑∥ ⟨𝑨,M⟩ = ∥𝜑∥ ⟨𝑨,N⟩ for any sentence of L 𝑘𝑨

∞𝜔 .



Asymptotic probabilities

For any 𝜏-sentence 𝜑, 𝑎 ∈ 𝐴, and 𝑛 ⩾ 1,

𝑙𝑎𝑛 (𝜑): cardinality of the (finite) set 𝐾𝑎
𝜏 consisting of each model 𝔐 for the

signature 𝜏 with domain {1, 2, . . . , 𝑛} such that ∥𝜑∥𝔐 = 𝑎.

𝑙𝑛 (𝜏): cardinality of the (finite) set containing all model for the signature 𝜏
with domain {1, 2, . . . , 𝑛}.
Now, let

𝜇𝑎𝑛 (𝜑) =
𝑙𝑎𝑛 (𝜑)
𝑙𝑛 (𝜏)

.

The asymptotic probability of 𝜑 getting value 𝑎 is defined as follows:

𝜇𝑎 (𝜑) = lim
𝑛→∞

𝜇𝑎𝑛 (𝜑).



Example 1: crisp predicates

Consider a signature containing a unary relation 𝑃. Suppose that 3 ⩽ |𝐴|.
Then,

𝜇1𝑨

𝑛 ((∀𝑥) (𝑃𝑥 ∨ ¬𝑃𝑥)) = 2𝑛

|𝐴|𝑛 ,

so
𝜇1𝑨

((∀𝑥) (𝑃𝑥 ∨ ¬𝑃𝑥)) = lim
𝑛→∞

2𝑛

|𝐴|𝑛 = 0.

This means that almost surely no structure makes the predicate 𝑃 crisp.



Example 2: models with odd domains

Let 𝜏 be the empty signature. For any 𝑘 , let

𝜑=𝑘 := (∃𝑥1, . . . , 𝑥𝑘)
( ∧

1⩽𝑖< 𝑗⩽𝑘 𝑥𝑖 0 𝑥 𝑗
∧ (∀𝑥𝑘+1) (

∨
1⩽𝑖⩽𝑘 𝑥𝑘+1 ≈ 𝑥𝑖)

)
.

𝔐 |= 𝜑=𝑘 iff |𝑀 | = 𝑘 . Then, for the infinitary sentence
∨

𝑘⩾1 𝜑
=2𝑘+1,

𝔐 |= ∨
𝑘⩾1 𝜑

=2𝑘+1 iff |𝑀 | is odd. Then,

𝜇1𝑨

𝑛 (
∨
𝑘⩾1

𝜑=2𝑘+1) =
{

1 if 𝑛 is odd
0 otherwise.

So in this case 𝜇1𝑨

(∨𝑘⩾1 𝜑
=2𝑘+1) does not exist.



Example 3: signatures with object constants

Consider a signature containing a unary relation 𝑅 and an object constant
symbol 𝑐. Let 𝑎 ∈ 𝐴. Then, for any 𝑛 ⩾ 1,

𝜇𝑎𝑛 (𝑅𝑐) =
1
|𝐴|

since in any given model 𝔐 with domain 𝑀 = {1, 2, . . . , 𝑛} where we have
fixed the interpretation of 𝑐, there are 1

|𝐴| chances of interpreting 𝑅 in such a
way that ∥𝑅𝑐∥𝔐 = 𝑎. Hence,

𝜇𝑎 (𝑅𝑐) = lim
𝑛→∞

𝜇𝑎𝑛 (𝑅𝑐) =
1
|𝐴| .



The Rado graph

Wilhelm Ackermann (1937) introduces first a countably infinite graph as:
Symmetrizing membership between hereditarily finite sets
Via the BIT predicate between natural numbers: 𝑥 ⩽ 𝑦 iff the 𝑥th binary
bit of 𝑦 is 1.

Paul Erdös and Alfréd Rényi (1963) define it as the random graph: for
each pair of nodes, put an edge between them with probability 0.5. With
probability 1 the resulting graph is isomorphic to the Rado graph.
Richard Rado (1964) defines it as the universal graph, i.e., it contains all
finite graphs as subgraphs. Therefore, it is a Fraïssé limit and saturated.
Haim Gaifman (1964) axiomatizes the theory a first-order random
countable structure and shows that it is 𝜔-categoric (hence, complete).
Ronald Fagin (1976) uses Gaifman axioms to prove his 0-1 law.



The theory 𝑇𝜏

Consider a finite relational signature 𝜏. For any 𝑟 ⩾ 0, we let Δ𝑟+1 be the
(finite) set of all formulas 𝜑(𝑣1, . . . , 𝑣𝑟 , 𝑣𝑟+1) where 𝜑 is an atomic formula
𝑅−→𝑥 in the signature 𝜏, 𝑣𝑟+1 appears in the sequence −→𝑥 , and all variables in −→𝑥
are from the list 𝑣1, . . . , 𝑣𝑟 , 𝑣𝑟+1. Let 𝑇𝜏 be the theory containing, for every
𝐴-valued set Φ : Δ𝑟+1 −→ 𝐴, the axiom 𝜒𝑟

Φ
(we will drop the superscript

where convenient) defined as:

(∀𝑣1, . . . , 𝑣𝑟 ) (¬
∧

1⩽𝑖< 𝑗⩽𝑟

𝑣𝑖 0 𝑣 𝑗 ∨

(∃𝑣𝑟+1)
( ∧

1⩽𝑖⩽𝑟 𝑣𝑖 0 𝑣𝑟+1
∧ ∧

𝜑∈Δ𝑟+1 (𝜑 ↔ Φ(𝜑))

)
)

We call the above an 𝑟 + 1 extension axiom of 𝑇𝜏 .



The theory 𝑇𝜏: key lemma

Lemma 3
Let 𝜏 be a finite relational signature. Fix Δ𝑟+1 and some 𝐴-valued set
Φ : Δ𝑟+1 −→ 𝐴. Then, for the extension axiom 𝜒𝑟

Φ
, 𝜇1𝑨

(𝜒𝑟
Φ
) = 1. In other

words, 𝜒𝑟
Φ

takes value 1
𝑨

almost surely.

Corollary 4
Let 𝜏 be a finite relational signature. For any finite 𝑇 ′

𝜏 ⊆ 𝑇𝜏 , there is a number
𝑘 such that for any 𝑛 > 𝑘 , 𝑇 ′

𝜏 has a model with a universe of objects of size 𝑛.

By compactness (in the sense of Dellunde), 𝑇𝜏 has an infinite model.



The case of L 𝑨
𝜔𝜔

Proposition 5
Consider a finite signature 𝜏. If 𝔐 and 𝔑 are models of 𝑇𝜏 , then 𝔐 � 𝑓 𝔑,
i.e., 𝔐 and 𝔑 are finitely isomorphic.

Corollary 6
For any sentence 𝜑 of L 𝑨

𝜔𝜔 in the signature 𝜏, 𝑇𝜏 ⊨ 𝜑 ↔ 𝑎 for some 𝑎 ∈ 𝐴,
i.e., any model of 𝑇𝜏 is a model of 𝜑 ↔ 𝑎.



The case of L 𝑘𝑨
∞𝜔

Proposition 7
Consider a finite signature 𝜏. If 𝔐 and 𝔑 are models of 𝜒𝑟

Φ
for all 𝑟 ⩽ 𝑘 , then

𝔐 �𝑘 𝔑, i.e., 𝔐 and 𝔑 are 𝑘-potentially isomorphic.

Corollary 8
For any sentence 𝜑 of L 𝑘𝑨

∞𝜔 in the signature 𝜏, 𝑇𝜏 ⊨ 𝜑 ↔ 𝑎 for some 𝑎 ∈ 𝐴.



The case of L 𝑨
𝜔𝜔

Theorem 9 (First 0-1 Law)
If 𝜑 is a sentence in the finite relational signature 𝜏, then there is 𝑎 ∈ 𝐴 such
that 𝜇𝑎 (𝜑) = 1, and for any other truth-value 𝑎′, 𝜇𝑎′ (𝜑) = 0.

The classical version of this result, for 𝑩2, simply states that 𝜇1(𝜑) = 1 or
𝜇1(𝜑) = 0, or, equivalently, 𝜇0(𝜑) = 1 or 𝜇0(𝜑) = 0.

This is immediate from our theorem as 0 or 1 are the only possibilities in that
case.



The case of L 𝑘𝑨
∞𝜔

Theorem 10 (Second 0-1 Law)
If 𝜑 is a sentence of L 𝑘𝑨

∞𝜔 in the finite relational signature 𝜏, then there is
𝑎 ∈ 𝐴 such that 𝜇𝑎 (𝜑) = 1 and for any other truth-value 𝑎′, 𝜇𝑎′ (𝜑) = 0.

L 𝑘𝑨
∞𝜔 is, in general, more expressive than its counterpart L 𝑨

𝜔𝜔.



Translations of the classical 0-1 law? – 1

Can we import the classical 0-1 law via a translation?

1. There is indeed a translation to two-sorted first-order classical logic:

P. Cintula, F. Esteva, J. Gispert, L. Godo, F. Montagna and C.N., Distinguished
Algebraic Semantics For T-Norm Based Fuzzy Logics: Methods and Algebraic
Equivalencies, Annals of Pure and Applied Logic 160(1):53–81, 2009.

The problem is that this two-sorted language in question contains functions
and object constant symbols. So the classical result does not apply to this
language.

From the point of view of classical logic, our main results would be claims
about very specific two-sorted languages.



Translations of the classical 0-1 law? – 2

2. There is also a translation between many-valued and classical first-order
logic (forthcoming in a joint paper with Xavier Caicedo).

Using this translation and a classical 0-1 law for parametric classes (Walter
Oberschelp, 1982), we can obtain directly our result.

However, we believe that the direct proofs sketched here are illuminating and
help the development of a purely many-valued approach.



Wanna know more?

G. Badia, C.N. A 0-1 Law in Mathematical Fuzzy Logic. IEEE Transactions
on Fuzzy Systems, to appear. Available online

10-12 November 2022. Online workshop Finite Model Theory and
Many-Valued Logic: Challenges and Interactions.
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