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Introduction: Behavioural Metrics

▶ Behavioural metrics offer fine-grained notion of process comparison

▶ Fuzzy, weighted, metric transition systems

▶ Markov chains, Markov decision processes

▶ Flag low distance instead of just inequivalence

▶ Arranged on linear-time / branching-time spectrum
e.g. on metric LTS (Fahrenberg/Legay/Thrane 2011)

▶ (ready) simulation, traces, failures etc.

▶ Here: generic framework for spectra of behavioural metrics

▶ based on coalgebra and graded monads (graded semantics)
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Introduction: Characteristic Logics

▶ Classically, a modal logic is characteristic
for a given behavioural equivalence if

behavioural equivalence = logical indistinguishabilty

→ modal formulae witness inequivalence

▶ A quantitative modal logic is characteristic
for a given behavioural metric if

behavioural distance = logical distance

→ modal formulae witness high distance
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Introduction: Negative Result

▶ Classically, characteristic modal logics are compositional fragments of
branching-time logics

▶ E.g. trace equivalence: 3a, ⊤ (, ∨)

▶ Negative result: Trace distance on probabilistic metric transition
systems has no characteristic modal logic that is a compositional
fragment of a branching-time logic.
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Introduction: Graded Quantitative Logics

▶ Graded logics: Canonical notion of logic for graded semantics

▶ Fragments of branching-time coalgebraic modal logics

▶ Invariance (logical ≤ behavioural distance) holds without restriction

▶ Expressiveness (logical ≥ behavioural distance) holds under
separation

▶ Positive examples: Metric traces (Beohar, Gurke, König, Messing 2023),
fuzzy metric traces (new)
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Behavioural metrics

E.g. probabilistic systems:

• •

a b a b

0.5 0.5 0.4 0.6

– not bisimilar, but ”close“

▶ Behavioural distance 0.1 under standard definitions
(earth movers metric)
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Coalgebra

Coalgebras = generic reactive systems

▶ Set X of states

▶ Transition structure X → FX

▶ Functor F is the type of the system.

▶ E.g. F = P : Non-deterministic branching
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Metric Labelled Systems as Coalgebras

▶ Metric transition systems, L metric space of labels:

X →P(L×X )

▶ Probabilistic metric transition systems

X →D(L×X )

▶ Fuzzy metric transition systems:

X →F(L×X )

FX = [0,1]X fuzzy powerset
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Trace Distances

▶ Metric transition system X →P(L×X ):

▶ have sup metric on traces

▶ form crisp trace sets

▶ measure Hausdorff distance

▶ Fuzzy transition system X →F(L×X ):

▶ form fuzzy trace sets

▶ measure fuzzy Hausdorff distance

▶ Probabilistic metric transition system X →D(L×X ):

▶ have Manhattan metric on traces

▶ form length-n trace distributions

▶ measure Kantorovich distance
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Recall: Monads and Theories

(Algebraic) theories (Σ,E) consist of

▶ (algebraic) signature Σ – operations with arities

▶ equations E .

Correspond to monads M (on Set); on set X :

▶ MX = Σ-Terms with variables in X / equations

▶ η : X → MX variables-as-terms (unit)

▶ µ : MMX → MX substitution (multiplication)
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Graded Monads and Theories

(Smirnoff 2008)

Graded theories (Σ,d ,E) consist of

▶ d : Σ→ N depth
▶ → terms of uniform depth

▶ equations E of uniform depth

Correspond to graded monads (Mn)n<ω :

▶ MnX = Σ-terms of uniform depth n over X

▶ η : X → M0X

▶ µnk : MnMk X → Mn+k X
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Graded Semantics

of G-coalgebras = graded monad (Mn) + natural transformation

αX : GX → M1X

▶ Inductively defined sequence

γ
(0) : X

M0!◦η−−−→ M01 γ
(n+1) : X

α◦γ−−→ M1X
M1γ(n)−−−→ M1Mn1

µ1n

−−→ Mn+11

of n-step behaviour maps γ(n) : X → Mn1
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Quantitative Graded Semantics

▶ Use functor G on metric spaces (e.g. lift a set functor)

▶ Map into graded monad (Mn) on metric spaces

▶ Graded behavioural distance on γ : X → GX :

d(x ,y) =
∨

n<ω

d(γ(n)(x),γ(n)(y))
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Graded Quantitative Equational Theories

Graded version of quantitative equational theories
(Mardare/Panangaden/Plotkin 2016)

▶ =ε : Equality up to ε (quantitative equality)

▶ Axioms of the form
Γ ⊢ s =ε t

with Γ set of quantitative equalities on the variables

▶ Expected rules including triangle inequality and non-expansiveness of
all operators
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Graded Quantitative Semantics: Examples (I)

▶ Branching time

▶ Metric traces:

▶ Depth 0: Quantitative join semilattices
( = join semilattices + non-expansiveness of join)
→ M0 = Pω with Hausdorff distance

▶ Depth 1: Operations a(−) for a ∈ L, axioms

⊢ a(0) =0 0 ⊢ a(x +y) =0 a(x)+a(y)

x =ε y ⊢ a(x) =max{ε,dL(a,b)} b(y)

So MnX = Pω(Ln ×X ), Ln with product (sup) distance, Pω with Hausdorff
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Graded Quantitative Semantics: Examples (II)

▶ Fuzzy traces:

▶ Depth 0: Quantitative join semilattices with action of ([0,1],∧),

x =ε y ⊢ r(x) =ε s(y) when |r −s| ≤ ε

▶ Depth 1: Operations a(−) for a ∈ L, usual trace equations plus

a(r(x)) = r(a(x)) for r ∈ [0,1], a ∈ L

so MnX = Fω(Ln ×X ) with fuzzy Hausdorff distance

▶ Probabilistic traces: MnX =Dω(Ln ×X ), Ln ×X with Manhattan
distance, Dω with Kantorovich.

Forster et al.: Quantitative Graded Monads 16 LLAMA Seminar, ILLC, Universiteit van Amsterdam, June 5, 2024



Quantitative Coalgebraic Modal Logic

Parametrized over

▶ Set Θ of truth constants

▶ Set O of propositional operators

▶ Set Λ of modalities

Semantics over G-coalgebra γ : X → GX :

▶ Space Ω= [0,1] of truth values

▶ c truth constant: ĉ : 1 → Ω

▶ p propositional operator: [[p]] : Ωn → Ω non-expansive

▶ L ∈ Λ: [[L]] : GΩ→ Ω non-expansive

▶ [[Lφ ]]
γ
= (X

γ−→ GX
G[[φ ]]

γ−−−→ GΩ
[[L]]−−→ Ω)

▶ [[φ ]] : X → Ω invariant, i.e. non-expansive w.r.t. behavioural distance
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No Characteristic Logic for Probabilistic Metric Traces

Theoren There is no characteristic quantitative (coalgebraic) modal
logic with unary modalities for trace distance on probabilistic metric
transition systems.
Proof Assume L is invariant.
▶ Show that modalities [[L]] : Dω(L×Ω)→ Ω are affine.

▶ In
x

xa xb

y

yb ya1
2

a
1
2

b

1
a

1
b

1
b

1
a

1
2

a
1
2

b

with d(a,b) = v < 1, x and y have behavioural distance v but logical
distance ≤ v2.
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Quantitative Graded Logics

Given graded semantics α,(Mn), a logic L= (Θ,O,Λ) is graded if

▶ Ω M0-algebra

▶ propositional operators [[p]] : Ωn → Ω homomorphic

▶ modalities [[L]] : GX → Ω factor through M1-algebras

LLM : M1Ω→ Ω

Theorem Uniform-depth formulae in a graded logic L are invariant
under the graded semantics
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Quantitative Graded Logics: Examples

▶ Metric traces:
▶ Propositional operators: e.g. none, or joins
▶ Modalities: 3a, a ∈ L,

[[3a]](f )(U) =
∨

(b,x)∈U(1−d(a,b))∧ f (x) for f : X → [0,1],U ∈ Pω(L×X )

▶ Fuzzy metric traces:
▶ Propositional operators: e.g. none, or joins
▶ Modalities 3c

a, a ∈ L, c ∈ [0,1]

[[3c
a]](f )(A)=

∨
x∈X A(a,x)∧ f (x)∧(c−d(a,b)) for f : X → [0,1],A ∈ Fω(L×X )

▶ Probabilistic traces:
▶ Propositional operators: e.g. none, or affine combinations
▶ Modalities 3a, a ∈ L,

[[3a]](f )(µ) = ∑x∈X µ(a,x) · f (x) for f : X → [0,1],µ ∈ Dω(L×X )
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Expressiveness via Separation

L quantitative graded logic with set Λ of modalities
▶ Induces L-logical distance

Let Φ be a condition on cones ⊆ Met(X , [0,1]) that implies initiality.

Theorem. If L is Φ-type depth-0-separating and Φ-type depth-1
separating, then L-logical distance equals graded behavioural distance

Definition. L is Φ-type depth-1 separating if whenever
A⊆ MetM0(Mn1, [0,1]) satisfies Φ and is closed under the propositional
operators, then

ΛA= {L(f ) | L ∈ Λ, f ∈ A} ⊆ MetM0(Mn+11, [0,1])

satisfies Φ.
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Positive Examples

▶ The logic of metric streams is expressive (Φ= normed isometry)

▶ The logic of metric traces is expressive (Φ= normed isometry)

▶ The logic of fuzzy metric traces is expressive (Φ= initiality)
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Conclusions

▶ Surprising negative result on existence of characteristic quantitative
modal logic for probabilistic metric traces

▶ The principles of graded characteristic logics carry transfer to the
quantitative setting

▶ Inductive expressiveness criterion becomes more subtle

▶ needs strengthened invariant as a parameter

▶ New positive example:
Fuzzy metric traces, with slightly subtly choice of modalities
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Future Work

▶ Expressive logic for probabilistic metric traces with higher-arity
modalities?

▶ Game characterization

▶ Fixpoint characterization

▶ Existence of expressive sets of modalities?
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