From Regular Expressions
to Star Fragments Bucknell

Todd Schmid

St. Mary’s College of California (Bucknell University starting in July)

Based on Coalgebraic Completeness Theorems for Effectful Process Calculi, UCL, 2023 and joint work with
Wojciech Rozowski (UCL) Tobias Kappé (Open Universiteit)

Dexter Kozen (Cornell University) Jurriaan Rot (Radboud University) Alexandra Silva (Cornell University)

LLAMA Seminar

This Talk

Regular expressions and regular languages
Axioms for language equivalence a la Salomaa

Process (bisimilarity) semantics of regular expressions

What these process algebras have in common

1.
2
3
4. Guarded Kleene Algebra with Tests mod bisimilarity
5
6. Star Fragments

7

Open Problems

Regular Languages

X - {L T} xXxA

(Kleene, 1956)

Regular Languages

X - {L T} xXxA

(Kleene, 1956)

Regular Languages

X - {L T} xXxA

(Kleene, 1956)

Regular Languages

X - {L T} xXxA

ab, aaab

(Kleene, 1956)

Regular Languages

X - {L T} xXxA

ab, aaab, bb

(Kleene, 1956)

Regular Languages
X - {L T} xXxA b

d

b

ab, aaab, bb, babb

(Kleene, 1956)

Regular Languages

X - {L T} xXxA

L = {ab,aaab, bb, babb, ...}

(Kleene, 1956)

Regular Languages

X - {L T} xXx4

Regular expressions:
syntax for regular languages

L = {ab,aaab, bb, babb, ...}
= (aa + ba)*(ab + bb)

(Kleene, 1956)

Regular Expressions and Regular Languages

(aa + ba)*(ab + bb) RegEx e, fii=0|1|peXl|le+f]|ef]|e*
L: RegEx — P(X*)

< LO)=@ L) ={e} L) ={p)

Le+f) =L UL() Lief)=LEL(f) Le*) =|JLe)

new

(Kleene, 1956)
L = L(r) iff L is recognized by a deterministic finite automaton.

Regular Expressions and Regular Languages

Regular Expressions and Regular Languages

Regular Expressions and Regular Languages

Regular Expressions and Regular Languages

Regular Expressions and Regular Languages

Regular Expressions and Regular Languages

bisimulation _

Regular Expressions and Regular Languages

bisimulation _

For DFAs,

Regular Expressions and Regular Languages

bisimulation _

For DFAs,

- bisimilarity = language equivalence

Regular Expressions and Regular Languages

bisimulation _

For DFAs,
- bisimilarity = language equivalence

- Using (Hopcroft, Karp, 1971),
bisimilarity is checked in almost
linear time

Regular Expressions and Regular Languages

bisimulation _

For DFAs,
- bisimilarity = language equivalence

- Using (Hopcroft, Karp, 1971),
bisimilarity is checked in almost
linear time

L((aa + ba)*(ab + bb)) = L(((a + b)a)*b)

Regular Expressions and Regular Languages

bisimulation _

For DFAs,
- bisimilarity = language equivalence

- (Hopcroft, Karp, 1971) Bisimilarity
Is checked In nearly linear time

(Kleene, 1956)
Give a complete axiomatization

of language equivalence of
regular expressions

L((aa + ba)*(ab + bb)) = L(((a + b)a)*b)
~ (aa + ba)*(ab + bb) = ((a + b)a)*b !

Axiomatizing Language Equivalence

(Salomaa, 1964) A complete axiomatization of language equivalence of regular expressions:

Ay e+ (B +7%) = (a+B8) + 1, Aq $a = a

4, a(fy) = (aB)v, As po = ¢,

4, a+p=F+a, A até=a

Av a4y =aftoer, Au a” = ¢" +a'a,
4s (a + B)y = av + B, Ay o = (¢" +).
As a-+ a= a)

R1 (Substitution). Assume that v’ is the result of replacing an oceurrence of 4
by 8 in v. Then from the equations o = B and v = § one may infer the equatio
vy = § and the equation v = 7.

R2 (Solution of equations). Assume that 8 does not possess e.w.p. Then frop
the equation @ = a8 + v one may infer the equation o = v8”.

Axiomatizing Language Equivalence

(Milner, 1984) Rephrased Salomaa’s rules as follows:

Salomaa [9] provides a complete inference system for star expressions under
standard interpretation. When we dualise it, by writing f o e for e o f everywhere in
Salomaa’s rules (which gives an equipotent system), it has the following rules:

A e+(f+g)=(+f)+¢g A, eogp*=e

A, (eof)og=ec(fog) Ay ecp=9

y e+ f=f+e A, et+op=e

i (e+f)og=eog+fog Ay e*=¢*+ece”
eo(f+g)=eof+eocg A, e*=(p*t+e)*

e+e=e

=)

> > > >

, If f does not possess e.w.p. then
frome= foe+ hinfer e= f* o A.

(We have omitted R, the substitution rule.)

Axiomatizing Language Equivalence

(Milner, 1984) Rephrased Salomaa’s rules as follows:

Salomaa [9]| provides a complete inference system for star expressions under
standard interpretation. When we dualise it, by writing / o e for e o f everywhere in
Salomaa’s rules (which gives an equipotent system), it has the following rules:

Al e+(f+g)=(+f)+¢g A, eog*=e
A, (eof)og=eo(fog) A, eop=4

A, e+ f=f+e A, e+g=e

A, (e+f)og=eog+fog A, e*=¢*+ece*

A, eo(f+g)=eof+eog A, e*=(p*+e)*

A, et+e=e |

R, Iff does not possess e.w.p. then Milner rephrased

Salomaa’s axioms to

from e= foe+ h infer e= f* o . make them easier to
adapt to a different

(We have omitted R, the substitution rule.) (process) semantics.

Deciding language equivalence

(aa + ba)*(ab + bb)

Regular Expressions

Deciding language equivalence

(aa + ba)*(ab + bb)

Regular Expressions

Thompson Construction,
SOS,
Antimirov Derivatives

Deciding language equivalence

(aa + ba)*(ab + bb) ¢ b

X - {L T} x XA

Regular Expressions Nondeterministic FAs

Thompson Construction,
SOS,
Antimirov Derivatives

Deciding language equivalence

(aa + ba)*(ab + bb) ¢ b

X — {J-’ T} X ‘@(X)A (Determinize)

Nondeterministic FAs »

Regular Expressions

Thompson Construction,
SOS,
Antimirov Derivatives

Deciding language equivalence

(aa + ba)*(ab + bb) ¢ b

X — {J-’ T} X ‘@(X)A (Determinize)

Nondeterministic FAs » DFAs

Regular Expressions

Thompson Construction,
SOS,
Antimirov Derivatives

Deciding language equivalence

(aa + ba)*(ab + bb) ¢ b

X = {J" T} X @(X)A (Determinize)

Nondeterministic FAs » DFAs »

Check for
Bisimilarity

Regular Expressions

Thompson Construction,
SOS,
Antimirov Derivatives

a, b
(aa + ba)*(ab + bb) ¢ b

X - {L T} x XA

Nondeterministic FAs

LBisimilari’[y here?

(Milner, 1984)

Regular Expression »

Bisimilarity for NFAs is Finer than Language Equivalence

d d

O O

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

Bisimilarity
\U a d d
Language
Equivalence

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

Bisimilarity Bisimilarity
l} a a a /’ﬂ/
Language Language
Equivalence Equivalence
b C b C

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

Bisimilarity Bisimilarity
J a AN
Language Language
Equivalence Equivalence

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

Bisimilarity Bisimilarity
J a AN
Language AN e Language
Equivalence Equivalence

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

Bisimilarity Bisimilarity
J AN
Language AN e Language
Equivalence Equivalence

(Milner, 1984)

Bisimilarity for NFAs is Finer than Language Equivalence

Bisimilarity Bisimilarity
J AN
Language Language
Equivalence Equivalence

Not all axioms are sound!

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

Salomaa [9] provides a complete inference system for star expressions under
standard interpretation. When we dualise it, by writing / o e for e o f everywhere in
Salomaa’s rules (which gives an equipotent system), it has the following rules:

A e+ (f+g)=(+f)+g A, eogp*=e

A, (eof)og=ec(fog) Ay ecp=9

, etf=S+e A, etp=c

s (e+f)og=eog+fog Ay e*=¢*teoce”
eo(f+g)=ecft+eog A, e*=(@p*+e)"

e+e=e

=)

> > > >

, If f does not possess e.w.p. then
frome= foe+ hinfer e= f* o A.

(We have omitted R,, the substitution rule.)

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

Salomaa [9] provides a complete inference system for star expressions under
standard interpretation. When we dualise it, by writing f o e for e o f everywhere in
Salomaa’s rules (which gives an equipotent system), it has the following rules:

Ay e+ (f+g)=€+Sf)+g A, ecp*=e
Ay (eof)og=eo(fog) —Ag—eop=9—
A, e+f=f+e A, e+op=e

Ay (et+Sf)og=eog+fog Ay e*=¢* teoce®

Ar—eo{f—g)=—eofteog— A, e*=(p* t+e)*
A ete=e
R, If f does not possess e.w.p. then

frome= foe+ hinfer e= f* o A.

(We have omitted R,, the substitution rule.)

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

By deleting these

Salomaa [9] provides a complete inference system for star e . .
axioms, Milner

standard interpretation. When we dualise it, by writing f o e for e
Salomaa’s rules (which gives an equipotent system), it has the follc

obtains a sound
axiomatization of

A e+ (f+g)=(+f)+ g A, eog*=ce¢ bisimilarity.
A, (eof)og=eo(fog) —Ag—eop="p—
A, e+ f=f+e A, e+p=e

Ay (e+f)og=ecg+fog Ay e*=¢* teoce®

Ag—eo{f—g)=—e-of-eog— A, e*=(p*+e)"
A ete=e
R, If f does not possess €.w.p. then

frome= foe+ hinfer e= f* o A.

(We have omitted R,, the substitution rule.)

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

By deleting these

Salomaa [9] provides a complete inference system for star e . .
axioms, Milner

standard interpretation. When we dualise it, by writing f o e for e
Salomaa’s rules (which gives an equipotent system), it has the follc

obtains a sound
axiomatization of

A e+(f+g)=(€+f)+ g A, eog*=ce¢ bisimilarity.
A, (eof)og=eo(fog) —Ag—eop="p—
A, e+ f=f+e A, e+p=e

Ay (et+Sf)og=eog+fog Ay e*=¢* teoce®

Ag—eo{f—g)=—e-of-eog— A, e*=(p*+e)"
Ag ete=e Al doe=¢
R, If f does not possess €.w.p. then

frome= foe+ hinfer e= f* o A.

(We have omitted R,, the substitution rule.)

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

By deleting these
axioms, Milner
obtains a sound

axiomatization of

Salomaa [9] provides a complete inference system for star e
standard interpretation. When we dualise it, by writing f c e for e
Salomaa’s rules (which gives an equipotent system), it has the follc

A e+ (f+g)=€+f)+¢g A, eogp*=e bisimilarity.

A, (eof)og=ec(fog) Ag—eop=y9—

Ay et+f=/+e A, etp=e (Milner, 1984)

A, (e+f)og=eog+fog A, e*=¢*+ece* RERQIEEY(IE1r£ ile]lg
Ao fgy=ooftecg - A, e*=(@*+e) complete?

Ag et+e=e Ay Qoe=y

R, If f does not possess e.w.p. then
frome= foe+ hinfer e= f* o A.

(We have omitted R, the substitution rule.)

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

By deleting these
axioms, Milner
obtains a sound

axiomatization of

Salomaa [9] provides a complete inference system for star e
standard interpretation. When we dualise it, by writing f c e for e
Salomaa’s rules (which gives an equipotent system), it has the follc

A e+ (f+g)=(€+f)+g A, eog*=e bisimilarity.
A, (eof)og=eo(fog) Ag—eop=y9—

Ay e+f=f+e Ay, etop=e (Milner, 1984)
A, (e+f)og=eog+fog A, e*=¢*t+ece™ JERGIEEV(eInE1r£1ilo]y
A @A frt—g)egoftgog A, e*=(g* +e)* complete?

A, et+e=e Ay ¢oe=¢

R, If f does not possess e.w.p. then

from e= foe+ h infer e= f* o A. (Grabmayer, 2022)

Yes!

(We have omitted R,, the substitution rule.)

(Milner, 1984)

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner’'s axioms for regular expressions modulo bisimilarity:

Oe = e*=(14+e)"
e=¢e¢-+(
N le=c¢€
— e
e e = el e* =ee” +1
Jre=e+) (f9) = (ef) Lt ded
e(fg) = (ef)g g = eq e guarde
e+ (f+g)=(e+f)+g

e+ flg=eg+ fg g=¢"f

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner’s axioms for regular expressions modulo bisimilarity:

e* = (1+e)"

e* =ee” +1

g=eqg+ f e guarded
g=e¢f

Equational Branching Axioms

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner’s axioms for regular expressions modulo bisimilarity:

e* = (1+e)"

e* =ee” +1

g=eqg+ f e guarded
g=e¢f

Equational Branching Axioms

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner’s axioms for regular expressions modulo bisimilarity:

e* = (1+e)"

e* =ee” +1

g=eqg+ f e guarded
g=e¢f

Equational Branching Axioms

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner’s axioms for regular expressions modulo bisimilarity:

Unguarded Fixed-point Axiom

e*=(14+e)"

e* =ee” +1

g=eqg+ f e guarded
g=¢€'f

Equational Branching Axioms Seguencing Axioms

A Similar Situation: Guarded Kleene Algebra with Tests

N\ alq

al|p

r
T aVvp|p

()=

A Similar Situation: Guarded Kleene Algebra with Tests

N\ ilq

- An algebra of propositional WHILE programs

al|p

r
T aVvp|p

()=

A Similar Situation: Guarded Kleene Algebra with Tests

N\ ilq

- An algebra of propositional WHILE programs

alp
- (Kozen, Tseng, 2008) Syntax and language Tlr

semantics from Kleene Algebra with Tests

aVvp|p

()=

A Similar Situation: Guarded Kleene Algebra with Tests

N\, ilq
- An algebra of propositional WHILE programs
alp
- (Kozen, Tseng, 2008) Syntax and language TIr avB|p
semantics from Kleene Algebra with Tests
- (Smolka, Foster, Hsu, Kappée, Kozen, Silva, 2019) Q: p

- Operational semantics, almost linear decision procedure
- Propose a Salomaa-like axiomatization of language equivalence

A Similar Situation: Guarded Kleene Algebra with Tests

N\, ilq
- An algebra of propositional WHILE programs
alp
- (Kozen, Tseng, 2008) Syntax and language TIr avB|p
semantics from Kleene Algebra with Tests
- (Smolka, Foster, Hsu, Kappée, Kozen, Silva, 2019) Q: p

- Operational semantics, almost linear decision procedure
- Propose a Salomaa-like axiomatization of language equivalence

- (S., Kappe, Kozen, Silva, 2021)
- Infinite tree semantics = bisimilarity
- Propose a Salomaa-like axiomatization of bisimilarity

Guarded Kleene Algebra with Tests

BExp3 b,c::=0|1|tE€T|bvc|bAac]|b

Guarded Kleene Algebra with Tests

(Generates an atomic Boolean

algebra with atoms At = 27. BExp 3 b,c ::=0 | 1|teT|bvc|bAc|b
BExp/ =g & P(27) ~—"

Guarded Kleene Algebra with Tests

GExpBe,fzzzbeBExp\pez\g+bf|ef‘e(b)

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Guarded Kleene Algebra with Tests

GExpBe,fzzzbeBExp\pez\g+bf|ef‘e(b)

/

assert b

v

b

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Guarded Kleene Algebra with Tests

GExpBe,fzzzbeBExp\pez\g+bf|ef‘e(b)

//

assert b
Tl p |
T

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Guarded Kleene Algebra with Tests

GExpDe,fi:=beBExp|peX|e+, f|ef|e?

e

assert b Oop It b then e else f

T|p | ﬂb
? l"‘i e:\". :' f~\.
T

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Guarded Kleene Algebra with Tests

GExpDe,fi:=beBExp|peX|e+, f|ef|e?

e

assert b Op it b then e else f ef

PRSI
’)
|
| |
v €)
b ; l
'd'u\ 'd'u\ 'd'u
e’ ' ! 4 1 ’ 1
| | |
| | |
“ € ’ “ f ’ “ f ’
N_,' N_,' N_,'

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Guarded Kleene Algebra with Tests

GExpDe,fi:=beBExp|peX|e+, f|ef|e?

N

assert b Op it b then ¢ else f ef while b do e

:"-~\‘
e
— en?
b b _
Tlp gy b
|"‘-~\‘ |"‘-~\‘ l"‘-~\‘ :'--(-b)‘:
'\ € 'l. '\ f 'l. '\ f 'l. "ee)
|

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Example of a GKAT Automaton

(P q(ph +4y5 0)

while o do

if & V[then

P
assert [/

X — ({L T+ Zx X)) else
assert False

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Axiomatizing GKAT Programs up to Language Equivalence

(Smolka et al., 2019) Proposed the following axiomatization of GKAT

Guarded Union Axioms

Sequence Axioms (inherited from KA)

Ul. et+pe=e (idempotence) S1. (e-f):-g=e-(f:9) (associativity)

U2. e+, f=Tf +-e (skew commut.) S2. 0-e=0 (absorbing left)

U3. (e+p f)+cg=e+p. (f +cg) (skew assoc.) S3. e-0=0 (absorbing right)

U4. e+, f=be+y f (guardedness) S4. l-e=e (neutral left)

U5. eg+y, fg=(e+p)¢ (right distrib.) S5. e-1=e (neutral right)
Guarded Loop Axioms

Wi1. ell) = ge(b) +3 1 (unrolling) g=eg+p f .

W3. if E(e) =0 (fixpoint)
W2. (e+¢ 1)(b) = (ce)(b) (tightening) g = e(d) f

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Axiomatizing GKAT Programs up to Language Equivalence

Guarded Union Axioms

(Smolka et al., 2019) Proposed the following axiomatization of GKAT

Sequence Axioms (inherited from KA)

Ul. et+tpe=e (idempotence) S1. (e-f):-g=e-(f:9) (associativity)

U2. e+, f=f +7e (skew commut.) S2. 0-e=0 (absorbing left)

U3. (e+p f)+cg=e+p. (f +cg9) (skew assoc.) S3. e-0=0 (absorbing right)

U4. e+, f=be+y f (guardedness) S4. l-e=e (neutral left)

U5. eg+p fg=(e+p f)-g (right distrib.) S5. e-1=e (neutral right)
Guarded Loop Axioms

1. (0) = pe(®) 4, 1 11 =eg +
W e(b) o (b_)l_b (unrolling) W3. g=¢9*s S if E(e) =0 (fixpoint)
W2. (e +¢ 1)'?) = (ce) (tightening) g=elf

Open Problem: Are these axioms complete for language equivalence?

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

Axiomatizing GKAT Programs up to Bisimilarity

(S., Kappé, Kozen, Silva, 2021) Proposed the following axiomatization of GKAT/bisimilarity

Guarded Union Axioms Sequence Axioms (inherited from KA)
Ul. et+pe=e (idempotence) S1. (e-f):-g=e-(f:9) (associativity)
U2. e+, f=Tf +-e (skew commut.) S2. 0-e=0 (absorbing left)
U3. (e+y f)+cg=e+p.(f +cg) (skew assoc.) —SF——e06=6—"""—"(absorbingright)-
U4. ety f=be+y f (guardedness) S4. l-e=e (neutral left)
U5. eg+y, fg=(e+p)¢ (right distrib.) S5. e-1= (neutral right)
Guarded Loop Axioms
Wi1. ell) = ge(b) +3 1 (unrolling) g=eg+p f ,
W3. if E(e) =0 (fixpoint)

W2. (e +c 1)) = (ce)® (tightening) g = (D) f

Axiomatizing GKAT Programs up to Bisimilarity

(S., Kappé, Kozen, Silva, 2021) Proposed the following axiomatization of GKAT/bisimilarity

Guarded Union Axioms Sequence Axioms (inherited from KA)
Ul. et+tpe=e (idempotence) S1. (e-f):-g=e-(f:9) (associativity)
U2. e+, f=f +7e (skew commut.) S2. 0-e=0 (absorbing left)
U3. (e+p f)+cg=e+p. (f +cg) (skew assoc.) —S3———e0=0——"—"—"(absorbingright)-
U4. e+, f=be+y f (guardedness) S4. l-e=e (neutral left)
U5. eg+p fg=(e+p f)-g (right distrib.) S5. e-1=e (neutral right)
Guarded Loop Axioms
W1. e(0) = ge(b) +3 1 (unrolling) g=eg+p [.
W3. if E(e) =0 (fixpoint)
W2. (e +c 1)(b) = (ce)(b) (tightening) g = e(d) f

Open Problem: Are these axioms complete for bisimilarity?

Axiomatizing GKAT Programs up to Bisimilarity

(S., Kappé, Kozen, Silva, 2021) Proposed the following axiomatization of GKAT/bisimilarity

Guarded Union Axioms Sequence Axioms (inherited from KA)
Ul. et+pe=e (idempotence) S1. (e-f):-g=e-(f:9) (associativity)
U2. e+, f=f +7e (skew commut.) S2. 0-e=0 (absorbing left)
U3. (e+y f)+cg=e+p.(f +cg) (skew assoc.) —SF——e06=6—"""—"(absorbingright)-
U4. e+, f=be+y f (guardedness) S4. l-e=e (neutral left)
U5. eg+p fg=(e+p f)-g (right distrib.) S5. e-1=e (neutral right)
Guarded Loop Axioms
W1. e(0) = ge(b) +3 1 (unrolling) g=eg+p [,
W3. if E(e) =0 (fixpoint)
W2. (e+¢ 1)(b) = (ce)(b) (tightening) g= e(0) f

Open Problem: Are these axioms complete for bisimilarity?

Completeness here implies completeness for language equivalence

Massaging the Syntax to Fit the Mould

b € BExp interpreted as assert b

Massaging the Syntax to Fit the Mould

b € BExp interpreted as assert b

The test | is interpreted as assert True

Massaging the Syntax to Fit the Mould

b € BExp interpreted as assert b

The test | is interpreted as assert True
and the test O is interpreted as assert False

Massaging the Syntax to Fit the Mould

b € BExp interpreted as assert b

The test | is interpreted as assert True
and the test O is interpreted as assert False

Massaging the Syntax to Fit the Mould

b € BExp interpreted as assert b

The test | is interpreted as assert True
and the test O is interpreted as assert False

assert [rue is equivalent to simply skip

Massaging the Syntax to Fit the Mould

b € BExp interpreted as assert b

The test | is interpreted as assert True
and the test O is interpreted as assert False

assert [rue is equivalent to simply skip
assert -alse Is equivalent to simply crash

Massaging the Syntax to Fit the Mould

b € BExp interpreted as assert b

The test | is interpreted as assert True
and the test O is interpreted as assert False

assert [rue is equivalent to simply skip
assert -alse Is equivalent to simply crash

GKATFbH =1+, 0 or if b then skip else crash

Guarded Kleene Algebra with Tests modulo Bisimulation

GExptSBe,f::=O\1\p€2\e+bf\ef\e(b)

e=e+T1 f

e =¢€e-+pé€e
et+vf=[+pe

e+p (f tcg) = (e+s f)

bve g

Oe =0
le=¢
e = el

e(fg) = (ef)g
(e+b f)g =eg +b fg

(1+.€)® = (0+4.e)?

el®) = eel® +) 1
g=-eg+wm) [e guarded

g=e"f

Guarded Kleene Algebra with Tests modulo Bisimulation

GExptSBe,f::=O\1\p€2\e+bf\ef\e(b)

0e = 0 (14¢€)? = (0+.e)®
le=¢e¢
e =-el e(®) = ee(®) +@) 1
e(fg) = (ef)g g = eg +@) f e guarded
(e+bflg=eg+b fg g=¢e®f

Equational Branching Axioms

Guarded Kleene Algebra with Tests modulo Bisimulation

GExptSBe,f::=O\1\p€2\e+bf\ef\e(b)

0e = 0 (14¢€)? = (0+.e)®
le=¢e¢
e =-el e(®) = ee(®) +@) 1
e(fg) = (ef)g g = eg +@) f e guarded
(e+bflg=eg+b fg g=¢e®f

Equational Branching Axioms

Guarded Kleene Algebra with Tests modulo Bisimulation

GExptSBe,f::=O\1\p€2\e+bf\ef\e(b)

0e = 0 (14¢€)? = (0+.e)®
le=¢e¢
e =-el e(®) = ee(®) +@) 1
e(fg) = (ef)g g = eg +@) f e guarded
(e+bflg=eg+b fg g=¢e®f

Equational Branching Axioms

Guarded Kleene Algebra with Tests modulo Bisimulation

GExptSBe,f::=O\1\p€2\e+bf\ef\e(b)

Unguarded Fixed-point Axiom

Oe = 0 (1+ce)® = (0+.e)®
le=¢€
e =-el e(®) = ee(®) +@) 1
e(fg) = (ef)g g = eg +@) f e guarded
(e+bflg=eg+b fg g=¢e®f

Equational Branching Axioms

How to distinguish the examples!

Unguarded Fixed-point Axioms

Equational Branching Axioms Seqguencing Axioms Unique .Guarc.jed
Fixed-point Axioms

How to distinguish the examples!

Unguarded Fixed-point Axioms

Equational Branching Axioms Seqguencing Axioms Unique Guarded
Fixed-point Axioms

Together, this data comprises a branching theory.

A Recipe

Unguarded Fixed-point Axioms

Equational Branching Axioms Sequencing Axioms Unique Guarded
Fixed-point Axioms

A Recipe

Definition. A branching theory consists of a

Unguarded Fixed-point Axioms

Equational Branching Axioms Sequencing Axioms Unique Guarded
Fixed-point Axioms

A Recipe

Definition. A branching theory consists of a

1. An algebraic signature § = §, + S, X Id? consisting of constants and binary operations

Unguarded Fixed-point Axioms

Equational Branching Axioms Sequencing Axioms Unique Guarded
Fixed-point Axioms

A Recipe

Definition. A branching theory consists of a

1. An algebraic signature § = §, + S, X Id? consisting of constants and binary operations

2. AsetT C S*(Var) x S*(Var) of equations between S-terms

Unguarded Fixed-point Axioms

Equational Branching Axioms Sequencing Axioms Unique Guarded
Fixed-point Axioms

A Recipe

Definition. A branching theory consists of a

1. An algebraic signature § = S, + $, X Id? consisting of constants and binary operations
2. AsetT C S*(Var) x S*(Var) of equations between S-terms

3. A fixed-point operator on S-terms fp x: $*({x} + Y) — S*(Y) (natural in Y') satisfying

Unguarded Fixed-point Axioms

Equational Branching Axioms Sequencing Axioms Unique Guarded
Fixed-point Axioms

A Recipe

Definition. A branching theory consists of a

1. An algebraic signature § = S, + $, X Id? consisting of constants and binary operations

2. AsetT C S*(Var) x S*(Var) of equations between S-terms

3. A fixed-point operator on S-terms fp x: $*({x} + Y) — S*(Y) (natural in Y') satisfying
T+ fp x t(x,y) = t(fp x #(x,y),y)

Unguarded Fixed-point Axioms

Equational Branching Axioms Sequencing Axioms Unique Guarded
Fixed-point Axioms

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by

EQ. 50 = {0}

52={+b‘b€BEXp}

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by

StExp D e,fii=c € 5, raise

EQ. 50 = {0}

52={+b‘b€BEXp}

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by
StExp D e,fii=c € 5, raise
| 1 skip

EQ. 50 = {0}

52={+b‘b€BEXp}

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by

StExp D e,fii=c € 5, raise
| 1 skip
e+, [branch into o(e, f), where 6 € S,
=9 5= {0}

52={+b‘b€BEXp}

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by

StExp D e,fii=c € 5, raise
| 1 skip
e+, [branch into o(e, f), where 6 € S,
| ef e;f
Eg SO — {O}

52={+b‘b€BEXp}

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by

StExp D e,fii=c € 5, raise
| 1 skip
e+, [branch into o(e, f), where 6 € S,
| ef e, f
| (@) recurse inx = o(e;x, T)
Eg. So = {0}

52={+b‘b€BEXp}

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by

StExp D e,fii=c € 5, raise
| 1 skip
e+, [branch into o(e, f), where 6 € S,
| ef e, f
| (@) recurse inx = o(e;x, T)
Eg. So = {0}

52={+b‘b€BEXp}

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by

StExp D e,fii=c € 5, raise
| 1 skip
e+, [branch into o(e, f), where 6 € S,
| ef e, f
| (@) recurse inx = o(e;x, T)
Eg. GExp;, D e,/ :=0 crash S, = {0}

52={+b‘b€BEXp}

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by

StExp D e,fii=c € 5, raise
| 1 skip
e+, [branch into o(e, f), where 6 € S,
| ef e, f
| (@) recurse inx = o(e;x, T)
Eg. GExp;, D e,/ :=0 crash S, = {0}
| 1 skip

52={+b‘b€BEXp}

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by

StExp D e,fii=c € 5, raise
| 1 skip
e+, [branch into o(e, f), where 6 € S,
| ef e, f
| (@) recurse inx = o(e;x, T)
Eg. GExp;, D e,/ :=0 crash S, = {0}
| 1 skip

e+, f if b then ¢ else f S, ={+,| b € BExp}

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by

StExp D e,fii=c € 5, raise

| 1 skip
e+, [branch into o(e, f), where 6 € S,
| ef e, f
| (@) recurse inx = o(e;x, T)

Eg. GExp;, D e,/ :=0 crash S, = {0}
| 1 skip
e+, f if b then ¢ else f S, ={+, | b € BExp}

| ef e, f

Introducing: Star Fragments!

Definition. For a given branching theory (5, T, fp), the set of star expressions is given by

StExp D e,fii=c € 5, raise

| 1 skip
e+, [branch into o(e, f), where 6 € S,
| ef e, f
| (@) recurse inx = o(e;x, T)

Eg. GExp;, D e,/ :=0 crash S, = {0}
| 1 skip
e+, f if b then ¢ else f S, ={+, | b € BExp}
| ef e, f

| e®) while b do ¢

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

¢: Exp — P, (T + AXEXxp)

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

¢: Exp — P, (T + AXEXxp)

cO)=g)=1T} La=1al)} Lletf)=7~C(e)Ul(f)

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

¢: Exp — P, (T + AXEXxp)

cO)=0 c)={T} ZL@={aD} le+f)==C()ui(f)
andif£(e) =1{ T ,(a;,e),...,(a,e,)}, then

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

£: Exp — P;,(T +A X Exp) b

cO)=0 c)={T} ZL@={aD} le+f)==C()ui(f)
andif£(e) =1{ T ,(a;,e),...,(a,e,)}, then

Cef)=C0(f)U{(a,ef),....(a,e,f)} and Z(e*)={T,(a,ee*),...,(a,ee™)}

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

Exp — &4,(T + A X Exp)

Operational semantics of GKAT expressions modulo bisimilarity:

GExp — ({ L, T } 4+ = X GExp)™

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

Exp — &4,(T + A X Exp)

Operational semantics of GKAT expressions modulo bisimilarity:

GExp — (L 4+ (T 4+ = X GExp))*

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

Exp — P4, (T + Act X Exp)

Operational semantics of GKAT expressions modulo bisimilarity:

GExp — (L + (T +Act X GExp))"

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

Exp — P4, (T + Act X Exp)

Operational semantics of GKAT expressions modulo bisimilarity:

GExp — (L + (T +Act X GExp))"

Observe: Formatis T + Act X (—) wrapped in M(—).

P —) — the finite powerset monad
(L + (—))* = the partial functions monad

Star Fragment Semantics: Branching Types

Fix an algebraic signature § = §, + $, X [d? and a set of equations T C S*(V) X S*(V).

Star Fragment Semantics: Branching Types
Fix an algebraic signature § = §, + $, X [d? and a set of equations T C S*(V) X S*(V).

Definition. A monad is M presented by the equational theory (S, 7)) if there is an isomorphism

i.e., the monad M is a free-algebra construction for (S, T).

Star Fragment Semantics: Branching Types
Fix an algebraic signature § = §, + $, X [d? and a set of equations T C S*(V) X S*(V).

Definition. A monad is M presented by the equational theory (S, 7)) if there is an isomorphism

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

™

|

~

ty
8(‘0(’0&
[T
~—~ O O O®
Y4+ + o+
b\(’b O
I

Q

Star Fragment Semantics: Branching Types
Fix an algebraic signature § = §, + $, X [d? and a set of equations T C S*(V) X S*(V).

Definition. A monad is M presented by the equational theory (S, 7)) if there is an isomorphism

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

e=e—+ 0
e— et e presents
f+e=e+f q

Q
+
~
-+
S
|
)
-+
=
+
KQ

Star Fragment Semantics: Branching Types
Fix an algebraic signature § = §, + $, X [d? and a set of equations T C S*(V) X S*(V).

Definition. A monad is M presented by the equational theory (S, 7)) if there is an isomorphism

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

e=e+0 Finite Powerset Monad g’ﬁn
e — et e presents
fre=e+f q

Q
+
~
-+
S
|
)
-+
=
+
KQ

Star Fragment Semantics: Branching Types
Fix an algebraic signature § = §, + $, X [d? and a set of equations T C S*(V) X S*(V).

Definition. A monad is M presented by the equational theory (S, 7)) if there is an isomorphism

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

e=e+0 Finite Powerset Monad g’ﬁn
e — et e presents

f+ + f —} R
e—==¢e

Q
+
~
-+
S
|
)
-+
=
+
KQ

Star Fragment Semantics: Branching Types
Fix an algebraic signature § = §, + $, X [d? and a set of equations T C S*(V) X S*(V).

Definition. A monad is M presented by the equational theory (S, 7)) if there is an isomorphism

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

e=e+0 Finite Powerset Monad g’ﬁn
e — et e presents
Uy, U, € Pp,(X)
fte=e+f —} U, +U,=U,UU,

Q
+
~
-+
S
|
)
-+
=
+
KQ

Star Fragment Semantics: Branching Types
Fix an algebraic signature § = §, + $, X [d? and a set of equations T C S*(V) X S*(V).

Definition. A monad is M presented by the equational theory (S, 7)) if there is an isomorphism

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

e=e+0 Finite Powerset Monad g’ﬁn
et presents
€ € Ula U2 € qufm()()
+ e =e+ q
f f U, + U, =U,uU,
e+ (f+9)=(e+f)+yg

0=0

Star Fragment Semantics: Branching Types
Fix an algebraic signature § = §, + $, X [d? and a set of equations T C S*(V) X S*(V).

Definition. A monad is M presented by the equational theory (S, 7)) if there is an isomorphism

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

e=e+0 Finite Powerset Monad g’ﬁn
et presents
€ € Ula U2 € qufm()()
f—|—€:e+f q U1+U2:U1UU2
et (f+g)=(e+f)+y 0=2

Definition. A monad that is presented by (S, T) is a branching type of the branching theory.

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator fp x: $S*({x} + Y) — $*(Y)

TH fpxt(x,y) =1t fpx t(x,y),y)

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator fp x: $S*({x} + Y) — $*(Y)
T+ fpxt(x,y) =Hfpxtx,y),y)

S*({xt+Y)/=7 s S*(Y) /=7
We obtain an operator on M that ({ } N)/ ()/
performs a type of iteration o o~
determined by fp x fo x M

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator fp x: $S*({x} + Y) — $*(Y)

TH fpxt(x,y) =1t fpx t(x,y),y)

We obtain an operator on M that ({ } 1_)/ L ()/ I
performs a type of iteration ~ o
determined by fp x fo o NS
M{z}+Y) --———----- > M(Y)

Example. The operator fp x #(x,y) = #(0,y) on semilattice terms is a fixed-point operator:

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator fp x: $S*({x} + Y) — $*(Y)
T+ fpxt(x,y) =Hfpxtx,y),y)

f

S*({z} +Y)/=r — S*(Y)/=r

We obtain an operator on M that
performs a type of iteration

determined by fp x fp o

12
12

Example. The operator fp x #(x,y) = #(0,y) on semilattice terms is a fixed-point operator:

Iq Ffpx(x+y)=0+y=y=y+y=>Ffpx x+y)+y

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator fp x: $S*({x} + Y) — $*(Y)

TH fpxt(x,y) =1t fpx t(x,y),y)

We obtain an operator on M that ({ } 1_)/ L ()/ I
performs a type of iteration ~ o
determined by fp x fo o NS
M{z}+Y) --———----- > M(Y)

Example. The operator fp x #(x,y) = #(0,y) on semilattice terms is a fixed-point operator:
I Ffpx(x+y)=0+y=y=y+y=>Fpx (x+y)+y

Given U C {x} + Y, this corresponds to

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator fp x: $S*({x} + Y) — $*(Y)
T+ fpxt(x,y) =Hfpxtx,y),y)

f

S*({z} +Y)/=r — S*(Y)/=r

We obtain an operator on M that
performs a type of iteration

determined by fp x fp o

12
12

Example. The operator fp x #(x,y) = #(0,y) on semilattice terms is a fixed-point operator:
Ig Ffpx(x+y)=0+y=y=y+y=>Ffpx(x+y)+y
Given U C {x} + Y, this corresponds to
fpx (U)=U-— {x}

Star Fragment Semantics

Operational semantics is given by a map
. StExp — M(T + Act X StExp)

Star Fragment Semantics

Operational semantics is given by a map
. StExp — M(T + Act X StExp)

£(c)=rc

O=x:

Star Fragment Semantics

Operational semantics is given by a map
. StExp — M(T + Act X StExp)

£(c)=c £(1)=T

D= O=

Star Fragment Semantics

Operational semantics is given by a map
. StExp — M(T + Act X StExp)

£(c)=c c)y =T £(p) = (p,1)

O~ O= O—0=

Star Fragment Semantics

Operational semantics is given by a map
. StExp — M(T + Act X StExp)

£(c) = ¢ f)=T Z(p) = (p,1) c(e+, f)=o0(l(e), C(f))

O~ O= O—0=

Star Fragment Semantics

Operational semantics is given by a map
. StExp — M(T + Act X StExp)

£(c) = ¢ f)=T Z(p) = (p,1) c(e+, f)=o0(l(e), C(f))

(e (= (P ——(1 =

f£(e) =t T,(pe),....(p,,e,)), then
cef) = 1)), (preif)s - (P €,f))

Star Fragment Semantics

If Lﬂ(e) — Ta (pb 61), Ry (p19 61) ’ then

£(e'?) = fp x o(i(x, (p, 1€ ?), ..., (p1, €,)), T)

Star Fragment Semantics

If Lﬂ(e) — Ta (pb 61), Ry (p19 61) ’ then

£(e'?) = fp x o(i(x, (p, 1€ ?), ..., (p1, €,)), T)

Star Fragment Semantics

If Lﬂ(e) — Ta (pb 61), Ry (p19 61) ’ then

£(e'?) = fp x o(i(x, (p, 1€ ?), ..., (p1, €,)), T)

Example. For regular expressions, if p € Act, then

Star Fragment Semantics

If Lﬂ(e) — Ta (pb 61), Ry (p19 61) ’ then

£(e'?) = fp x o(i(x, (p, 1€ ?), ..., (p1, €,)), T)

Example. For regular expressions, if p € Act, then

Star Fragment Semantics

If Lﬂ(e) — Ta (pb 61), Ry (p19 61) ’ then

£(e'?) = fp x o(i(x, (p, 1€ ?), ..., (p1, €,)), T)

Example. For regular expressions, if p € Act, then

cI+p)=1T,(p1)}

Star Fragment Semantics

If Lﬂ(e) — Ta (pb 61), Ry (p19 61) ’ then

£(e'?) = fp x o(i(x, (p, 1€ ?), ..., (p1, €,)), T)

Example. For regular expressions, if p € Act, then

cI+p)=1T,(p1)}

Star Fragment Semantics

If Lﬂ(e) — Ta (pb 61), Ry (p19 61) ’ then

£(e'?) = fp x o(i(x, (p1, €1'?), ..., (P, €,)), T')
Example. For regular expressions, if p € Act, then

cI+p)=1T,(p1)}

(1 +p)*) =fpx {x,(p, e} U { T}

Star Fragment Semantics

If Lﬂ(e) — Ta (pb 61), Ry (p19 61) ’ then

£(e'?) = fp x o(i(x, (p1, €1'?), ..., (P, €,)), T')
Example. For regular expressions, if p € Act, then

cI+p)=1T,(p1)}

(1 +p)*) =fpx {x,(p, e} U { T}
= {(p,1), T }

Star Fragment Semantics

If Lﬂ(e) — Ta (pb 61), Ry (p19 61) ’ then

£(e'?) = fp x o(i(x, (p, 1€ ?), ..., (p1, €,)), T)

Example. For regular expressions, if p € Act, then

cI+p)=1T,(p1)}

(1 +p)*) =fpx {x,(p, e} U { T}
= {(p,1), T }

An Axiomatization of Star Fragments modulo Bisimilarity?

General Unguarded Fixed-point Axiom

ce =c
le=e¢
A e = el
e(fg) = (ef)g g=-eqg+,f e guarded
(e+s flg=-¢eg+s fg gze(a)f

Equational
Branching Axioms

An Axiomatization of Star Fragments modulo Bisimilarity?

General Unguarded Fixed-point Axiom

CE = C

le=c¢

T e — el el?) = eel?) 1+ 1

e(fg) = (ef)g g=-eg—+,f e guarded
(e+s flg=e€g+o fg g=-¢elf

Equational Sequencing AxXioms
Branching Axioms

Generalized Milner’s Completeness Problem:

Is this axiomatization of bisimulation complete for every star fragment?

Known & Unknown Completeness Theorems

U-expressions

star fragment

1-free star
fragment

recursion
-free

Regex mod | GKAT mod | ProbRegex | ProbGKAT
bisimilarity | bisimilarity | mod bisim. | mod bisim.
U -exp complete complete complete complete
star complete
fraament (Grabmayer, | Unkown Unkown Unknown
9 2022)
complete complete
1-free star | (Grabmayer, P complete
. (Kappe, S., . Unknown
fragment Fokkink, : (unpublished)
Silva, 2023)
2019)
recursion-
complete complete complete complete

free

Summary

- Star fragments arise from branching theories, (S, T, fp) consisting of an algebraic theory and a fixed-
point operator that determines behaviour of unguarded fixed-points

- Milner’s regular expressions mod bisimilarity = semilattices with bottom star fragment

- GKAT/bisimilarity = if-then-else with crash star fragment

- Further examples:

- (Rozowski, Kappe, Kozen, Schmid, Silva, 2023) ProbGKAT mod bisimilarity = GKAT + &,

- Probabilistic regular expressions mod bisimilarity = EBP instead of +

- Regex mixing nondeterminism and probability = Regular expressions + @,

General Unguarded Fixed-point Axiom

Generalized Milner’s ce =c
Completeness Problem: le=e
L e = el el?) =eel?) 4,1

Is this axiomatization of
bisimulation complete for
every star fragment?

e(fg) = (ef)g g=eg+,f e guarded
(e+s flg=eg+s fg gze(a)f

Equational Sequencing Axioms
Branching Axioms

