Models for Axiomatic Type Theory

Daniél Otten and Matteo Spadetto

Contents

We present Axiomatic Type Theory (type theory without reductions).

Then we compare two semantics for ATT:

e comprehension categories: more traditional and well-studied,
closely follows the syntax and intricasies of type theory.

e path categories (Van den Berg, Moerdijk 2017): more concise,
taking inspiration from homotopy theory.

Both model a minimal version of ATT: only =-types, but weakly
because they only specify substitutions up to isomorphism.

However, we can turn comprehension categories into actual models.

1/24

Our Contributions

Path categories are equivalent to certain comprehension categories.
This allows us to turn path categories into actual models as well.

We introduce a more fine-grained notion: display path categories,
and show a similar equivalence.

We obtain the following diagram of 2-categories:

PathCat —— ComprehensionCat g extual.

Tl el

DisplayPathCat —— ComprehensionCat

Contextual,=

2/24

Axiomatic Type Theory

Equality

Intensional type theory (ITT) has two notions of equality:
definitional (=) | external reductions decidable
propositional (=) | internal proofs undecidable

So, definitional eq forms a decidable fragment of propositional eq:

the fragment that the computer checks for us.

There are reasons to consider larger or smaller fragments:
e larger makes it easier to work inside of the system,

e smaller makes is easier to find models for the system.

3/24

Other Fragments

Other fragments come up in practice.

Larger fragments:
e We can have more definitional eq and remain decidable.

e Proof assistants like Agda allow you to add reductions.

Smaller fragments:
e Cubical Type Theory only has a propositional 5-rule for =-types.

e Coinductive types only have a propositional 5-rule because the
definitional version makes type checking undecidable.

4/24

Extremes

We consider the two extremes:
e Extensional type theory (ETT), where every eq is definitional.

e Axiomatic type theory (ATT), without any definitional eq.

These form the min and max of a lattice with ITT in the middle:
ETT

]

ITT

]

ATT

5/24

Complexity and Conservativity

The complexity of type checking:
e ETT: undecidable,
e |ITT: nonelementary,

e ATT: quadratic.

So, does ETT prove more than ATT? Yes, namely:
e binder extensionality (bindext),

e uniqueness of identity proofs (uip).

However, these are the only additional things we can prove.
(Winterhalter 2019)

6/24

Semantics

We show an equivalence between two semantics for ATT:

comprehension categories and path categories.

Comprehension categories closely follow the syntax.

Path categories simplify =-types using the intuition of paths:

We explicitly model formation and introduction, however,
instead of elimination and [-axiom, we require that the
introduction is an homotopy equivalence.

7/24

Minimal Dependent Type Theory

We consider a minimal dependent type theory: only =-types.

I'x:

— — (= form)
Az’ A x =, 2" : Type

Tz

Tz
Tz

(= intro)

cAbrefl, iz =,

cAyx" cApiax =42 F Clx, 2, p] : Type
: Ak clx] : Clz, x, refl]

I'x

t A, Aprx =42’ Findg ., Clz, 27, p)

(=elim)

(= B-reduction)

Do Ao’ Ap:ao=,a"FClz,a,p|: Type
Iyz:Ab cz] : Clx, x, refl]
Laz:AbF ind;,c,reﬂgC =Clw,z,refl,] C[QS‘]

8/24

Minimal Dependent Type Theory

Without II-types, we have to strengthen the rules:

(= form)

Dx:Ax : Aoz =, 2" : Type

(= intro)
Dx:Abrefl,:x =,
Do Aa' Aprao=,a Ale.a p] - Cla, 2/, p] : Type
Doz A Alx,z,refl | F c[z] : Cla, z, refl] (= elim)
Loz Ax : Ajprax =y 2", Alr, o', p| Findg ., : Clz, 2/, p] v
Do Ax’ - Apro=y 2 Alv, 2’ p| = Clz,2’, p] : Type
Iyz: A Alz,z,refl | - c[;z;l Clz, z,refl] (= f-reduction)
Lo A, A{L, Z, reﬂm} - mda,c,reﬂz EC[x,w,reﬂz] c[a:]

8/24

Minimal Dependent Type Theory

In ATT, we have (3-axioms instead of S-reductions:

(= form)

Dx:Ax : Aoz =, 2" : Type

(= intro)
Dx:AbFrefl,:xc=,2
Do Aa' Aprao=,a,Ale, 2", p] - Cla, ', p] : Type
Dyz: A Alx,z,refl] F c[z] : Clx, z, refl] (= elim)
Loz:Ax’ : Ajprax =y 2',Alr,2’,p] Findg ., : Clz, 27, p] v
Dox: Az Ap:o=4 2, Alx,z’,p| F Clz,2’,p| : Type
Dyz: A Alx, z,refl,] - c[z] : Clz, z, refl] (= frax)
I a: A7A[‘T7w7 reﬂx] - Bg,c,z ; indz‘,c,reﬂaC —Clz,x,refl,] C[l’] o

8/24

Comprehension Categories

Comprehension Categories

A comprehension category consists of:
e acategory € of contexts,
e acategory T of types,
e afibration P : 7 — € sending every type to its context,

e afull and faithful functor D : T — € sending every type A in
context I to the display map D, : "' A — T..

g— 2 e

\ Aomam

Atermof type AincontextI'isana : I' = I''Ast. D4 o a = idy.

9/24

Substitution

That P : T — € is a fibration means that we can do substitution:

for a type A in context I" and a context morphismo : A — T,
there exists a type A[o] in context A and a pullback square:

AAlo] =25 T.A
ol o
A ———T
However, in general, we cannot pick every A[o] such that:
Alid] = A,
Alr o o] = Alo][7].

A comprehension category with compatible choices is called split.

10/24

Splitting

A comprehension category has to be split to model type theory.

Luckily, there are ways to split comprehension categories:
SplitCompCat
Bl
CompCat
We are mostly interested in the left adjoint:
e (Lumsdaine, Warren 2014): Local Universe Construction.
e (Bocquet 2021): Generic Contexts.

Our equivalence will show that we can split path categories.

11/24

Adding Structure

Comprehension categories only model the basic structure of
dependent type theory.

Each type former gives more requirements.

In this talk we focus on one type former: —=-types.

12/24

Identity Types

The requirements are translated from the inference rules:

e The formation rule is:

(= form
F,x:A,x’:Al—x:Aas’:Type\)

So, we require a type Id , in context I A. A[D 4].

e The introduction rules is:

(= intro
I‘,x:Al—reﬂw:m:Ax\)

So, we require a term refl , of type Id 4 [0 4] in context I". A where
d4:T.A—T.A.A[D,] duplicates the last variable.

e We omit the elimination and Srules (ind, ~ . and 5, .).
Y T 13/24

Stability

In addition, we need choices that are stable under substitution:

ldfo] = 1da,

refl 4, [o] = refl 40,
indy ¢ .[o] = md;[(j Clo],clo]’
Bac.elol = Bal.cloleol

Fortunately, when we split the comprehension category, we also turn
weakly stable structure into stable structure.

We have weakly stable =-types if for every type A there exist an
=-type (Id 4, refl 4, ind7, 37) s.t. for every o:
there exist i and b s.t. (Id 4 [o], refl 4[], 7, b) is an =-type.

14/24

Path Categories

Path Categories

A path category is a category € with two classes of maps:
e fibrations: closed under pullbacks and compositions,
e (weak) equivalences, satisfying 2-out-of-6: if we have

A-lsp-*t,c-,p

where g o fand h o g are weak equivalences,

then f, g, h, and h o g o h are weak equivalences.
If a map is both then we call it an acyclic fibration:
e every isomorphism is an acyclic fibration,
e pullbacks of acyclic fibrations are acyclic fibrations,
e every acyclic fibration has a section.

€ has a terminal object 1 and every map A — 1 is a fibration. e

Path Objects

Lastly, a path category has a path object for every object A:

e afactorisation of the diagonal 6 , = (id 4, id 4):
94

A AxA
& A'vtA)
PA

into a weak equivalence r , followed by a fibration (s 4, 4).

We can use path objects to show that every morphism factors as a
weak equivalence followed by a fibration. (mapping path space)

16/24

Homotopy Theory

We call two maps f, g : A — B homotopic, written [=~ ¢, if there
existsamaph: A — Pgsuchthatsgoh = fandtgoh =g.

We call f : A — B an homotopy equivalence, if there exists a map
g: B — Asuchthatgo f ~id, and fog ~idg.

The homotopy equivalences are precisely the weak equivalences.

In addition, we have a lifting theorem: for a commutative square

A——C

A
o T

-,

B—— D
where w is an equivalence and p is a fibration, thereisad : B — C
unique up to homotopy such that the lower triangle commutes and
the upper triangle commutes up to homotopy. 17/24

Equivalences

From a Path Category to a Comprehension Category

Suppose that we have a path category €.

We obtain a comprehension category:

e (forms the category of contexts,
e the full Cfib C @ of fibrations forms the category of types,

e the codomain functor € — € sends a type to its context.

We will show that it has additional structure:

e weakly stable =-types,
o weakly stable >-types with 5 and 7 reductions,

e contextuality (contexts are finite).

18/24

Weakly Stable =-Types

For a type A we take
|dA = (SA7tA> : PA — A x A, (formaﬁon)
refl, :=r, : A — PA. (introduction)

The elimination and -axiom follow from our lifting theorem and the
fact that r 4 is an equivalence.

We get weak stability because we can show that path objects are
preserved by taking pullbacks.

19/24

Weakly Stable >-Types with 8 and

The intuitive reason that we obtain X-types is that path categories
do not distinguish between a single extension I'. A of I" and arbitrary
extensionsI'. 4.A

n—1-

The requirements on a comprehension category can be simplified to:

for every type I'.A. B we have a type ¥ , B in context I" and an
isomorphism I'.A. B = I".¥ 4, B making the following commute:

I'A.B ==—T.%,B

l |

ra——m— —7r

Holds in path categories: compositions of fibrations are fibrations.

20/24

Contextuality

A comprehension category is called contextual if the category of
contexts has a terminal object 1 and for every context I" there exist:

e atype A, in context 1,
e atype A, incontext 1.4,
e atype A, incontext 1.4,.4,,

Holds in path categories: every map I' — 1 is a fibration.

21/24

From a Comprehension Category to a Path Category

Suppose that we have a comprehension category € with =, Eﬂ,n’
and contextuality.
Then we can turn € into a path category by taking:

e the fibrations as the class of display maps and isomorphisms
closed under composition,

e the weak equivalences as the homotopy equivalences.

Then € has path objects because it has =-types.

22/24

Display Path Categories

In a display path category we distinguishI""Aand I". 4.A,,_;.
Instead of fibrations we use display maps as a primitive notion.
Fibrations are compositions of display maps and isomorphisms.

In addition, we replace path objects for objects I" with a seemingly
weaker notion: path objects for display maps A — T".

This is sufficient: we can use a lifting theorem and transport to
inductively construct path objects for objects.

23/24

Equivalence

We obtain the following diagram of 2-categories:
PathCat —— ComprehensionCatcomexwal:7267]

UT%JC FT—{lU |

DisplayPathCat —— ComprehensionCat,

ontextual,=

Here the U’s are forgetful, F'is a free, and C'is a cofree.

We end this talk with some open questions:
e Can we simplify other type formers as we did with =-types?
e In particular, are propositional >-types and II-types homotopical

weakenings of left and right adjoints of the pullback functor.

24/24

References

Benno van den Berg and leke Moerdijk (2017): Exact completion of path categories.
Benno van den Berg (2018): Path categories and propositional identity types.
Rafaél Bocquet (2020): Coherence of strict equalities in dependent type theories.

Rafaél Bocquet (2021): Strictification of weakly stable type-theoretic structures
using generic contexts.

Martin Hofmann (1995): On the interpretation of type theory in locally Cartesian
closed categories.

Peter Lumsdaine and Michael Warren (2014): The local universes model, an
overlooked coherence construction for dependent type theories.

Nicolas Oury (2005): Extensionality in the calculus of constructions.

Matteo Spadetto (2023): A conservativity result for homotopy elementary types in
dependent type theory.

Theo Winterhalter (2019): Formalisation and meta-theory of type theory.

	Axiomatic Type Theory
	Comprehension Categories
	Path Categories
	Equivalence

