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Many-valued modal logic

Let D be a finite algebra of truth-degrees with bounded lattice reduct.

Modal formulas φ ∈ Form are constructed from propositional
variables p ∈ Prop, the connectives of D and modal operators □,♢.

Relational models are M = (W ,R,Val) with Val : W × Prop→ D.

Val is inductively extended to all formulas via the rules

Val(w ,□ψ) =
∧
{Val(w ′, ψ) | wRw ′},

Val(w ,♢ψ) =
∨
{Val(w ′, ψ) | wRw ′}.

We define M,w ⊩ φ iff Val(w , φ) = 1.

Recover classical modal logic if D = 2 ∈ BA.
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Examples from many-valued modal logic (1)

Let D be the (n + 1)-element finite MV-chain

 Ln = ⟨{0, 1
n , . . . ,

n−1
n , 1},⊙,⊕,∧,∨,¬, 0, 1⟩.

For every d ∈  Ln, the unary operation τd :  Ln →  Ln is term-definable in  Ln:

τd(x) =

{
1 if x ≥ d ,

0 if x ̸≥ d .

The algebraic counterpart of the corresponding modal logic:

Definition

A modal MVn-algebra is an algebra (A,□) with A ∈ MVn = HSP( Ln),

□(x ∧ y) = □x ∧□y and □1 = 1,

□τd(x) = τd(□x) for all d ∈  Ln\{0}.

Hansoul, Teheux 2013 [7] ; Bou, Esteva, Godo, Rodŕıguez 2011 [1]
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Examples from many-valued modal logic (2)

H = ⟨H,∧,∨,→ 0, 1, (Td | d ∈ H)⟩,

where ⟨H,∧,∨,→, 0, 1⟩ is a finite Heyting algebra expanded by unary

Td(x) =

{
1 if x = d ,

0 if x ̸= d .

Note that τd(x) =
∨
{Tc(x) | c ≥ d} are again term-definable in H.

The algebraic counterpart of the corresponding modal logic:

Definition

A modal H-algebra is an algebra (A,□) with A ∈ HSP(H),

□(x ∧ y) = □x ∧□y and □1 = 1,

□τd(x) = τd(□x) for all d ∈ H\{0}.

Maruyama 2009 [13]
4 / 36



Examples from many-valued modal logic (2)

H = ⟨H,∧,∨,→ 0, 1, (Td | d ∈ H)⟩,

where ⟨H,∧,∨,→, 0, 1⟩ is a finite Heyting algebra expanded by unary

Td(x) =

{
1 if x = d ,

0 if x ̸= d .

Note that τd(x) =
∨
{Tc(x) | c ≥ d} are again term-definable in H.

The algebraic counterpart of the corresponding modal logic:

Definition

A modal H-algebra is an algebra (A,□) with A ∈ HSP(H),

□(x ∧ y) = □x ∧□y and □1 = 1,

□τd(x) = τd(□x) for all d ∈ H\{0}.

Maruyama 2009 [13]
4 / 36



Examples from many-valued modal logic (3)

Let D be given by the (n + 1)-element  Lukasiewicz-Moisil chain

Mn = ⟨{0, 1
n , . . . ,

n−1
n , 1},∧,∨,¬, 0, 1, (τd | d ∈ Mn)⟩.

where ¬ is the MV -negation and τd = χ{x≥d} similar to before.

The algebraic counterpart of the corresponding tense logic:

Definition

A tense  LMn-algebra is an algebra (A,G ,H) with A ∈  LMn = HSP(Mn),

G (x ∧ y) = Gx ∧ Gy and G 1 = 1,

H(x ∧ y) = Hx ∧ Hy and H1 = 1,

x ≤ GPx and x ≤ HFx ,

Gτd(x) = τd(Gx) for all d ∈ Mn\{0},
Hτd(x) = τd(Hx) for all d ∈ Mn\{0}.

Diaconescu, Georgescu 2007 [5]
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Motivating questions

Question: What do these algebras of truth-degrees have in common?

Answer: They are all semi-primal.

Question: Is there a general framework to systematically study the
relationship between these many-valued modal logics and classical modal
logic?

Such a framework is provided by coalgebraic logic.
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Semi-primal algebras

Definition

An algebra D is primal if every operation f : Dk → D with k ≥ 1
is term-definable in D.

Foster, Pixley 1964 [6] ; Pixley 1971 [16]
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Theorem

For a finite algebra D, t.f.a.e.:

1 D is semi-primal.

2 The variety HSP(D) is arithmetical (i.e., congruence-distributive and
-permutable) and all subalgebras of D are simple and rigid.

3 The ternary discriminator is term-definable in D and all subalgebras
of D are rigid.
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Semi-primal lattice-expansions

Proposition

For a finite algebra D with bounded lattice reduct, t.f.a.e.:

1 D is semi-primal.

2 For every d ∈ D, the unary operation τd = χ{x≥d} is term-definable
and the unary operation T0 = χ{0} is term-definable.

For a finite algebra D with bounded residuated lattice reduct, t.f.a.e.:

1 D is semi-primal.

2 For every d ∈ D, the unary operation τd = χ{x≥d} is term-definable.

For the second part, note that we can define T0(x) = τe(x\0) where e is
the monoid unit of D.
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Semi-primal chains: Examples

• The Post chains Pn = ⟨{0, 1
n , . . . ,

n−1
n , 1},∧,∨,′ , 0, 1⟩.

P4 : 0 1
4

2
4

3
4 1

• The finite MV-chains

 Ln = ⟨{0, 1
n , . . . ,

n−1
n , 1},⊙,⊕,∧,∨,¬, 0, 1⟩.

• The finite  Lukasiewicz-Moisil chains

Mn = ⟨{0, 1
n , . . . ,

n−1
n , 1},∧,∨,¬, 0, 1, (τd | d ∈ Mn)⟩.
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n−1
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• The finite  Lukasiewicz-Moisil chains

Mn = ⟨{0, 1
n , . . . ,

n−1
n , 1},∧,∨,¬, 0, 1, (τd | d ∈ Mn)⟩.

• The finite Cornish chains Cn = ⟨{0, 1
n , . . . ,

n−1
n , 1},∧,∨,¬, f , 0, 1⟩.1

C4 : 0 1
4

2
4

3
4 1

1Davey, Gair 2017 [4]
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Semi-primal lattices: Examples (1)

FOUR = ⟨{t, f,⊤,⊥},∧,∨,⊗,⊕,¬,⊃, t, f⟩.

≤t

f

t

⊤ ⊥

≤k

⊥

⊤

t f

Figure: The truth-order ≤t and the knowledge-order ≤k .

U. Rivieccio’s PhD thesis
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Semi-primal lattices: Examples (2)

• Residuated lattices, e.g.,

1

a

b

c = a2 d

ab

R6,2
1,11

1

a

b c

d = a2 = c2

ab = bc

R6,3
1,9

Notation from list of finite residuated lattices of size up to 6 by N. Galatos and P. Jipsen
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Semi-primal lattices: Examples (3)

• De Morgan monoids (with unit e) / Relevant algebras (without e)

0

e

a

1 = a2

C01
4

0

1 = a2

e a

D01
4

Moraschini, Raftery, Wannenburg 2019 [15]
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Category-theoretical characterization

Theorem

Let D be a bounded lattice-based algebra and A = HSP(D). Then D is
semi-primal if and only if there exists a topological adjunction
PD ⊢ S ⊢ P⟨0,1⟩.

PD,P⟨0,1⟩ : BA→ A are Boolean power functors.

S : A → BA is the Boolean skeleton functor.

BA

A

SPD P⟨0,1⟩⊢ ⊢

Kurz, P., Teheux 2024 [12]
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Algebras and Coalgebras

Let C be a category and let F: C→ C be an endofunctor.

α : F(A)→ A γ : X → F(X )

F-algebra F-coalgebra

Morphisms:

F(A1) A1 X1 F(X1)

F(A2) A2 X2 F(X2)

α1

Fh h

γ1

f Ff

α2 γ2

Gives rise to categories Alg(F) and Coalg(F).
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Kripke frames as coalgebras

We consider coalgebras for the covariant powerset functor P : Set→ Set.

A P-coalgebra is a map γ : X → P(X ). This can be identified with a
relational structure (X ,Rγ), where

x1Rγx2 ⇔ x2 ∈ γ(x1).

Morphism:

X P(X ) γ2(f (x1)) = f [γ1(x1)]

Y P(Y )

γ1

f Pf

γ2

’⊇’: If x1Rγ1x2 then f (x1)Rγ2f (x2).

’⊆’: If f (x1)Rγ2y then ∃x2 : x1Rγ1x2 and f (x2) = y .

Therefore Coalg(P) ∼= Krip.
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Jónsson-Tarski duality, coalgebraically

Stone BA
Π

Σ

Start with Stone duality Π: Stone→ BA (takes clopens) and
Σ: BA→ Stone (takes ultrafilters).

Kupke, Kurz, Venema 2003 [10]
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Jónsson-Tarski duality, coalgebraically

Stone BA δ : OΠ⇒ ΠV
Π

Σ
V O

Start with Stone duality Π: Stone→ BA (takes clopens) and
Σ: BA→ Stone (takes ultrafilters).

The category of descriptive general frames is isomorphic to the category of
coalgebras for the Vietoris functor V : Stone→ Stone.

The category of modal algebras is isomorphic to the category of algebras
for the functor O : BA→ BA which has a presentation by a unary
operation □ with equations □(x ∧ y) = □x ∧□y and □1 = 1.

Jónsson-Tarski duality: There is a natural isomorphism OΠ ∼= ΠV.

Kupke, Kurz, Venema 2003 [10]
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Classical modal logic, coalgebraically

Set BA
P

S
P O

Begin with dual adjunction P: Set→ BA (takes powerset) and
S: BA→ Set (takes ultrafilters).

Kupke, Kurz, Pattinson 2004 [9]
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S
P O
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S: BA→ Set (takes ultrafilters).

The category of Kripke frames is isomorphic to the category of coalgebras
for the (covariant) powerset functor P : Set→ Set.

The category of modal algebras is isomorphic to the category of algebras
for the functor O : BA→ BA as before.

Sending a Kripke frame to its complex algebra can be realized by a natural
transformation OP⇒ PP.

Kupke, Kurz, Pattinson 2004 [9]
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Abstract and concrete coalgebraic logics

X A
P

S
T L

Definition

Let X be a concrete category, let A be a variety of algebras, let P and S
establish a dual adjunction and let T: X→ X be an endofunctor.

18 / 36



Abstract and concrete coalgebraic logics

X A δ : LP⇒ PT
P

S
T L

Definition

Let X be a concrete category, let A be a variety of algebras, let P and S
establish a dual adjunction and let T: X→ X be an endofunctor.

1 An abstract coalgebraic logic for T is a pair (L, δ) consisting of an
endofunctor L: A→ A and a natural transformation δ : LP⇒ PT.

2 A concrete coalgebraic logic for T is a triple (L, δ,E ) consisting of an
abstract coalgebraic logic (L, δ) and a presentation E of L by
operations and equations.
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One-step completeness and expressivity

Definition

An abstract coalgebraic logic (L, δ) for T is one-step complete if δ is a
monomorphism, i.e., every component of δ is injective.

For example, the abstract coalgebraic logic (O, δ) for P is one-step
complete.

Definition

An abstract coalgebraic logic (L, δ) for T is expressive if the
adjoint-transpose δ† is a component-wise monomorphism.

For example, the abstract coalgebraic logic (O, δ) for Pfin is expressive.
This is also known as the Hennessy-Milner property.
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Semi-primal duality

Let D be semi-primal bounded lattice-expansion, A := HSP(D) = ISP(D).

There is a dual equivalence

StoneD A
Π′

Σ′

Definition

The category StoneD has objects (X , v) where X ∈ Stone and
v : X → S(D) is continuous w.r.t. the upset topology on S(D).
A morphism f : (X , v)→ (Y ,w) is a continuous map X → Y with
w(f (x)) ≤ v(x) for all x ∈ X .

Keimel, Werner 1974 [8] ; Clark, Davey 1998 [3]
20 / 36



Semi-primal duality

Let D be semi-primal bounded lattice-expansion, A := HSP(D) = ISP(D).

There is a dual equivalence

StoneD A
Π′

Σ′

Definition

The category StoneD has objects (X , v) where X ∈ Stone and
v : X → S(D) is continuous w.r.t. the upset topology on S(D).
A morphism f : (X , v)→ (Y ,w) is a continuous map X → Y with
w(f (x)) ≤ v(x) for all x ∈ X .

Keimel, Werner 1974 [8] ; Clark, Davey 1998 [3]
20 / 36



The subalgebra adjunctions

For every S ∈ S(D) there is an adjunction VS ⊣ CS.
VS sends X to (X , v S) where v S is constant S.
CS sends (X , v) to the closed subspace {x ∈ X | v(x) ≤ S}.
PS, the dual of VS, takes a Boolean power.
KS, the dual of CS, takes the Boolean skeleton of a quotient.

Stone BA

StoneD A

Π

Σ

Π′

Σ′

VS CS PS KS

T

T′

L

L′
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The subalgebra adjunctions

Any (X , v) ∈ StoneD can be recovered from all VSCS(X , v) via the coend

(X , v) ∼=
∫ S∈S(D)

VSCS(X , v).
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The subalgebra adjunctions

Any A ∈ A can be recovered from all PSKS(A) via the end

A ∼=
∫

S∈S(D)
PSKS(A).

Stone BA

StoneD A

⊣ ⊢

Π

Σ

Π′

Σ′

VS CS PS KS

T

T′

L

L′
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Lifting algebra-coalgebra dualities

Suppose T and L are duals of each other. Define

T′(X , v) =

∫ S

VSTCS(X , v) and L′(A) =

∫
S
PSLKS(A).

Then T′ and L′ are duals of each other as well.

Stone BA

StoneD A

⊣ ⊢

Π

Σ

Π′

Σ′

VS CS PS KS

T

T′

L

L′
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Lifting algebra-coalgebra dualities

For example, this can be used to obtain Maruyama’s [14]
‘semi-primal version’ of Jónsson-Tarski duality from the ‘original’
Jónsson-Tarski duality.

Stone BA

StoneD A

⊣ ⊢

Π

Σ

Π′

Σ′

VS CS PS KS

V

V ′

O

O′
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Lifting algebra-coalgebra dualities

It can also be used to obtain a ‘semi-primal version’ of Došen duality from
the original one as algebra/coalgebra duality described by Bezhanishvilis,
de Groot [2]

Stone BA

StoneD A

⊣ ⊢

Π

Σ

Π′

Σ′

VS CS PS KS

N

N ′

E

E ′
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Forgetting topology

Definition

The category StoneD has objects (X , v) where X ∈ Stone and
v : X → S(D) is continuous w.r.t. the upset topology on S(D).
A morphism f : (X , v)→ (Y ,w) is a continuous map X → Y with
w(f (x)) ≤ v(x) for all x ∈ X .
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Forgetting topology

Definition

The category SetD has objects (X , v) where X ∈ Set and
v : X → S(D) is continuous w.r.t. the upset topology on S(D).
A morphism f : (X , v)→ (Y ,w) is a continuous map X → Y with
w(f (x)) ≤ v(x) for all x ∈ X .
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Lifting abstract coalgebraic logics

Start with an abstract coalgebraic logic (L, δ) for T.
Similarly to before, we can lift T and L to T′ and L′.
Furthermore, we can define an appropriate δ′ from δ.
Thus we obtain a many-valued abstract coalgebraic logic (L′, δ′) for T′.

Set BA

SetD A

⊣ ⊢

δ : LP⇒ PT
P

S

P′

S′

VS CS PS KS

T

T′

L

L′
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How to obtain δ′ from δ

L′P′(X , v) =
∫
S(D)

PSLKSP′(X , v)

P′T′(X , v) =
∫
S(D)

P′VSTCS(X , v)

PSLKSP′(X , v)

P′VSTCS(X , v)

limit

limit

wedge
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One-step completeness and expressivity

Theorem

Let (L′, δ′) be the lifting of (L, δ) as on the previous slides.

1 If (L, δ) is one-step complete, then (L′, δ′) is one-step complete.

2 If (L, δ) is expressive, then (L′, δ′) is expressive.

3 If L has a presentation by operations and equations, then L′ has one.

Corollary

If (L, δ) is one-step complete/expressive, then so is (L′, δ⊤).

Set SetD A δ⊤ = δ′V⊤
VD

CD

P′

S′
T L′
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Lifting concrete coalgebraic logics (1)

τd(x) =

{
1 if x ≥ d

0 if x ̸≥ d .

Theorem

Let L: BA→ BA have a presentation by one unary operation □ and
equations which all hold in D if □ is replaced by any τd , including the
equation □(x ∧ y) = □x ∧□y .
Then L′ has a presentation by one unary operation □′ and the following
equations.

□′ satisfies all equations which the original □ satisfies,

□′τd(x) = τd(□′x) for all d ∈ D\{0}.
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Lifting concrete coalgebraic logics (2)

τ∂d (x) =

{
0 if x ≤ d

1 if x ̸≤ d .

Theorem

Let L: BA→ BA have a presentation by one unary operation ♢ and
equations which all hold in D if ♢ is replaced by any τ∂d , including the
equation ♢(x ∨ y) = ♢x ∨ ♢y .
Then L′ has a presentation by one unary operation ♢′ and the following
equations.

♢′ satisfies all equations which the original ♢ satisfies,

♢′τ∂d (x) = τ∂d (♢′x) for all d ∈ D\{1}.
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Many-valued modal logic as lifting of classical modal logic

The functor O has a presentation by □(x ∧ y) = □x ∧□y and □1 = 1.

Therefore, the functor O′ has a presentation by

□′(x∧y) = □′x∧□′y , □′1 = 1 and □′τd(x) = τd(□′x) for all d ∈ D\{0}.

(O, δ) is (one-step) complete ⇒ (O′, δ′) is (one-step) complete.

Replacing P by Pfin: (O, δ) is expressive ⇒ (O′, δ′) is expressive.

Set BA

SetD A

P

S

P′

S′

P

P ′

O

O′

29 / 36



Many-valued modal logic as lifting of classical modal logic

The functor O has a presentation by □(x ∧ y) = □x ∧□y and □1 = 1.

Therefore, the functor O′ has a presentation by

□′(x∧y) = □′x∧□′y , □′1 = 1 and □′τd(x) = τd(□′x) for all d ∈ D\{0}.

(O, δ) is (one-step) complete ⇒ (O′, δ′) is (one-step) complete.

Replacing P by Pfin: (O, δ) is expressive ⇒ (O′, δ′) is expressive.

Set BA

SetD A

P

S

P′

S′

P

P ′

O

O′

29 / 36



Many-valued modal logic as lifting of classical modal logic

The functor O has a presentation by □(x ∧ y) = □x ∧□y and □1 = 1.

Therefore, the functor O′ has a presentation by

□′(x∧y) = □′x∧□′y , □′1 = 1 and □′τd(x) = τd(□′x) for all d ∈ D\{0}.

(O, δ) is (one-step) complete ⇒ (O′, δ′) is (one-step) complete.

Replacing P by Pfin: (O, δ) is expressive ⇒ (O′, δ′) is expressive.

Set BA

SetD A

P

S

P′

S′

P

P ′

O

O′

29 / 36



Many-valued modal logic as lifting of classical modal logic

The functor O has a presentation by □(x ∧ y) = □x ∧□y and □1 = 1.

Therefore, the functor O′ has a presentation by

□′(x∧y) = □′x∧□′y , □′1 = 1 and □′τd(x) = τd(□′x) for all d ∈ D\{0}.

(O, δ) is (one-step) complete ⇒ (O′, δ′) is (one-step) complete.

Replacing P by Pfin: (O, δ) is expressive ⇒ (O′, δ′) is expressive.

Set BA

SetD A

P

S

P′

S′

P

P ′

O

O′

29 / 36



Lifted semantics

Definition

A SetD-(Kripke-)frame is a structure (W , v ,R) with v : X → S(D) and
binary relation R ⊆W 2 satisfying

wRw ′ ⇒ v(w ′) ⊆ v(w)

for all w ,w ′ ∈W .

A SetD-model adds a valuation Val : W × Prop→ D which satisfies

Val(w , p) ∈ v(w)

for all w ∈W .

For example, if D =  L2 is the three-element MV-chain, the formula

♢(p ∨ ¬p).

is satisfied in a SetD-frame if and only if ∀w∃w ′ : wRw ′ ∧ v(w ′) = 2, while
it is not satisfied in any frame.
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Alternative axiomatizations: Some case studies (1)

If D =  Ln is a finite MV-chain, then O′ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) □(x ⊕ x) = □x ⊕□x ,

(B4) □(x ⊙ x) = □x ⊙□x .

If D is a finite bounded residuated lattice with τe (monoid unit e) and
truth-constants, then O′ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) τe(□x) = □τe(x),

(B4) □(r\x) = r\□x for all r ̸= 0.

In particular, if D is a finite FLew-algebra with truth-constants where only
0, 1 are idempotent, then O′ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) □(x ⊙ x) = □x ⊙□x ,

(B4) □(r→x) = r→□x all r ̸= 0.
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truth-constants, then O′ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) τe(□x) = □τe(x),

(B4) □(r\x) = r\□x for all r ̸= 0.

In particular, if D is a finite FLew-algebra with truth-constants where only
0, 1 are idempotent, then O′ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) □(x ⊙ x) = □x ⊙□x ,

(B4) □(r→x) = r→□x all r ̸= 0.

31 / 36



Alternative axiomatizations: Some case studies (1)

If D =  Ln is a finite MV-chain, then O′ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) □(x ⊕ x) = □x ⊕□x ,

(B4) □(x ⊙ x) = □x ⊙□x .

If D is a finite bounded residuated lattice with τe (monoid unit e) and
truth-constants, then O′ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) τe(□x) = □τe(x),

(B4) □(r\x) = r\□x for all r ̸= 0.

In particular, if D is a finite FLew-algebra with truth-constants where only
0, 1 are idempotent, then O′ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) □(x ⊙ x) = □x ⊙□x ,

(B4) □(r→x) = r→□x all r ̸= 0.

31 / 36



Alternative axiomatizations: Some case studies (2)

If D is a finite bi-Heyting algebra with truth-constants and with a unique
atom and coatom, then O′ has a presentation by

(B1) □1 = 1,

(B2) □(x ∧ y) = □x ∧□y ,

(B3) □
(
¬(1←x)

)
= ¬(1←□x),

(B4) □(b→x) = b→□x all b ̸= 0,

(P1) □(x ∨ y) ≤ □x ∨ ♢y ,

(D1) ♢0 = 0,

(D2) ♢(x ∨ y) = ♢x ∨ ♢y ,

(D3) ♢
(
1←(¬x)

)
= 1←(¬♢x),

(D4) ♢(x ← b) = ♢x ← b all b ̸= 1,

(P2) □x ∧ ♢y ≤ ♢(x ∧ y).

32 / 36



Many-valued modal logic for crisp neighborhoods

The neighborhood functor N is the contravariant powerset functor
composed with itself. The functor E has a presentation by one unary
operation □ and no equations.

(E , δ) is (one-step) complete ⇒ (E ′, δ′) is (one-step) complete.

Replacing N by Nfin: (E , δ) is expressive ⇒ (E ′, δ′) is expressive.

We don’t know a concrete presentation for E ′, unless D is primal [11]

Set BA

SetD A

P

S

P′

S′

N

N ′

E

E ′
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Conclusion

Semi-primal lattice expansions are ‘well-behaved’ algebras of
truth-degrees D for many-valued coalgebraic logics.

‘Semi-primal versions’ of algebra/coalgebra dualities like
Jónsson-Tarski or Došen duality can be obtained from their classical
counterparts.

Similarly, ‘semi-primal versions’ of coalgebraic logics can be obtained
from their classical counterparts.

One-step completeness, expressivity and finite axiomatizability are
preserved under this process.

Sometimes, one may obtain axiomatizations of the lifted many-valued
logic directly from an axiomatization of the original classical one. In
particular, this works for classical modal logic.
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Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

Quasi-primal = Finite discriminator algebras

Lattice-(semi-)primal algebras

Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

Many-valued modal logic with many-valued accessibility relation

Positive Modal Logic

Probabilistic Logic

Dynamic Logic
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The end

Thanks for your attention!

Preprint:
Kurz, A., Poiger, W., and Teheux, B.: Many-valued coalgebraic logic over semi-primal
varieties
https://arxiv.org/abs/2308.14581
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