From Regular Expressions to Star Fragments

Todd Schmid

St. Mary's College of California (Bucknell University starting in July)

Based on Coalgebraic Completeness Theorems for Effectful Process Calculi, UCL, 2023 and joint work with
Wojciech Rozowski (UCL) Tobias Kappé (Open Universiteit)
Dexter Kozen (Cornell University) Jurriaan Rot (Radboud University) Alexandra Silva (Cornell University)

LLAMA Seminar

This Talk

1. Regular expressions and regular languages
2. Axioms for language equivalence á la Salomaa
3. Process (bisimilarity) semantics of regular expressions
4. Guarded Kleene Algebra with Tests mod bisimilarity
5. What these process algebras have in common
6. Star Fragments
7. Open Problems

Regular Languages

$$
X \rightarrow\{\perp \mathrm{~T}\} \times X^{A}
$$

Regular Languages

$$
X \rightarrow\{\perp, \mathrm{~T}\} \times X^{A}
$$

Regular Languages

$$
X \rightarrow\{\perp, \mathrm{~T}\} \times X^{A}
$$

Regular Languages

$$
X \rightarrow\{\perp, \mathrm{~T}\} \times X^{A}
$$

Regular Languages

$$
X \rightarrow\{\perp, \mathrm{~T}\} \times X^{A}
$$

Regular Languages

$$
X \rightarrow\{\perp, \mathrm{~T}\} \times X^{A}
$$

Regular Languages

$$
X \rightarrow\{\perp, \mathrm{~T}\} \times X^{A}
$$

$$
L=\{a b, a a a b, b b, b a b b, \ldots\}
$$

Regular Languages

$$
X \rightarrow\{\perp, \mathrm{~T}\} \times X^{A}
$$

Regular expressions: syntax for regular languages

$$
\begin{aligned}
L & =\{a b, a a a b, b b, b a b b, \ldots\} \\
& =(a a+b a) *(a b+b b)
\end{aligned}
$$

Regular Expressions and Regular Languages

$L=L(r)$ iff L is recognized by a deterministic finite automaton.

Regular Expressions and Regular Languages

Regular Expressions and Regular Languages

Regular Expressions and Regular Languages

For DFAs,

Regular Expressions and Regular Languages

For DFAs,

- bisimilarity = language equivalence

Regular Expressions and Regular Languages

For DFAs,

- bisimilarity = language equivalence
- Using (Hopcroft, Karp, 1971), bisimilarity is checked in almost linear time

Regular Expressions and Regular Languages

For DFAs,

- bisimilarity = language equivalence
- Using (Hopcroft, Karp, 1971), bisimilarity is checked in almost linear time

$$
L\left((a a+b a)^{*}(a b+b b)\right)=L\left(((a+b) a)^{*} b\right)
$$

Regular Expressions and Regular Languages

Axiomatizing Language Equivalence

(Salomaa, 1964) A complete axiomatization of language equivalence of regular expressions:

A_{1}	$\alpha+(\beta+\gamma)=(\alpha+\beta)+\gamma$,	A_{7}	$\phi^{*} \alpha=\alpha$,
A_{2}	$\alpha(\beta \gamma)=(\alpha \beta) \gamma$,	A_{8}	$\phi \alpha=\phi$,
A_{3}	$\alpha+\beta=\beta+\alpha$,	A_{9}	$\alpha+\phi=\alpha$,
A_{4}	$\alpha(\beta+\gamma)=\alpha \beta+\alpha \gamma$,	A_{10}	$\alpha^{*}=\phi^{*}+\alpha^{*} \alpha$,
A_{5}	$(\alpha+\beta) \gamma=\alpha \gamma+\beta \gamma$,	A_{11}	$\alpha^{*}=\left(\phi^{*}+\alpha\right)^{*}$.
A_{s}	$\alpha+\alpha=\alpha$,		
R1 (Substitution). Assume that γ^{\prime} is the result of replacing an occurrence of α			
by β in γ. Then from the equations $\alpha=\beta$ and $\gamma=\delta$ one may infer the equation			
$\gamma^{\prime}=\delta$ and the equation $\gamma^{\prime}=\gamma$.			
R2 (Solution of equations). Assume that β does not possess e.w.p. Then from			
the equation $\alpha=\alpha \beta+\gamma$ one may infer the equation $\alpha=\gamma \beta^{*}$.			

Axiomatizing Language Equivalence

(Milner, 1984) Rephrased Salomaa's rules as follows:
Salomaa [9] provides a complete inference system for star expressions under standard interpretation. When we dualise it, by writing $f \circ e$ for $e \circ f$ everywhere in Salomaa's rules (which gives an equipotent system), it has the following rules:

$$
\begin{aligned}
& \mathrm{A}_{1} \quad e+(f+g)=(e+f)+g \quad \mathrm{~A}_{7} \quad e \circ \phi^{*}=e \\
& \mathrm{~A}_{2} \quad(e \circ f) \circ g=e \circ(f \circ g) \\
& \mathrm{A}_{8} \quad e \circ \phi=\phi \\
& \mathrm{A}_{3} \quad e+f=f+e \\
& \mathrm{~A}_{9} \quad e+\phi=e \\
& \mathrm{~A}_{4} \quad(e+f) \circ g=e \circ g+f \circ g \\
& \mathrm{~A}_{10} e^{*}=\phi^{*}+e \circ e^{*} \\
& \mathrm{~A}_{5} e \circ(f+g)=e \circ f+e \circ g \quad \mathrm{~A}_{11} \quad e^{*}=\left(\phi^{*}+e\right)^{*} \\
& \mathrm{~A}_{6} \quad e+e=e \\
& \mathbf{R}_{2} \text { If } f \text { does not possess e.w.p. then } \\
& \text { from } e=f \circ e+h \text { infer } e=f^{*} \circ h .
\end{aligned}
$$

(We have omitted R_{1}, the substitution rule.)

Axiomatizing Language Equivalence

(Milner, 1984) Rephrased Salomaa's rules as follows:
Salomaa [9] provides a complete inference system for star expressions under standard interpretation. When we dualise it, by writing $f \circ e$ for $e \circ f$ everywhere in Salomaa's rules (which gives an equipotent system), it has the following rules:

$$
\begin{aligned}
& \mathrm{A}_{1} \quad e+(f+g)=(e+f)+g \quad \mathrm{~A}_{7} \quad e \circ \phi^{*}=e \\
& \mathrm{~A}_{2} \quad(e \circ f) \circ g=e \circ(f \circ g) \\
& \mathrm{A}_{8} \quad e \circ \phi=\phi \\
& \mathrm{A}_{3} \quad e+f=f+e \\
& \mathrm{~A}_{9} \quad e+\phi=e \\
& \mathrm{~A}_{4} \quad(e+f) \circ g=e \circ g+f \circ g \quad \mathrm{~A}_{10} \quad e^{*}=\phi^{*}+e \circ e^{*} \\
& \mathrm{~A}_{5} e \circ(f+g)=e \circ f+e \circ g \quad \mathrm{~A}_{11} \quad e^{*}=\left(\phi^{*}+e\right)^{*} \\
& \mathrm{~A}_{6} \quad e+e=e \\
& \mathrm{R}_{2} \text { If } f \text { does not possess e.w.p. then } \\
& \text { from } e=f \circ e+h \text { infer } e=f^{*} \circ h .
\end{aligned}
$$

(We have omitted R_{1}, the substitution rule.)

Milner rephrased Salomaa's axioms to make them easier to adapt to a different (process) semantics.

Deciding language equivalence

$(a a+b a) *(a b+b b)$

Regular Expressions

Deciding language equivalence

$$
(a a+b a)^{*}(a b+b b)
$$

Antimirov Derivatives

Deciding language equivalence

$$
(a a+b a) *(a b+b b)
$$

$$
X \rightarrow\{\perp, T\} \times \mathscr{P}(X)^{A}
$$

Antimirov Derivatives

Deciding language equivalence

$$
(a a+b a) *(a b+b b)
$$

Antimirov Derivatives

Deciding language equivalence

$$
(a a+b a) *(a b+b b)
$$

Deciding language equivalence

$$
(a a+b a)^{*}(a b+b b)
$$

$X \rightarrow\{\perp, \mathrm{~T}\} \times \mathscr{P}(X)^{A}$

Antimirov Derivatives

Deciding language equivalence

$$
(a a+b a) *(a b+b b)
$$

$$
X \rightarrow\{\perp, T\} \times \mathscr{P}(X)^{A}
$$

Nondeterministic FAs

Bisimilarity for NFAs is Finer than Language Equivalence

Not all axioms are sound!

Axiomatizing Bisimilarity of Regular Expressions

Salomaa [9] provides a complete inference system for star expressions under standard interpretation. When we dualise it, by writing $f \circ e$ for $e \circ f$ everywhere in Salomaa's rules (which gives an equipotent system), it has the following rules:

$$
\begin{aligned}
& \mathrm{A}_{1} \quad e+(f+g)=(e+f)+g \quad \mathrm{~A}_{7} \quad e \circ \phi^{*}=e \\
& \mathrm{~A}_{2} \quad(e \circ f) \circ g=e \circ(f \circ g) \\
& \mathrm{A}_{8} \quad e \circ \phi=\phi \\
& \mathrm{A}_{3} \quad e+f=f+e \\
& \mathrm{~A}_{9} \quad e+\phi=e \\
& \mathrm{~A}_{4} \quad(e+f) \circ g=e \circ g+f \circ g \quad \mathrm{~A}_{10} \quad e^{*}=\phi^{*}+e \circ e^{*} \\
& \mathrm{~A}_{5} e \circ(f+g)=e \circ f+e \circ g \quad \mathrm{~A}_{11} \quad e^{*}=\left(\phi^{*}+e\right)^{*} \\
& \mathrm{~A}_{6} \quad e+e=e \\
& \mathbf{R}_{2} \text { If } f \text { does not possess e.w.p. then } \\
& \text { from } e=f \circ e+h \text { infer } e=f^{*} \circ h .
\end{aligned}
$$

(We have omitted R_{1}, the substitution rule.)

Axiomatizing Bisimilarity of Regular Expressions

Salomaa [9] provides a complete inference system for star expressions under standard interpretation. When we dualise it, by writing $f \circ e$ for $e \circ f$ everywhere in Salomaa's rules (which gives an equipotent system), it has the following rules:

$$
\begin{aligned}
& \mathrm{A}_{1} \quad e+(f+g)=(e+f)+g \\
& \mathrm{~A}_{7} \quad e \circ \phi^{*}=e \\
& \mathrm{~A}_{2} \quad(e \circ f) \circ g=e \circ(f \circ g) \\
& \mathrm{A}_{3} \quad e+f=f+e \\
& \mathrm{~A}_{4} \quad(e+f) \circ g=e \circ g+f \circ g \\
& A_{5} \text { eo (flg) }=00 f \mid e \rho g \\
& \mathrm{~A}_{9} \quad e+\phi=e \\
& \mathrm{~A}_{10} e^{*}=\phi^{*}+e \circ e^{*} \\
& \mathrm{~A}_{11} e^{*}=\left(\phi^{*}+e\right)^{*} \\
& \mathrm{~A}_{6} \quad e+e=e \\
& \mathrm{R}_{2} \text { If } f \text { does not possess e.w.p. then } \\
& \text { from } e=f \circ e+h \text { infer } e=f * \circ h .
\end{aligned}
$$

(We have omitted R_{1}, the substitution rule.)

Axiomatizing Bisimilarity of Regular Expressions

Salomaa [9] provides a complete inference system for star standard interpretation. When we dualise it, by writing $f \circ e$ for e Salomaa's rules (which gives an equipotent system), it has the follo

$$
\begin{aligned}
& \mathrm{A}_{1} \quad e+(f+g)=(e+f)+g \\
& \mathrm{~A}_{7} \quad e \circ \phi^{*}=e \\
& \mathrm{~A}_{2}(e \circ f) \circ g=e \circ(f \circ g) \\
& \mathrm{A}_{3} \quad e+f=f+e \\
& \mathrm{~A}_{4} \quad(e+f) \circ g=e \circ g+f \circ g \\
& \mathrm{~A}_{9} \quad e+\phi=e \\
& \mathrm{~A}_{10} e^{*}=\phi^{*}+e \circ e^{*} \\
& \mathrm{~A}_{11} e^{*}=\left(\phi^{*}+e\right)^{*} \\
& \mathrm{~A}_{6} \quad e+e=e \\
& \mathrm{R}_{2} \text { Iff does not possess e.w.p. then } \\
& \text { from } e=f \circ e+h \text { infer } e=f^{*} \circ h .
\end{aligned}
$$

(We have omitted R_{1}, the substitution rule.)

Axiomatizing Bisimilarity of Regular Expressions

Salomaa [9] provides a complete inference system for star standard interpretation. When we dualise it, by writing $f \circ e$ for e Salomaa's rules (which gives an equipotent system), it has the follo

$$
\begin{aligned}
& \mathrm{A}_{1} \quad e+(f+g)=(e+f)+g \\
& \mathrm{~A}_{7} \quad e \circ \phi^{*}=e \\
& \mathrm{~A}_{2}(e \circ f) \circ g=e \circ(f \circ g) \\
& \mathrm{A}_{3} \quad e+f=f+e \\
& \mathrm{~A}_{9} \quad e+\phi=e \\
& \mathrm{~A}_{4} \quad(e+f) \circ g=e \circ g+f \circ g \\
& \mathrm{~A}_{10} e^{*}=\phi^{*}+e \circ e^{*} \\
& A_{5} \quad e=(f+g)=e 0 f+e 0 g \\
& \mathrm{~A}_{6} \quad e+e=e \\
& \mathrm{R}_{2} \text { If } f \text { does not possess e.w.p. then } \\
& \text { from } e=f \circ e+h \text { infer } e=f^{*} \circ h .
\end{aligned}
$$

By deleting these

 axioms, Milner obtains a sound axiomatization ofbisimilarity.
(We have omitted R_{1}, the substitution rule.)

Axiomatizing Bisimilarity of Regular Expressions

Salomaa [9] provides a complete inference system for star standard interpretation. When we dualise it, by writing $f \circ e$ for e Salomaa's rules (which gives an equipotent system), it has the follo

A_{1}	$e+(f+g)=(e+f)+g$	A_{7}	$e \circ \phi^{*}=e$
A_{2}	$(e \circ f) \circ g=e \circ(f \circ g)$	${ }_{-8}$	$e \sim \phi=\phi$
A_{3}	$e+f=f+e$	A_{9}	$e+\phi=e$
A_{4}	$(e+f) \circ g=e \circ g+f \circ g$	A_{10}	$e^{*}=\phi^{*}+e \circ e^{*}$
	$e 0(f+g)=00 f+e 0 \rho$	A_{11}	$e^{*}=\left(\phi^{*}+e\right)^{*}$
A_{6}	$e+e=e$		$\phi \circ e=\phi$
R_{2}	If f does not possess e.w.p.		

(We have omitted R_{1}, the substitution rule.)

Axiomatizing Bisimilarity of Regular Expressions

Salomaa [9] provides a complete inference system for star standard interpretation. When we dualise it, by writing $f \circ e$ for e Salomaa's rules (which gives an equipotent system), it has the follo

$$
\begin{aligned}
& \mathrm{A}_{1} \quad e+(f+g)=(e+f)+g \quad \mathrm{~A}_{7} \quad e \circ \phi^{*}=e \\
& \mathrm{~A}_{2} \quad(e \circ f) \circ g=e \circ(f \circ g) \\
& \mathrm{A}_{3} \quad e+f=f+e \quad \mathrm{~A}_{9} \quad e+\phi=e \\
& \mathrm{~A}_{4} \quad(e+f) \circ g=e \circ g+f \circ g \quad \mathrm{~A}_{10} \quad e^{*}=\phi^{*}+e \circ e^{*} \\
& A_{5} \text { eo (flg) }=00 f \mid e \rho g \\
& \mathrm{~A}_{6} \quad e+e=e \\
& \begin{array}{l}
\mathrm{A}_{11} \quad e^{*}=\left(\phi^{*}+e\right)^{*} \\
\mathrm{~A}_{8}^{\prime} \quad \phi \circ e=\phi \\
\hline
\end{array} \\
& \mathbf{R}_{2} \text { If } f \text { does not possess e.w.p. then } \\
& \text { from } e=f \circ e+h \text { infer } e=f * \circ h \text {. }
\end{aligned}
$$

By deleting these axioms, Milner obtains a sound axiomatization of
bisimilarity.
(Milner, 1984)
Is this axiomatization complete?
(Grabmayer, 2022) Yes!
(We have omitted R_{1}, the substitution rule.)

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner's axioms for regular expressions modulo bisimilarity:

$$
\begin{array}{rlrl}
e & =e+0 & 0 e & =0 \\
e & =e & e^{*}=(1+e)^{*} \\
e & =e+e & 1 e & =e \\
f+e & =e+f & e & =e 1 \\
e(f g) & =(e f) g & e^{*}=e e^{*}+1 \\
e+(f+g) & =(e+f)+g & (e+f) g & =e g+f g
\end{array} \frac{g=e g+f \quad e \text { guarded }}{g=e^{*} f}
$$

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner's axioms for regular expressions modulo bisimilarity:

$$
\begin{aligned}
e & =e+0 \\
e & =e+e \\
f+e & =e+f \\
e+(f+g) & =(e+f)+g
\end{aligned}
$$

$$
\begin{aligned}
0 e & =0 \\
1 e & =e \\
e & =e 1 \\
e(f g) & =(e f) g \\
(e+f) g & =e g+f g
\end{aligned}
$$

$$
e^{*}=(1+e)^{*}
$$

$$
e^{*}=e e^{*}+1
$$

$$
\frac{g=e g+f \quad e \text { guarded }}{g=e^{*} f}
$$

Equational Branching Axioms

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner's axioms for regular expressions modulo bisimilarity:

Equational Branching Axioms

$$
\begin{aligned}
0 e & =0 \\
1 e & =e \\
e & =e 1 \\
e(f g) & =(e f) g \\
(e+f) g & =e g+f g
\end{aligned}
$$

$$
e^{*}=(1+e)^{*}
$$

$$
e^{*}=e e^{*}+1
$$

$$
\frac{g=e g+f \quad e \text { guarded }}{g=e^{*} f}
$$

Sequencing Axioms

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner's axioms for regular expressions modulo bisimilarity:

Equational Branching Axioms

$$
\begin{aligned}
0 e & =0 \\
1 e & =e \\
e & =e 1 \\
e(f g) & =(e f) g \\
(e+f) g & =e g+f g
\end{aligned}
$$

Sequencing Axioms

$$
e^{*}=(1+e)^{*}
$$

$$
e^{*}=e e^{*}+1
$$

$$
\frac{g=e g+f \quad e \text { guarded }}{g=e^{*} f}
$$

Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner's axioms for regular expressions modulo bisimilarity:

Equational Branching Axioms

$0 e$	$=0$
$1 e$	$=e$
e	$=e 1$
$e(f g)$	$=(e f) g$
$(e+f) g$	$=e g+f g$

Sequencing Axioms

Unguarded Fixed-point Axiom

$$
\begin{gathered}
e^{*}=(1+e)^{*} \\
\frac{e^{*}=e e^{*}+1}{g=e g+f \quad e \text { guarded }} \\
g=e^{*} f
\end{gathered}
$$

A Similar Situation: Guarded Kleene Algebra with Tests

A Similar Situation: Guarded Kleene Algebra with Tests

- An algebra of propositional WHILE programs

A Similar Situation: Guarded Kleene Algebra with Tests

- An algebra of propositional WHILE programs
- (Kozen, Tseng, 2008) Syntax and language semantics from Kleene Algebra with Tests

A Similar Situation: Guarded Kleene Algebra with Tests

- An algebra of propositional WHILE programs
- (Kozen, Tseng, 2008) Syntax and language semantics from Kleene Algebra with Tests
- (Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

- Operational semantics, almost linear decision procedure
- Propose a Salomaa-like axiomatization of language equivalence

A Similar Situation: Guarded Kleene Algebra with Tests

- An algebra of propositional WHILE programs
- (Kozen, Tseng, 2008) Syntax and language semantics from Kleene Algebra with Tests
- (Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

- Operational semantics, almost linear decision procedure
- Propose a Salomaa-like axiomatization of language equivalence
- (S., Kappé, Kozen, Silva, 2021)
- Infinite tree semantics = bisimilarity
- Propose a Salomaa-like axiomatization of bisimilarity

Guarded Kleene Algebra with Tests

$$
\operatorname{BExp} \ni b, c::=0|1| t \in T|b \vee c| b \wedge c \mid \bar{b}
$$

Guarded Kleene Algebra with Tests

Generates an atomic Boolean algebra with atoms $A t=2^{T}$.

$$
\text { BExp } \ni b, c::=0|1| t \in T|b \vee c| b \wedge c \mid \bar{b}
$$

Guarded Kleene Algebra with Tests

Generates an atomic Boolean
algebra with atoms $A t=2^{T}$.

$$
\mathrm{BExp} \ni b, c::=0|1| t \in T|b \vee c| b \wedge c \mid \bar{b}
$$

BExp/ $={ }_{B}$

$$
\operatorname{GExp} \ni e, f::=b \in \operatorname{BExp}|p \in \Sigma| e+_{b} f|e f| e^{(b)}
$$

Guarded Kleene Algebra with Tests

Generates an atomic Boolean
algebra with atoms $A t=2^{T}$.
BExp $\ni b, c::=0|1| t \in T|b \vee c| b \wedge c \mid \bar{b}$
BExp/ $=$ B

$$
\operatorname{GExp} \ni e, f::=b \in \operatorname{BExp}|p \in \Sigma| e+_{b} f|e f| e^{(b)}
$$

assert b

Guarded Kleene Algebra with Tests

Generates an atomic Boolean

algebra with atoms $A t=2^{T}$.
BExp $\ni b, c::=0|1| t \in T|b \vee c| b \wedge c \mid \bar{b}$
$\mathrm{BExp} /=_{\mathrm{BA}} \cong \mathscr{P}\left(2^{T}\right)$ GExp $\ni e, f::=b \in \operatorname{BExp}|p \in \Sigma| e+_{b} f|e f| e^{(b)}$
$\operatorname{assert} b<$ do p

Guarded Kleene Algebra with Tests

Generates an atomic Boolean

algebra with atoms $A t=2^{T}$.
BExp $\ni b, c::=0|1| t \in T|b \vee c| b \wedge c \mid \bar{b}$
BExp/ $=_{\mathrm{BA}} \cong \mathscr{T}\left(2^{T}\right)$ -

Guarded Kleene Algebra with Tests

Generates an atomic Boolean algebra with atoms $A t=2^{T}$.

BExp/ $=_{\mathrm{BA}} \cong \mathscr{P}\left(2^{T}\right)$ BExp $\ni b, c::=0|1| t \in T|b \vee c| b \wedge c \mid \bar{b}$

Guarded Kleene Algebra with Tests

Generates an atomic Boolean

algebra with atoms $A t=2^{T}$.
BExp $\ni b, c::=0|1| t \in T|b \vee c| b \wedge c \mid \bar{b}$
BExp/ $=_{\mathrm{BA}} \cong \mathscr{T}\left(2^{T}\right)$ -

Example of a GKAT Automaton

$$
(p r)^{(\alpha)} q\left(p \beta+{ }_{\alpha \vee \beta} 0\right)
$$

while α do

$$
\begin{aligned}
& \quad p \\
& r \\
& q \\
& \text { if } \alpha \vee \beta \text { then } \\
& \quad p \\
& \quad \text { assert } \beta
\end{aligned}
$$

else
assert False

Axiomatizing GKAT Programs up to Language Equivalence

(Smolka et al., 2019) Proposed the following axiomatization of GKAT

Guarded Union Axioms			Sequence Axioms (inherited from KA)		
U1	$e+{ }_{b} e \equiv e$	(idempotence)		$(e \cdot f) \cdot g \equiv e \cdot(f \cdot g)$	(associativity)
U2	$e+{ }_{b} f \equiv f+\frac{\bar{b}}{} e$	(skew commut.)	S2	$0 \cdot e \equiv 0$	(absorbing left)
	$f)+{ }_{c} g \equiv e+{ }_{b c}\left(f+{ }_{c} g\right)$	(skew assoc.)	S3	$e \cdot 0 \equiv 0$	(absorbing right)
U4	$e+{ }_{b} f \equiv b e+{ }_{b} f$	(guardedness)	S4	$1 \cdot e \equiv e$	(neutral left)
U5	$e g+{ }_{b} f g \equiv\left(e+_{b} f\right) \cdot g$	(right distrib.)	S5	$e \cdot 1 \equiv e$	(neutral right)

Guarded Loop Axioms

W1.
$e^{(b)} \equiv e e^{(b)}+{ }_{b} 1$
$\mathrm{W} 2 . \quad(e+c 1)^{(b)} \equiv(c e)^{(b)}$
(unrolling)
(tightening)
W3. $\frac{g \equiv e g+b f}{g \equiv e^{(b)} f}$ if $E(e) \equiv 0 \quad$ (fixpoint)

Axiomatizing GKAT Programs up to Language Equivalence

(Smolka et al., 2019) Proposed the following axiomatization of GKAT

Guarded Union Axioms

U1.	$e+{ }_{b} e \equiv e$
U2.	$e+{ }_{b} f \equiv f+\frac{b_{b}}{} e$

U3. $\left(e+_{b} f\right)+_{c} g \equiv e+_{b c}(f+c g)$
U4. $\quad e+{ }_{b} f \equiv b e+{ }_{b} f$
U5. $e g+_{b} f g \equiv\left(e+{ }_{b} f\right) \cdot g$

Guarded Loop Axioms

W1.
$e^{(b)} \equiv e e^{(b)}+{ }_{b} 1$
$\mathrm{W} 2 . \quad(e+c 1)^{(b)} \equiv(c e)^{(b)}$
(unrolling)
(tightening)

$$
\text { W3. } \frac{g \equiv e g+_{b} f}{g \equiv e^{(b)} f} \text { if } E(e) \equiv 0 \quad \text { (fixpoint) }
$$

Axiomatizing GKAT Programs up to Bisimilarity

(S., Kappé, Kozen, Silva, 2021) Proposed the following axiomatization of GKAT/bisimilarity

Guarded Loop Axioms

W1.
$e^{(b)} \equiv e e^{(b)}+{ }_{b} 1$
$\mathrm{W} 2 . \quad(e+c 1)^{(b)} \equiv(c e)^{(b)}$
(unrolling)
(tightening)
W3. $\frac{g \equiv e g+b f}{g \equiv e^{(b)} f}$ if $E(e) \equiv 0 \quad$ (fixpoint)

Axiomatizing GKAT Programs up to Bisimilarity

(S., Kappé, Kozen, Silva, 2021) Proposed the following axiomatization of GKAT/bisimilarity

Guarded Union Axioms

| U1. | $e+{ }_{b} e$ | $\equiv e$ |
| ---: | :--- | ---: | :--- |
| U2. | $e+{ }_{b} f$ | $\equiv f+{ }_{b} e$ |

U3. $\left(e+_{b} f\right)+c g \equiv e+{ }_{b c}(f+c g)$
U4.

$$
e+_{b} f \equiv b e+_{b} f
$$

U5. $e g+_{b} f g \equiv\left(e+{ }_{b} f\right) \cdot g$
(idempotence)
(skew commut.)
(skew assoc.)
(guardedness)
(right distrib.)
Guarded Loop Axioms
W1.
$e^{(b)} \equiv e e^{(b)}+{ }_{b} 1$
$\mathrm{W} 2 . \quad(e+c 1)^{(b)} \equiv(c e)^{(b)}$
(unrolling)
(tightening)

$$
\text { W3. } \frac{g \equiv e g+b f}{g \equiv e^{(b)} f} \text { if } E(e) \equiv 0 \quad \text { (fixpoint) }
$$

Open Problem: Are these axioms complete for bisimilarity?

Axiomatizing GKAT Programs up to Bisimilarity

(S., Kappé, Kozen, Silva, 2021) Proposed the following axiomatization of GKAT/bisimilarity

Guarded Union Axioms

$$
\begin{array}{ll}
\mathrm{U} 1 . & e+{ }_{b} e \equiv e \\
\mathrm{U} 2 . & e+{ }_{b} f \equiv f+\frac{{ }_{b}}{} e
\end{array}
$$

U3. $\left(e+_{b} f\right)+{ }_{c} g \equiv e+{ }_{b c}(f+c g)$
U4. $\quad e+{ }_{b} f \equiv b e+{ }_{b} f$
U5. $\quad e g+_{b} f g \equiv\left(e+{ }_{b} f\right) \cdot g$

Guarded Loop Axioms

W1.
$e^{(b)} \equiv e e^{(b)}+{ }_{b} 1$
$\mathrm{W} 2 . \quad(e+c 1)^{(b)} \equiv(c e)^{(b)}$
(unrolling)
(tightening)
W3. $\frac{g \equiv e g+_{b} f}{g \equiv e^{(b)} f}$ if $E(e) \equiv 0 \quad$ (fixpoint)

Open Problem: Are these axioms complete for bisimilarity?

Completeness here implies completeness for language equivalence

Massaging the Syntax to Fit the Mould

$$
b \in \operatorname{BExp} \quad \text { interpreted as } \quad \text { assert } b
$$

Massaging the Syntax to Fit the Mould

$$
b \in \operatorname{BExp} \quad \text { interpreted as } \quad \text { assert } b
$$

The test 1 is interpreted as assert True

Massaging the Syntax to Fit the Mould

$$
b \in \operatorname{BExp} \quad \text { interpreted as } \quad \text { assert } b
$$

The test 1 is interpreted as assert True and the test 0 is interpreted as assert False

Massaging the Syntax to Fit the Mould

$$
b \in \operatorname{BExp} \quad \text { interpreted as } \quad \text { assert } b
$$

The test 1 is interpreted as assert True and the test 0 is interpreted as assert False

Massaging the Syntax to Fit the Mould

$$
b \in B E x p \quad \text { interpreted as } \quad \text { assert } b
$$

The test 1 is interpreted as assert True and the test 0 is interpreted as assert False assert True is equivalent to simply skip

Massaging the Syntax to Fit the Mould

$$
b \in B E x p \quad \text { interpreted as } \quad \text { assert } b
$$

The test 1 is interpreted as assert True and the test 0 is interpreted as assert False
assert True is equivalent to simply skip assert False is equivalent to simply crash

Massaging the Syntax to Fit the Mould

$$
b \in \operatorname{BExp} \quad \text { interpreted as } \quad \text { assert } b
$$

The test 1 is interpreted as assert True and the test 0 is interpreted as assert False
assert True is equivalent to simply skip assert False is equivalent to simply crash

$$
\text { GKAT } \vdash b=1+{ }_{b} 0 \quad \text { or } \quad \text { if } b \text { then skip else crash }
$$

Guarded Kleene Algebra with Tests modulo Bisimulation

$$
\begin{aligned}
& \operatorname{GExp}_{\mathrm{ts}} \ni e, f::=0|1| p \in \Sigma\left|e+_{b} f\right| e f \mid e^{(b)} \\
& e=e+\tau f \\
& e=e+_{b} e \\
& e+{ }_{b} f=f+{ }_{\bar{b}} e \\
& \left(1+{ }_{c} e\right)^{(b)}=\left(0+{ }_{c} e\right)^{(b)} \\
& e^{(b)}=e e^{(b)}+{ }_{(b)} 1 \\
& \frac{g=e g+_{(b)} f \quad e \text { guarded }}{g=e^{(b)} f}
\end{aligned}
$$

Guarded Kleene Algebra with Tests modulo Bisimulation

$$
\operatorname{GExp}_{\mathrm{ts}} \ni e, f::=0|1| p \in \Sigma\left|e+_{b} f\right| e f \mid e^{(b)}
$$

Equational Branching Axioms

Guarded Kleene Algebra with Tests modulo Bisimulation

$$
\operatorname{GExp}_{\mathrm{ts}} \ni e, f::=0|1| p \in \Sigma\left|e+_{b} f\right| e f \mid e^{(b)}
$$

Equational Branching Axioms

$$
0 e=0
$$

$$
1 e=e
$$

$$
e=e 1
$$

$$
e(f g)=(e f) g
$$

$$
\left(e+{ }_{b} f\right) g=e g+_{b} f g
$$

Sequencing Axioms

$$
\begin{array}{r}
\left(1+{ }_{c} e\right)^{(b)}=\left(0+_{c} e\right)^{(b)} \\
e^{(b)}=e e^{(b)}+_{(b)} 1 \\
\frac{g=e g+_{(b)} f \quad e \text { guarded }}{g=e^{(b)} f}
\end{array}
$$

Guarded Kleene Algebra with Tests modulo Bisimulation

$$
\operatorname{GExp}_{\mathrm{ts}} \ni e, f::=0|1| p \in \Sigma\left|e+_{b} f\right| e f \mid e^{(b)}
$$

e	$=e+{ }_{\mathrm{T}} f$
e	$=e+{ }_{b} e$
$e+{ }_{b} f$	$=f+{ }_{\bar{b}} e$
$e+{ }_{b}\left(f+{ }_{c} g\right)$	$=\left(e+{ }_{b} f\right)+{ }_{b \vee c} g$

Equational Branching Axioms

$0 e$	$=0$
$1 e$	$=e$
e	$=e 1$
$e(f g)$	$=(e f) g$
$\left(e+{ }_{b} f\right) g$	$=e g+{ }_{b} f g$

Sequencing Axioms

$$
\left(1+_{c} e\right)^{(b)}=\left(0+_{c} e\right)^{(b)}
$$

$$
\begin{gathered}
e^{(b)}=e e^{(b)}+_{(b)} 1 \\
\frac{g=e g{ }_{(b)} f \quad e \text { guarded }}{g=e^{(b)} f}
\end{gathered}
$$

Unique Guarded Fixed-point Axioms

Guarded Kleene Algebra with Tests modulo Bisimulation

$$
\operatorname{GExp}_{\mathrm{ts}} \ni e, f::=0|1| p \in \Sigma\left|e+_{b} f\right| e f \mid e^{(b)}
$$

e	$=e+{ }_{\mathrm{T}} f$
e	$=e+{ }_{b} e$
$e+{ }_{b} f$	$=f+{ }_{\bar{b}} e$
$e+{ }_{b}\left(f+{ }_{c} g\right)$	$=\left(e+{ }_{b} f\right)+{ }_{b \vee c} g$

Equational Branching Axioms

$0 e$	$=0$
$1 e$	$=e$
e	$=e 1$
$e(f g)$	$=(e f) g$
$\left(e+{ }_{b} f\right) g$	$=e g+{ }_{b} f g$

Sequencing Axioms

Unguarded Fixed-point Axiom

$$
\left(1+{ }_{c} e\right)^{(b)}=\left(0+_{c} e\right)^{(b)}
$$

$$
\begin{array}{r}
e^{(b)}=e e^{(b)}+_{(b)} 1 \\
\frac{g=e g{ }_{(b)} f \quad e \text { guarded }}{g=e^{(b)} f}
\end{array}
$$

Unique Guarded Fixed-point Axioms

How to distinguish the examples!

Equational Branching Axioms

Sequencing Axioms

Unguarded Fixed-point Axioms
FIXED POINT EQUATIONS

Unique Guarded Fixed-point Axioms

How to distinguish the examples!

Equational Branching Axioms

Sequencing Axioms

Unguarded Fixed-point Axioms
FIXED POINT EQUATIONS

Unique Guarded Fixed-point Axioms

Together, this data comprises a branching theory.

A Recipe

Equational Branching Axioms

Unguarded Fixed-point Axioms

RULES ABOUT fp x

Unique Guarded
Fixed-point Axioms

A Recipe

Definition. A branching theory consists of a

Unguarded Fixed-point Axioms
RULES ABOUT fp x

A Recipe

Definition. A branching theory consists of a

1. An algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ consisting of constants and binary operations

Unguarded Fixed-point Axioms
RULES ABOUT fp x

A Recipe

Definition. A branching theory consists of a

1. An algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ consisting of constants and binary operations
2. A set $T \subseteq S^{*}(\operatorname{Var}) \times S^{*}(\operatorname{Var})$ of equations between S-terms

A Recipe

Definition. A branching theory consists of a

1. An algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ consisting of constants and binary operations
2. A set $T \subseteq S^{*}(V a r) \times S^{*}(V a r)$ of equations between S-terms
3. A fixed-point operator on S-terms $\mathrm{fp} x: S^{*}(\{x\}+Y) \rightarrow S^{*}(Y)$ (natural in Y) satisfying

Equational Branching Axioms

Sequencing Axioms

Unguarded Fixed-point Axioms
RULES ABOUT fp x

Unique Guarded Fixed-point Axioms

A Recipe

Definition. A branching theory consists of a

1. An algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ consisting of constants and binary operations
2. A set $T \subseteq S^{*}(V a r) \times S^{*}(V a r)$ of equations between S-terms
3. A fixed-point operator on S-terms $\mathrm{fp} x: S^{*}(\{x\}+Y) \rightarrow S^{*}(Y)$ (natural in Y) satisfying

$$
T \vdash \mathrm{fp} x t(x, \vec{y})=t(\mathrm{fp} x t(x, \vec{y}), \vec{y})
$$

Unique Guarded Fixed-point Axioms

Introducing: Star Fragments!

Definition. For a given branching theory (S, T, fp), the set of star expressions is given by

Eg.

$$
\begin{gathered}
S_{0}=\{0\} \\
S_{2}=\left\{+_{b} \mid b \in \mathrm{BExp}\right\}
\end{gathered}
$$

Introducing: Star Fragments!

Definition. For a given branching theory (S, T, fp), the set of star expressions is given by StExp $\ni e, f::=c \in S_{0} \quad$ raise c

Eg.

$$
\begin{gathered}
S_{0}=\{0\} \\
S_{2}=\left\{+_{b} \mid b \in \mathrm{BExp}\right\}
\end{gathered}
$$

Introducing: Star Fragments!

Definition. For a given branching theory $(S, T, f p)$, the set of star expressions is given by

$$
\begin{array}{cl}
\text { StExp } \ni e, f::=c \in S_{0} & \text { raise } c \\
\mid 1 & \text { skip }
\end{array}
$$

Eg.

$$
\begin{gathered}
S_{0}=\{0\} \\
S_{2}=\left\{+_{b} \mid b \in \mathrm{BExp}\right\}
\end{gathered}
$$

Introducing: Star Fragments!

Definition. For a given branching theory $(S, T, f p)$, the set of star expressions is given by

$$
\begin{aligned}
\operatorname{StExp} \ni e, f::= & c \in S_{0} & & \text { raise } c \\
& \mid 1 & & \text { skip } \\
& \mid e+{ }_{\sigma} f & & \text { branch into } \sigma(e, f) \text {, where } \sigma \in S_{2}
\end{aligned}
$$

Eg. | $S_{0}=\{0\}$ |
| :---: |
| |
| |
| |
| $S_{2}=\left\{+_{b} \mid b \in \mathrm{BExp}\right\}$ |

Introducing: Star Fragments!

Definition. For a given branching theory $(S, T, f p)$, the set of star expressions is given by

$$
\begin{aligned}
\text { StExp } \ni e, f:: & c \in S_{0} & & \text { raise } c \\
& \mid 1 & & \text { skip } \\
& \mid e+_{\sigma} f & & \text { branch into } \sigma(e, f), \text { where } \sigma \in S_{2} \\
& \mid e f & & e ; f
\end{aligned}
$$

Eg.

$$
\begin{gathered}
S_{0}=\{0\} \\
S_{2}=\left\{+_{b} \mid b \in \mathrm{BExp}\right\}
\end{gathered}
$$

Introducing: Star Fragments!

Definition. For a given branching theory (S, T, fp), the set of star expressions is given by

$$
\begin{aligned}
\text { StExp } \ni e, f:: & =c \in S_{0} & & \text { raise } c \\
& \mid 1 & & \text { skip } \\
& \mid e+_{\sigma} f & & \text { branch into } \sigma(e, f), \text { where } \sigma \in S_{2} \\
& \mid e f & & e ; f \\
& \mid e^{(\sigma)} & & \text { recurse in } x=\sigma(e ; x, \top)
\end{aligned}
$$

Eg.

$$
\begin{gathered}
S_{0}=\{0\} \\
S_{2}=\left\{+_{b} \mid b \in \mathrm{BExp}\right\}
\end{gathered}
$$

Introducing: Star Fragments!

Definition. For a given branching theory (S, T, fp), the set of star expressions is given by

$$
\begin{aligned}
\text { StExp } \ni e, f:: & =c \in S_{0} & & \text { raise } c \\
& \mid 1 & & \text { skip } \\
& \mid e+_{\sigma} f & & \text { branch into } \sigma(e, f), \text { where } \sigma \in S_{2} \\
& \mid e f & & e ; f \\
& \mid e^{(\sigma)} & & \text { recurse in } x=\sigma(e ; x, \top)
\end{aligned}
$$

Eg.

$$
\begin{gathered}
S_{0}=\{0\} \\
S_{2}=\left\{+_{b} \mid b \in \mathrm{BExp}\right\}
\end{gathered}
$$

Introducing: Star Fragments!

Definition. For a given branching theory $(S, T, f p)$, the set of star expressions is given by

$$
\begin{aligned}
\text { StExp } \ni e, f:: & =c \in S_{0} & & \text { raise } c \\
& \mid 1 & & \text { skip } \\
& \mid e+_{\sigma} f & & \text { branch into } \sigma(e, f), \text { where } \sigma \in S_{2} \\
& \mid e f & & e ; f \\
& \mid e^{(\sigma)} & & \text { recurse in } x=\sigma(e ; x, \top)
\end{aligned}
$$

Introducing: Star Fragments!

Definition. For a given branching theory $(S, T, f p)$, the set of star expressions is given by

$$
\begin{aligned}
\text { StExp } \ni e, f:: & =c \in S_{0} & & \text { raise } c \\
& \mid 1 & & \text { skip } \\
& \mid e+_{\sigma} f & & \text { branch into } \sigma(e, f), \text { where } \sigma \in S_{2} \\
& \mid e f & & e ; f \\
& \mid e^{(\sigma)} & & \text { recurse in } x=\sigma(e ; x, \top)
\end{aligned}
$$

Introducing: Star Fragments!

Definition. For a given branching theory (S, T, fp), the set of star expressions is given by

$$
\begin{aligned}
\text { StExp } \ni e, f:: & c \in S_{0} & & \text { raise } c \\
& \mid 1 & & \text { skip } \\
& \mid e+{ }_{\sigma} f & & \text { branch into } \sigma(e, f), \text { where } \sigma \in S_{2} \\
& \mid e f & & e ; f \\
& \mid e^{(\sigma)} & & \text { recurse in } x=\sigma(e ; x, \top)
\end{aligned}
$$

Introducing: Star Fragments!

Definition. For a given branching theory (S, T, fp), the set of star expressions is given by

$$
\begin{aligned}
\text { StExp } \ni e, f:: & =c \in S_{0} & & \text { raise } c \\
& \mid 1 & & \text { skip } \\
& \mid e+_{\sigma} f & & \text { branch into } \sigma(e, f), \text { where } \sigma \in S_{2} \\
& \mid e f & & e ; f \\
& \mid e^{(\sigma)} & & \text { recurse in } x=\sigma(e ; x, \top)
\end{aligned}
$$

Introducing: Star Fragments!

Definition. For a given branching theory (S, T, fp), the set of star expressions is given by

$$
\begin{aligned}
\text { StExp } \ni e, f:: & =c \in S_{0} & & \text { raise } c \\
& \mid 1 & & \text { skip } \\
& \mid e+_{\sigma} f & & \text { branch into } \sigma(e, f), \text { where } \sigma \in S_{2} \\
& \mid e f & & e ; f \\
& \mid e^{(\sigma)} & & \text { recurse in } x=\sigma(e ; x, \mathrm{~T})
\end{aligned}
$$

Eg.	$\mathrm{GExp}_{t s} \ni e, f::=0$	crash
	$\mid 1$	skip
	$\mid e+_{b} f$	if b then e else f

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

$$
\operatorname{Exp} \longrightarrow\{\perp, \top\} \times \mathscr{P}_{f i n}(\operatorname{Exp})^{A}
$$

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

$$
\ell: \operatorname{Exp} \longrightarrow \mathscr{P}_{\text {fin }}(\top+A \times \operatorname{Exp})
$$

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

$$
\ell: \operatorname{Exp} \longrightarrow \mathscr{P}_{\text {fin }}(\top+A \times \operatorname{Exp})
$$

$$
\ell(0)=\varnothing \quad \ell(1)=\{\mathrm{T}\} \quad \ell(a)=\{(a, 1)\} \quad \ell(e+f)=\ell(e) \cup \ell(f)
$$

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

$$
\ell: \operatorname{Exp} \longrightarrow \mathscr{P}_{\text {fin }}(\top+A \times \operatorname{Exp})
$$

$$
\begin{gathered}
\ell(0)=\varnothing \quad \ell(1)=\{\mathrm{T}\} \quad \ell(a)=\{(a, 1)\} \quad \ell(e+f)=\ell(e) \cup \ell(f) \\
\text { and if } \ell(e)=\left\{\mathrm{T},\left(a_{1}, e_{1}\right), \ldots,\left(a_{n}, e_{n}\right)\right\}, \text { then }
\end{gathered}
$$

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

$$
\ell: \operatorname{Exp} \longrightarrow \mathscr{P}_{\text {fin }}(\top+A \times \operatorname{Exp})
$$

$$
\begin{gathered}
\ell(0)=\varnothing \quad \ell(1)=\{\mathrm{T}\} \quad \ell(a)=\{(a, 1)\} \quad \ell(e+f)=\ell(e) \cup \ell(f) \\
\text { and if } \ell(e)=\left\{\mathrm{T},\left(a_{1}, e_{1}\right), \ldots,\left(a_{n}, e_{n}\right)\right\} \text {, then } \\
\ell(e f)=\ell(f) \cup\left\{\left(a_{1}, e_{1} f\right), \ldots,\left(a_{n}, e_{n} f\right)\right\} \quad \text { and } \quad \ell\left(e^{*}\right)=\left\{\top,\left(a_{1}, e_{1} e^{*}\right), \ldots,\left(a_{n}, e_{n} e^{*}\right)\right\}
\end{gathered}
$$

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

$$
\operatorname{Exp} \longrightarrow \mathscr{P}_{f i n}(T+A \times \operatorname{Exp})
$$

Operational semantics of GKAT expressions modulo bisimilarity:

$$
\text { GExp } \longrightarrow(\{\perp, T\}+\Sigma \times \operatorname{GExp})^{A t}
$$

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

$$
\operatorname{Exp} \longrightarrow \mathscr{P}_{f i n}(\mathrm{~T}+A \times \operatorname{Exp})
$$

Operational semantics of GKAT expressions modulo bisimilarity:

$$
\text { GExp } \longrightarrow(\perp+(T+\Sigma \times \operatorname{GExp}))^{A t}
$$

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

$$
\operatorname{Exp} \longrightarrow \mathscr{P}_{\text {fin }}(\top+A c t \times \operatorname{Exp})
$$

Operational semantics of GKAT expressions modulo bisimilarity:

$$
\mathrm{GExp} \longrightarrow(\perp+(\mathrm{T}+\text { Act } \times \mathrm{GExp}))^{A t}
$$

Star Fragment Semantics

Operational semantics of regular expressions modulo bisimilarity:

$$
\operatorname{Exp} \longrightarrow \mathscr{P}_{\text {fin }}(\top+A c t \times \operatorname{Exp})
$$

Operational semantics of GKAT expressions modulo bisimilarity:

$$
\operatorname{GExp} \longrightarrow(\perp+(\top+A c t \times \operatorname{GExp}))^{A t}
$$

Observe: Format is $T+\operatorname{Act} \times(-)$ wrapped in $M(-)$.
$\mathscr{P}_{\text {fin }}(-)$ - the finite powerset monad
$(\perp+(-))^{A t}-$ the partial functions monad

Star Fragment Semantics: Branching Types

Fix an algebraic signature $S=S_{0}+S_{2} \times \operatorname{Id}^{2}$ and a set of equations $T \subseteq S^{*}(V) \times S^{*}(V)$.

Star Fragment Semantics: Branching Types

Fix an algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ and a set of equations $T \subseteq S^{*}(V) \times S^{*}(V)$.
Definition. A monad is M presented by the equational theory (S, T) if there is an isomorphism

$$
M \cong S^{*}(-) /=_{T}
$$

i.e., the monad M is a free-algebra construction for (S, T).

Star Fragment Semantics: Branching Types

Fix an algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ and a set of equations $T \subseteq S^{*}(V) \times S^{*}(V)$.
Definition. A monad is M presented by the equational theory (S, T) if there is an isomorphism

$$
M \cong S^{*}(-) /=_{T}
$$

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner's axioms captures semilattices with bottom.

$$
\begin{aligned}
e & =e+0 \\
e & =e+e \\
f+e & =e+f \\
e+(f+g) & =(e+f)+g
\end{aligned}
$$

Star Fragment Semantics: Branching Types

Fix an algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ and a set of equations $T \subseteq S^{*}(V) \times S^{*}(V)$.
Definition. A monad is M presented by the equational theory (S, T) if there is an isomorphism

$$
M \cong S^{*}(-) /=_{T}
$$

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner's axioms captures semilattices with bottom.

$$
\begin{aligned}
e & =e+0 \\
e & =e+e \\
f+e & =e+f \\
e+(f+g) & =(e+f)+g
\end{aligned}
$$

Star Fragment Semantics: Branching Types

Fix an algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ and a set of equations $T \subseteq S^{*}(V) \times S^{*}(V)$.
Definition. A monad is M presented by the equational theory (S, T) if there is an isomorphism

$$
M \cong S^{*}(-) /=_{T}
$$

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner's axioms captures semilattices with bottom.

$$
\begin{aligned}
e & =e+0 \\
e & =e+e \\
f+e & =e+f \\
e+(f+g) & =(e+f)+g
\end{aligned}
$$

presents

Star Fragment Semantics: Branching Types

Fix an algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ and a set of equations $T \subseteq S^{*}(V) \times S^{*}(V)$.
Definition. A monad is M presented by the equational theory (S, T) if there is an isomorphism

$$
M \cong S^{*}(-) /=_{T}
$$

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner's axioms captures semilattices with bottom.

$$
\begin{aligned}
e & =e+0 \\
e & =e+e \\
f+e & =e+f \\
e+(f+g) & =(e+f)+g
\end{aligned}
$$

presents

Finite Powerset Monad $\mathscr{P}_{\text {fin }}$

$$
U_{1}, U_{2} \in \mathscr{P}_{f i n}(X)
$$

Star Fragment Semantics: Branching Types

Fix an algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ and a set of equations $T \subseteq S^{*}(V) \times S^{*}(V)$.
Definition. A monad is M presented by the equational theory (S, T) if there is an isomorphism

$$
M \cong S^{*}(-) /=_{T}
$$

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner's axioms captures semilattices with bottom.

$$
\begin{aligned}
e & =e+0 \\
e & =e+e \\
f+e & =e+f \\
e+(f+g) & =(e+f)+g
\end{aligned}
$$

presents

Finite Powerset Monad $\mathscr{P}_{\text {fin }}$

$$
U_{1}, U_{2} \in \mathscr{P}_{f i n}(X)
$$

$$
U_{1}+U_{2}=U_{1} \cup U_{2}
$$

Star Fragment Semantics: Branching Types

Fix an algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ and a set of equations $T \subseteq S^{*}(V) \times S^{*}(V)$.
Definition. A monad is M presented by the equational theory (S, T) if there is an isomorphism

$$
M \cong S^{*}(-) /=_{T}
$$

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner's axioms captures semilattices with bottom.

$$
\begin{aligned}
e & =e+0 \\
e & =e+e \\
f+e & =e+f \\
e+(f+g) & =(e+f)+g
\end{aligned}
$$

Finite Powerset Monad $\mathscr{P}_{\text {fin }}$

$$
\begin{aligned}
U_{1}, U_{2} & \in \mathscr{P}_{\text {fin }}(X) \\
U_{1}+U_{2} & =U_{1} \cup U_{2} \\
0 & =\varnothing
\end{aligned}
$$

Star Fragment Semantics: Branching Types

Fix an algebraic signature $S=S_{0}+S_{2} \times \mathrm{Id}^{2}$ and a set of equations $T \subseteq S^{*}(V) \times S^{*}(V)$.
Definition. A monad is M presented by the equational theory (S, T) if there is an isomorphism

$$
M \cong S^{*}(-) /=_{T}
$$

i.e., the monad M is a free-algebra construction for (S, T).

Example. The equational theory in Salomaa/Milner's axioms captures semilattices with bottom.

$$
\begin{aligned}
e & =e+0 \\
e & =e+e \\
f+e & =e+f \\
e+(f+g) & =(e+f)+g
\end{aligned}
$$

Finite Powerset Monad $\mathscr{P}_{\text {fin }}$

$$
\begin{aligned}
U_{1}, U_{2} & \in \mathscr{P}_{\text {fin }}(X) \\
U_{1}+U_{2} & =U_{1} \cup U_{2} \\
0 & =\varnothing
\end{aligned}
$$

Definition. A monad that is presented by (S, T) is a branching type of the branching theory.

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator $\mathrm{fp} x: S^{*}(\{x\}+Y) \rightarrow S^{*}(Y)$

$$
T \vdash \mathrm{fp} x t(x, \vec{y})=t(\mathrm{fp} x t(x, \vec{y}), \vec{y})
$$

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator $\mathrm{fp} x: S^{*}(\{x\}+Y) \rightarrow S^{*}(Y)$

$$
T \vdash \mathrm{fp} x t(x, \vec{y})=t(\mathrm{fp} x t(x, \vec{y}), \vec{y})
$$

We obtain an operator on M that performs a type of iteration determined by $\mathrm{fp} x$

$$
\begin{gathered}
S^{*}(\{x\}+Y) /=_{T} \xrightarrow{\text { fp } x} S^{*}(Y) /=_{T} \\
\cong \uparrow \\
M(\{x\}+Y) \xrightarrow{\downarrow} \underset{ }{\text { fp } x} \underset{(Y)}{ }
\end{gathered}
$$

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator $\mathrm{fp} x: S^{*}(\{x\}+Y) \rightarrow S^{*}(Y)$

$$
T \vdash \mathrm{fp} x t(x, \vec{y})=t(\mathrm{fp} x t(x, \vec{y}), \vec{y})
$$

We obtain an operator on M that performs a type of iteration determined by $\mathrm{fp} x$

$$
\begin{aligned}
& S^{*}(\{x\}+Y) /=_{T} \xrightarrow{\mathrm{fp} x} S^{*}(Y) /={ }_{T} \\
& \cong \uparrow \quad \downarrow \cong
\end{aligned}
$$

Example. The operator fp $x t(x, \vec{y})=t(0, \vec{y})$ on semilattice terms is a fixed-point operator:

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator $\mathrm{fp} x: S^{*}(\{x\}+Y) \rightarrow S^{*}(Y)$

$$
T \vdash \mathrm{fp} x t(x, \vec{y})=t(\mathrm{fp} x t(x, \vec{y}), \vec{y})
$$

We obtain an operator on M that performs a type of iteration determined by $\mathrm{fp} x$

$$
\begin{gathered}
S^{*}(\{x\}+Y) /=_{T} \xrightarrow{\text { fp } x} S^{*}(Y) /=_{T} \\
\cong \uparrow \\
M(\{x\}+Y) \xrightarrow{\downarrow} \underset{ }{\text { fp } x}
\end{gathered}
$$

Example. The operator fp $x t(x, \vec{y})=t(0, \vec{y})$ on semilattice terms is a fixed-point operator:

$$
T_{\mathrm{SL}} \vdash \mathrm{fp} x(x+y)=0+y=y=y+y=(\mathrm{fp} x(x+y))+y
$$

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator $\mathrm{fp} x: S^{*}(\{x\}+Y) \rightarrow S^{*}(Y)$

$$
T \vdash \mathrm{fp} x t(x, \vec{y})=t(\mathrm{fp} x t(x, \vec{y}), \vec{y})
$$

We obtain an operator on M that performs a type of iteration determined by $\mathrm{fp} x$

$$
\begin{gathered}
S^{*}(\{x\}+Y) /=_{T} \xrightarrow{\text { fp } x} S^{*}(Y) /=_{T} \\
\cong \uparrow \\
M(\{x\}+Y) \xrightarrow{\downarrow} \underset{ }{\text { fp } x}
\end{gathered}
$$

Example. The operator fp $x t(x, \vec{y})=t(0, \vec{y})$ on semilattice terms is a fixed-point operator:

$$
T_{\mathrm{SL}} \vdash \mathrm{fp} x(x+y)=0+y=y=y+y=(\mathrm{fp} x(x+y))+y
$$

Given $U \subseteq\{x\}+Y$, this corresponds to

Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator $\mathrm{fp} x: S^{*}(\{x\}+Y) \rightarrow S^{*}(Y)$

$$
T \vdash \mathrm{fp} x t(x, \vec{y})=t(\mathrm{fp} x t(x, \vec{y}), \vec{y})
$$

We obtain an operator on M that performs a type of iteration determined by $\mathrm{fp} x$

$$
\begin{gathered}
S^{*}(\{x\}+Y) /=_{T} \xrightarrow{\text { fp } x} S^{*}(Y) /=_{T} \\
\cong \uparrow \\
M(\{x\}+Y) \xrightarrow{\downarrow} \underset{ }{\text { fp } x}
\end{gathered}
$$

Example. The operator fp $x t(x, \vec{y})=t(0, \vec{y})$ on semilattice terms is a fixed-point operator:

$$
T_{\mathrm{SL}} \vdash \mathrm{fp} x(x+y)=0+y=y=y+y=(\mathrm{fp} x(x+y))+y
$$

Given $U \subseteq\{x\}+Y$, this corresponds to

$$
\mathrm{fp} x(U)=U-\{x\}
$$

Star Fragment Semantics

Operational semantics is given by a map
$\ell:$ StExp $\longrightarrow M(T+$ Act \times StExp $)$

Star Fragment Semantics

Operational semantics is given by a map

$$
\ell: \text { StExp } \longrightarrow M(\mathrm{~T}+\text { Act } \times \mathrm{StExp})
$$

$\ell(c)=c$
c $\rightarrow c$

Star Fragment Semantics

Operational semantics is given by a map

$$
\ell: \text { StExp } \longrightarrow M(\top+A c t \times \operatorname{StExp})
$$

$\ell(c)=c \quad \ell(1)=\mathrm{T}$
C $\rightarrow c$

Star Fragment Semantics

Operational semantics is given by a map

$$
\ell: \text { StExp } \longrightarrow M(\mathrm{~T}+A c t \times \operatorname{StExp})
$$

$\ell(c)=c \quad \ell(1)=\mathrm{T} \quad \ell(p)=(p, 1)$
$\bigcirc \rightarrow$

Star Fragment Semantics

Operational semantics is given by a map

$$
\ell: \text { StExp } \longrightarrow M(\mathrm{~T}+\text { Act } \times \mathrm{StExp})
$$

$$
\ell(c)=c
$$

$$
\ell(1)=\mathrm{T}
$$

$$
\ell(p)=(p, 1)
$$

$$
\ell\left(e+_{\sigma} f\right)=\sigma(\ell(e), \ell(f))
$$

Star Fragment Semantics

Operational semantics is given by a map

$$
\ell: \operatorname{StExp} \longrightarrow M(\mathrm{~T}+A c t \times \mathrm{StExp})
$$

$\ell(c)=c$
$\ell(1)=\mathrm{T}$
$\ell(p)=(p, 1)$
$\ell\left(e+{ }_{\sigma} f\right)=\sigma(\ell(e), \ell(f))$
(c) $\rightarrow c$

$$
\begin{aligned}
\text { If } \ell(e) & =t\left(\mathrm{~T},\left(p_{1}, e_{1}\right), \ldots,\left(p_{n}, e_{n}\right)\right) \text {, then } \\
\ell(e f) & =t\left(\ell(f),\left(p_{1}, e_{1} f\right), \ldots,\left(p_{n}, e_{n} f\right)\right)
\end{aligned}
$$

Star Fragment Semantics

If $\ell(e)=t\left(T,\left(p_{1}, e_{1}\right), \ldots,\left(p_{1}, e_{1}\right)\right)$, then

$$
\ell\left(e^{(\sigma)}\right)=\mathrm{fp} x \sigma\left(t\left(x,\left(p_{1}, e_{1} e^{(\sigma)}\right), \ldots,\left(p_{1}, e_{1} e^{(\sigma)}\right)\right), \mathrm{T}\right)
$$

Star Fragment Semantics

If $\ell(e)=t\left(T,\left(p_{1}, e_{1}\right), \ldots,\left(p_{1}, e_{1}\right)\right)$, then

$$
\ell\left(e^{(\sigma)}\right)=\mathrm{fp} x \sigma\left(t\left(x,\left(p_{1}, e_{1} e^{(\sigma)}\right), \ldots,\left(p_{1}, e_{1} e^{(\sigma)}\right)\right), \mathrm{T}\right)
$$

Star Fragment Semantics

If $\ell(e)=t\left(\mathrm{~T},\left(p_{1}, e_{1}\right), \ldots,\left(p_{1}, e_{1}\right)\right)$, then

$$
\ell\left(e^{(\sigma)}\right)=\mathrm{fp} x \sigma\left(t\left(x,\left(p_{1}, e_{1} e^{(\sigma)}\right), \ldots,\left(p_{1}, e_{1} e^{(\sigma)}\right)\right), \mathrm{T}\right)
$$

Example. For regular expressions, if $p \in A c t$, then

Star Fragment Semantics

If $\ell(e)=t\left(\mathrm{~T},\left(p_{1}, e_{1}\right), \ldots,\left(p_{1}, e_{1}\right)\right)$, then

$$
\ell\left(e^{(\sigma)}\right)=\mathrm{fp} x \sigma\left(t\left(x,\left(p_{1}, e_{1} e^{(\sigma)}\right), \ldots,\left(p_{1}, e_{1} e^{(\sigma)}\right)\right), \mathrm{T}\right)
$$

Example. For regular expressions, if $p \in A c t$, then

Star Fragment Semantics

If $\ell(e)=t\left(\mathrm{~T},\left(p_{1}, e_{1}\right), \ldots,\left(p_{1}, e_{1}\right)\right)$, then

$$
\ell\left(e^{(\sigma)}\right)=\mathrm{fp} x \sigma\left(t\left(x,\left(p_{1}, e_{1} e^{(\sigma)}\right), \ldots,\left(p_{1}, e_{1} e^{(\sigma)}\right)\right), \mathrm{T}\right)
$$

Example. For regular expressions, if $p \in A c t$, then

$$
\ell(1+p)=\{\mathrm{T},(p, 1)\}
$$

Star Fragment Semantics

If $\ell(e)=t\left(\mathrm{~T},\left(p_{1}, e_{1}\right), \ldots,\left(p_{1}, e_{1}\right)\right)$, then

$$
\ell\left(e^{(\sigma)}\right)=\mathrm{fp} x \sigma\left(t\left(x,\left(p_{1}, e_{1} e^{(\sigma)}\right), \ldots,\left(p_{1}, e_{1} e^{(\sigma)}\right)\right), \mathrm{T}\right)
$$

Example. For regular expressions, if $p \in A c t$, then

$$
\ell(1+p)=\{\mathrm{T},(p, 1)\}
$$

Star Fragment Semantics

If $\ell(e)=t\left(\mathrm{~T},\left(p_{1}, e_{1}\right), \ldots,\left(p_{1}, e_{1}\right)\right)$, then

$$
\ell\left(e^{(\sigma)}\right)=\mathrm{fp} x \sigma\left(t\left(x,\left(p_{1}, e_{1} e^{(\sigma)}\right), \ldots,\left(p_{1}, e_{1} e^{(\sigma)}\right)\right), \mathrm{T}\right)
$$

Example. For regular expressions, if $p \in A c t$, then

$$
\begin{aligned}
& \ell(1+p)=\{\mathrm{T},(p, 1)\} \\
& \ell\left((1+p)^{*}\right)=\mathrm{fp} x\left\{x,\left(p, 1 e^{(\sigma)}\right)\right\} \cup\{\mathrm{T}\}
\end{aligned}
$$

Star Fragment Semantics

If $\ell(e)=t\left(\mathrm{~T},\left(p_{1}, e_{1}\right), \ldots,\left(p_{1}, e_{1}\right)\right)$, then

$$
\ell\left(e^{(\sigma)}\right)=\mathrm{fp} x \sigma\left(t\left(x,\left(p_{1}, e_{1} e^{(\sigma)}\right), \ldots,\left(p_{1}, e_{1} e^{(\sigma)}\right)\right), \mathrm{T}\right)
$$

Example. For regular expressions, if $p \in A c t$, then

$$
\begin{aligned}
& \ell(1+p)=\{\top,(p, 1)\} \\
& \begin{aligned}
\ell\left((1+p)^{*}\right) & =f p x\left\{x,\left(p, 1 e^{(\sigma)}\right)\right\} \cup\{\top\} \\
& =\left\{\left(p, 1 e^{(\sigma)}\right), \top\right\}
\end{aligned}
\end{aligned}
$$

Star Fragment Semantics

If $\ell(e)=t\left(\mathrm{~T},\left(p_{1}, e_{1}\right), \ldots,\left(p_{1}, e_{1}\right)\right)$, then

$$
\ell\left(e^{(\sigma)}\right)=\mathrm{fp} \times \sigma\left(t\left(x,\left(p_{1}, e_{1} e^{(\sigma)}\right), \ldots,\left(p_{1}, e_{1} e^{(\sigma)}\right)\right), \mathrm{T}\right)
$$

Example. For regular expressions, if $p \in A c t$, then

$$
\begin{aligned}
& \ell(1+p)=\{\top,(p, 1)\} \\
& \begin{aligned}
\ell\left((1+p)^{*}\right) & =\mathrm{fp} x\left\{x,\left(p, 1 e^{(\sigma)}\right)\right\} \cup\{\top\} \\
& =\left\{\left(p, 1 e^{(\sigma)}\right), \top\right\}
\end{aligned}
\end{aligned}
$$

An Axiomatization of Star Fragments modulo Bisimilarity?

Equational
Branching Axioms

Sequencing Axioms

General Unguarded Fixed-point Axiom

$$
t(1, \vec{g})^{(\sigma)}=\underset{\text { (Above, } \vec{g}=\left(g_{1}, \ldots, g_{n}\right) \text { are guarded) }}{\mathrm{fp} x\left(t\left(x, \vec{g} t(1, \vec{g})^{(\sigma)}\right)+\sigma 1\right)}
$$

$$
\begin{aligned}
& e^{(\sigma)}=e e^{(\sigma)}+{ }_{\sigma} 1 \\
& \frac{g=e g+_{\sigma} f \quad e \text { guarded }}{g=e^{(\sigma)} f}
\end{aligned}
$$

Unique Guarded Fixed-point Axioms

An Axiomatization of Star Fragments modulo Bisimilarity?

Equational
Branching Axioms

Sequencing Axioms

Generalized Milner's Completeness Problem:
Is this axiomatization of bisimulation complete for every star fragment?

Known \& Unknown Completeness Theorems

Summary

- Star fragments arise from branching theories, ($S, T, f p$) consisting of an algebraic theory and a fixedpoint operator that determines behaviour of unguarded fixed-points
- Milner's regular expressions mod bisimilarity = semilattices with bottom star fragment
- GKAT/bisimilarity = if-then-else with crash star fragment
- Further examples:
- (Rozowski, Kappé, Kozen, Schmid, Silva, 2023) ProbGKAT mod bisimilarity = GKAT + \oplus_{p}
- Probabilistic regular expressions mod bisimilarity $=\bigoplus_{p}$ instead of +
- \quad Regex mixing nondeterminism and probability $=$ Regular expressions $+\oplus_{p}$

Generalized Milner's

 Completeness Problem: Is this axiomatization of bisimulation complete for every star fragment?

General Unguarded Fixed-point Axiom

$$
t(1, \vec{g})^{(\sigma)} \underset{\left(\text { Above, } \vec{g}=\left(g_{1}, \ldots, g_{n}\right)\right. \text { are guarded) }}{f \mathrm{fp} x}\left(t\left(x, \vec{g} t(1, \vec{g})^{(\sigma)}\right)+{ }_{\sigma} 1\right)
$$

$$
\begin{aligned}
& e^{(\sigma)}=e e^{(\sigma)}+{ }_{\sigma} 1 \\
& \frac{g=e g+{ }_{\sigma} f \quad e \text { guarded }}{g=e^{(\sigma)} f}
\end{aligned}
$$

