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Many-valued modal logic

@ Let D be a finite algebra of truth-degrees with bounded lattice reduct.

@ Modal formulas ¢ € Form are constructed from propositional
variables p € Prop, the connectives of D and modal operators [J, {.

o Relational models are Mt = (W, R, Val) with Val: W x Prop — D.

@ Val is inductively extended to all formulas via the rules

Val(w,0y) = A\ {Val(w',¢)) | wRw'},
Val(w, 0v) = \/{Val(w',¢) | wRw'}.

o We define M, w IF ¢ iff Val(w, ¢) = 1.

@ Recover classical modal logic if D = 2 € BA.
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Examples from many-valued modal logic (1)

Let D be the (n 4+ 1)-element finite MV-chain

L" = <{O7l RN n_171}7®7®7/\7\/7—'7071>-

n’ n

Hansoul, Teheux 2013 [7] ; Bou, Esteva, Godo, Rodriguez 2011 [1]
3/36



Examples from many-valued modal logic (1)

Let D be the (n 4+ 1)-element finite MV-chain

t,=({0,7,..., 5, 1},0,®,A,V,~,0,1).

n

For every d € L, the unary operation 74: L, — L, is term-definable in £:

(x) 1 ifx>d,
Ta(x) =
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Examples from many-valued modal logic (1)

Let D be the (n 4+ 1)-element finite MV-chain

t,=({0,7,..., 5, 1},0,®,A,V,~,0,1).

n

For every d € L, the unary operation 74: L, — L, is term-definable in £:

(x) 1 ifx>d,
T4(X) =
d 0 if x #d.

The algebraic counterpart of the corresponding modal logic:

Definition
A modal MV,,-algebra is an algebra (A,) with A € MV,, = HSP(t,),

o O(xAy)=0xA0Oy and 01 =1,
o Ory(x) = 74(Ox) for all d € £,\{0}.

Hansoul, Teheux 2013 [7] ; Bou, Esteva, Godo, Rodriguez 2011 [1]
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Examples from many-valued modal logic (2)

H=(H,A,V,—0,1,(Tyg | d € H)),

where (H, A, V,—,0,1) is a finite Heyting algebra expanded by unary

T4(x) 1 ifx=d,
X) =
I 0 ifx#d.

Note that 74(x) = \/{Tc(x) | ¢ > d} are again term-definable in H.

Maruyama 2009 [13]
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H=(H,A,V,—0,1,(Tyg | d € H)),
where (H, A, V,—,0,1) is a finite Heyting algebra expanded by unary

T4(x) 1 ifx=d,
X) =
I 0 ifx#d.

Note that 74(x) = \/{Tc(x) | ¢ > d} are again term-definable in H.

The algebraic counterpart of the corresponding modal logic:

Definition

A modal H-algebra is an algebra (A,O) with A € HSP(H),
o O(xAy)=0xA0Oyand 01 =1,
o Ury(x) = 74(0Ox) for all d € H\{0}.

Maruyama 2009 [13]
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Examples from many-valued modal logic (3)

Let D be given by the (n + 1)-element tukasiewicz-Moisil chain

M, = ({0,1 ... =1 1} AV, —,0,1, (14 | d € My)).

’n? n

where — is the MV-negation and 74 = X{x>q} similar to before.

Diaconescu, Georgescu 2007 [5]
5/36



Examples from many-valued modal logic (3)

Let D be given by the (n + 1)-element tukasiewicz-Moisil chain

M, = <{07%7'--7n_171}7/\7\/7—'70717(7—d ‘ de Mn)>

n

where — is the MV-negation and 74 = X{x>q} similar to before.
The algebraic counterpart of the corresponding tense logic:
Definition
A tense £ Mp-algebra is an algebra (A, G, H) with A € tM, = HSP(M,,),
@ G(xNy)=GxAGyand Gl =1,
@ H(x ANy)=HxA Hy and H1 =1,
@ x < GPx and x < HFx,
o G7y(x) = 14(Gx) for all d € M,\{0},
o Hry(x) = 14(Hx) for all d € M,\{0}.

Diaconescu, Georgescu 2007 [5]
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Motivating questions

Question: What do these algebras of truth-degrees have in common?

Answer: They are all semi-primal.

Question: Is there a general framework to systematically study the

relationship between these many-valued modal logics and classical modal
logic?

Answer: Such a framework is provided by coalgebraic logic.

6/36



Semi-primal algebras

Definition

An algebra D is primal if every operation f: DX — D with k > 1
is term-definable in D.

Foster, Pixley 1964 [6] ; Pixley 1971 [16]
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Semi-primal algebras

Definition
An algebra D is semi-primal if every operation f: DK — D with k > 1
which preserves subalgebras is term-definable in D.

For a finite algebra D, t.f.a.e.:

@ D is semi-primal.
@ The variety HSP(D) is arithmetical (i.e., congruence-distributive and
-permutable) and all subalgebras of D are simple and rigid.

© The ternary discriminator is term-definable in D and all subalgebras
of D are rigid.

Foster, Pixley 1964 [6] ; Pixley 1971 [16]
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Semi-primal lattice-expansions

Proposition

For a finite algebra D with bounded lattice reduct, t.f.a.e.:
@ D is semi-primal.

© For every d € D, the unary operation 74 = X{x>q} is term-definable
and the unary operation To = x{q} is term-definable.
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Semi-primal lattice-expansions

Proposition

For a finite algebra D with bounded lattice reduct, t.f.a.e.:
@ D is semi-primal.

© For every d € D, the unary operation 74 = X{x>q} is term-definable
and the unary operation To = x{q} is term-definable.

For a finite algebra D with bounded residuated lattice reduct, t.f.a.e.:

© D is semi-primal.

© For every d € D, the unary operation Ty = X(x>q} is term-definable.

v

For the second part, note that we can define To(x) = 7¢(x\0) where e is
the monoid unit of D.
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Semi-primal chains: Examples

e The Post chains P, = ({0,1,..., =1 1} A v/, 0,1).

n

P, : 0_l_%_§_)1
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e The Post chains P, = ({0,1,..., =1 1} A v/, 0,1).

n

P, : 0_l_%_§_)1

e The finite MV-chains

t,= (0,1 .. =1} 0,8, A,v,,0,1).

n’

e The finite Lukasiewicz-Moisil chains

Mn: <{0 1 ---7n_171}7/\’v7_"0717(7-d ‘ de Mn)>
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Semi-primal chains: Examples

e The Post chains P, = ({0,1,..., =1 1} A v/, 0,1).
e The finite MV-chains
t,=({o, i, .. =t

e The finite Lukasiewicz-Moisil chains

M, =({0,%,. .. =1

e The finite Cornish chains C, = ({0, 1

9y >'

,(Td ‘ de /\/I,,)>

)

Y >1

Yt
L

— 1

LY

Cy: So—

BIN
Blw

i 2 _
4 ..y Sy

'Davey, Gair 2017 [4]

9/36



Semi-primal lattices: Examples (1)

FOUR = ({t,f, T, L}, A, V,®,®, -, D, t,f).
/t\ :
\f/ L

<: <k

Figure: The truth-order <; and the knowledge-order <.

U. Rivieccio's PhD thesis
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Semi-primal lattices: Examples (2)

e Residuated lattices, e.g.,

1 1
L L
| N
b b c
/N NS
c=2a d d=a’=c?
NS |
ab ab = bc
R RS

Notation from list of finite residuated lattices of size up to 6 by N. Galatos and P. Jipsen
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Semi-primal lattices: Examples (3)

e De Morgan monoids (with unit e) / Relevant algebras (without e)

1=2a2 1=2a2
| / \
a
| e ]
e \ /
|
0 0

cy oy

Moraschini, Raftery, Wannenburg 2019 [15]
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Category-theoretical characterization

Let D be a bounded lattice-based algebra and A = HSP(D). Then D is
semi-primal if and only if there exists a topological adjunction

Po kS E P,y

Po, Bo,1): BA — A are Boolean power functors.
S: A — BA is the Boolean skeleton functor.

A

Po (FSH P,

|

BA

Kurz, P., Teheux 2024 [12]
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Algebras and Coalgebras

Let C be a category and let F: C — C be an endofunctor.

a: F(A)— A v: X = F(X)

F-algebra F-coalgebra
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Algebras and Coalgebras

Let C be a category and let F: C — C be an endofunctor.

a: F(A)— A v: X = F(X)
F-algebra F-coalgebra
Morphisms:
F(AD) —— A X; — F(Xy)
Fhl lh fl lFf
F(AQ) T2> As Xo T) F(XQ)

Gives rise to categories Alg(F) and Coalg(F).
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Kripke frames as coalgebras

We consider coalgebras for the covariant powerset functor P: Set — Set.
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Kripke frames as coalgebras

We consider coalgebras for the covariant powerset functor P: Set — Set.

A P-coalgebra is a map v: X — P(X). This can be identified with a
relational structure (X, R,), where

X1R7X2 &~ X2 € ’)/(Xl).

Morphism:
X — P(X) 72(f(x1)) = ()l
f lpf
Y —— P(Y)

D" If x1Ry, x2 then f(x1)Ry,f(x2).

,g,'

: If f(x1)Ry,y then 3x2: x1 Ry, x2 and f(xp) = y.
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Kripke frames as coalgebras

We consider coalgebras for the covariant powerset functor P: Set — Set.

A P-coalgebra is a map v: X — P(X). This can be identified with a
relational structure (X, R,), where

X1R7X2 &~ X2 € ’)/(Xl).

Morphism:

X 5 P(X) Y2(f(x1)) = fly1(x1)]

|7

Y —— P(Y)

-
-

D" If x1Ry, x2 then f(x1)Ry,f(x2).
'CIf f(x1)Ry,y then 3xo: x1 Ry, x2 and f(x2) = y.
Therefore Coalg(P) = Krip.
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Jénsson-Tarski duality, coalgebraically

.
" BA

x>

Stone

Start with Stone duality I1: Stone — BA (takes clopens) and
Y : BA — Stone (takes ultrafilters).

Kupke, Kurz, Venema 2003 [10]
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Start with Stone duality 1: Stone — BA (takes clopens) and
Y : BA — Stone (takes ultrafilters).

The category of descriptive general frames is isomorphic to the category of
coalgebras for the Vietoris functor V: Stone — Stone.

The category of modal algebras is isomorphic to the category of algebras
for the functor O: BA — BA which has a presentation by a unary
operation O with equations C(x A y) = Ox A Oy and 01 = 1.
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Jénsson-Tarski duality, coalgebraically

n
V@tone - BAS(’) 6:0N=ny

Start with Stone duality 1: Stone — BA (takes clopens) and
Y : BA — Stone (takes ultrafilters).

The category of descriptive general frames is isomorphic to the category of
coalgebras for the Vietoris functor V: Stone — Stone.

The category of modal algebras is isomorphic to the category of algebras
for the functor O: BA — BA which has a presentation by a unary
operation O with equations C(x A y) = Ox A Oy and 01 = 1.

Jénsson-Tarski duality: There is a natural isomorphism Ol = M.

Kupke, Kurz, Venema 2003 [10]
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Classical modal logic, coalgebraically

P

Set ¢ ~ BA

S

Begin with dual adjunction P: Set — BA (takes powerset) and
S: BA — Set (takes ultrafilters).

Kupke, Kurz, Pattinson 2004 [9]
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Begin with dual adjunction P: Set — BA (takes powerset) and
S: BA — Set (takes ultrafilters).

The category of Kripke frames is isomorphic to the category of coalgebras
for the (covariant) powerset functor P: Set — Set.
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Classical modal logic, coalgebraically

P
PCSet - BASO 0: OP = PP
S

Begin with dual adjunction P: Set — BA (takes powerset) and
S: BA — Set (takes ultrafilters).

The category of Kripke frames is isomorphic to the category of coalgebras
for the (covariant) powerset functor P: Set — Set.

The category of modal algebras is isomorphic to the category of algebras
for the functor O: BA — BA as before.

Sending a Kripke frame to its complex algebra can be realized by a natural
transformation OP = PP.

Kupke, Kurz, Pattinson 2004 [9]
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Abstract and concrete coalgebraic logics

TCXCA

Definition

Let X be a concrete category, let A be a variety of algebras, let P and S
establish a dual adjunction and let T: X — X be an endofunctor.
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Abstract and concrete coalgebraic logics

P
TCX@A@L 0:LP=PT

Definition

Let X be a concrete category, let A be a variety of algebras, let P and S
establish a dual adjunction and let T: X — X be an endofunctor.

© An abstract coalgebraic logic for T is a pair (L,0) consisting of an
endofunctor L: A — A and a natural transformation 6: LP = PT.
@ A concrete coalgebraic logic for T is a triple (L, d, E) consisting of an

abstract coalgebraic logic (L, ) and a presentation E of L by
operations and equations.
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One-step completeness and expressivity

Definition

An abstract coalgebraic logic (L, d) for T is one-step complete if § is a
monomorphism, i.e., every component of J is injective.
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One-step completeness and expressivity

Definition

An abstract coalgebraic logic (L, d) for T is one-step complete if § is a
monomorphism, i.e., every component of J is injective.

For example, the abstract coalgebraic logic (O, d) for P is one-step
complete.

Definition

An abstract coalgebraic logic (L,d) for T is expressive if the
adjoint-transpose 61 is a component-wise monomorphism.

For example, the abstract coalgebraic logic (O, ) for Py, is expressive.
This is also known as the Hennessy-Milner property.
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Semi-primal duality

Let D be semi-primal bounded lattice-expansion, A := HSP(D) = ISP(D).
There is a dual equivalence
I_I/

Stonep . A

z/

Keimel, Werner 1974 [8] ; Clark, Davey 1998 [3]
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Semi-primal duality

Let D be semi-primal bounded lattice-expansion, .4 := HSP(D) = ISP(D).
There is a dual equivalence
n/

Stonep._ = T A
z/

Definition

The category Stonep has objects (X, v) where X € Stone and

v: X — S(D) is continuous w.r.t. the upset topology on S(D).

A morphism f: (X, v) = (Y, w) is a continuous map X — Y with
w(f(x)) < v(x) for all x € X.

Keimel, Werner 1974 [8] ; Clark, Davey 1998 [3]
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The subalgebra adjunctions

I—II

Stonep A

Stone BA
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The subalgebra adjunctions

For every S € S(D) there is an adjunction VS 4 CS.
VS sends X to (X, vS) where v3 is constant S.
CS sends (X, v) to the closed subspace {x € X | v(x) < S}.

I—II
Stonep . T A
Z,
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The subalgebra adjunctions

For every S € S(D) there is an adjunction VS 4 CS.

VS sends X to (X, vS) where v3 is constant S.

CS sends (X, v) to the closed subspace {x € X | v(x) < S}.
PBs, the dual of V3, takes a Boolean power.

Ks, the dual of CS, takes the Boolean skeleton of a quotient.

I—II

Stonep . T A
Z,

VS| CS Bs (| Ks
M
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The subalgebra adjunctions

Any (X, v) € Stonep can be recovered from all V3CS3(X, v) via the coend
Ses(D)
(X,v) = / VSCS(X, v).
I—II

Stonep A

z/
VS| CS PBs || Ks
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The subalgebra adjunctions

Any A € A can be recovered from all PBsKg(A) via the end

A %/ PsKs(A).
Ses(D)
I—II
Stonep A
z/
VS| CS PBs|+|Ks
M
Stone. = TBA

21/36



Lifting algebra-coalgebra dualities

Suppose T and L are duals of each other.
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Lifting algebra-coalgebra dualities

Suppose T and L are duals of each other. Define

(X, V) —/SVSTCS(X, v) and L’(A)—/sqssLKs(A).

Then T’ and L’ are duals of each other as well.

I—II

T @conen . A L’
Z/
vS[H|CS Ps || Ks

T Gtone BAg
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Lifting algebra-coalgebra dualities

For example, this can be used to obtain Maruyama's [14]
‘semi-primal version’ of Jénsson-Tarski duality from the ‘original’
Jénsson-Tarski duality.

|—|/
z/
VS|H|CS Bs[-|Ks

% @tone ’ BAi}
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Lifting algebra-coalgebra dualities

It can also be used to obtain a ‘semi-primal version’ of Dosen duality from

the original one as algebra/coalgebra duality described by Bezhanishuvilis,
de Groot [2]

I—I/
Nl Stonep {\—/* A &'
z/
VS| CS Bs || Ks

N| Stone ’ BAi}
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Forgetting topology

Definition

The category Stonep has objects (X, v) where X € Stone and

v: X — S(D) is continuous w.r.t. the upset topology on S(D).

A morphism f: (X,v) — (Y, w) is a continuous map X — Y with
w(f(x)) < v(x) for all x € X.
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A morphism f: (X,v) = (Y, w) is a continuous map X — Y with
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Forgetting topology

Definition

The category Setp has objects (X, v) where X € Set and

v: X — S(D) is-eontintotus—wrt—thetpset-topology-on-S{B}.

A morphism f: (X, v) = (Y, w) is a eentintous map X — Y with
w(f(x)) < v(x) for all x € X.
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Lifting abstract coalgebraic logics

Start with an abstract coalgebraic logic (L, d) for T.

P/
Setp ——— > 4

Sl
VS| CS Bs || Ks

P
TCSetf _BAi)L 0: LP = PT
S
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Lifting abstract coalgebraic logics

Start with an abstract coalgebraic logic (L, d) for T.
Similarly to before, we can lift T and L to T" and L'.

P/
- CSetD —— 1

Sl
VS| CS Bs || Ks

P
TCSet - BAg L 5:LP = PT
S
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Lifting abstract coalgebraic logics

Start with an abstract coalgebraic logic (L, d) for T.
Similarly to before, we can lift T and L to T" and L'.
Furthermore, we can define an appropriate ¢’ from 4.

Thus we obtain a many-valued abstract coalgebraic logic (L', ") for T'.

P/
T’ CSetD - A U 5 UP = P'T
Sl
V34| C3 Ps[I-|Ks
P
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How to obtain ¢’ from ¢

limit
LP/(X,v) = [y p) PsLKsP'(X. v) PsLKsP'(X, v)

P'T/(X,v) = f limit

S S
5oy PVETCS (X, v)

P'VSTCS(X,v)
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How to obtain ¢’ from ¢

L'P(X,v) = [0 PsLKsP' (X, ) Imit . rLKsP/(X, v)
F

PsLPCS(X, v)

PsPTCS(X, v)
limit F

PT(X,v) = |,

S S
5oy PVETCS (X, v)
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How to obtain ¢’ from §

limit
L'P/(X,v) = fs(D) PsLKsP'(X, v) ———— BsLKsP'(X, v)

mSLPCS(X, v)

PsoCS
;BS PTCS(X, v)

>~
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How to obtain ¢’ from ¢

limit
L'P'(X,v) = fS(D) PsLKsP'(X, v) PsLKsP'(X, v)

(X, v)

PsoCS

PsPTCS(X, v)

1

limit

PT(X,v) = |,

5oy PVETCS (X, v)

P'VSTCS(X, v)
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How to obtain ¢’ from ¢

LP/(X,v) = [y BsLKSP/(X,v) — ™ st P/ (X, v)

D
| S(X,v)
Ioix) PsoCS
PsPTCS(X, v)
PIT(X,v) = [y PVSTCS(X,v) —™, prvSTCS (X, v)
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One-step completeness and expressivity

Let (L, 0") be the lifting of (L,d) as on the previous slides.
@ If (L,0) is one-step complete, then (L', d") is one-step complete.
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Lifting concrete coalgebraic logics (1)

(x) 1 ifx>d
T4(x) =
I 0 if x #d.

Let L: BA — BA have a presentation by one unary operation [] and
equations which all hold in D if O is replaced by any 74, including the

equation O(x A y) = Ox A Oy.
Then L’ has a presentation by one unary operation [’ and the following

equations.
o [I' satisfies all equations which the original [J satisfies,

o '14(x) = 74(0'x) for all d € D\{0}. )
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Lifting concrete coalgebraic logics (2)

Tg(x): 0 ifx<d
1 ifx<Ld.

Let L: BA — BA have a presentation by one unary operation ¢ and
equations which all hold in D if { is replaced by any 7‘3, including the

equation O(x Vy) = OxV Qy.
Then L’ has a presentation by one unary operation ¢’ and the following

equations.
o ' satisfies all equations which the original ¢ satisfies,

o O'7I(x) = T9(¢'x) for all d € D\{1}.
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Many-valued modal logic as lifting of classical modal logic

The functor O has a presentation by O(x A y) = Ox AQy and 01 = 1.

P/

g2 CSetD p - A o'
g/
P

’PCSet p s BA3 O

S
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Many-valued modal logic as lifting of classical modal logic

The functor O has a presentation by O(x A y) = Ox AOy and 01 = 1.

Therefore, the functor O’ has a presentation by

O'(xAy) = OxAO'y, 0’1 =1 and O'74(x) = 74(00'x) for all d € D\{0}.
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Many-valued modal logic as lifting of classical modal logic

The functor O has a presentation by O(x A y) = Ox AOy and 01 = 1.

Therefore, the functor O’ has a presentation by
O'(xAy) = OxAO'y, 0’1 =1 and O'74(x) = 74(00'x) for all d € D\{0}.

(0, 0) is (one-step) complete = (O, §’) is (one-step) complete.
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Many-valued modal logic as lifting of classical modal logic

The functor O has a presentation by O(x A y) = Ox AOy and 01 = 1.
Therefore, the functor O’ has a presentation by

O'(xAy) = OxAO'y, 0’1 =1 and O'74(x) = 74(00'x) for all d € D\{0}.
(0, 0) is (one-step) complete = (O, §’) is (one-step) complete.
Replacing P by Pan: (O, 4) is expressive = (O', ') is expressive.

P/
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g/
P
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Lifted semantics

Definition

A Setp-(Kripke-)frame is a structure (W, v, R) with v: X — S(D) and
binary relation R C W? satisfying

wRw' = v(w') C v(w)

for all w,w’ € W.
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Lifted semantics

Definition
A Setp-(Kripke-)frame is a structure (W, v, R) with v: X — S(D) and
binary relation R C W? satisfying

wRw' = v(w') C v(w)

for all w,w’ € W.
A Setp-model adds a valuation Val: W x Prop — D which satisfies

Val(w, p) € v(w)

for all w € W.

For example, if D = L5 is the three-element MV-chain, the formula

O(p Vv —p).

is satisfied in a Setp-frame if and only if Yw3w’: wRw’ A v(w') = 2, while

it is not satisfied in any frame.
30/36



Alternative axiomatizations: Some case studies (1)

If D=1, is a finite MV-chain, then O’ has a presentation by

(B1) O1 =1, (B3) O(x @ x) = Ox @ Okx,
(B2) O(x A y) =0Ox A0y, (B4) O(x ® x) = Ox ® Ox.
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If D=1, is a finite MV-chain, then O’ has a presentation by

(B1) O1=1, (B3) O(x & x) =Ox & Ox,
(B2) O(x A y) =0Ox A0y, (B4) O(x ® x) = Ox ® Ox.

If D is a finite bounded residuated lattice with 7 (monoid unit e) and
truth-constants, then (O’ has a presentation by

(B1) O1=1, (B3) 7e(Ox) = O7e(x),
(B2) O(x Ay)=0xA0y, (B4) O(r\x) = r\Ox for all r #0.

In particular, if D is a finite FLey-algebra with truth-constants where only
0,1 are idempotent, then O has a presentation by

(B1) O1 =1, (B3) O(x ®x) = Ox ® Ox,
(B2) O(x Ay)=0Ox A0y, (B4) O(r—x) = r—0Ox all r #0.
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Alternative axiomatizations: Some case studies (2)

If D is a finite bi-Heyting algebra with truth-constants and with a unique
atom and coatom, then O’ has a presentation by

(B1) O1 =1,

(B2) O(x Ay)=0OxA0y,

(B3) O(—~(14x)) = =(1+-0Ox),
(B4) O(b—x) = b—Ox all b#0,
(P1) O(x Vv y) <OxVy,

= Ox V Oy,
(1(*(—|X)) = 1(—(—|<>X),
=0Ox+« ball b#1,

32/36



Many-valued modal logic for crisp neighborhoods

The neighborhood functor N is the contravariant powerset functor

composed with itself. The functor £ has a presentation by one unary
operation [ and no equations.

P/
N’CSGtD . | &'
S/
P
NCset r— Y Y P>
S
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Many-valued modal logic for crisp neighborhoods

The neighborhood functor N is the contravariant powerset functor

composed with itself. The functor £ has a presentation by one unary
operation [ and no equations.

(€,9) is (one-step) complete = (£’,¢') is (one-step) complete.
Replacing N by Ngn: (€,9) is expressive = (£',8") is expressive.

We don't know a concrete presentation for £, unless D is primal [11]

P/
N’CSGtD . | &'
S/
P
NCset ————BA )¢
S

33/36



Conclusion

@ Semi-primal lattice expansions are ‘well-behaved’ algebras of
truth-degrees D for many-valued coalgebraic logics.
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Conclusion

@ Semi-primal lattice expansions are ‘well-behaved’ algebras of
truth-degrees D for many-valued coalgebraic logics.

@ ‘Semi-primal versions’ of algebra/coalgebra dualities like
Jénsson-Tarski or DoSen duality can be obtained from their classical
counterparts.

@ Similarly, ‘semi-primal versions’ of coalgebraic logics can be obtained
from their classical counterparts.

@ One-step completeness, expressivity and finite axiomatizability are
preserved under this process.

@ Sometimes, one may obtain axiomatizations of the lifted many-valued
logic directly from an axiomatization of the original classical one. In
particular, this works for classical modal logic.
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Future Research

Investigate broader classes of algebras of truth-degrees, e.g.
@ Quasi-primal = Finite discriminator algebras
o Lattice-(semi-)primal algebras
e Infinite algebras, e.g., standard MV-chain [0, 1]
Investigate broader classes of logics, e.g.
@ Many-valued modal logic with many-valued accessibility relation
@ Positive Modal Logic
@ Probabilistic Logic
°

Dynamic Logic
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Thanks for your attention!

Preprint:

Kurz, A., Poiger, W., and Teheux, B.: Many-valued coalgebraic logic over semi-primal
varieties

https://arxiv.org/abs/2308.14581
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