Algebraic and coalgebraic analysis of some many-valued modal logics

Wolfgang Poiger

University of Luxembourg

Joint work with Alexander Kurz and Bruno Teheux

LLAMA Seminar, Amsterdam
March 2024

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of truth-degrees with bounded lattice reduct.

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of truth-degrees with bounded lattice reduct.
- Modal formulas $\varphi \in$ Form are constructed from propositional variables $p \in$ Prop, the connectives of \mathbf{D} and modal operators \square, \diamond.

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of truth-degrees with bounded lattice reduct.
- Modal formulas $\varphi \in$ Form are constructed from propositional variables $p \in$ Prop, the connectives of \mathbf{D} and modal operators \square, \diamond.
- Relational models are $\mathfrak{M}=(W, R$, Val $)$ with Val : $W \times$ Prop $\rightarrow \mathbf{D}$.

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of truth-degrees with bounded lattice reduct.
- Modal formulas $\varphi \in$ Form are constructed from propositional variables $p \in$ Prop, the connectives of \mathbf{D} and modal operators \square, \diamond.
- Relational models are $\mathfrak{M}=(W, R$, Val $)$ with Val : $W \times$ Prop $\rightarrow \mathbf{D}$.
- Val is inductively extended to all formulas via the rules

$$
\begin{aligned}
& \operatorname{Val}(w, \square \psi)=\bigwedge\left\{\operatorname{Val}\left(w^{\prime}, \psi\right) \mid w R w^{\prime}\right\} \\
& \operatorname{Val}(w, \diamond \psi)=\bigvee\left\{\operatorname{Val}\left(w^{\prime}, \psi\right) \mid w R w^{\prime}\right\} .
\end{aligned}
$$

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of truth-degrees with bounded lattice reduct.
- Modal formulas $\varphi \in$ Form are constructed from propositional variables $p \in$ Prop, the connectives of \mathbf{D} and modal operators \square, \diamond.
- Relational models are $\mathfrak{M}=(W, R$, Val $)$ with Val : $W \times$ Prop $\rightarrow \mathbf{D}$.
- Val is inductively extended to all formulas via the rules

$$
\begin{aligned}
& \operatorname{Val}(w, \square \psi)=\bigwedge\left\{\operatorname{Val}\left(w^{\prime}, \psi\right) \mid w R w^{\prime}\right\} \\
& \operatorname{Val}(w, \diamond \psi)=\bigvee\left\{\operatorname{Val}\left(w^{\prime}, \psi\right) \mid w R w^{\prime}\right\}
\end{aligned}
$$

- We define $\mathfrak{M}, w \Vdash \varphi$ iff $\operatorname{Val}(w, \varphi)=1$.

Many-valued modal logic

- Let \mathbf{D} be a finite algebra of truth-degrees with bounded lattice reduct.
- Modal formulas $\varphi \in$ Form are constructed from propositional variables $p \in$ Prop, the connectives of \mathbf{D} and modal operators \square, \diamond.
- Relational models are $\mathfrak{M}=(W, R$, Val $)$ with Val : $W \times$ Prop $\rightarrow \mathbf{D}$.
- Val is inductively extended to all formulas via the rules

$$
\begin{aligned}
& \operatorname{Val}(w, \square \psi)=\bigwedge\left\{\operatorname{Val}\left(w^{\prime}, \psi\right) \mid w R w^{\prime}\right\} \\
& \operatorname{Val}(w, \diamond \psi)=\bigvee\left\{\operatorname{Val}\left(w^{\prime}, \psi\right) \mid w R w^{\prime}\right\}
\end{aligned}
$$

- We define $\mathfrak{M}, w \Vdash \varphi$ iff $\operatorname{Val}(w, \varphi)=1$.
- Recover classical modal logic if $\mathbf{D}=\mathbf{2} \in B A$.

Examples from many-valued modal logic (1)

Let \mathbf{D} be the $(n+1)$-element finite MV-chain

$$
\mathbf{t}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \odot, \oplus, \wedge, \vee, \neg, 0,1\right\rangle .
$$

Hansoul, Teheux 2013 [7] ; Bou, Esteva, Godo, Rodríguez 2011 [1]

Examples from many-valued modal logic (1)

Let \mathbf{D} be the $(n+1)$-element finite MV-chain

$$
\mathbf{t}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \odot, \oplus, \wedge, \vee, \neg, 0,1\right\rangle .
$$

For every $d \in Ł_{n}$, the unary operation $\tau_{d}: Ł_{n} \rightarrow Ł_{n}$ is term-definable in $\mathbf{Ł}_{n}$:

$$
\tau_{d}(x)= \begin{cases}1 & \text { if } x \geq d \\ 0 & \text { if } x \not 又 d .\end{cases}
$$

Examples from many-valued modal logic (1)

Let \mathbf{D} be the $(n+1)$-element finite MV-chain

$$
\mathbf{t}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \odot, \oplus, \wedge, \vee, \neg, 0,1\right\rangle
$$

For every $d \in Ł_{n}$, the unary operation $\tau_{d}: Ł_{n} \rightarrow Ł_{n}$ is term-definable in $\mathbf{Ł}_{n}$:

$$
\tau_{d}(x)= \begin{cases}1 & \text { if } x \geq d \\ 0 & \text { if } x \not 又 d .\end{cases}
$$

The algebraic counterpart of the corresponding modal logic:

Definition

A modal $M V_{n}$-algebra is an algebra (\mathbf{A}, \square) with $\mathbf{A} \in M V_{n}=\mathbb{H} \mathbb{S P}\left(\mathbf{t}_{n}\right)$,

- $\square(x \wedge y)=\square x \wedge \square y$ and $\square 1=1$,
- $\square \tau_{d}(x)=\tau_{d}(\square x)$ for all $d \in Ł_{n} \backslash\{0\}$.

Hansoul, Teheux 2013 [7] ; Bou, Esteva, Godo, Rodríguez 2011 [1]

Examples from many-valued modal logic (2)

$$
\mathbf{H}=\left\langle H, \wedge, \vee, \rightarrow 0,1,\left(T_{d} \mid d \in H\right)\right\rangle,
$$

where $\langle H, \wedge, \vee, \rightarrow, 0,1\rangle$ is a finite Heyting algebra expanded by unary

$$
T_{d}(x)= \begin{cases}1 & \text { if } x=d \\ 0 & \text { if } x \neq d\end{cases}
$$

Note that $\tau_{d}(x)=\bigvee\left\{T_{c}(x) \mid c \geq d\right\}$ are again term-definable in \mathbf{H}.

Examples from many-valued modal logic (2)

$$
\mathbf{H}=\left\langle H, \wedge, \vee, \rightarrow 0,1,\left(T_{d} \mid d \in H\right)\right\rangle,
$$

where $\langle H, \wedge, \vee, \rightarrow, 0,1\rangle$ is a finite Heyting algebra expanded by unary

$$
T_{d}(x)= \begin{cases}1 & \text { if } x=d \\ 0 & \text { if } x \neq d\end{cases}
$$

Note that $\tau_{d}(x)=\bigvee\left\{T_{c}(x) \mid c \geq d\right\}$ are again term-definable in \mathbf{H}.
The algebraic counterpart of the corresponding modal logic:

Definition

A modal \mathbf{H}-algebra is an algebra (\mathbf{A}, \square) with $\mathbf{A} \in \mathbb{H} \mathbb{S P}(\mathbf{H})$,

- $\square(x \wedge y)=\square x \wedge \square y$ and $\square 1=1$,
- $\square \tau_{d}(x)=\tau_{d}(\square x)$ for all $d \in H \backslash\{0\}$.

Maruyama 2009 [13]

Examples from many-valued modal logic (3)

Let \mathbf{D} be given by the ($n+1$)-element Łukasiewicz-Moisil chain

$$
\mathbf{M}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \wedge, \vee, \neg, 0,1,\left(\tau_{d} \mid d \in M_{n}\right)\right\rangle .
$$

where \neg is the $M V$-negation and $\tau_{d}=\chi_{\{x \geq d\}}$ similar to before.

Examples from many-valued modal logic (3)

Let \mathbf{D} be given by the ($n+1$)-element Łukasiewicz-Moisil chain

$$
\mathbf{M}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \wedge, \vee, \neg, 0,1,\left(\tau_{d} \mid d \in M_{n}\right)\right\rangle
$$

where \neg is the $M V$-negation and $\tau_{d}=\chi_{\{x \geq d\}}$ similar to before.
The algebraic counterpart of the corresponding tense logic:

Definition

A tense $Ł M_{n}$-algebra is an algebra (\mathbf{A}, G, H) with $\mathbf{A} \in Ł \mathrm{M}_{n}=\mathbb{H S P}\left(\mathbf{M}_{n}\right)$,

- $G(x \wedge y)=G x \wedge G y$ and $G 1=1$,
- $H(x \wedge y)=H x \wedge H y$ and $H 1=1$,
- $x \leq G P x$ and $x \leq H F x$,
- $G \tau_{d}(x)=\tau_{d}(G x)$ for all $d \in M_{n} \backslash\{0\}$,
- $H \tau_{d}(x)=\tau_{d}(H x)$ for all $d \in M_{n} \backslash\{0\}$.

Diaconescu, Georgescu 2007 [5]

Motivating questions

Question: What do these algebras of truth-degrees have in common?

Motivating questions

Question: What do these algebras of truth-degrees have in common?

Question: Is there a general framework to systematically study the relationship between these many-valued modal logics and classical modal logic?

Motivating questions

Question: What do these algebras of truth-degrees have in common?
Answer: They are all semi-primal.
Question: Is there a general framework to systematically study the relationship between these many-valued modal logics and classical modal logic?

Motivating questions

Question: What do these algebras of truth-degrees have in common?
Answer: They are all semi-primal.
Question: Is there a general framework to systematically study the relationship between these many-valued modal logics and classical modal logic?
Answer: Such a framework is provided by coalgebraic logic.

Semi-primal algebras

Definition

An algebra \mathbf{D} is primal if every operation $f: D^{k} \rightarrow D$ with $k \geq 1$ is term-definable in \mathbf{D}.

Semi-primal algebras

Definition

An algebra \mathbf{D} is semi-primal if every operation $f: D^{k} \rightarrow D$ with $k \geq 1$ which preserves subalgebras is term-definable in \mathbf{D}.

Foster, Pixley 1964 [6] ; Pixley 1971 [16]

Semi-primal algebras

Definition

An algebra \mathbf{D} is semi-primal if every operation $f: D^{k} \rightarrow D$ with $k \geq 1$ which preserves subalgebras is term-definable in \mathbf{D}.

Theorem

For a finite algebra D, t.f.a.e.:
(1) \mathbf{D} is semi-primal.
(2) The variety $\mathbb{H} \operatorname{SP}(\mathbf{D})$ is arithmetical (i.e., congruence-distributive and -permutable) and all subalgebras of \mathbf{D} are simple and rigid.

Foster, Pixley 1964 [6] ; Pixley 1971 [16]

Semi-primal algebras

Definition

An algebra \mathbf{D} is semi-primal if every operation $f: D^{k} \rightarrow D$ with $k \geq 1$ which preserves subalgebras is term-definable in \mathbf{D}.

Theorem

For a finite algebra D, t.f.a.e.:
(1) \mathbf{D} is semi-primal.
(2) The variety $\mathbb{H} \mathbb{S P}(\mathbf{D})$ is arithmetical (i.e., congruence-distributive and -permutable) and all subalgebras of \mathbf{D} are simple and rigid.
(3) The ternary discriminator is term-definable in \mathbf{D} and all subalgebras of \mathbf{D} are rigid.

Foster, Pixley 1964 [6] ; Pixley 1971 [16]

Semi-primal lattice-expansions

Proposition

For a finite algebra \mathbf{D} with bounded lattice reduct, t.f.a.e.:
(1) \mathbf{D} is semi-primal.
(2) For every $d \in D$, the unary operation $\tau_{d}=\chi_{\{x \geq d\}}$ is term-definable and the unary operation $T_{0}=\chi_{\{0\}}$ is term-definable.

Semi-primal lattice-expansions

Proposition

For a finite algebra \mathbf{D} with bounded lattice reduct, t.f.a.e.:
(1) \mathbf{D} is semi-primal.
(2) For every $d \in D$, the unary operation $\tau_{d}=\chi_{\{x \geq d\}}$ is term-definable and the unary operation $T_{0}=\chi_{\{0\}}$ is term-definable.
For a finite algebra \mathbf{D} with bounded residuated lattice reduct, t.f.a.e.:
(1) \mathbf{D} is semi-primal.
(2) For every $d \in D$, the unary operation $\tau_{d}=\chi_{\{x \geq d\}}$ is term-definable.

Semi-primal lattice-expansions

Proposition

For a finite algebra \mathbf{D} with bounded lattice reduct, t.f.a.e.:
(1) D is semi-primal.
(2) For every $d \in D$, the unary operation $\tau_{d}=\chi_{\{x \geq d\}}$ is term-definable and the unary operation $T_{0}=\chi_{\{0\}}$ is term-definable.
For a finite algebra \mathbf{D} with bounded residuated lattice reduct, t.f.a.e.:
(1) \mathbf{D} is semi-primal.
(2) For every $d \in D$, the unary operation $\tau_{d}=\chi_{\{x \geq d\}}$ is term-definable.

For the second part, note that we can define $T_{0}(x)=\tau_{e}(x \backslash 0)$ where e is the monoid unit of \mathbf{D}.

Semi-primal chains: Examples

- The Post chains $\mathbf{P}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \wedge, \vee,^{\prime}, 0,1\right\rangle$.
\mathbf{P}_{4} :
$0 \cdots \frac{1}{4}-\frac{2}{4} \frac{3}{4} \frac{1}{\lessdot \ldots} 1$

Semi-primal chains: Examples

- The Post chains $\mathbf{P}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \wedge, \vee,^{\prime}, 0,1\right\rangle$.

$$
\mathbf{P}_{4}: \quad 0<\frac{1}{4}<\ldots \frac{2}{4} \frac{3}{4} \frac{3}{\Gamma \ldots} 1
$$

- The finite MV-chains

$$
\mathbf{t}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \odot, \oplus, \wedge, \vee, \neg, 0,1\right\rangle
$$

Semi-primal chains: Examples

- The Post chains $\mathbf{P}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \wedge, \vee,^{\prime}, 0,1\right\rangle$.

$$
\mathbf{P}_{4}: \quad 0 \frac{1}{\Gamma} \frac{1}{4} \ldots \frac{2}{4} \rightleftharpoons \frac{3}{4} \frac{1}{\Gamma \ldots} 1
$$

- The finite MV-chains

$$
\mathbf{t}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \odot, \oplus, \wedge, \vee, \neg, 0,1\right\rangle
$$

- The finite Łukasiewicz-Moisil chains

$$
\mathbf{M}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \wedge, \vee, \neg, 0,1,\left(\tau_{d} \mid d \in M_{n}\right)\right\rangle
$$

Semi-primal chains: Examples

- The Post chains $\mathbf{P}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \wedge, \vee,^{\prime}, 0,1\right\rangle$.

$$
\mathbf{P}_{4}: \quad 0 \div \frac{1}{4}=\frac{2}{4}-\frac{3}{4} \frac{1}{\zeta} 1
$$

- The finite MV-chains

$$
\mathbf{t}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \odot, \oplus, \wedge, \vee, \neg, 0,1\right\rangle
$$

- The finite Łukasiewicz-Moisil chains

$$
\mathbf{M}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \wedge, \vee, \neg, 0,1,\left(\tau_{d} \mid d \in M_{n}\right)\right\rangle
$$

- The finite Cornish chains $\mathbf{C}_{n}=\left\langle\left\{0, \frac{1}{n}, \ldots, \frac{n-1}{n}, 1\right\}, \wedge, \vee, \neg, f, 0,1\right\rangle .{ }^{1}$
$\mathrm{C}_{4}: \quad 0-\frac{1}{4}-\frac{2}{4}-\frac{3}{4}-1$

Semi-primal lattices: Examples (1)

$$
\mathbf{F O U R}=\langle\{\mathrm{t}, \mathrm{f}, \top, \perp\}, \wedge, \vee, \otimes, \oplus, \neg, \supset, \mathrm{t}, \mathrm{f}\rangle
$$

Figure: The truth-order \leq_{t} and the knowledge-order \leq_{k}.
U. Rivieccio's PhD thesis

Semi-primal lattices: Examples (2)

- Residuated lattices, e.g.,

Notation from list of finite residuated lattices of size up to 6 by N. Galatos and P. Jipsen

Semi-primal lattices: Examples (3)

- De Morgan monoids (with unit e) / Relevant algebras (without e)

Category-theoretical characterization

Theorem

Let \mathbf{D} be a bounded lattice-based algebra and $\mathcal{A}=\mathbb{H} \mathbb{S P}(\mathbf{D})$. Then \mathbf{D} is semi-primal if and only if there exists a topological adjunction $\mathfrak{P}_{\mathbf{D}} \vdash \mathfrak{S} \vdash \mathfrak{P}_{\langle 0,1\rangle}$.
$\mathfrak{P}_{\mathbf{D}}, \mathfrak{P}_{\langle 0,1\rangle}: \mathrm{BA} \rightarrow \mathcal{A}$ are Boolean power functors.
$\mathfrak{S}: \mathcal{A} \rightarrow \mathrm{BA}$ is the Boolean skeleton functor.

Kurz, P., Teheux 2024 [12]

Algebras and Coalgebras

Let C be a category and let $F: C \rightarrow C$ be an endofunctor.

$$
\begin{array}{cc}
\alpha: \mathrm{F}(A) \rightarrow A & \gamma: X \rightarrow \mathrm{~F}(X) \\
\text { F-algebra } & \text { F-coalgebra }
\end{array}
$$

Algebras and Coalgebras

Let C be a category and let $F: C \rightarrow C$ be an endofunctor.

$$
\begin{array}{cc}
\alpha: \mathrm{F}(A) \rightarrow A & \gamma: X \rightarrow \mathrm{~F}(X) \\
\text { F-algebra } & \text { F-coalgebra }
\end{array}
$$

Morphisms:

Gives rise to categories $\operatorname{Alg}(F)$ and Coalg (F).

Kripke frames as coalgebras

We consider coalgebras for the covariant powerset functor \mathcal{P} : Set \rightarrow Set.

Kripke frames as coalgebras

We consider coalgebras for the covariant powerset functor \mathcal{P} : Set \rightarrow Set. A \mathcal{P}-coalgebra is a map $\gamma: X \rightarrow \mathcal{P}(X)$. This can be identified with a relational structure $\left(X, R_{\gamma}\right)$, where

$$
x_{1} R_{\gamma} x_{2} \Leftrightarrow x_{2} \in \gamma\left(x_{1}\right) .
$$

Kripke frames as coalgebras

We consider coalgebras for the covariant powerset functor \mathcal{P} : Set \rightarrow Set. A \mathcal{P}-coalgebra is a map $\gamma: X \rightarrow \mathcal{P}(X)$. This can be identified with a relational structure $\left(X, R_{\gamma}\right)$, where

$$
x_{1} R_{\gamma} x_{2} \Leftrightarrow x_{2} \in \gamma\left(x_{1}\right) .
$$

Morphism:

$$
\begin{aligned}
& X \xrightarrow{\gamma_{1}} \mathcal{P}(X) \\
& \gamma_{2}\left(f\left(x_{1}\right)\right)=f\left[\gamma_{1}\left(x_{1}\right)\right]
\end{aligned}
$$

Kripke frames as coalgebras

We consider coalgebras for the covariant powerset functor \mathcal{P} : Set \rightarrow Set. A \mathcal{P}-coalgebra is a map $\gamma: X \rightarrow \mathcal{P}(X)$. This can be identified with a relational structure $\left(X, R_{\gamma}\right)$, where

$$
x_{1} R_{\gamma} x_{2} \Leftrightarrow x_{2} \in \gamma\left(x_{1}\right)
$$

Morphism:

$$
\begin{aligned}
& X \xrightarrow{\gamma_{1}} \mathcal{P}(X) \quad \gamma_{2}\left(f\left(x_{1}\right)\right)=f\left[\gamma_{1}\left(x_{1}\right)\right]
\end{aligned}
$$

' ${ }^{\prime}$ ': If $x_{1} R_{\gamma_{1}} x_{2}$ then $f\left(x_{1}\right) R_{\gamma_{2}} f\left(x_{2}\right)$.

Kripke frames as coalgebras

We consider coalgebras for the covariant powerset functor \mathcal{P} : Set \rightarrow Set. A \mathcal{P}-coalgebra is a map $\gamma: X \rightarrow \mathcal{P}(X)$. This can be identified with a relational structure $\left(X, R_{\gamma}\right)$, where

$$
x_{1} R_{\gamma} x_{2} \Leftrightarrow x_{2} \in \gamma\left(x_{1}\right)
$$

Morphism:

$$
\begin{aligned}
& X \xrightarrow{\gamma_{1}} \mathcal{P}(X) \quad \gamma_{2}\left(f\left(x_{1}\right)\right)=f\left[\gamma_{1}\left(x_{1}\right)\right]
\end{aligned}
$$

' ${ }^{\prime}$ ': If $x_{1} R_{\gamma_{1}} x_{2}$ then $f\left(x_{1}\right) R_{\gamma_{2}} f\left(x_{2}\right)$.
' \subseteq ': If $f\left(x_{1}\right) R_{\gamma_{2}} y$ then $\exists x_{2}: x_{1} R_{\gamma_{1}} x_{2}$ and $f\left(x_{2}\right)=y$.

Kripke frames as coalgebras

We consider coalgebras for the covariant powerset functor \mathcal{P} : Set \rightarrow Set. A \mathcal{P}-coalgebra is a map $\gamma: X \rightarrow \mathcal{P}(X)$. This can be identified with a relational structure $\left(X, R_{\gamma}\right)$, where

$$
x_{1} R_{\gamma} x_{2} \Leftrightarrow x_{2} \in \gamma\left(x_{1}\right)
$$

Morphism:

$$
\begin{aligned}
& X \xrightarrow{\gamma_{1}} \mathcal{P}(X) \quad \gamma_{2}\left(f\left(x_{1}\right)\right)=f\left[\gamma_{1}\left(x_{1}\right)\right]
\end{aligned}
$$

' ${ }^{\prime}$ ': If $x_{1} R_{\gamma_{1}} x_{2}$ then $f\left(x_{1}\right) R_{\gamma_{2}} f\left(x_{2}\right)$.
' \subseteq ': If $f\left(x_{1}\right) R_{\gamma_{2}} y$ then $\exists x_{2}: x_{1} R_{\gamma_{1}} x_{2}$ and $f\left(x_{2}\right)=y$.
Therefore $\operatorname{Coalg}(\mathcal{P}) \cong$ Krip.

Jónsson-Tarski duality, coalgebraically

Start with Stone duality Π : Stone \rightarrow BA (takes clopens) and $\Sigma: \mathrm{BA} \rightarrow$ Stone (takes ultrafilters).

Jónsson-Tarski duality, coalgebraically

Start with Stone duality Π : Stone \rightarrow BA (takes clopens) and $\Sigma:$ BA \rightarrow Stone (takes ultrafilters).

The category of descriptive general frames is isomorphic to the category of coalgebras for the Vietoris functor \mathcal{V} : Stone \rightarrow Stone.

Kupke, Kurz, Venema 2003 [10]

Jónsson-Tarski duality, coalgebraically

Start with Stone duality Π : Stone \rightarrow BA (takes clopens) and $\Sigma: \mathrm{BA} \rightarrow$ Stone (takes ultrafilters).

The category of descriptive general frames is isomorphic to the category of coalgebras for the Vietoris functor \mathcal{V} : Stone \rightarrow Stone.

The category of modal algebras is isomorphic to the category of algebras for the functor $\mathcal{O}: \mathrm{BA} \rightarrow \mathrm{BA}$ which has a presentation by a unary operation \square with equations $\square(x \wedge y)=\square x \wedge \square y$ and $\square 1=1$.

Kupke, Kurz, Venema 2003 [10]

Jónsson-Tarski duality, coalgebraically

Start with Stone duality Π : Stone \rightarrow BA (takes clopens) and $\Sigma: \mathrm{BA} \rightarrow$ Stone (takes ultrafilters).

The category of descriptive general frames is isomorphic to the category of coalgebras for the Vietoris functor \mathcal{V} : Stone \rightarrow Stone.

The category of modal algebras is isomorphic to the category of algebras for the functor $\mathcal{O}: \mathrm{BA} \rightarrow \mathrm{BA}$ which has a presentation by a unary operation \square with equations $\square(x \wedge y)=\square x \wedge \square y$ and $\square 1=1$.

Jónsson-Tarski duality: There is a natural isomorphism $\mathcal{O} \Pi \cong \Pi \mathcal{V}$.
Kupke, Kurz, Venema 2003 [10]

Classical modal logic, coalgebraically

Begin with dual adjunction P : Set $\rightarrow \mathrm{BA}$ (takes powerset) and S: BA \rightarrow Set (takes ultrafilters).

Classical modal logic, coalgebraically

Begin with dual adjunction P : Set $\rightarrow \mathrm{BA}$ (takes powerset) and $\mathrm{S}: \mathrm{BA} \rightarrow$ Set (takes ultrafilters).

The category of Kripke frames is isomorphic to the category of coalgebras for the (covariant) powerset functor \mathcal{P} : Set \rightarrow Set.

Kupke, Kurz, Pattinson 2004 [9]

Classical modal logic, coalgebraically

Begin with dual adjunction P : Set $\rightarrow B A$ (takes powerset) and $\mathrm{S}: \mathrm{BA} \rightarrow$ Set (takes ultrafilters).

The category of Kripke frames is isomorphic to the category of coalgebras for the (covariant) powerset functor \mathcal{P} : Set \rightarrow Set.

The category of modal algebras is isomorphic to the category of algebras for the functor $\mathcal{O}: \mathrm{BA} \rightarrow \mathrm{BA}$ as before.

Kupke, Kurz, Pattinson 2004 [9]

Classical modal logic, coalgebraically

Begin with dual adjunction P : Set $\rightarrow B A$ (takes powerset) and $\mathrm{S}: \mathrm{BA} \rightarrow$ Set (takes ultrafilters).

The category of Kripke frames is isomorphic to the category of coalgebras for the (covariant) powerset functor \mathcal{P} : Set \rightarrow Set.

The category of modal algebras is isomorphic to the category of algebras for the functor $\mathcal{O}: \mathrm{BA} \rightarrow \mathrm{BA}$ as before.

Sending a Kripke frame to its complex algebra can be realized by a natural transformation $\mathcal{O P} \Rightarrow \mathrm{PP}$.

Kupke, Kurz, Pattinson 2004 [9]

Abstract and concrete coalgebraic logics

Definition

Let X be a concrete category, let A be a variety of algebras, let P and S establish a dual adjunction and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be an endofunctor.

Abstract and concrete coalgebraic logics

Definition

Let X be a concrete category, let A be a variety of algebras, let P and S establish a dual adjunction and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be an endofunctor.
(1) An abstract coalgebraic logic for T is a pair (L, δ) consisting of an endofunctor $\mathrm{L}: \mathrm{A} \rightarrow \mathrm{A}$ and a natural transformation $\delta: \mathrm{LP} \Rightarrow \mathrm{PT}$.

Abstract and concrete coalgebraic logics

Definition

Let X be a concrete category, let A be a variety of algebras, let P and S establish a dual adjunction and let $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{X}$ be an endofunctor.
(1) An abstract coalgebraic logic for T is a pair (L, δ) consisting of an endofunctor $\mathrm{L}: \mathrm{A} \rightarrow \mathrm{A}$ and a natural transformation $\delta: \mathrm{LP} \Rightarrow \mathrm{PT}$.
(2) A concrete coalgebraic logic for T is a triple (L, δ, E) consisting of an abstract coalgebraic logic (L, δ) and a presentation E of L by operations and equations.

One-step completeness and expressivity

Definition

An abstract coalgebraic logic (L, δ) for T is one-step complete if δ is a monomorphism, i.e., every component of δ is injective.

One-step completeness and expressivity

Definition

An abstract coalgebraic logic (L, δ) for T is one-step complete if δ is a monomorphism, i.e., every component of δ is injective.

For example, the abstract coalgebraic logic (\mathcal{O}, δ) for \mathcal{P} is one-step complete.

One-step completeness and expressivity

Definition

An abstract coalgebraic logic (L, δ) for T is one-step complete if δ is a monomorphism, i.e., every component of δ is injective.

For example, the abstract coalgebraic logic (\mathcal{O}, δ) for \mathcal{P} is one-step complete.

Definition

An abstract coalgebraic logic (L, δ) for T is expressive if the adjoint-transpose δ^{\dagger} is a component-wise monomorphism.

One-step completeness and expressivity

Definition

An abstract coalgebraic logic (L, δ) for T is one-step complete if δ is a monomorphism, i.e., every component of δ is injective.

For example, the abstract coalgebraic logic (\mathcal{O}, δ) for \mathcal{P} is one-step complete.

Definition

An abstract coalgebraic logic (L, δ) for T is expressive if the adjoint-transpose δ^{\dagger} is a component-wise monomorphism.

For example, the abstract coalgebraic logic (\mathcal{O}, δ) for $\mathcal{P}_{\text {fin }}$ is expressive. This is also known as the Hennessy-Milner property.

Semi-primal duality

Let \mathbf{D} be semi-primal bounded lattice-expansion, $\mathcal{A}:=\mathbb{H} \mathbb{S P}(\mathbf{D})=\mathbb{I S P}(\mathbf{D})$.
There is a dual equivalence

Keimel, Werner 1974 [8] ; Clark, Davey 1998 [3]

Semi-primal duality

Let \mathbf{D} be semi-primal bounded lattice-expansion, $\mathcal{A}:=\mathbb{H} \mathbb{S P}(\mathbf{D})=\mathbb{I S P}(\mathbf{D})$.
There is a dual equivalence

Definition

The category Stone $_{\mathbf{D}}$ has objects (X, v) where $X \in$ Stone and $v: X \rightarrow \mathbb{S}(\mathbf{D})$ is continuous w.r.t. the upset topology on $\mathbb{S}(\mathbf{D})$. A morphism $f:(X, v) \rightarrow(Y, w)$ is a continuous map $X \rightarrow Y$ with $w(f(x)) \leq v(x)$ for all $x \in X$.

Keimel, Werner 1974 [8] ; Clark, Davey 1998 [3]

The subalgebra adjunctions

The subalgebra adjunctions

For every $\mathbf{S} \in \mathbb{S}(\mathbf{D})$ there is an adjunction $V^{\mathbf{S}} \dashv C^{\mathbf{S}}$.
$V^{\mathbf{S}}$ sends X to $\left(X, v^{\mathbf{S}}\right)$ where $v^{\mathbf{S}}$ is constant \mathbf{S}. $C^{\mathbf{S}}$ sends (X, v) to the closed subspace $\{x \in X \mid v(x) \leq \mathbf{S}\}$.

The subalgebra adjunctions

For every $\mathbf{S} \in \mathbb{S}(\mathbf{D})$ there is an adjunction $\mathrm{V}^{\mathbf{S}} \dashv \mathrm{C}^{\mathbf{S}}$.
$V^{\mathbf{S}}$ sends X to $\left(X, v^{\mathbf{S}}\right)$ where $v^{\mathbf{S}}$ is constant \mathbf{S}. $C^{\mathbf{S}}$ sends (X, v) to the closed subspace $\{x \in X \mid v(x) \leq \mathbf{S}\}$. $\mathfrak{P}_{\mathbf{s}}$, the dual of $\mathrm{V}^{\mathbf{S}}$, takes a Boolean power.
$\mathrm{K}_{\mathbf{s}}$, the dual of $\mathrm{C}^{\mathbf{S}}$, takes the Boolean skeleton of a quotient.

The subalgebra adjunctions

Any $(X, v) \in$ Stone $_{\mathbf{D}}$ can be recovered from all $\mathrm{V}^{\mathbf{S}} \mathrm{C}^{\mathbf{S}}(X, v)$ via the coend

$$
(X, v) \cong \int^{\mathbf{S} \in \mathbb{S}(\mathbf{D})} \mathrm{V}^{\mathbf{s}} \mathrm{C}^{\mathbf{s}}(X, v)
$$

The subalgebra adjunctions

Any $\mathbf{A} \in \mathcal{A}$ can be recovered from all $\mathfrak{P}_{\mathbf{s}} \mathrm{K}_{\mathbf{s}}(\mathbf{A})$ via the end

$$
\mathbf{A} \cong \int_{\mathbf{S} \in \mathbb{S}(\mathbf{D})} \mathfrak{P}_{\mathbf{S}} K_{\mathbf{S}}(\mathbf{A})
$$

Lifting algebra-coalgebra dualities

Suppose T and L are duals of each other.

Lifting algebra-coalgebra dualities

Suppose T and L are duals of each other. Define

$$
\mathrm{T}^{\prime}(X, v)=\int^{\mathbf{S}} \mathrm{V}^{\mathbf{S}} \mathrm{TC}^{\mathbf{S}}(X, v) \text { and } \mathrm{L}^{\prime}(\mathbf{A})=\int_{\mathbf{S}} \mathfrak{P}_{\mathbf{S}} \mathrm{LK}_{\mathbf{S}}(\mathbf{A})
$$

Then T^{\prime} and L^{\prime} are duals of each other as well.

Lifting algebra-coalgebra dualities

For example, this can be used to obtain Maruyama's [14] 'semi-primal version' of Jónsson-Tarski duality from the 'original' Jónsson-Tarski duality.

Lifting algebra-coalgebra dualities

It can also be used to obtain a 'semi-primal version' of Došen duality from the original one as algebra/coalgebra duality described by Bezhanishvilis, de Groot [2]

Forgetting topology

Definition

The category Stone ${ }_{\mathbf{D}}$ has objects (X, v) where $X \in$ Stone and $v: X \rightarrow \mathbb{S}(\mathbf{D})$ is continuous w.r.t. the upset topology on $\mathbb{S}(\mathbf{D})$. A morphism $f:(X, v) \rightarrow(Y, w)$ is a continuous map $X \rightarrow Y$ with $w(f(x)) \leq v(x)$ for all $x \in X$.

Forgetting topology

Definition

The category Stone ${ }_{\mathbf{D}}$ has objects (X, v) where $X \in$ Stone and $v: X \rightarrow \mathbb{S}(\mathbf{D})$ is continuous w.r.t. the upset topology on $\mathbb{S}(\mathbf{D})$. A morphism $f:(X, v) \rightarrow(Y, w)$ is a continuous map $X \rightarrow Y$ with $w(f(x)) \leq v(x)$ for all $x \in X$.

Forgetting topology

Definition

The category Set $_{\mathrm{D}}$ has objects (X, v) where $X \in$ Set and $v: X \rightarrow \mathbb{S}(\mathbf{D})$ is continuous w.r.t. the upset topology on $\mathbb{S}(\mathbf{D})$.
A morphism $f:(X, v) \rightarrow(Y, w)$ is a continuous map $X \rightarrow Y$ with $w(f(x)) \leq v(x)$ for all $x \in X$.

Lifting abstract coalgebraic logics

Start with an abstract coalgebraic logic (L, δ) for T .

$$
\delta: \mathrm{LP} \Rightarrow \mathrm{PT}
$$

Lifting abstract coalgebraic logics

Start with an abstract coalgebraic logic (L, δ) for T . Similarly to before, we can lift T and L to T^{\prime} and L^{\prime}.

$\delta: \mathrm{LP} \Rightarrow \mathrm{PT}$

Lifting abstract coalgebraic logics

Start with an abstract coalgebraic logic (L, δ) for T . Similarly to before, we can lift T and L to T^{\prime} and L^{\prime}.
Furthermore, we can define an appropriate δ^{\prime} from δ.
Thus we obtain a many-valued abstract coalgebraic logic $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ for T^{\prime}.

$$
\delta^{\prime}: L^{\prime} P^{\prime} \Rightarrow P^{\prime} T^{\prime}
$$

$$
\delta: \mathrm{LP} \Rightarrow \mathrm{PT}
$$

How to obtain δ^{\prime} from δ

$$
\mathrm{L}^{\prime} \mathrm{P}^{\prime}(X, v)=\int_{\mathbb{S}(\mathbf{D})} \mathfrak{P}_{\mathbf{S}} \mathrm{LK}_{\mathbf{S}} \mathrm{P}^{\prime}(X, v) \xrightarrow{\text { limit }} \mathfrak{P}_{\mathbf{S}} \operatorname{LK}_{\mathbf{S}} \mathrm{P}^{\prime}(X, v)
$$

$$
\mathrm{P}^{\prime} \mathrm{T}^{\prime}(X, v)=\int_{\mathbb{S}(\mathbf{D})} \mathrm{P}^{\prime} \mathrm{V}^{\mathrm{S}} \mathrm{TC} C^{\mathrm{S}}(X, v) \xrightarrow{\text { limit }} \mathrm{P}^{\prime} \mathrm{V}^{\mathbf{S}} \mathrm{TC}^{\mathrm{S}}(X, v)
$$

How to obtain δ^{\prime} from δ

$$
\begin{aligned}
\mathrm{L}^{\prime} \mathrm{P}^{\prime}(X, v)=\int_{\mathbb{S}(\mathbf{D})} \mathfrak{P}_{\mathbf{S}} \operatorname{LK}_{\mathbf{S}} \mathrm{P}^{\prime}(X, v) \xrightarrow{\text { limit }} & \mathfrak{P}_{\mathbf{s}} \operatorname{LK}_{\mathbf{S}} \mathrm{P}^{\prime}(X, v) \\
& \xlongequal{\downarrow} \\
& \mathfrak{P}_{\mathbf{s}} \operatorname{LPC}^{\mathbf{S}}(X, v)
\end{aligned}
$$

How to obtain δ^{\prime} from δ

$$
\begin{aligned}
& \mathrm{L}^{\prime} \mathrm{P}^{\prime}(X, v)=\int_{\mathbb{S}(\mathbf{D})} \mathfrak{P} \mathrm{P}_{\mathbf{S}} \mathrm{K}_{\mathbf{S}} \mathrm{P}^{\prime}(X, v) \xrightarrow{\text { limit }} \mathfrak{P}_{\mathbf{S}} \operatorname{LK}_{\mathbf{S}} \mathrm{P}^{\prime}(X, v) \\
& \cong \\
& \mathfrak{P s}_{\mathrm{s}} \operatorname{LPC}^{\mathbf{S}}(X, v) \\
& \mathfrak{P}_{\mathbf{s}} \delta \mathrm{C}^{\mathbf{S}} \\
& \mathfrak{P s}_{\mathbf{s}} \operatorname{PTC}^{\mathbf{S}}(X, v) \\
& \mathrm{P}^{\prime} \mathrm{T}^{\prime}(X, v)=\int_{\mathbb{S}(\mathbf{D})} \mathrm{P}^{\prime} \mathrm{V}^{\mathbf{S}} \mathrm{TC}^{\mathbf{S}}(X, v) \xrightarrow{\text { limit }} \mathrm{P}^{\prime} \mathrm{V}^{\mathbf{s}} \mathrm{TC}^{\mathbf{S}}(X, v)
\end{aligned}
$$

How to obtain δ^{\prime} from δ

How to obtain δ^{\prime} from δ

One-step completeness and expressivity

Theorem

Let $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ be the lifting of (L, δ) as on the previous slides.
(1) If (L, δ) is one-step complete, then $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ is one-step complete.

One-step completeness and expressivity

Theorem

Let $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ be the lifting of (L, δ) as on the previous slides.
(1) If (L, δ) is one-step complete, then $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ is one-step complete.
(2) If (L, δ) is expressive, then $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ is expressive.

One-step completeness and expressivity

Theorem

Let $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ be the lifting of (L, δ) as on the previous slides.
(1) If (L, δ) is one-step complete, then $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ is one-step complete.
(2) If (L, δ) is expressive, then $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ is expressive.
(3) If L has a presentation by operations and equations, then L^{\prime} has one.

One-step completeness and expressivity

Theorem

Let $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ be the lifting of (L, δ) as on the previous slides.
(1) If (L, δ) is one-step complete, then $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ is one-step complete.
(2) If (L, δ) is expressive, then $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ is expressive.
(3) If L has a presentation by operations and equations, then L^{\prime} has one.

Corollary

If (L, δ) is one-step complete/expressive, then so is $\left(\mathrm{L}^{\prime}, \delta^{\top}\right)$.

One-step completeness and expressivity

Theorem

Let $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ be the lifting of (L, δ) as on the previous slides.
(1) If (L, δ) is one-step complete, then $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ is one-step complete.
(2) If (L, δ) is expressive, then $\left(\mathrm{L}^{\prime}, \delta^{\prime}\right)$ is expressive.
(3) If L has a presentation by operations and equations, then L^{\prime} has one.

Corollary

If (L, δ) is one-step complete/expressive, then so is $\left(\mathrm{L}^{\prime}, \delta^{\top}\right)$.

Lifting concrete coalgebraic logics (1)

$$
\tau_{d}(x)= \begin{cases}1 & \text { if } x \geq d \\ 0 & \text { if } x \not 又 d .\end{cases}
$$

Theorem

Let $\mathrm{L}: \mathrm{BA} \rightarrow \mathrm{BA}$ have a presentation by one unary operation \square and equations which all hold in \mathbf{D} if \square is replaced by any τ_{d}, including the equation $\square(x \wedge y)=\square x \wedge \square y$.
Then L^{\prime} has a presentation by one unary operation \square^{\prime} and the following equations.

- \square^{\prime} satisfies all equations which the original \square satisfies,
- $\square^{\prime} \tau_{d}(x)=\tau_{d}\left(\square^{\prime} x\right)$ for all $d \in D \backslash\{0\}$.

Lifting concrete coalgebraic logics (2)

$$
\tau_{d}^{\partial}(x)= \begin{cases}0 & \text { if } x \leq d \\ 1 & \text { if } x \not \leq d\end{cases}
$$

Theorem

Let $\mathrm{L}: \mathrm{BA} \rightarrow \mathrm{BA}$ have a presentation by one unary operation \diamond and equations which all hold in \mathbf{D} if \diamond is replaced by any τ_{d}^{∂}, including the equation $\diamond(x \vee y)=\diamond x \vee \diamond y$.
Then L^{\prime} has a presentation by one unary operation \diamond^{\prime} and the following equations.

- \diamond^{\prime} satisfies all equations which the original \diamond satisfies,
- $\nabla^{\prime} \tau_{d}^{\partial}(x)=\tau_{d}^{\partial}\left(\nabla^{\prime} x\right)$ for all $d \in D \backslash\{1\}$.

Many-valued modal logic as lifting of classical modal logic

The functor \mathcal{O} has a presentation by $\square(x \wedge y)=\square x \wedge \square y$ and $\square 1=1$.

Many-valued modal logic as lifting of classical modal logic

The functor \mathcal{O} has a presentation by $\square(x \wedge y)=\square x \wedge \square y$ and $\square 1=1$. Therefore, the functor \mathcal{O}^{\prime} has a presentation by
$\square^{\prime}(x \wedge y)=\square^{\prime} x \wedge \square^{\prime} y, \square^{\prime} 1=1$ and $\square^{\prime} \tau_{d}(x)=\tau_{d}\left(\square^{\prime} x\right)$ for all $d \in D \backslash\{0\}$.

Many-valued modal logic as lifting of classical modal logic

The functor \mathcal{O} has a presentation by $\square(x \wedge y)=\square x \wedge \square y$ and $\square 1=1$. Therefore, the functor \mathcal{O}^{\prime} has a presentation by
$\square^{\prime}(x \wedge y)=\square^{\prime} x \wedge \square^{\prime} y, \square^{\prime} 1=1$ and $\square^{\prime} \tau_{d}(x)=\tau_{d}\left(\square^{\prime} x\right)$ for all $d \in D \backslash\{0\}$. (\mathcal{O}, δ) is (one-step) complete $\Rightarrow\left(\mathcal{O}^{\prime}, \delta^{\prime}\right)$ is (one-step) complete.

Many-valued modal logic as lifting of classical modal logic

The functor \mathcal{O} has a presentation by $\square(x \wedge y)=\square x \wedge \square y$ and $\square 1=1$. Therefore, the functor \mathcal{O}^{\prime} has a presentation by
$\square^{\prime}(x \wedge y)=\square^{\prime} x \wedge \square^{\prime} y, \square^{\prime} 1=1$ and $\square^{\prime} \tau_{d}(x)=\tau_{d}\left(\square^{\prime} x\right)$ for all $d \in D \backslash\{0\}$. (\mathcal{O}, δ) is (one-step) complete $\Rightarrow\left(\mathcal{O}^{\prime}, \delta^{\prime}\right)$ is (one-step) complete.
Replacing \mathcal{P} by $\mathcal{P}_{\text {fin }}:(\mathcal{O}, \delta)$ is expressive $\Rightarrow\left(\mathcal{O}^{\prime}, \delta^{\prime}\right)$ is expressive.

Lifted semantics

Definition

A Set $\mathbf{D}_{\mathbf{D}}$-(Kripke-)frame is a structure (W, v, R) with $v: X \rightarrow \mathbb{S}(\mathbf{D})$ and binary relation $R \subseteq W^{2}$ satisfying

$$
w R w^{\prime} \Rightarrow v\left(w^{\prime}\right) \subseteq v(w)
$$

for all $w, w^{\prime} \in W$.

Lifted semantics

Definition

A Set $\mathbf{D}_{\mathbf{D}}$-(Kripke-)frame is a structure (W, v, R) with $v: X \rightarrow \mathbb{S}(\mathbf{D})$ and binary relation $R \subseteq W^{2}$ satisfying

$$
w R w^{\prime} \Rightarrow v\left(w^{\prime}\right) \subseteq v(w)
$$

for all $w, w^{\prime} \in W$.
A Set \mathbf{D}-model adds a valuation Val: $W \times$ Prop $\rightarrow \mathbf{D}$ which satisfies

$$
\operatorname{Val}(w, p) \in v(w)
$$

for all $w \in W$.

Lifted semantics

Definition

A Set $\mathbf{D}_{\mathbf{D}}$-(Kripke-)frame is a structure (W, v, R) with $v: X \rightarrow \mathbb{S}(\mathbf{D})$ and binary relation $R \subseteq W^{2}$ satisfying

$$
w R w^{\prime} \Rightarrow v\left(w^{\prime}\right) \subseteq v(w)
$$

for all $w, w^{\prime} \in W$.
A Set ${ }_{\mathbf{D}}$-model adds a valuation Val: $W \times$ Prop $\rightarrow \mathbf{D}$ which satisfies

$$
\operatorname{Val}(w, p) \in v(w)
$$

for all $w \in W$.
For example, if $\mathbf{D}=\mathbf{t}_{2}$ is the three-element MV-chain, the formula

$$
\diamond(p \vee \neg p)
$$

is satisfied in a Set $\mathbf{D}_{\mathbf{D}}$-frame if and only if $\forall w \exists w^{\prime}: w R w^{\prime} \wedge v\left(w^{\prime}\right)=\mathbf{2}$, while it is not satisfied in any frame.

Alternative axiomatizations: Some case studies (1)

If $\mathbf{D}=\mathbf{t}_{n}$ is a finite MV-chain, then \mathcal{O}^{\prime} has a presentation by
(B1) $\square 1=1$,
(B2) $\square(x \wedge y)=\square x \wedge \square y$,
(B3) $\square(x \oplus x)=\square x \oplus \square x$,
(B4) $\square(x \odot x)=\square x \odot \square x$.

Alternative axiomatizations: Some case studies (1)

If $\mathbf{D}=\mathbf{t}_{n}$ is a finite MV -chain, then \mathcal{O}^{\prime} has a presentation by
(B1) $\square 1=1$,
(B3) $\square(x \oplus x)=\square x \oplus \square x$,
(B2) $\square(x \wedge y)=\square x \wedge \square y$,
(B4) $\square(x \odot x)=\square x \odot \square x$.

If \mathbf{D} is a finite bounded residuated lattice with τ_{e} (monoid unit e) and truth-constants, then \mathcal{O}^{\prime} has a presentation by
(B1) $\square 1=1$,
(B3) $\tau_{e}(\square x)=\square \tau_{e}(x)$,
(B2) $\square(x \wedge y)=\square x \wedge \square y$,
(B4) $\square(r \backslash x)=r \backslash \square x$ for all $r \neq 0$.

Alternative axiomatizations: Some case studies (1)

If $\mathbf{D}=\mathbf{t}_{n}$ is a finite MV -chain, then \mathcal{O}^{\prime} has a presentation by
(B1) $\square 1=1$,
(B2) $\square(x \wedge y)=\square x \wedge \square y$,
(B3) $\square(x \oplus x)=\square x \oplus \square x$,
(B4) $\square(x \odot x)=\square x \odot \square x$.

If \mathbf{D} is a finite bounded residuated lattice with τ_{e} (monoid unit e) and truth-constants, then \mathcal{O}^{\prime} has a presentation by
(B1) $\square 1=1$,
(B3) $\tau_{e}(\square x)=\square \tau_{e}(x)$,
(B2) $\square(x \wedge y)=\square x \wedge \square y$,
(B4) $\square(r \backslash x)=r \backslash \square x$ for all $r \neq 0$.

In particular, if \mathbf{D} is a finite $\mathrm{FL}_{\text {ew }}$-algebra with truth-constants where only 0,1 are idempotent, then \mathcal{O}^{\prime} has a presentation by
(B1) $\square 1=1$,
(B3) $\square(x \odot x)=\square x \odot \square x$,
(B2) $\square(x \wedge y)=\square x \wedge \square y$,
(B4) $\square(r \rightarrow x)=r \rightarrow \square x$ all $r \neq 0$.

Alternative axiomatizations: Some case studies (2)

If \mathbf{D} is a finite bi-Heyting algebra with truth-constants and with a unique atom and coatom, then \mathcal{O}^{\prime} has a presentation by
(B1) $\square 1=1$,
(B2) $\square(x \wedge y)=\square x \wedge \square y$,
(B3) $\square(\neg(1 \leftarrow x))=\neg(1 \leftarrow \square x)$,
(B4) $\square(b \rightarrow x)=b \rightarrow \square x$ all $b \neq 0$,
(P1) $\square(x \vee y) \leq \square x \vee \diamond y$,
(D1) $\diamond 0=0$,
(D2) $\diamond(x \vee y)=\diamond x \vee \diamond y$,
(D3) $\diamond(1 \leftarrow(\neg x))=1 \leftarrow(\neg \diamond x)$,
(D4) $\diamond(x \leftarrow b)=\diamond x \leftarrow b$ all $b \neq 1$,
(P2) $\square x \wedge \diamond y \leq \diamond(x \wedge y)$.

Many-valued modal logic for crisp neighborhoods

The neighborhood functor \mathcal{N} is the contravariant powerset functor composed with itself. The functor \mathcal{E} has a presentation by one unary operation \square and no equations.

Many-valued modal logic for crisp neighborhoods

The neighborhood functor \mathcal{N} is the contravariant powerset functor composed with itself. The functor \mathcal{E} has a presentation by one unary operation \square and no equations.
(\mathcal{E}, δ) is (one-step) complete $\Rightarrow\left(\mathcal{E}^{\prime}, \delta^{\prime}\right)$ is (one-step) complete.

Many-valued modal logic for crisp neighborhoods

The neighborhood functor \mathcal{N} is the contravariant powerset functor composed with itself. The functor \mathcal{E} has a presentation by one unary operation \square and no equations. (\mathcal{E}, δ) is (one-step) complete $\Rightarrow\left(\mathcal{E}^{\prime}, \delta^{\prime}\right)$ is (one-step) complete. Replacing \mathcal{N} by $\mathcal{N}_{\text {fin }}:(\mathcal{E}, \delta)$ is expressive $\Rightarrow\left(\mathcal{E}^{\prime}, \delta^{\prime}\right)$ is expressive.

Many-valued modal logic for crisp neighborhoods

The neighborhood functor \mathcal{N} is the contravariant powerset functor composed with itself. The functor \mathcal{E} has a presentation by one unary operation \square and no equations.
(\mathcal{E}, δ) is (one-step) complete $\Rightarrow\left(\mathcal{E}^{\prime}, \delta^{\prime}\right)$ is (one-step) complete.
Replacing \mathcal{N} by $\mathcal{N}_{\text {fin }}:(\mathcal{E}, \delta)$ is expressive $\Rightarrow\left(\mathcal{E}^{\prime}, \delta^{\prime}\right)$ is expressive.
We don't know a concrete presentation for \mathcal{E}^{\prime}, unless \mathbf{D} is primal [11]

Conclusion

- Semi-primal lattice expansions are 'well-behaved' algebras of truth-degrees D for many-valued coalgebraic logics.

Conclusion

- Semi-primal lattice expansions are 'well-behaved' algebras of truth-degrees D for many-valued coalgebraic logics.
- 'Semi-primal versions' of algebra/coalgebra dualities like Jónsson-Tarski or Došen duality can be obtained from their classical counterparts.

Conclusion

- Semi-primal lattice expansions are 'well-behaved' algebras of truth-degrees D for many-valued coalgebraic logics.
- 'Semi-primal versions' of algebra/coalgebra dualities like Jónsson-Tarski or Došen duality can be obtained from their classical counterparts.
- Similarly, 'semi-primal versions' of coalgebraic logics can be obtained from their classical counterparts.

Conclusion

- Semi-primal lattice expansions are 'well-behaved' algebras of truth-degrees D for many-valued coalgebraic logics.
- 'Semi-primal versions' of algebra/coalgebra dualities like Jónsson-Tarski or Došen duality can be obtained from their classical counterparts.
- Similarly, 'semi-primal versions' of coalgebraic logics can be obtained from their classical counterparts.
- One-step completeness, expressivity and finite axiomatizability are preserved under this process.

Conclusion

- Semi-primal lattice expansions are 'well-behaved' algebras of truth-degrees D for many-valued coalgebraic logics.
- 'Semi-primal versions' of algebra/coalgebra dualities like Jónsson-Tarski or Došen duality can be obtained from their classical counterparts.
- Similarly, 'semi-primal versions' of coalgebraic logics can be obtained from their classical counterparts.
- One-step completeness, expressivity and finite axiomatizability are preserved under this process.
- Sometimes, one may obtain axiomatizations of the lifted many-valued logic directly from an axiomatization of the original classical one. In particular, this works for classical modal logic.

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal $=$ Finite discriminator algebras

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal $=$ Finite discriminator algebras
- Lattice-(semi-)primal algebras

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal $=$ Finite discriminator algebras
- Lattice-(semi-)primal algebras
- Infinite algebras, e.g., standard MV-chain [0, 1]

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal $=$ Finite discriminator algebras
- Lattice-(semi-)primal algebras
- Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

- Many-valued modal logic with many-valued accessibility relation

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal $=$ Finite discriminator algebras
- Lattice-(semi-)primal algebras
- Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

- Many-valued modal logic with many-valued accessibility relation
- Positive Modal Logic

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal $=$ Finite discriminator algebras
- Lattice-(semi-)primal algebras
- Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

- Many-valued modal logic with many-valued accessibility relation
- Positive Modal Logic
- Probabilistic Logic

Future Research

Investigate broader classes of algebras of truth-degrees, e.g.

- Quasi-primal $=$ Finite discriminator algebras
- Lattice-(semi-)primal algebras
- Infinite algebras, e.g., standard MV-chain [0, 1]

Investigate broader classes of logics, e.g.

- Many-valued modal logic with many-valued accessibility relation
- Positive Modal Logic
- Probabilistic Logic
- Dynamic Logic

The end

Thanks for your attention!

```
Preprint:
Kurz, A., Poiger, W., and Teheux, B.: Many-valued coalgebraic logic over semi-primal
varieties
https://arxiv.org/abs/2308.14581
```


References I

[1] Bou, F., Esteva, F., Godo, L., Rodríguez, R. O.: On the minimum many-valued modal logic over a finite residuated lattice.
Journal of Logic and Computation 21, 739-790 (2011)
doi:10.1093/logcom/exp062
[2] Bezhanishvili, G., Bezhanishvili, N., de Groot, J.: A Coalgebraic Approach to Dualities for Neighborhood Frames.
Logical Methods in Computer Science 18, 4:1-4:39 (2022)
doi:10.46298/lmcs-18(3:4) 2022
[3] Clark, D. M., Davey, B. A.: Natural Dualities for the Working Algebraist. Cambridge studies in advanced mathematics, vol. 57.
Cambridge University Press (1998)
[4] Davey, B. A., Gair, A.: Restricted Prietley dualities and discriminator varieties. Studia Logica 105, 843-872 (2017) ; doi:10.1007/s11225-017-9713-4
[5] Diaconescu, D., Georgescu, G.: Tense operators on MV-algebras and Łukasiewicz-Moisil algebras.
Fundamenta Informaticae 81, 379-408 (2007)
[6] Foster, A. L., Pixley, A. F.: Semi-categorical algebras. I. Semi-primal algebras. Mathematische Zeitschrift 83, 147-169 (1964)
doi:10.1007/BF01111252

References II

[7] Hansoul, G., Teheux, B.: Extending Łukasiewicz logics with a modality: Algebraic approach to relational semantics.
Studia Logica 101, 505-545 (2013)
doi:10.1007/s11225-012-9396-9
[8] Keimel, K., Werner, H.: Stone duality for varieties generated by quasi-primal algebras. Memoirs of the American Mathematical Society 148, 59-85 (1974)
[9] Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics. Electronic Notes in Theoretical Computer Science 106, 219-241 (2004) doi:10.1016/j.entcs.2004.02.037
[10] Kupke, C., Kurz, A., Venema, Y.: Stone coalgebras.
Theoretical Computer Science 327, 109-134 (2003)
doi:10.1016/S1571-0661(04)80638-8
[11] Kurz, A., Poiger, W.: Many-valued coalgebraic logic: From Boolean algebras to primal varieties. In: 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023). Leibniz International Proceedings in Informatics (LIPIcs), 270, 17:1-17:17,

Dagstuhl (2023)
doi:10.4230/LIPIcs.CALCO.2023.17

References III

[12] Kurz, A., Poiger, W., Teheux, B.: New perspectives on semi-primal varieties. Journal of Pure and Applied Algebra228, paper no. 107525 (2024) doi:10.1016/j.jpaa.2023.107525
[13] Maruyama, Y.: Algebraic study of lattice-valued logic and lattice-valued modal logic. In: Ramanujam, R., Sarukkai, S. (eds) Logic and Its Applications. ICLA, 170-184. Springer, Berlin Heidelberg (2009)
doi:10.1007/978-3-540-92701-3_12
[14] Maruyama, Y.: Natural duality, modality, and coalgebra. Journal of Pure and Applied Algebra 216, 565-580 (2012) doi:10.1016/j.jpaa.2011.07.002
[15] Moraschini, T., Raftery, J. G., Wanneburg, J. J.: Varieties of De Morgan monoids:
Minimality and irreducible algebras.
Journal of Pure and Applied Algebra 227, 2780-2803 (2019)
doi:10.1016/j.jpaa.2018.09.015
[16] Pixley, A. F.: The ternary discriminator in universal algebra.
Mathematische Annalen 191, 167-180 (1971)
doi:doi:10.1016/0012-365X(79)90096-7
[17] Poiger, W.: Natural dualities for varieties generated by finite positive MV-chains. (2023) Preprint available at https://aps.arxiv.org/abs/2309.16998

