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Contents

We present Axiomatic Type Theory (type theory without reductions).

Then we compare two semantics for ATT:

• comprehension categories: more traditional and well-studied,

closely follows the syntax and intricasies of type theory.

• path categories (Van den Berg, Moerdijk 2017): more concise,

taking inspiration from homotopy theory.

Both model a minimal version of ATT: only =-types, but weakly

because they only specify substitutions up to isomorphism.

However, we can turn comprehension categories into actual models.
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Our Contributions

Path categories are equivalent to certain comprehension categories.

This allows us to turn path categories into actual models as well.

We introduce a more fine-grained notion: display path categories,

and show a similar equivalence.

We obtain the following diagram of 2-categories:

PathCat ComprehensionCatContextual,=,Σ𝛽𝜂

DisplayPathCat ComprehensionCatContextual,=

𝐶

∼

⊣ 𝑈⊣𝑈

∼

𝐹
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Axiomatic Type Theory



Equality

Intensional type theory (ITT) has two notions of equality:

definitional (≡) external reductions decidable

propositional (=) internal proofs undecidable

So, definitional eq forms a decidable fragment of propositional eq:

the fragment that the computer checks for us.

There are reasons to consider larger or smaller fragments:

• larger makes it easier to work inside of the system,

• smaller makes is easier to find models for the system.
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Other Fragments

Other fragments come up in practice.

Larger fragments:

• We can have more definitional eq and remain decidable.

• Proof assistants like Agda allow you to add reductions.

Smaller fragments:

• Cubical Type Theory only has a propositional 𝛽-rule for =-types.

• Coinductive types only have a propositional 𝛽-rule because the
definitional version makes type checking undecidable.
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Extremes

We consider the two extremes:

• Extensional type theory (ETT), where every eq is definitional.

• Axiomatic type theory (ATT), without any definitional eq.

These form the min and max of a lattice with ITT in the middle:

ETT

ITT

ATT
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Complexity and Conservativity

The complexity of type checking:

• ETT: undecidable,

• I TT: nonelementary,

• ATT: quadratic.

So, does ETT prove more than ATT? Yes, namely:

• binder extensionality (bindext),

• uniqueness of identity proofs (uip).

However, these are the only additional things we can prove.

(Winterhalter 2019)
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Semantics

We show an equivalence between two semantics for ATT:

comprehension categories and path categories.

Comprehension categories closely follow the syntax.

Path categories simplify =-types using the intuition of paths:

We explicitly model formation and introduction, however,

instead of elimination and 𝛽-axiom, we require that the

introduction is an homotopy equivalence.
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Minimal Dependent Type Theory

We consider a minimal dependent type theory: only =-types.

Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴 ⊢ 𝑥 =𝐴 𝑥′ ∶ Type
(= form)

Γ, 𝑥 ∶ 𝐴 ⊢ refl𝑥 ∶ 𝑥 =𝐴 𝑥
(= intro)

Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴, 𝑝 ∶ 𝑥 =𝐴 𝑥′ ⊢ 𝐶[𝑥, 𝑥′, 𝑝] ∶ Type
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑐[𝑥] ∶ 𝐶[𝑥, 𝑥, refl𝑥]
Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴, 𝑝 ∶ 𝑥 =𝐴 𝑥′ ⊢ ind

=
𝐶,𝑐,𝑝 ∶ 𝐶[𝑥, 𝑥′, 𝑝]

(= elim)

Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴, 𝑝 ∶ 𝑥 =𝐴 𝑥′ ⊢ 𝐶[𝑥, 𝑥′, 𝑝] ∶ Type
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑐[𝑥] ∶ 𝐶[𝑥, 𝑥, refl𝑥]
Γ, 𝑥 ∶ 𝐴 ⊢ ind

=
𝐶,𝑐,refl𝑥

≡𝐶[𝑥,𝑥,refl𝑥] 𝑐[𝑥]
(= 𝛽-reduction)
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Minimal Dependent Type Theory

Without Π-types, we have to strengthen the rules:

Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴 ⊢ 𝑥 =𝐴 𝑥′ ∶ Type
(= form)

Γ, 𝑥 ∶ 𝐴 ⊢ refl𝑥 ∶ 𝑥 =𝐴 𝑥
(= intro)

Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴, 𝑝 ∶ 𝑥 =𝐴 𝑥′, Δ[𝑥, 𝑥′, 𝑝] ⊢ 𝐶[𝑥, 𝑥′, 𝑝] ∶ Type
Γ, 𝑥 ∶ 𝐴, Δ[𝑥, 𝑥, refl𝑥] ⊢ 𝑐[𝑥] ∶ 𝐶[𝑥, 𝑥, refl𝑥]
Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴, 𝑝 ∶ 𝑥 =𝐴 𝑥′, Δ[𝑥, 𝑥′, 𝑝] ⊢ ind

=
𝐶,𝑐,𝑝 ∶ 𝐶[𝑥, 𝑥′, 𝑝]

(= elim)

Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴, 𝑝 ∶ 𝑥 =𝐴 𝑥′, Δ[𝑥, 𝑥′, 𝑝] ⊢ 𝐶[𝑥, 𝑥′, 𝑝] ∶ Type
Γ, 𝑥 ∶ 𝐴, Δ[𝑥, 𝑥, refl𝑥] ⊢ 𝑐[𝑥] ∶ 𝐶[𝑥, 𝑥, refl𝑥]
Γ, 𝑥 ∶ 𝐴, Δ[𝑥, 𝑥, refl𝑥] ⊢ ind

=
𝐶,𝑐,refl𝑥

≡𝐶[𝑥,𝑥,refl𝑥] 𝑐[𝑥]
(= 𝛽-reduction)
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Minimal Dependent Type Theory

In ATT, we have 𝛽-axioms instead of 𝛽-reductions:

Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴 ⊢ 𝑥 =𝐴 𝑥′ ∶ Type
(= form)

Γ, 𝑥 ∶ 𝐴 ⊢ refl𝑥 ∶ 𝑥 =𝐴 𝑥
(= intro)

Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴, 𝑝 ∶ 𝑥 =𝐴 𝑥′, Δ[𝑥, 𝑥′, 𝑝] ⊢ 𝐶[𝑥, 𝑥′, 𝑝] ∶ Type
Γ, 𝑥 ∶ 𝐴, Δ[𝑥, 𝑥, refl𝑥] ⊢ 𝑐[𝑥] ∶ 𝐶[𝑥, 𝑥, refl𝑥]
Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴, 𝑝 ∶ 𝑥 =𝐴 𝑥′, Δ[𝑥, 𝑥′, 𝑝] ⊢ ind

=
𝐶,𝑐,𝑝 ∶ 𝐶[𝑥, 𝑥′, 𝑝]

(= elim)

Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴, 𝑝 ∶ 𝑥 =𝐴 𝑥′, Δ[𝑥, 𝑥′, 𝑝] ⊢ 𝐶[𝑥, 𝑥′, 𝑝] ∶ Type
Γ, 𝑥 ∶ 𝐴, Δ[𝑥, 𝑥, refl𝑥] ⊢ 𝑐[𝑥] ∶ 𝐶[𝑥, 𝑥, refl𝑥]
Γ, 𝑥 ∶ 𝐴, Δ[𝑥, 𝑥, refl𝑥] ⊢ 𝛽=

𝐶,𝑐,𝑥 ∶ ind=
𝐶,𝑐,refl𝑥

=𝐶[𝑥,𝑥,refl𝑥] 𝑐[𝑥]
(= 𝛽-ax)
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Comprehension Categories



Comprehension Categories

A comprehension category consists of:

• a category 𝒞 of contexts,

• a category 𝒯 of types,

• a fibration 𝑃 ∶ 𝒯 → 𝒞 sending every type to its context,

• a full and faithful functor 𝐷 ∶ 𝒯 → 𝒞→ sending every type 𝐴 in

context Γ to the display map 𝐷𝐴 ∶ Γ.𝐴 → Γ.

𝒯 𝒞→

𝒞
𝑃

𝐷

Codomain

A term of type 𝐴 in context Γ is an 𝑎 ∶ Γ → Γ.𝐴 s.t. 𝐷𝐴 ∘ 𝑎 = idΓ.
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Substitution

That 𝑃 ∶ 𝒯 → 𝒞 is a fibration means that we can do substitution:

for a type 𝐴 in context Γ and a context morphism 𝜎 ∶ Δ → Γ,
there exists a type 𝐴[𝜎] in context Δ and a pullback square:

Δ.𝐴[𝜎] Γ.𝐴

Δ Γ

𝜎.𝐴

𝐷𝐴[𝜎] 𝐷𝐴

𝜎

⌟

However, in general, we cannot pick every 𝐴[𝜎] such that:

𝐴[id] = 𝐴,
𝐴[𝜏 ∘ 𝜎] = 𝐴[𝜎][𝜏 ].

A comprehension category with compatible choices is called split.
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Splitting

A comprehension category has to be split to model type theory.

Luckily, there are ways to split comprehension categories:

SplitCompCat

CompCat

⊣⊣

We are mostly interested in the left adjoint:

• (Lumsdaine, Warren 2014): Local Universe Construction.

• (Bocquet 2021): Generic Contexts.

Our equivalence will show that we can split path categories.
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Adding Structure

Comprehension categories only model the basic structure of

dependent type theory.

Each type former gives more requirements.

In this talk we focus on one type former: =-types.
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Identity Types

The requirements are translated from the inference rules:

• The formation rule is:

Γ, 𝑥 ∶ 𝐴, 𝑥′ ∶ 𝐴 ⊢ 𝑥 =𝐴 𝑥′ ∶ Type
(= form)

So, we require a type Id𝐴 in context Γ.𝐴.𝐴[𝐷𝐴].
• The introduction rules is:

Γ, 𝑥 ∶ 𝐴 ⊢ refl𝑥 ∶ 𝑥 =𝐴 𝑥
(= intro)

So, we require a term refl𝐴 of type Id𝐴[𝛿𝐴] in context Γ.𝐴 where

𝛿𝐴 ∶ Γ.𝐴 → Γ.𝐴.𝐴[𝐷𝐴] duplicates the last variable.
• We omit the elimination and 𝛽 rules (ind

=
𝐴,𝐶,𝑐 and 𝛽=

𝐴,𝐶,𝑐).
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Stability

In addition, we need choices that are stable under substitution:

Id𝐴[𝜎] = Id𝐴[𝜎],
refl𝐴[𝜎] = refl𝐴[𝜎],

ind
=
𝐴,𝐶,𝑐[𝜎] = ind=

𝐴[𝜎],𝐶[𝜎],𝑐[𝜎],

𝛽=
𝐴,𝐶,𝑐[𝜎] = 𝛽=

𝐴[𝜎],𝐶[𝜎],𝑐[𝜎].

Fortunately, when we split the comprehension category, we also turn

weakly stable structure into stable structure.

We have weakly stable =-types if for every type 𝐴 there exist an

=-type (Id𝐴, refl𝐴, ind=
𝐴, 𝛽=

𝐴) s.t. for every 𝜎:
there exist 𝑖 and 𝑏 s.t. (Id𝐴[𝜎], refl𝐴[𝜎], 𝑖, 𝑏) is an =-type.
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Path Categories



Path Categories

A path category is a category 𝒞 with two classes of maps:

• fibrations: closed under pullbacks and compositions,

• (weak) equivalences, satisfying 2-out-of-6: if we have

𝐴 𝐵 𝐶 𝐷𝑓 𝑔 ℎ

where 𝑔 ∘ 𝑓 and ℎ ∘ 𝑔 are weak equivalences,

then 𝑓, 𝑔, ℎ, and ℎ ∘ 𝑔 ∘ ℎ are weak equivalences.

If a map is both then we call it an acyclic fibration:

• every isomorphism is an acyclic fibration,

• pullbacks of acyclic fibrations are acyclic fibrations,

• every acyclic fibration has a section.

𝒞 has a terminal object 1 and every map 𝐴 → 1 is a fibration.
15/24



Path Objects

Lastly, a path category has a path object for every object 𝐴:

• a factorisation of the diagonal 𝛿𝐴 = (id𝐴, id𝐴):

𝐴 𝐴 × 𝐴

𝑃𝐴

𝛿𝐴

𝑟𝐴 (𝑠𝐴,𝑡𝐴)

into a weak equivalence 𝑟𝐴 followed by a fibration (𝑠𝐴, 𝑡𝐴).

We can use path objects to show that every morphism factors as a

weak equivalence followed by a fibration. (mapping path space)
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Homotopy Theory

We call two maps 𝑓, 𝑔 ∶ 𝐴 → 𝐵 homotopic, written 𝑓 ≃ 𝑔, if there
exists a map ℎ ∶ 𝐴 → 𝑃𝐵 such that 𝑠𝐵 ∘ ℎ = 𝑓 and 𝑡𝐵 ∘ ℎ = 𝑔.

We call 𝑓 ∶ 𝐴 → 𝐵 an homotopy equivalence, if there exists a map

𝑔 ∶ 𝐵 → 𝐴 such that 𝑔 ∘ 𝑓 ≃ id𝐴 and 𝑓 ∘ 𝑔 ≃ id𝐵.

The homotopy equivalences are precisely the weak equivalences.

In addition, we have a lifting theorem: for a commutative square

𝐴 𝐶

𝐵 𝐷

𝑤 𝑝

where 𝑤 is an equivalence and 𝑝 is a fibration, there is a 𝑑 ∶ 𝐵 → 𝐶
unique up to homotopy such that the lower triangle commutes and

the upper triangle commutes up to homotopy. 17/24



Equivalences



From a Path Category to a Comprehension Category

Suppose that we have a path category 𝒞.

We obtain a comprehension category:

• 𝒞 forms the category of contexts,

• the full 𝒞fib ⊆ 𝒞→ of fibrations forms the category of types,

• the codomain functor 𝒞fib → 𝒞 sends a type to its context.

We will show that it has additional structure:

• weakly stable =-types,

• weakly stable Σ-types with 𝛽 and 𝜂 reductions,

• contextuality (contexts are finite).

18/24



Weakly Stable =-Types

For a type 𝐴 we take

Id𝐴 ≔ (𝑠𝐴, 𝑡𝐴) ∶ 𝑃𝐴 → 𝐴 × 𝐴, (formation)

refl𝐴 ≔ 𝑟𝐴 ∶ 𝐴 → 𝑃𝐴. (introduction)

The elimination and 𝛽-axiom follow from our lifting theorem and the

fact that 𝑟𝐴 is an equivalence.

We get weak stability because we can show that path objects are

preserved by taking pullbacks.
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Weakly Stable Σ-Types with β and η

The intuitive reason that we obtain Σ-types is that path categories

do not distinguish between a single extension Γ.𝐴 of Γ and arbitrary

extensions Γ.𝐴0. … .𝐴𝑛−1.

The requirements on a comprehension category can be simplified to:

for every type Γ.𝐴.𝐵 we have a type Σ𝐴𝐵 in context Γ and an

isomorphism Γ.𝐴.𝐵 ≅ Γ.Σ𝐴𝐵 making the following commute:

Γ.𝐴.𝐵 Γ.Σ𝐴𝐵

Γ.𝐴 Γ

∼

Holds in path categories: compositions of fibrations are fibrations.
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Contextuality

A comprehension category is called contextual if the category of

contexts has a terminal object 1 and for every context Γ there exist:

• a type 𝐴0 in context 1,
• a type 𝐴1 in context 1.𝐴0,

• a type 𝐴2 in context 1.𝐴0.𝐴1,
...

• a type 𝐴𝑛−1 in context 1.𝐴0.....𝐴𝑛−2,

such that Γ ≅ 1.𝐴0.....𝐴𝑛−1.

Holds in path categories: every map Γ → 1 is a fibration.
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From a Comprehension Category to a Path Category

Suppose that we have a comprehension category 𝒞 with =, Σ𝛽,𝜂,

and contextuality.

Then we can turn 𝒞 into a path category by taking:

• the fibrations as the class of display maps and isomorphisms

closed under composition,

• the weak equivalences as the homotopy equivalences.

Then 𝒞 has path objects because it has =-types.
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Display Path Categories

In a display path category we distinguish Γ.𝐴 and Γ.𝐴0. … .𝐴𝑛−1.

Instead of fibrations we use display maps as a primitive notion.

Fibrations are compositions of display maps and isomorphisms.

In addition, we replace path objects for objects Γ with a seemingly

weaker notion: path objects for display maps 𝐴 → Γ.

This is sufficient: we can use a lifting theorem and transport to

inductively construct path objects for objects.
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Equivalence

We obtain the following diagram of 2-categories:

PathCat ComprehensionCatContextual,=,Σ𝛽𝜂

DisplayPathCat ComprehensionCatContextual,=

𝐶

∼

⊣ 𝑈⊣𝑈

∼

𝐹

Here the 𝑈’s are forgetful, 𝐹 is a free, and 𝐶 is a cofree.

We end this talk with some open questions:

• Can we simplify other type formers as we did with =-types?

• In particular, are propositional Σ-types and Π-types homotopical

weakenings of left and right adjoints of the pullback functor.
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