
LLAMA Seminar

From Regular Expressions
to Star Fragments
Todd Schmid

St. Mary’s College of California (Bucknell University starting in July)

Based on Coalgebraic Completeness Theorems for Effectful Process Calculi, UCL, 2023 and joint work with

Wojciech Rozowski (UCL) Tobias Kappé (Open Universiteit)

Dexter Kozen (Cornell University) Jurriaan Rot (Radboud University) Alexandra Silva (Cornell University)

This Talk

1. Regular expressions and regular languages

2. Axioms for language equivalence á la Salomaa

3. Process (bisimilarity) semantics of regular expressions

4. Guarded Kleene Algebra with Tests mod bisimilarity

5. What these process algebras have in common

6. Star Fragments

7. Open Problems

Regular Languages

q0

q2

q1

q0q3

a

b

b

a

ba

(Kleene, 1956)

X → {⊥, ⊤} × XA

Regular Languages

q0

q2

q1

q0q3

a

b

b

a

ba

(Kleene, 1956)

X → {⊥, ⊤} × XA

Regular Languages

q0

q2

q1

q0q3

a

b

b

a

ba

ab

(Kleene, 1956)

X → {⊥, ⊤} × XA

Regular Languages

q0

q2

q1

q0q3

a

b

b

a

ba

ab, aaab

(Kleene, 1956)

X → {⊥, ⊤} × XA

Regular Languages

q0

q2

q1

q0q3

a

b

b

a

ba

ab, aaab, bb

(Kleene, 1956)

X → {⊥, ⊤} × XA

Regular Languages

q0

q2

q1

q0q3

a

b

b

a

ba

ab, aaab, bb, babb

(Kleene, 1956)

X → {⊥, ⊤} × XA

Regular Languages

q0

q2

q1

q0q3

a

b

b

a

ba

L = {ab, aaab, bb, babb, …}

(Kleene, 1956)

X → {⊥, ⊤} × XA

Regular Languages

q0

q2

q1

q0q3

a

b

b

a

ba

L = {ab, aaab, bb, babb, …}

= (aa + ba)*(ab + bb)

Regular expressions: 
syntax for regular languages

(Kleene, 1956)

X → {⊥, ⊤} × XA

Regular Expressions and Regular Languages

q0

q2

q1

q0q3

a

b

b

a

ba

(aa + ba)*(ab + bb) 𝖱𝖾𝗀𝖤𝗑 ∋ e, f ::= 0 ∣ 1 ∣ p ∈ Σ ∣ e + f ∣ ef ∣ e*

L : 𝖱𝖾𝗀𝖤𝗑 ⟶ 𝒫(Σ*)

L(0) = ∅ L(1) = {ε} L(p) = {p}

L(e + f) = L(e) ∪ L(f) L(ef) = L(e)L(f) L(e*) = ⋃
n∈ω

L(e)n

(Kleene, 1956)

 iff is recognized by a deterministic finite automaton.L = L(r) L

Regular Expressions and Regular Languages

b

q0

q2

q1

q0q3

a

b

b

a

ba

p0

p1

q0p2

a, b

a

Regular Expressions and Regular Languages

b

q0

q2

q1

q0q3

a

b

b

a

ba

p0

p1

q0p2

a, b

a

Regular Expressions and Regular Languages

b

q0

q2

q1

q0q3

a

b

b

a

ba

p0

p1

q0p2

a, b

a

Regular Expressions and Regular Languages

b

q0

q2

q1

q0q3

a

b

b

a

ba

p0

p1

q0p2

a, b

a

Regular Expressions and Regular Languages

b

q0

q2

q1

q0q3

a

b

b

a

ba

p0

p1

q0p2

a, b

a

Regular Expressions and Regular Languages

b

q0

q2

q1

q0q3

a

b

b

a

ba

p0

p1

q0p2

a, b

aR
bisimulation

Regular Expressions and Regular Languages

b

q0

q2

q1

q0q3

a

b

b

a

ba

p0

p1

q0p2

a, b

aR
bisimulation

For DFAs,

Regular Expressions and Regular Languages

b

q0

q2

q1

q0q3

a

b

b

a

ba

p0

p1

q0p2

a, b

aR
bisimulation

For DFAs,

- bisimilarity = language equivalence

Regular Expressions and Regular Languages

b

q0

q2

q1

q0q3

a

b

b

a

ba

p0

p1

q0p2

a, b

aR
bisimulation

For DFAs,

- bisimilarity = language equivalence

- Using (Hopcroft, Karp, 1971),
bisimilarity is checked in almost
linear time

Regular Expressions and Regular Languages

b

L((aa + ba)*(ab + bb)) = L(((a + b)a)*b)

q0

q2

q1

q0q3

a

b

b

a

ba

p0

p1

q0p2

a, b

aR
bisimulation

For DFAs,

- bisimilarity = language equivalence

- Using (Hopcroft, Karp, 1971),
bisimilarity is checked in almost
linear time

Regular Expressions and Regular Languages

b

⊢ (aa + ba)*(ab + bb) = ((a + b)a)*b ?

For DFAs,

- bisimilarity = language equivalence

- (Hopcroft, Karp, 1971) Bisimilarity
is checked in nearly linear time

(Kleene, 1956)

Give a complete axiomatization

of language equivalence of
regular expressions

q0

q2

q1

q0q3

a

b

b

a

ba

p0

p1

q0p2

a, b

aR
bisimulation

L((aa + ba)*(ab + bb)) = L(((a + b)a)*b)

Axiomatizing Language Equivalence

(Salomaa, 1964) A complete axiomatization of language equivalence of regular expressions:

Axiomatizing Language Equivalence
(Milner, 1984) Rephrased Salomaa’s rules as follows:

Axiomatizing Language Equivalence
(Milner, 1984) Rephrased Salomaa’s rules as follows:

Milner rephrased

Salomaa’s axioms to

make them easier to

adapt to a different

(process) semantics.

Deciding language equivalence

Regular Expressions

(aa + ba)*(ab + bb)

Deciding language equivalence

Regular Expressions

(aa + ba)*(ab + bb)

Thompson Construction,

SOS,

Antimirov Derivatives

Deciding language equivalence

Regular Expressions

(aa + ba)*(ab + bb)

Nondeterministic FAs

a, b
a

a, b

b

X → {⊥, ⊤} × 𝒫(X)A

Thompson Construction,

SOS,

Antimirov Derivatives

Deciding language equivalence

Regular Expressions

(aa + ba)*(ab + bb)

Nondeterministic FAs

a, b
a

a, b

b

X → {⊥, ⊤} × 𝒫(X)A
(Determinize)

Thompson Construction,

SOS,

Antimirov Derivatives

Deciding language equivalence

Regular Expressions DFAs

(aa + ba)*(ab + bb)

Nondeterministic FAs

a, b
a

a, b

b

X → {⊥, ⊤} × 𝒫(X)A
(Determinize)

Thompson Construction,

SOS,

Antimirov Derivatives

Deciding language equivalence

Regular Expressions DFAs

(aa + ba)*(ab + bb)

Nondeterministic FAs

a, b
a

a, b

b

X → {⊥, ⊤} × 𝒫(X)A
(Determinize)

Thompson Construction,

SOS,

Antimirov Derivatives

Check for

Bisimilarity

R

Deciding language equivalence

Regular Expression

(aa + ba)*(ab + bb)

Bisimilarity here?Thompson Construction,

Operational Semantics,

Antimirov Derivatives

DFAs

(Determinize)

Check for

Bisimilarity

R

(Milner, 1984)

Nondeterministic FAs

a, b
a

a, b

b

X → {⊥, ⊤} × 𝒫(X)A

Bisimilarity for NFAs is Finer than Language Equivalence

q0

a

b

q0

c

q0

a

b

q0

c

a

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

q0

a

b

q0

c

q0

a

b

q0

c

a
Bisimilarity

Language

Equivalence

⇓

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

q0

a

b

q0

c

q0

a

b

q0

c

a
Bisimilarity

Language

Equivalence

⇓
Bisimilarity

Language

Equivalence

⇑

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

q0

a

b

q0

c

q0

a

b

q0

c

a
Bisimilarity

Language

Equivalence

⇓
Bisimilarity

Language

Equivalence

⇑

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

q0

a

b

q0

c

q0

a

b

q0

c

a
Bisimilarity

Language

Equivalence

⇓
Bisimilarity

Language

Equivalence

⇑

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

q0

a

b

q0

c

q0

a

b

q0

c

a
Bisimilarity

Language

Equivalence

⇓
Bisimilarity

Language

Equivalence

⇑

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

q0

a

b

q0

c

q0

a

b

q0

c

a
Bisimilarity

Language

Equivalence

⇓
Bisimilarity

Language

Equivalence

⇑

Not all axioms are sound!
(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

By deleting these
axioms, Milner

obtains a sound
axiomatization of

bisimilarity.

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

By deleting these
axioms, Milner

obtains a sound
axiomatization of

bisimilarity.

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

By deleting these
axioms, Milner

obtains a sound
axiomatization of

bisimilarity.

(Milner, 1984)

Is this axiomatization

complete?

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

By deleting these
axioms, Milner

obtains a sound
axiomatization of

bisimilarity.

(Milner, 1984)

Is this axiomatization

complete?

(Grabmayer, 2022)

Yes!

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner’s axioms for regular expressions modulo bisimilarity:

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner’s axioms for regular expressions modulo bisimilarity:

Equational Branching Axioms

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner’s axioms for regular expressions modulo bisimilarity:

Equational Branching Axioms Sequencing Axioms

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner’s axioms for regular expressions modulo bisimilarity:

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner’s axioms for regular expressions modulo bisimilarity:

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

Unguarded Fixed-point Axiom

A Similar Situation: Guarded Kleene Algebra with Tests

α ∣ p

ᾱ ∣q

⊤∣r α ∨ β ∣ p

β⟹

A Similar Situation: Guarded Kleene Algebra with Tests

- An algebra of propositional WHILE programs
α ∣ p

ᾱ ∣q

⊤∣r α ∨ β ∣ p

β⟹

A Similar Situation: Guarded Kleene Algebra with Tests

- An algebra of propositional WHILE programs

- (Kozen, Tseng, 2008) Syntax and language 
semantics from Kleene Algebra with Tests

α ∣ p

ᾱ ∣q

⊤∣r α ∨ β ∣ p

β⟹

A Similar Situation: Guarded Kleene Algebra with Tests

- An algebra of propositional WHILE programs

- (Kozen, Tseng, 2008) Syntax and language 
semantics from Kleene Algebra with Tests

- (Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)  
- Operational semantics, almost linear decision procedure 
- Propose a Salomaa-like axiomatization of language equivalence

α ∣ p

ᾱ ∣q

⊤∣r α ∨ β ∣ p

β⟹

A Similar Situation: Guarded Kleene Algebra with Tests

- An algebra of propositional WHILE programs

- (Kozen, Tseng, 2008) Syntax and language 
semantics from Kleene Algebra with Tests

- (Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)  
- Operational semantics, almost linear decision procedure 
- Propose a Salomaa-like axiomatization of language equivalence

- (S., Kappé, Kozen, Silva, 2021)  
- Infinite tree semantics = bisimilarity 
- Propose a Salomaa-like axiomatization of bisimilarity

α ∣ p

ᾱ ∣q

⊤∣r α ∨ β ∣ p

β⟹

Guarded Kleene Algebra with Tests

𝖡𝖤𝗑𝗉 ∋ b, c ::= 0 ∣ 1 ∣ t ∈ T ∣ b ∨ c ∣ b ∧ c ∣ b̄

Guarded Kleene Algebra with Tests

𝖡𝖤𝗑𝗉 ∋ b, c ::= 0 ∣ 1 ∣ t ∈ T ∣ b ∨ c ∣ b ∧ c ∣ b̄Generates an atomic Boolean

algebra with atoms .
At = 2T

𝖡𝖤𝗑𝗉/ =𝖡𝖠 ≅ 𝒫(2T)

Guarded Kleene Algebra with Tests

𝖡𝖤𝗑𝗉

𝖦𝖤𝗑𝗉 ∋ e, f ::= b ∈ 𝖡𝖤𝗑𝗉 ∣ p ∈ Σ ∣ e +b f ∣ ef ∣ e(b)

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Generates an atomic Boolean

algebra with atoms .
At = 2T

𝖡𝖤𝗑𝗉 𝖡𝖠 𝒫

Guarded Kleene Algebra with Tests

𝖡𝖤𝗑𝗉

𝖦𝖤𝗑𝗉 ∋ e, f ::= b ∈ 𝖡𝖤𝗑𝗉 ∣ p ∈ Σ ∣ e +b f ∣ ef ∣ e(b)

assert b

⇓
b

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Generates an atomic Boolean

algebra with atoms .
At = 2T

𝖡𝖤𝗑𝗉 𝖡𝖠 𝒫

Guarded Kleene Algebra with Tests

𝖡𝖤𝗑𝗉

𝖦𝖤𝗑𝗉 ∋ e, f ::= b ∈ 𝖡𝖤𝗑𝗉 ∣ p ∈ Σ ∣ e +b f ∣ ef ∣ e(b)

assert b

⇓
b

do p

⊤

⇓
⊤

∣ p

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Generates an atomic Boolean

algebra with atoms .
At = 2T

𝖡𝖤𝗑𝗉 𝖡𝖠 𝒫

Guarded Kleene Algebra with Tests

𝖡𝖤𝗑𝗉

𝖦𝖤𝗑𝗉 ∋ e, f ::= b ∈ 𝖡𝖤𝗑𝗉 ∣ p ∈ Σ ∣ e +b f ∣ ef ∣ e(b)

assert b

⇓
b

do p

⊤

⇓
⊤

∣ p

if b then e else f

b̄

fe

b

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Generates an atomic Boolean

algebra with atoms .
At = 2T

𝖡𝖤𝗑𝗉 𝖡𝖠 𝒫

Guarded Kleene Algebra with Tests

𝖡𝖤𝗑𝗉

𝖦𝖤𝗑𝗉 ∋ e, f ::= b ∈ 𝖡𝖤𝗑𝗉 ∣ p ∈ Σ ∣ e +b f ∣ ef ∣ e(b)

assert b

⇓
b

do p

⊤

⇓
⊤

∣ p

if b then e else f

b̄

fe

b

ef

e

f

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Generates an atomic Boolean

algebra with atoms .
At = 2T

𝖡𝖤𝗑𝗉 𝖡𝖠 𝒫

Guarded Kleene Algebra with Tests

𝖡𝖤𝗑𝗉

𝖦𝖤𝗑𝗉 ∋ e, f ::= b ∈ 𝖡𝖤𝗑𝗉 ∣ p ∈ Σ ∣ e +b f ∣ ef ∣ e(b)

assert b

⇓
b

do p

⊤

⇓
⊤

∣ p

if b then e else f

b̄

fe

b

ef

e

f

while b do e

⇓b̄b

ee(b)

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Generates an atomic Boolean

algebra with atoms .
At = 2T

𝖡𝖤𝗑𝗉 𝖡𝖠 𝒫

Example of a GKAT Automaton

q0

q4

α

q3

q1

∣ p

ᾱ ∣q

⊤∣r α ∨ β ∣ p

β⟹

(pr)(α)q(pβ +α∨β 0)

while do

if then

 assert

else

 assert False

α
p
r

q
α ∨ β
p

β

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

X ⟶ ({⊥, ⊤} + Σ × X)At

Axiomatizing GKAT Programs up to Language Equivalence
(Smolka et al., 2019) Proposed the following axiomatization of GKAT

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Axiomatizing GKAT Programs up to Language Equivalence
(Smolka et al., 2019) Proposed the following axiomatization of GKAT

Open Problem: Are these axioms complete for language equivalence?

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Axiomatizing GKAT Programs up to Bisimilarity
(S., Kappé, Kozen, Silva, 2021) Proposed the following axiomatization of GKAT/bisimilarity

Axiomatizing GKAT Programs up to Bisimilarity
(S., Kappé, Kozen, Silva, 2021) Proposed the following axiomatization of GKAT/bisimilarity

Open Problem: Are these axioms complete for bisimilarity?

Axiomatizing GKAT Programs up to Bisimilarity
(S., Kappé, Kozen, Silva, 2021) Proposed the following axiomatization of GKAT/bisimilarity

Open Problem: Are these axioms complete for bisimilarity?

Completeness here implies completeness for language equivalence

Massaging the Syntax to Fit the Mould

 interpreted as assert b ∈ 𝖡𝖤𝗑𝗉 b

b

Massaging the Syntax to Fit the Mould

 interpreted as assert b ∈ 𝖡𝖤𝗑𝗉 b

The test is interpreted as assert True1

b

Massaging the Syntax to Fit the Mould

 interpreted as assert b ∈ 𝖡𝖤𝗑𝗉 b

The test is interpreted as assert True1
and the test is interpreted as assert False0

b

Massaging the Syntax to Fit the Mould

 interpreted as assert b ∈ 𝖡𝖤𝗑𝗉 b

The test is interpreted as assert True1
and the test is interpreted as assert False0

b

Massaging the Syntax to Fit the Mould

 interpreted as assert b ∈ 𝖡𝖤𝗑𝗉 b

The test is interpreted as assert True1
and the test is interpreted as assert False0

assert True is equivalent to simply skip

b

Massaging the Syntax to Fit the Mould

 interpreted as assert b ∈ 𝖡𝖤𝗑𝗉 b

The test is interpreted as assert True1
and the test is interpreted as assert False0

assert True is equivalent to simply skip
assert False is equivalent to simply crash

b

Massaging the Syntax to Fit the Mould

 interpreted as assert b ∈ 𝖡𝖤𝗑𝗉 b

The test is interpreted as assert True1
and the test is interpreted as assert False0

assert True is equivalent to simply skip
assert False is equivalent to simply crash

GKAT or if then skip else crash⊢ b = 1 + 0 bb

Guarded Kleene Algebra with Tests modulo Bisimulation

𝖦𝖤𝗑𝗉ts ∋ e, f ::= 0 ∣ 1 ∣ p ∈ Σ ∣ e +b f ∣ ef ∣ e(b)

Guarded Kleene Algebra with Tests modulo Bisimulation

Equational Branching Axioms

𝖦𝖤𝗑𝗉ts ∋ e, f ::= 0 ∣ 1 ∣ p ∈ Σ ∣ e +b f ∣ ef ∣ e(b)

Guarded Kleene Algebra with Tests modulo Bisimulation

Equational Branching Axioms Sequencing Axioms

𝖦𝖤𝗑𝗉ts ∋ e, f ::= 0 ∣ 1 ∣ p ∈ Σ ∣ e +b f ∣ ef ∣ e(b)

Guarded Kleene Algebra with Tests modulo Bisimulation

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

𝖦𝖤𝗑𝗉ts ∋ e, f ::= 0 ∣ 1 ∣ p ∈ Σ ∣ e +b f ∣ ef ∣ e(b)

Guarded Kleene Algebra with Tests modulo Bisimulation

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

Unguarded Fixed-point Axiom

𝖦𝖤𝗑𝗉ts ∋ e, f ::= 0 ∣ 1 ∣ p ∈ Σ ∣ e +b f ∣ ef ∣ e(b)

EQUATIONAL THEORY

How to distinguish the examples!

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

FIXED POINT EQUATIONS

Unguarded Fixed-point Axioms

EQUATIONAL THEORY

How to distinguish the examples!

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

FIXED POINT EQUATIONS

Unguarded Fixed-point Axioms

Together, this data comprises a branching theory.

A Recipe

EQUATIONAL THEORY 
 

T

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

RULES ABOUT
𝖿𝗉 x

Unguarded Fixed-point Axioms

A Recipe

EQUATIONAL THEORY 
 

T

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

RULES ABOUT
𝖿𝗉 x

Unguarded Fixed-point Axioms

Definition. A branching theory consists of a

A Recipe

EQUATIONAL THEORY 
 

T

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

RULES ABOUT
𝖿𝗉 x

Unguarded Fixed-point Axioms

Definition. A branching theory consists of a
1. An algebraic signature consisting of constants and binary operations S = S0 + S2 × Id2

A Recipe

EQUATIONAL THEORY 
 

T

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

RULES ABOUT
𝖿𝗉 x

Unguarded Fixed-point Axioms

Definition. A branching theory consists of a
1. An algebraic signature consisting of constants and binary operations S = S0 + S2 × Id2

2. A set of equations between -termsT ⊆ S*(Var) × S*(Var) S

A Recipe

EQUATIONAL THEORY 
 

T

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

RULES ABOUT
𝖿𝗉 x

Unguarded Fixed-point Axioms

Definition. A branching theory consists of a
1. An algebraic signature consisting of constants and binary operations S = S0 + S2 × Id2

2. A set of equations between -termsT ⊆ S*(Var) × S*(Var) S
3. A fixed-point operator on -terms (natural in) satisfyingS 𝖿𝗉 x : S*({x} + Y) → S*(Y) Y

A Recipe

EQUATIONAL THEORY 
 

T

Equational Branching Axioms Sequencing Axioms Unique Guarded

Fixed-point Axioms

RULES ABOUT
𝖿𝗉 x

Unguarded Fixed-point Axioms

Definition. A branching theory consists of a
1. An algebraic signature consisting of constants and binary operations S = S0 + S2 × Id2

2. A set of equations between -termsT ⊆ S*(Var) × S*(Var) S
3. A fixed-point operator on -terms (natural in) satisfyingS 𝖿𝗉 x : S*({x} + Y) → S*(Y) Y

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t(𝖿𝗉 x t(x, ⃗y), ⃗y)

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

 raise 𝖲𝗍𝖤𝗑𝗉 ∋ e, f ::= c ∈ S0 c

Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

 raise 𝖲𝗍𝖤𝗑𝗉 ∋ e, f ::= c ∈ S0 c
 skip∣ 1

Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

 raise 𝖲𝗍𝖤𝗑𝗉 ∋ e, f ::= c ∈ S0 c
 skip∣ 1
 branch into , where ∣ e +σ f σ(e, f) σ ∈ S2

Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

 raise 𝖲𝗍𝖤𝗑𝗉 ∋ e, f ::= c ∈ S0 c
 skip∣ 1
 branch into , where ∣ e +σ f σ(e, f) σ ∈ S2

 ∣ ef e; f

Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

 raise 𝖲𝗍𝖤𝗑𝗉 ∋ e, f ::= c ∈ S0 c
 skip∣ 1
 branch into , where ∣ e +σ f σ(e, f) σ ∈ S2

 ∣ ef e; f
 recurse in ∣ e(σ) x = σ(e; x, ⊤)

Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

 raise 𝖲𝗍𝖤𝗑𝗉 ∋ e, f ::= c ∈ S0 c
 skip∣ 1
 branch into , where ∣ e +σ f σ(e, f) σ ∈ S2

 ∣ ef e; f
 recurse in ∣ e(σ) x = σ(e; x, ⊤)

Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

 raise 𝖲𝗍𝖤𝗑𝗉 ∋ e, f ::= c ∈ S0 c
 skip∣ 1
 branch into , where ∣ e +σ f σ(e, f) σ ∈ S2

 ∣ ef e; f
 recurse in ∣ e(σ) x = σ(e; x, ⊤)

 crash𝖦𝖤𝗑𝗉ts ∋ e, f ::= 0Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

 raise 𝖲𝗍𝖤𝗑𝗉 ∋ e, f ::= c ∈ S0 c
 skip∣ 1
 branch into , where ∣ e +σ f σ(e, f) σ ∈ S2

 ∣ ef e; f
 recurse in ∣ e(σ) x = σ(e; x, ⊤)

 crash𝖦𝖤𝗑𝗉ts ∋ e, f ::= 0

 skip∣ 1

Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

 raise 𝖲𝗍𝖤𝗑𝗉 ∋ e, f ::= c ∈ S0 c
 skip∣ 1
 branch into , where ∣ e +σ f σ(e, f) σ ∈ S2

 ∣ ef e; f
 recurse in ∣ e(σ) x = σ(e; x, ⊤)

 crash𝖦𝖤𝗑𝗉ts ∋ e, f ::= 0

 skip∣ 1
 if then else ∣ e +b f b e f

Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

 raise 𝖲𝗍𝖤𝗑𝗉 ∋ e, f ::= c ∈ S0 c
 skip∣ 1
 branch into , where ∣ e +σ f σ(e, f) σ ∈ S2

 ∣ ef e; f
 recurse in ∣ e(σ) x = σ(e; x, ⊤)

 crash𝖦𝖤𝗑𝗉ts ∋ e, f ::= 0

 skip∣ 1
 if then else ∣ e +b f b e f
 ∣ ef e; f

Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Introducing: Star Fragments!
Definition. For a given branching theory , the set of star expressions is given by(S, T, 𝖿𝗉)

 raise 𝖲𝗍𝖤𝗑𝗉 ∋ e, f ::= c ∈ S0 c
 skip∣ 1
 branch into , where ∣ e +σ f σ(e, f) σ ∈ S2

 ∣ ef e; f
 recurse in ∣ e(σ) x = σ(e; x, ⊤)

 crash𝖦𝖤𝗑𝗉ts ∋ e, f ::= 0

 skip∣ 1
 if then else ∣ e +b f b e f
 ∣ ef e; f
 while do ∣ e(b) b e

Eg. S0 = {0}

S2 = { +b ∣ b ∈ 𝖡𝖤𝗑𝗉}

Star Fragment Semantics
Operational semantics of regular expressions modulo bisimilarity:

𝖤𝗑𝗉 ⟶ { ⊥ , ⊤ } × 𝒫fin(𝖤𝗑𝗉)A
a, b

a

a, b

b

Star Fragment Semantics
Operational semantics of regular expressions modulo bisimilarity:

ℓ : 𝖤𝗑𝗉 ⟶ 𝒫fin(⊤ + A × 𝖤𝗑𝗉)
a, b

a

a, b

b

Star Fragment Semantics
Operational semantics of regular expressions modulo bisimilarity:

ℓ : 𝖤𝗑𝗉 ⟶ 𝒫fin(⊤ + A × 𝖤𝗑𝗉)
a, b

a

a, b

b

 ℓ(0) = ∅ ℓ(1) = { ⊤ } ℓ(a) = {(a,1)} ℓ(e + f) = ℓ(e) ∪ ℓ(f)

Star Fragment Semantics
Operational semantics of regular expressions modulo bisimilarity:

ℓ : 𝖤𝗑𝗉 ⟶ 𝒫fin(⊤ + A × 𝖤𝗑𝗉)
a, b

a

a, b

b

 ℓ(0) = ∅ ℓ(1) = { ⊤ } ℓ(a) = {(a,1)} ℓ(e + f) = ℓ(e) ∪ ℓ(f)

and if , then ℓ(e) = { ⊤ , (a1, e1), …, (an, en)}

Star Fragment Semantics
Operational semantics of regular expressions modulo bisimilarity:

ℓ : 𝖤𝗑𝗉 ⟶ 𝒫fin(⊤ + A × 𝖤𝗑𝗉)
a, b

a

a, b

b

 ℓ(0) = ∅ ℓ(1) = { ⊤ } ℓ(a) = {(a,1)} ℓ(e + f) = ℓ(e) ∪ ℓ(f)

and if , then ℓ(e) = { ⊤ , (a1, e1), …, (an, en)}

 and ℓ(ef) = ℓ(f) ∪ {(a1, e1 f), …, (an, en f)} ℓ(e*) = { ⊤ , (a1, e1e*), …, (an, ene*)}

Star Fragment Semantics
Operational semantics of regular expressions modulo bisimilarity:

𝖤𝗑𝗉 ⟶ 𝒫fin(⊤ + A × 𝖤𝗑𝗉)
a, b

a

a, b

b

Operational semantics of GKAT expressions modulo bisimilarity:

𝖦𝖤𝗑𝗉 ⟶ ({ ⊥ , ⊤ } + Σ × 𝖦𝖤𝗑𝗉)At

α ∣ p

ᾱ∣q

⊤∣r α ∨ β ∣ p

β⟹

Star Fragment Semantics
Operational semantics of regular expressions modulo bisimilarity:

𝖤𝗑𝗉 ⟶ 𝒫fin(⊤ + A × 𝖤𝗑𝗉)

Operational semantics of GKAT expressions modulo bisimilarity:

𝖦𝖤𝗑𝗉 ⟶ (⊥ + (⊤ + Σ × 𝖦𝖤𝗑𝗉))At

a, b
a

a, b

b

α ∣ p

ᾱ∣q

⊤∣r α ∨ β ∣ p

β⟹

Star Fragment Semantics
Operational semantics of regular expressions modulo bisimilarity:

𝖤𝗑𝗉 ⟶ 𝒫fin(⊤ + Act × 𝖤𝗑𝗉)

Operational semantics of GKAT expressions modulo bisimilarity:

𝖦𝖤𝗑𝗉 ⟶ (⊥ + (⊤ + Act × 𝖦𝖤𝗑𝗉))At

a, b
a

a, b

b

α ∣ p

ᾱ∣q

⊤∣r α ∨ β ∣ p

β⟹

Star Fragment Semantics
Operational semantics of regular expressions modulo bisimilarity:

𝖤𝗑𝗉 ⟶ 𝒫fin(⊤ + Act × 𝖤𝗑𝗉)

Operational semantics of GKAT expressions modulo bisimilarity:

𝖦𝖤𝗑𝗉 ⟶ (⊥ + (⊤ + Act × 𝖦𝖤𝗑𝗉))At

a, b
a

a, b

b

α ∣ p

ᾱ∣q

⊤∣r α ∨ β ∣ p

β⟹
Observe: Format is wrapped in .

 — the finite powerset monad

 — the partial functions monad

⊤ + Act × (−) M(−)

𝒫fin(−)
(⊥ + (−))At

Star Fragment Semantics: Branching Types

Fix an algebraic signature and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Star Fragment Semantics: Branching Types

Fix an algebraic signature and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is presented by the equational theory if there is an isomorphism

i.e., the monad is a free-algebra construction for .

M (S, T)
M ≅ S*(−)/ =T

M (S, T)

Star Fragment Semantics: Branching Types

Fix an algebraic signature and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is presented by the equational theory if there is an isomorphism

i.e., the monad is a free-algebra construction for .

M (S, T)
M ≅ S*(−)/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

Star Fragment Semantics: Branching Types

Fix an algebraic signature and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is presented by the equational theory if there is an isomorphism

i.e., the monad is a free-algebra construction for .

M (S, T)
M ≅ S*(−)/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents

Star Fragment Semantics: Branching Types

Fix an algebraic signature and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is presented by the equational theory if there is an isomorphism

i.e., the monad is a free-algebra construction for .

M (S, T)
M ≅ S*(−)/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents
𝒫finFinite Powerset Monad

Star Fragment Semantics: Branching Types

Fix an algebraic signature and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is presented by the equational theory if there is an isomorphism

i.e., the monad is a free-algebra construction for .

M (S, T)
M ≅ S*(−)/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents
𝒫finFinite Powerset Monad

U1, U2 ∈ 𝒫fin(X)

Star Fragment Semantics: Branching Types

Fix an algebraic signature and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is presented by the equational theory if there is an isomorphism

i.e., the monad is a free-algebra construction for .

M (S, T)
M ≅ S*(−)/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents
𝒫finFinite Powerset Monad

U1 + U2 = U1 ∪ U2

U1, U2 ∈ 𝒫fin(X)

Star Fragment Semantics: Branching Types

Fix an algebraic signature and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is presented by the equational theory if there is an isomorphism

i.e., the monad is a free-algebra construction for .

M (S, T)
M ≅ S*(−)/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents
𝒫finFinite Powerset Monad

U1 + U2 = U1 ∪ U2
0 = ∅

U1, U2 ∈ 𝒫fin(X)

Star Fragment Semantics: Branching Types

Fix an algebraic signature and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is presented by the equational theory if there is an isomorphism

i.e., the monad is a free-algebra construction for .

M (S, T)
M ≅ S*(−)/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents
𝒫finFinite Powerset Monad

Definition. A monad that is presented by is a branching type of the branching theory. (S, T)

U1 + U2 = U1 ∪ U2
0 = ∅

U1, U2 ∈ 𝒫fin(X)

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t(𝖿𝗉 x t(x, ⃗y) , ⃗y)

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)

We obtain an operator on that
performs a type of iteration

determined by

M

𝖿𝗉 x

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t(𝖿𝗉 x t(x, ⃗y) , ⃗y)

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)

We obtain an operator on that
performs a type of iteration

determined by

M

𝖿𝗉 x

Example. The operator on semilattice terms is a fixed-point operator:𝖿𝗉 x t(x, ⃗y) = t(0, ⃗y)

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t(𝖿𝗉 x t(x, ⃗y) , ⃗y)

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)

We obtain an operator on that
performs a type of iteration

determined by

M

𝖿𝗉 x

Example. The operator on semilattice terms is a fixed-point operator:𝖿𝗉 x t(x, ⃗y) = t(0, ⃗y)

TSL ⊢ 𝖿𝗉 x (x + y) = 0 + y = y = y + y = (𝖿𝗉 x (x + y)) + y

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t(𝖿𝗉 x t(x, ⃗y) , ⃗y)

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)

We obtain an operator on that
performs a type of iteration

determined by

M

𝖿𝗉 x

Example. The operator on semilattice terms is a fixed-point operator:𝖿𝗉 x t(x, ⃗y) = t(0, ⃗y)

TSL ⊢ 𝖿𝗉 x (x + y) = 0 + y = y = y + y = (𝖿𝗉 x (x + y)) + y

Given , this corresponds to U ⊆ {x} + Y

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t(𝖿𝗉 x t(x, ⃗y) , ⃗y)

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)

We obtain an operator on that
performs a type of iteration

determined by

M

𝖿𝗉 x

Example. The operator on semilattice terms is a fixed-point operator:𝖿𝗉 x t(x, ⃗y) = t(0, ⃗y)

TSL ⊢ 𝖿𝗉 x (x + y) = 0 + y = y = y + y = (𝖿𝗉 x (x + y)) + y

Given , this corresponds to U ⊆ {x} + Y

𝖿𝗉 x (U) = U − {x}

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t(𝖿𝗉 x t(x, ⃗y) , ⃗y)

Star Fragment Semantics
Operational semantics is given by a map

ℓ : 𝖲𝗍𝖤𝗑𝗉 ⟶ M(⊤ + Act × 𝖲𝗍𝖤𝗑𝗉)

Star Fragment Semantics
Operational semantics is given by a map

ℓ : 𝖲𝗍𝖤𝗑𝗉 ⟶ M(⊤ + Act × 𝖲𝗍𝖤𝗑𝗉)

ℓ(c) = c

c c

Star Fragment Semantics
Operational semantics is given by a map

ℓ : 𝖲𝗍𝖤𝗑𝗉 ⟶ M(⊤ + Act × 𝖲𝗍𝖤𝗑𝗉)

ℓ(c) = c

c c

ℓ(1) = ⊤

1 ⟹

Star Fragment Semantics
Operational semantics is given by a map

ℓ : 𝖲𝗍𝖤𝗑𝗉 ⟶ M(⊤ + Act × 𝖲𝗍𝖤𝗑𝗉)

ℓ(c) = c

c c

ℓ(1) = ⊤

1 ⟹

ℓ(p) = (p,1)

p
p

1 ⟹

Star Fragment Semantics
Operational semantics is given by a map

ℓ : 𝖲𝗍𝖤𝗑𝗉 ⟶ M(⊤ + Act × 𝖲𝗍𝖤𝗑𝗉)

ℓ(c) = c

c c

ℓ(1) = ⊤

1 ⟹

ℓ(p) = (p,1)

p
p

1 ⟹

ℓ(e +σ f) = σ(ℓ(e), ℓ(f))

e +σ f

σ
ℓ(e) ℓ(f)

Star Fragment Semantics
Operational semantics is given by a map

ℓ : 𝖲𝗍𝖤𝗑𝗉 ⟶ M(⊤ + Act × 𝖲𝗍𝖤𝗑𝗉)

ℓ(c) = c

c c

ℓ(1) = ⊤

1 ⟹

ℓ(p) = (p,1)

p
p

1 ⟹

ℓ(e +σ f) = σ(ℓ(e), ℓ(f))

e +σ f

σ
ℓ(e) ℓ(f)

ℓ(ef) = t(ℓ(f), (p1, e1 f), …, (pn, en f))

ef

e1 f

en f

If , then ℓ(e) = t(⊤ , (p1, e1), …, (pn, en))ℓ(f)ℓ(e)

⟹

Star Fragment Semantics

ℓ(e(σ)) = 𝖿𝗉 x σ(t(x, (p1, e1e(σ)), …, (p1, e1e(σ))), ⊤)

If , then ℓ(e) = t(⊤, (p1, e1), …, (p1, e1))

Star Fragment Semantics

ℓ(e(σ)) = 𝖿𝗉 x σ(t(x, (p1, e1e(σ)), …, (p1, e1e(σ))), ⊤)

If , then ℓ(e) = t(⊤, (p1, e1), …, (p1, e1))

Star Fragment Semantics

ℓ(e(σ)) = 𝖿𝗉 x σ(t(x, (p1, e1e(σ)), …, (p1, e1e(σ))), ⊤)

Example. For regular expressions, if , then p ∈ Act

If , then ℓ(e) = t(⊤, (p1, e1), …, (p1, e1))

Star Fragment Semantics

ℓ(e(σ)) = 𝖿𝗉 x σ(t(x, (p1, e1e(σ)), …, (p1, e1e(σ))), ⊤)

Example. For regular expressions, if , then p ∈ Act

If , then ℓ(e) = t(⊤, (p1, e1), …, (p1, e1))

Star Fragment Semantics

ℓ(e(σ)) = 𝖿𝗉 x σ(t(x, (p1, e1e(σ)), …, (p1, e1e(σ))), ⊤)

Example. For regular expressions, if , then p ∈ Act

ℓ(1 + p) = { ⊤ , (p,1)}

If , then ℓ(e) = t(⊤, (p1, e1), …, (p1, e1))

Star Fragment Semantics

ℓ(e(σ)) = 𝖿𝗉 x σ(t(x, (p1, e1e(σ)), …, (p1, e1e(σ))), ⊤)

Example. For regular expressions, if , then p ∈ Act

ℓ(1 + p) = { ⊤ , (p,1)}

If , then ℓ(e) = t(⊤, (p1, e1), …, (p1, e1))

Star Fragment Semantics

ℓ(e(σ)) = 𝖿𝗉 x σ(t(x, (p1, e1e(σ)), …, (p1, e1e(σ))), ⊤)

Example. For regular expressions, if , then p ∈ Act

ℓ(1 + p) = { ⊤ , (p,1)}

ℓ((1 + p)*) = 𝖿𝗉 x {x, (p,1e(σ))} ∪ { ⊤ }

If , then ℓ(e) = t(⊤, (p1, e1), …, (p1, e1))

Star Fragment Semantics

ℓ(e(σ)) = 𝖿𝗉 x σ(t(x, (p1, e1e(σ)), …, (p1, e1e(σ))), ⊤)

Example. For regular expressions, if , then p ∈ Act

ℓ(1 + p) = { ⊤ , (p,1)}

ℓ((1 + p)*) = 𝖿𝗉 x {x, (p,1e(σ))} ∪ { ⊤ }
 = {(p,1e(σ)), ⊤ }

If , then ℓ(e) = t(⊤, (p1, e1), …, (p1, e1))

Star Fragment Semantics

ℓ(e(σ)) = 𝖿𝗉 x σ(t(x, (p1, e1e(σ)), …, (p1, e1e(σ))), ⊤)

Example. For regular expressions, if , then p ∈ Act

ℓ(1 + p) = { ⊤ , (p,1)}

ℓ((1 + p)*) = 𝖿𝗉 x {x, (p,1e(σ))} ∪ { ⊤ }
 = {(p,1e(σ)), ⊤ }

(1 + p)*(1 + p)* 1(1 + p)*1(1 + p)*
p

p

If , then ℓ(e) = t(⊤, (p1, e1), …, (p1, e1))

An Axiomatization of Star Fragments modulo Bisimilarity?

Equational

Branching Axioms

Sequencing Axioms

General Unguarded Fixed-point Axiom

(Above, are guarded)⃗g = (g1, …, gn)

Unique Guarded Fixed-point Axioms

An Axiomatization of Star Fragments modulo Bisimilarity?

Generalized Milner’s Completeness Problem:

Is this axiomatization of bisimulation complete for every star fragment?

Equational

Branching Axioms

Sequencing Axioms

General Unguarded Fixed-point Axiom

(Above, are guarded)⃗g = (g1, …, gn)

Unique Guarded Fixed-point Axioms

Known & Unknown Completeness Theorems

-expressionsμ

star fragment

1-free star

fragment

recursion

-free

Regex mod
bisimilarity

GKAT mod
bisimilarity

ProbRegex
mod bisim.

ProbGKAT
mod bisim.

-exp complete complete complete complete

star
fragment

complete

(Grabmayer,

2022)
Unkown Unkown Unknown

1-free star
fragment

complete

(Grabmayer,

Fokkink,
2019)

complete

(Kappé, S.,
Silva, 2023)

complete

(unpublished) Unknown

recursion-
free complete complete complete complete

μ

EXPRESSIVENESS

Summary

Equational

Branching Axioms

Sequencing Axioms

General Unguarded Fixed-point Axiom

(Above, are guarded)⃗g = (g1, …, gn)

Unique Guarded Fixed-point Axioms

- Star fragments arise from branching theories, consisting of an algebraic theory and a fixed-
point operator that determines behaviour of unguarded fixed-points

- Milner’s regular expressions mod bisimilarity = semilattices with bottom star fragment

- GKAT/bisimilarity = if-then-else with crash star fragment

- Further examples:

- (Rozowski, Kappé, Kozen, Schmid, Silva, 2023) ProbGKAT mod bisimilarity = GKAT +

- Probabilistic regular expressions mod bisimilarity = instead of

- Regex mixing nondeterminism and probability = Regular expressions +

(S, T, 𝖿𝗉)

⊕p

⊕p +
⊕p

Generalized Milner’s
Completeness Problem:

Is this axiomatization of

bisimulation complete for
every star fragment?

