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Recent complexity results and methods for substructural logics

Part I: Upper bounding using well-quasi-orderings

Part II: Axiomatising a tighter upper bound argument for fragments
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Part I: Upper bounding using well-quasi-orderings

Substructural logics: remove some structural properties. . .

. . . contraction, weakening, exchange, . . .

Consider a sequent calculus for intuitionistic logic with explicit rules for
above properties

X ,U,V ,Y ⇒ C
e

X ,V ,U,Y ⇒ C

X ⇒ C w
X ,U ⇒ C

X ,U,U ⇒ C
c

X ,U ⇒ C

The intuitionistic calculus is essentially what is known as FLewc

Now delete any subset of {e,w , c} to get FLew, FLec, FLc. . .

More logics through axioms e.g., MTL = FLew + (p → q) ∨ (q → p)

Decidability and upper bounding, proof theoretically: proof search
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The sequent calculus FLewc

Multiplicative rules

p ⇒ p

A,B,X ⇒ C

A · B,X ⇒ C

X ⇒ A Y ⇒ B
X ,Y ⇒ A · B

A,X ⇒ B

X ⇒ A→ B

X ⇒ A B,Y ⇒ C

A→ B,X ,Y ⇒ C

⇒ 1
X ⇒ C

1,X ⇒ C
X ⇒
X ⇒ 0 0⇒

Additive rules

Ai ,X ⇒ C

A1 ∧ A2,X ⇒ C

X ⇒ A X ⇒ B
X ⇒ A ∧ B

A,X ⇒ C B,X ⇒ C

A ∨ B,X ⇒ C

X ⇒ A1

X ⇒ A1 ∨ A2

Structural rules

X ,U,V ,Y ⇒ C
e

X ,V ,U,Y ⇒ C

X ⇒ C w
X ,U ⇒ C

X ,U,U ⇒ C
c

X ,U ⇒ C
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Intuitionistic decidability and complexity upper bound

Let input formula F have size n. Then: |subf(F )| ≤ n.

Define proof search tree rooted at input ⇒ F

(write down, at each node, the premises of each applicable rule instance)

This is non-terminating (e.g., keep applying c) so need to refine proof
search tree construction while retaining completeness:

- Search for minimal proofs (terminate at repeats)

- Logical property: in X ⇒ C , treat X as set rather than list

- Slightly modify calculus so antecedent is a strictly increasing set

Then every branch in proof search tree has length ≤ n

Decidability immediate, also PSPACE membership
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Kripke’s decidability argument for FLec (1959)

Logical property: in X ⇒ C , we can regard X as a multiset

multiset: record multiplicity of each element (not just membership)

Observation: no explicit contraction rule if the other rules incorporate a
fixed amount of contraction

Curry’s lemma: modified proof calculus has height-preserving contraction

Search for minimal proofs (Curry’s lemma justifies termination at a node if
its label sj can be contracted to label si that occurs closer to root)

So a branch (s0, s1, . . .) in the proof search tree is now a sequence of
sequents without an increasing pair i.e., i < j implies si 6�c sj
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Refined proof search: no increasing pair along a branch (s0, s1, . . .)

s3 �c sN+1 so don’t write down sN+1

s0

. . .

s3 = (2, 2)⇒C

sN

sN+1 = (3, 2)⇒C

By construction, (s0, s1, s2, . . . , sN) satisfies ∀ij .i < j implies si 6�c sj

Is every branch finite? Max length? Enter well-quasi-orders (wqo)
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Well-quasi-orders

4 reflexive and transitive binary relation on set X such that

every sequence (a0, a1, a2, . . .) in X without an increasing pair is finite

Example: (N,≤) is a wqo: 7, 5, 4, 2, 0 and that’s it

More generally, wqo extends well-foundedness

8



More examples of wqos

- (N2,≤) with product order (a1, b1) ≤ (a2, b2) if a1 ≤ a2 and b1 ≤ b2

So (2, 2) ≤ (3, 4). But (2, 2) 6≤ (3, 1) and (3, 1) 6≤ (2, 2).

Why is (Nd ,≤) a wqo? Suppose that (ai )i∈N does not contain an
increasing pair. Then it has subsequence (ar1(i))i∈N that is increasing in the
first coordinate. The latter has subsequence (ar2(i))i∈N that is increasing in
the first two coordinates. Ultimately, obtain subsequence increasing in
every coordinate, hence we find an increasing pair. Contradiction.
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More examples of wqos

- (N2,≤) with product order (a1, b1) ≤ (a2, b2) if a1 ≤ a2 and b1 ≤ b2

- If (X ,�1) and (Y ,�2) are wqos, then (X × Y ,≺(1,2)) is a wqo

- Let Ω be a finite set of formulas. Define the set of sequents

SΩ = {X ⇒ C | X is multiset in Ω and C ∈ Ω ∪ {ε}}

Define contraction ordering X ⇒ C �c Y ⇒ C iff Y ⇒ C can be made
X ⇒ C using contraction rule

Then (SΩ,�c) is a wqo.

Finiteness of proof search tree in FLec is now evident, hence its
decidability.

It will be convenient to ignore succedent and approximate SΩ as simply Nd

where d = |Ω|, and even ignore that contraction is not exactly the product
ordering, and hence regard the wqo as (Nd ,≤).
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Towards complexity: max length of bad sequences

A seq without increasing pair is called a bad sequence. Here is a bad
sequence in (N,≤):

7, 5, 4, 2, 0︸ ︷︷ ︸
length=5

bad sequence length depends on starting element

What is max length of a bad sequence in (N2,≤) starting at (2, 2)?

example 1: (2, 2), (4, 1), (3, 1), (2, 1), (1, 1), (0, 1), (0, 0)

example 2: (2, 2), (4000, 1), (3999, 1), (3998, 1), . . .

Finite but no max length

reason: arbitrary jumps like 2 7→ 4000
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Controlled bad sequences

Restrict magnitude of jumps using a control function g

a0︸︷︷︸
‖a0‖≤t

a1 . . . ai︸︷︷︸
‖ai‖≤g i (n)

. . . aLgW (‖a0‖)

(
control function g : N→ N is monotone with g(n) ≥ n

‖a0‖ ≤ t ‖ai‖ ≤ g i (n) {a ∈ X | ‖a‖ ≤ n} is finite for every n
)

König’s lemma: every (g , t)-controlled bad sequence has maximum length

(Consider enumeration tree of all (g , t)-controlled bad sequences)

Lg
W : N→ N assigns, to each t ∈ N, the maximum length of a

(g , t)-controlled bad sequence
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Controlled bad sequences

Restrict magnitude of jumps using a control function g

a0︸︷︷︸
‖a0‖≤t

a1 . . . ai︸︷︷︸
‖ai‖≤g i (n)

. . . aLgW (‖a0‖)

For (Nd ,≤) it depends on control function g , starting size t, and d

Removing d , and with g prim rec: upper bounded by Ackermann function
(McAloon 1984, Figueira Figueira Schmitz Schnoebelen 2011)

Orderings over Pf (Nd): length function upper bounded by
hyper-Ackermann function (Balasubramanian 2020)

X ≤maj Y iff ∀x ∈ X .∃y ∈ Y .x ≤ y X ≤min Y iff ∀y ∈ Y .∃x ∈ X .x ≤ y

Fast-growing complexity classes (Schmitz)
Fω an Ackermannian function closed under primrec functions

Fωω a hyper-Ackermannian function closed under Ackermannian functions

FLec is Fω-complete (Urquhart, 1999)
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From FLec to its axiomatic extensions

Observation: the arguments are not sensitive to the form of the proof
rules. However, we do need subformula property (analyticity) as it ensures
fixed dimension for the wqo

Many axiomatic extensions of FL have analytic (hyper)sequent calculi
(Ciabattoni Galatos Terui 2008) based on substructural hierarchy of axioms

hypersequent = multiset of sequents

h | Γ1,∆1 ⇒ Π1 h | Γ2,∆2 ⇒ Π2
com

h | Γ1, Γ2 ⇒ Π1|∆1,∆2 ⇒ Π2

Theorem (RR 2020)

Every hypersequent calculus extension of FLec is decidable.

Theorem (Balasubramanian, Lang, RR 2021)

Every hypersequent calculus extension of FLec and FLew is in Fωω

Prominent fuzzy logic MTL is in Fωω .

Argument for extensions of FLew uses forward proof search

12



Further results

Contraction, weakening generalise to knotted axioms xn → xm for n > 0

Exchange can be replaced by weaker forms of commutativity

xy1xy2 · · · ykx ↔ xa0y1x
a1y2 · · · ykxak with a0 + a1 + · · ·+ ak = k + 1

For these generalisations, we develop corresponding wqos and length
theorems to get decidability and upper bounds

Also, complexity of deducibility problem (is F deducible from finite set Γ?)

We also obtain lower bounds using algebraic counter machines, extending
work by Galatos and St John (2022), reduction from Urquhart’s EACMs

Upper bounds: axiomatic extensions with cut-free (hyper)sequent calculus

Theorem (Greati, RR 2024)

FLw is Fωω -complete.

Theorem (Galatos, Greati, RR, St John (in preparation))

The complexity of deducibility in an extension of FL by (weak) commutativity
and a non-integral knotted axiom is Fω-complete.
Deducibility for extensions with sequent axioms is in Fω, and with hypersequent
axioms is in Fωω .
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Logic(s) Provability Deducibility

Decidability LB UB Decidability LB UB

FLe FMP[113] PS[114] pspace [54] pspace [54] N[93] – –

B
a
se

lo
g
ic

s

FLew FMP[113] PS[114] pspace [54] pspace [54] FEP[52] PS(6.5)b tower [96] tower [96]
FLec FMP[113] PS[115] F! [58] F! [58] FEP[52] PS[115]a F! [58] F! [58]a

FLec(m,1), m > 2 FEP[52] PS[53] F!(10.4)a F!(5.20) FEP[52] PS[53] F!(10.4) F!(5.20)
FLec(m,n), n � 2 FEP[52] PS(5.19) F!(10.4)a F!(5.20) FEP[52] PS(5.19) F!(10.4) F!(5.20)
FLe(~a)c(m,n) FEP[56] PS(7.30) pspace [54] F!(7.31) FEP[56] PS(7.30) F!(10.4) F!(7.31)
FLew(1,n), n � 2 FEP[52] PS[53] pspace [54] pspace [54] FEP[52] PS(6.5) F!(11.15) F!(6.14)
FLew(m,n), m � 2 FEP[52] PS(6.5) pspace [54] F!(6.14) FEP[52] PS(6.5) F!(11.15) F!(6.14)
FLe(~a)w(m,n) FEP[56] PS(7.33) pspace [54] F!(7.35) FEP[56] PS(7.33) F!(11.15) F!(7.35)
FLi FMP[113] PS[114] pspace [54] pspace [54] FEP[105] PS[59] F!! [59] F!! [59]
FLc(m,n) N[60] – – N[94] – –
FLw(1,2) FMP[67] PS[54] pspace [54] pspace [54] FEP[107] open open
FLw(1,n) FMP[67] PS[54] pspace [54] pspace [54] open open open
FLw(m,n), m > 1 open pspace [54] open N[94] – –

A
✓

N
2

FLec(A) FEP[56] PS[66] F!(10.12)c F! [65] FEP[56] PS[65]a F!(10.4)c F! [65]a

FLec(m,n)(A) FEP[56] PS(5.19) F!(10.12)c F!(5.20) FEP[56] PS(5.19) F!(10.4)c F!(5.20)
FLe(~a)c(m,n)(A) FEP[56] PS(7.30) F!(10.12)c F!(7.31) FEP[56] PS(7.30) F!(10.4)c F!(7.31)
FLew(A) FEP[56] PS[65] pspace [54] F! [65] FEP[56] PS(6.5) F!(11.15)c F! [65]a

FLew(m,n)(A) FEP[56] PS(6.5) pspace [54] F!(6.14) FEP[56] PS(6.5) F!(11.15)c F!(6.14)
FLe(~a)w(m,n)(A) FEP[56] PS(7.33) pspace [54] F!(7.35) FEP[56] PS(7.33) F!(11.15)c F!(7.35)
FLi(A) FEP[67] PS[59] pspace [54] F!! [59] FEP[67] PS[59] pspace [54] F!! [59]

A
✓

P
[ 3

FLec(A) FEP(3.3) PS[65] open F!! [65] FEP(3.3) PS[65]a open F!! [65]a

FLec(m,n)(A) FEP(3.3) PS(5.19) open F!! (5.20) FEP(3.3) PS(5.19) open F!! (5.20)
FLe(~a)c(m,n)(A) FEP(3.3) PS(7.30) open F!! (7.31) FEP(3.3) PS(7.30) open F!! (7.31)
FLew(A) FEP(3.3) PS[65] open F!! [65] FEP(3.3) PS(6.5) open F!! [65]a

FLew(m,n)(A) FEP(3.3) PS(6.5) open F!! (6.14) FEP(3.3) PS(6.5) open F!! (6.14)
FLe(~a)w(m,n)(A) FEP(3.3) PS(7.33) open F!! (7.35) FEP(3.3) PS(7.33) open F!! (7.35)
FLi(A) FEP(3.3) PS(8.13) open F

!!!! (8.20) FEP(3.3) PS(8.13) open F
!!!! (8.20)

a By a deduction theorem for the corresponding logic.
b [96] provides a proof-search procedure that demands a translation to another logic, while ours does not demand translations.
c Under strict conditions on A, described in the linked references/results. For the other cases, the PSPACE[54] lower bound

applies.

Table 1: Complexities of substructural logics having an analytic hypersequent calculus. Columns ‘LB’ and ‘UB’
provide respectively lower and upper bounds for the logics. A cell with ‘open’ indicates that we do not have
results for the corresponding class of logics (or subclasses thereof), while ‘–’ means that the property does not
apply to the logic (in view of undecidability). By ‘FMP’ we mean the finite model property, by ‘FEP’ we mean
the finite embeddability property and by ‘PS’ we mean the existence of a proof-search procedure for the logic.
The contributions of this paper are marked in blue.
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Part II: Tighter upper bounds for fragments

The lower bounding argument for FLec makes crucial use of the lattice
connectives

So what is the complexity of the multiplicative fragment Lec?

Schmitz 2016: Lec is 2EXPTIME-complete

Argument via automata-theoretic reductions using crucial result by (Demri
et al 2013)

Lazić & Schmitz 2021: new algebraic upper bounding argument for
suitable transition systems

Collaboration with Amir Akbar Tabatabai and Adrián Puerto Aubel:

- Axiomatise what is needed to make that argument work

- Abstract the idea of infinitely many copies of a formula in a sequent

- Extend to further logics

Aim here: informal motivation for the reliance on multiplicative rules,
introduce our abstraction
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Lazić & Schmitz’s argument specified to Lec

Input: sequent s ∈ Lec. Let’s ignore succedent and consider s ∈ Nd

Define Dk as the collection of finite sets from which no element above s is
deducible in at most k steps:

Pf (Nd) ⊇ Dk = {S ⊆f Nd | S 6`k x for every x ≥ s}

Pf (Nd\ ↑ s) = D0 ⊇ D1 ⊇ D2 ⊇ . . .

Recall: (Pf (Nd),≤maj) is a wqo. Here X ≤maj V iff ∀x ∈ X∃y ∈ Y .x ≤ y

Also, each Di can be checked to be downset wrt ≤maj. This implies
stabilisation at some step L(s):

D0 ⊃ D1 ⊃ D2 ⊃ . . . ⊃ DL(s) = DL(s)+1

The idea is to give a sharper (primrec) bound on L(s) utilising the fact
that the proof calculus is Lec (multiplicative)
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Measuring {Di}
L(s)
i=0 through decomposition as union of ideals

It can be shown that Dk = ∪iPf (Dk,i ) for downsets Dk,i ⊆ Nd

D ⊆ Nd downset has a unique decomposition as D = ∪s
j=1Ij such that

I = ↓(ai1, . . . , aid) and each air ∈ N ∪ {ω}

Let I = ↓(a1, . . . , ad). We can measure the extent to which I is (in)finite:

|I | := max{ai | ai < ω} (its finite-size is largest finite coordinate)

ω(I ) := {i | ai = ω} (its infinite-size is set of infinite coordinates)

For downset D = ∪s
j=1Ij ⊆ N, define |D| = maxsj=1 |Ij |

For downset D = ∪iPf (Di ) ⊆ Pf (Nd), define |D| = maxi |Di |

It can be shown: for 0 ≤ i ≤ L(s): |Di | ≤ g i (|D0|)

Next: transfer this size control to a suitable chain of ideals on Nd
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Selecting a sequence {Ij}
L(s)−2
j=0

D0 ⊃ Dk ⊃ DL(s)

⊇

Pf (Dk)

D0 ⊃ Dk ⊃ DL(s)−1

⊇

Ik

By suitable choice of D0 ⊃ D1 ⊃ . . . ⊃ DL(s)−1, identify {Ij}L(s)−2
j=0 such that

(i) Ik is a maximal ideal in Dk but not in Dk+1 for k ≤ L(s)− 3

(ii) ω(Ik) ⊇ ω(Ik+1) (set of infinite coordinates decreases in ≤ d steps)

(iii) for i < j ≤ L(s)− 2, if ω(Ii ) = ω(Ij) then |Ij | ≤ g i (|D0|)
(at a plateau, the ideals do not increase in finite-size; this means that we
can bound the length c(ω(Ii ), g

i (|D0|)) of plateau by enumerating)

This is enough to upper bound L(s) by counting
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Selecting a sequence {Ij}
L(s)−2
j=0 (cont)

By suitable choice of D0 ⊃ D1 ⊃ . . . ⊃ DL(s)−1, identify {Ij}L(s)−2
j=0 such that

(i) Ik is a maximal ideal in Dk but I 6⊆ Dk+1

(ii) ω(Ik) ⊇ ω(Ik+1)

(iii) for i < j ≤ L(s)− 2, if ω(Ii ) = ω(Ij) then |Ij | ≤ g i (|D0|)

Let us motivate how to obtain these properties.

Identify rule instance with premises in Dk+1 and conclusion in Dk \ Dk+1

We need to relate with ideals, since that is where we have some control

Lift rule instance to ideals, relying on multiplicativity (the point is that a
premise can be increased independently and still be a legal rule instance)

x ⇒ C y ⇒ D

x , y ⇒ C .D

↑x ⇒ C y ⇒ D

↑x , y ⇒ C .D

Notation. Ŝ := S ∪ {x | S `1 x} (sequents provable in a single step)
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Abstract version of Lazić & Schmitz’s tighter upper bound argument

Definition
An measured wqo (X ,≤, ω, | · |) is defined

1. (X ,≤) is a wqo, and | · | : Id(X ,≤)→ N is a norm function on (X ,≤)

2. ω : Id(X ,≤)→ (V ,�) where (V ,�) is a poset, and
(i) monotonicity: I ⊆ J implies ω(I ) � ω(J)

(ii) complement: if I ⊆ J and ω(I ) = ω(J), then |I | ≤ |J|

Definition
A measured proof system (X ,≤, ω, | · |,P, g) is defined

1. (X ,≤, ω, | · |) is measured wqo, P proof system over X , g control function

2. x ≤ y then {y} ` x (proof-theoretic admissibility of the contraction rule)

3. (S , y) ∈ P and I ∩ S 6= ∅, then ∃J ∈ Id(X ,≤) s.t. J ⊆↓ Ŝ ∪ I , and y ∈ J,
ω(I ) � ω(J)

4. . . .

Theorem (Akbar Tabatabai, Puerto Aubel, RR (in preparation))

Let (X ,≤, ω, | · |,P, g) be a measured proof system. n := |D0|, Ω ≺ Ω′ ≺ . . .

L(s) ≤ 2+c(Ω, n)+c(Ω′, g c(Ω,n)(n))+c(Ω′′, g c(Ω′,gc(Ω,n))(n))+. . .+s(Ω
′...′ , . . .)
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Open problems

Decidability of FLe + x → x2 ∨ 1 is open: it seems beyond reach of the
(wqo admissibility, minimal proofs) technology

X ,X ,Z ⇒ C Z ⇒ C

X ,Z ⇒ C

Contraction uses backward proof search, weakening uses forward. Can we
unify?

Building on methods by Blok, van Alten, Galatos, Jipsen and others, we
obtain algebraic counter models via FEP. How to bound the size of these
models?

No non-trivial lower bound known for MTL (FLew + (p → q) ∨ (q → p))

More generally, how to extend lower bounding methods to hypersequent
calculi?
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