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= (aa + ba)*(ab + bb)

Regular expressions: 
syntax for regular languages
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Regular Expressions and Regular Languages
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(aa + ba)*(ab + bb) 𝖱𝖾𝗀𝖤𝗑 ∋ e, f ::= 0 ∣ 1 ∣ p ∈ Σ ∣ e + f ∣ ef ∣ e*

L : 𝖱𝖾𝗀𝖤𝗑 ⟶ 𝒫(Σ*)

L(0) = ∅ L(1) = {ε} L(p) = {p}

L(e + f ) = L(e) ∪ L( f ) L(ef ) = L(e)L( f ) L(e*) = ⋃
n∈ω

L(e)n

(Kleene, 1956) 

 iff  is recognized by a deterministic finite automaton.L = L(r) L
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- bisimilarity = language equivalence 

- (Hopcroft, Karp, 1971) Bisimilarity 
is checked in nearly linear time

(Kleene, 1956)
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Axiomatizing Language Equivalence

(Salomaa, 1964) A complete axiomatization of language equivalence of regular expressions:
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Axiomatizing Language Equivalence
(Milner, 1984) Rephrased Salomaa’s rules as follows:

Milner rephrased 

Salomaa’s axioms to 

make them easier to 

adapt to a different


(process) semantics.
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Deciding language equivalence

Regular Expression

(aa + ba)*(ab + bb)

Bisimilarity here?Thompson Construction,

Operational Semantics,

Antimirov Derivatives

DFAs

(Determinize)

Check for 

Bisimilarity

R

(Milner, 1984)

Nondeterministic FAs

a, b
a

a, b

b

X → {⊥, ⊤} × 𝒫(X)A
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Not all axioms are sound!
(Milner, 1984)
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Axiomatizing Bisimilarity of Regular Expressions

By deleting these 
axioms, Milner 

obtains a sound 
axiomatization of 

bisimilarity.

(Milner, 1984)

Is this axiomatization 

complete?

(Grabmayer, 2022)

Yes!

(Milner, 1984)
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Axiomatizing Bisimilarity of Regular Expressions

An equivalent rendering of Milner’s axioms for regular expressions modulo bisimilarity:

Equational Branching Axioms Sequencing Axioms Unique Guarded 

Fixed-point Axioms

Unguarded Fixed-point Axiom
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A Similar Situation: Guarded Kleene Algebra with Tests

- An algebra of propositional WHILE programs

- (Kozen, Tseng, 2008) Syntax and language 
semantics from Kleene Algebra with Tests

- (Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)  
- Operational semantics, almost linear decision procedure 
- Propose a Salomaa-like axiomatization of language equivalence

- (S., Kappé, Kozen, Silva, 2021)  
- Infinite tree semantics = bisimilarity 
- Propose a Salomaa-like axiomatization of bisimilarity

α ∣ p

ᾱ ∣q

⊤∣r α ∨ β ∣ p

β⟹
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Example of a GKAT Automaton

q0

q4

α

q3

q1

∣ p

ᾱ ∣q

⊤∣r α ∨ β ∣ p

β⟹

(pr)(α)q(pβ +α∨β 0)

while  do 

    

    




if  then 

    

    assert 

else

    assert False

α
p
r

q
α ∨ β
p

β

(Smolka, Foster, Hsu, Kappé, Kozen, Silva, 2019)

X ⟶ ({⊥, ⊤} + Σ × X)At
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Axiomatizing GKAT Programs up to Bisimilarity
(S., Kappé, Kozen, Silva, 2021) Proposed the following axiomatization of GKAT/bisimilarity

Open Problem:  Are these axioms complete for bisimilarity?

Completeness here implies completeness for language equivalence
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Massaging the Syntax to Fit the Mould

         interpreted as        assert b ∈ 𝖡𝖤𝗑𝗉 b

The test  is interpreted as assert True1
and the test  is interpreted as assert False0

assert True is equivalent to simply skip
assert False is equivalent to simply crash

GKAT           or          if  then skip else crash⊢ b = 1 + 0 bb
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FIXED POINT EQUATIONS

Unguarded Fixed-point Axioms

Together, this data comprises a branching theory.
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𝖿𝗉 x
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α ∣ p
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Observe: Format is  wrapped in .


  — the finite powerset monad

 — the partial functions monad

⊤ + Act × ( − ) M( − )

𝒫fin( − )
( ⊥ + ( − ))At



Star Fragment Semantics: Branching Types

Fix an algebraic signature  and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)



Star Fragment Semantics: Branching Types

Fix an algebraic signature  and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is  presented by the equational theory  if there is an isomorphism





i.e., the monad  is a free-algebra construction for .

M (S, T)
M ≅ S*( − )/ =T

M (S, T)



Star Fragment Semantics: Branching Types

Fix an algebraic signature  and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is  presented by the equational theory  if there is an isomorphism





i.e., the monad  is a free-algebra construction for .

M (S, T)
M ≅ S*( − )/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.



Star Fragment Semantics: Branching Types

Fix an algebraic signature  and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is  presented by the equational theory  if there is an isomorphism





i.e., the monad  is a free-algebra construction for .

M (S, T)
M ≅ S*( − )/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents



Star Fragment Semantics: Branching Types

Fix an algebraic signature  and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is  presented by the equational theory  if there is an isomorphism





i.e., the monad  is a free-algebra construction for .

M (S, T)
M ≅ S*( − )/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents
𝒫finFinite Powerset Monad



Star Fragment Semantics: Branching Types

Fix an algebraic signature  and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is  presented by the equational theory  if there is an isomorphism





i.e., the monad  is a free-algebra construction for .

M (S, T)
M ≅ S*( − )/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents
𝒫finFinite Powerset Monad

U1, U2 ∈ 𝒫fin(X)



Star Fragment Semantics: Branching Types

Fix an algebraic signature  and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is  presented by the equational theory  if there is an isomorphism





i.e., the monad  is a free-algebra construction for .

M (S, T)
M ≅ S*( − )/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents
𝒫finFinite Powerset Monad

U1 + U2 = U1 ∪ U2

U1, U2 ∈ 𝒫fin(X)



Star Fragment Semantics: Branching Types

Fix an algebraic signature  and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is  presented by the equational theory  if there is an isomorphism





i.e., the monad  is a free-algebra construction for .

M (S, T)
M ≅ S*( − )/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents
𝒫finFinite Powerset Monad

U1 + U2 = U1 ∪ U2
0 = ∅

U1, U2 ∈ 𝒫fin(X)



Star Fragment Semantics: Branching Types

Fix an algebraic signature  and a set of equations .S = S0 + S2 × Id2 T ⊆ S*(V) × S*(V)

Definition. A monad is  presented by the equational theory  if there is an isomorphism





i.e., the monad  is a free-algebra construction for .

M (S, T)
M ≅ S*( − )/ =T

M (S, T)

Example. The equational theory in Salomaa/Milner’s axioms captures semilattices with bottom.

presents
𝒫finFinite Powerset Monad

Definition. A monad that is presented by  is a branching type of the branching theory. (S, T)

U1 + U2 = U1 ∪ U2
0 = ∅

U1, U2 ∈ 𝒫fin(X)



Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t( 𝖿𝗉 x t(x, ⃗y) , ⃗y)



Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)

We obtain an operator on  that 
performs a type of iteration 

determined by 

M

𝖿𝗉 x

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t( 𝖿𝗉 x t(x, ⃗y) , ⃗y)



Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)

We obtain an operator on  that 
performs a type of iteration 

determined by 

M

𝖿𝗉 x

Example. The operator  on semilattice terms is a fixed-point operator:𝖿𝗉 x t(x, ⃗y) = t(0, ⃗y)

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t( 𝖿𝗉 x t(x, ⃗y) , ⃗y)



Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)

We obtain an operator on  that 
performs a type of iteration 

determined by 

M

𝖿𝗉 x

Example. The operator  on semilattice terms is a fixed-point operator:𝖿𝗉 x t(x, ⃗y) = t(0, ⃗y)

TSL ⊢ 𝖿𝗉 x (x + y) = 0 + y = y = y + y = (𝖿𝗉 x (x + y)) + y

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t( 𝖿𝗉 x t(x, ⃗y) , ⃗y)



Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)

We obtain an operator on  that 
performs a type of iteration 

determined by 

M

𝖿𝗉 x

Example. The operator  on semilattice terms is a fixed-point operator:𝖿𝗉 x t(x, ⃗y) = t(0, ⃗y)

TSL ⊢ 𝖿𝗉 x (x + y) = 0 + y = y = y + y = (𝖿𝗉 x (x + y)) + y

Given , this corresponds to U ⊆ {x} + Y

T ⊢ 𝖿𝗉 x t(x, ⃗y) = t( 𝖿𝗉 x t(x, ⃗y) , ⃗y)



Star Fragment Semantics: Unguarded Fixed-points

Last ingredient of a branching theory is the fixed-point operator 𝖿𝗉 x : S*({x} + Y) → S*(Y)
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Example. The operator  on semilattice terms is a fixed-point operator:𝖿𝗉 x t(x, ⃗y) = t(0, ⃗y)
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𝖿𝗉 x (U) = U − {x}
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ℓ(ef ) = t(ℓ( f ), (p1, e1 f ), …, (pn, en f ))

ef

e1 f

en f

If , then ℓ(e) = t( ⊤ , (p1, e1), …, (pn, en))ℓ( f )ℓ(e)
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Example. For regular expressions, if , then p ∈ Act

ℓ(1 + p) = { ⊤ , (p,1)}
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Star Fragment Semantics

ℓ(e(σ)) = 𝖿𝗉 x σ(t(x, (p1, e1e(σ)), …, (p1, e1e(σ))), ⊤ )

Example. For regular expressions, if , then p ∈ Act

ℓ(1 + p) = { ⊤ , (p,1)}

ℓ((1 + p)*) = 𝖿𝗉 x {x, (p,1e(σ))} ∪ { ⊤ }
                    = {(p,1e(σ)), ⊤ }

(1 + p)*(1 + p)* 1(1 + p)*1(1 + p)*
p

p

If , then ℓ(e) = t(⊤, (p1, e1), …, (p1, e1))
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Equational 

Branching Axioms

Sequencing Axioms

General Unguarded Fixed-point Axiom

(Above,  are guarded)⃗g = (g1, …, gn)

Unique Guarded Fixed-point Axioms



An Axiomatization of Star Fragments modulo Bisimilarity?

Generalized Milner’s Completeness Problem: 

Is this axiomatization of bisimulation complete for every star fragment?

Equational 

Branching Axioms

Sequencing Axioms

General Unguarded Fixed-point Axiom

(Above,  are guarded)⃗g = (g1, …, gn)

Unique Guarded Fixed-point Axioms



Known & Unknown Completeness Theorems

-expressionsμ

star fragment

1-free star 

fragment

recursion

-free

Regex mod 
bisimilarity

GKAT mod 
bisimilarity

ProbRegex 
mod bisim.

ProbGKAT 
mod bisim.

-exp complete complete complete complete

star 
fragment

complete

(Grabmayer, 

2022)
Unkown Unkown Unknown

1-free star 
fragment

complete

(Grabmayer, 

Fokkink, 
2019)

complete

(Kappé, S., 
Silva, 2023)

complete

(unpublished) Unknown

recursion-
free complete complete complete complete

μ

EXPRESSIVENESS



Summary

Equational 

Branching Axioms

Sequencing Axioms

General Unguarded Fixed-point Axiom

(Above,  are guarded)⃗g = (g1, …, gn)

Unique Guarded Fixed-point Axioms

- Star fragments arise from branching theories,  consisting of an algebraic theory and a fixed-
point operator that determines behaviour of unguarded fixed-points


- Milner’s regular expressions mod bisimilarity = semilattices with bottom star fragment

- GKAT/bisimilarity = if-then-else with crash star fragment

- Further examples: 


- (Rozowski, Kappé, Kozen, Schmid, Silva, 2023) ProbGKAT mod bisimilarity = GKAT + 


- Probabilistic regular expressions mod bisimilarity =  instead of 


- Regex mixing nondeterminism and probability = Regular expressions + 

(S, T, 𝖿𝗉)

⊕p

⊕p +
⊕p

Generalized Milner’s 
Completeness Problem: 

Is this axiomatization of 

bisimulation complete for 
every star fragment?


