Kleene Algebra with Dynamic Tests

Igor Sedlár

Institute of Computer Science of the Czech Academy of Sciences

LLAMA Seminar 15. 11. 2023

Motivation: Reasoning about programs

Reasoning about...

- **program equivalence** \rightarrow shorter code
- \blacksquare halting / divergence \rightarrow code runs
- correctness → code does what it should

Motivation: Reasoning about programs

Reasoning about...

- **program equivalence** \rightarrow shorter code
- halting / divergence \rightarrow code runs
- correctness → code does what it should

...programs...

 $E,F := \mathbf{a} \in \Sigma \mid \mathbf{skip} \mid \mathbf{abort} \mid E;F \mid \mathbf{if} \ B \ \mathbf{then} \ E \ \mathbf{else} \ F \mid \mathbf{while} \ B \ \mathbf{do} \ F$

where B is a Boolean formula over a set of variables Π .

Motivation: Reasoning about programs

Reasoning about...

- **program equivalence** \rightarrow shorter code
- halting / divergence \rightarrow code runs
- correctness → code does what it should

...programs...

 $E,F := a \in \Sigma \mid skip \mid abort \mid E;F \mid if B then E else F \mid while B do F$

where B is a Boolean formula over a set of variables Π .

...using "logics of programs".

Outline

- 1 Kleene algebra with tests (KAT)
- 2 KA with dynamic tests (aKAT) and fragments (KA with domain)
- ${\tt 3}$ aKAT and PDL \rightarrow relational aKAT is EXPTIME-complete
- 4 Language completeness for aKAT
 - \rightarrow aKAT = language aKAT
- 5 Relational completeness for aKAT
 - \rightarrow relational aKAT = language aKAT = aKAT
 - $\rightarrow\,$ aKAT is $\rm EXPTIME$ complete
- 6 Completeness and complexity for fragments
 - ightarrow completeness for all
 - $\rightarrow\,$ aKA is $\mathrm{EXPTIME}\text{-}complete$

See arxiv.org/abs/2311.06937

1. Kleene algebra with tests

Kleene algebra with tests (KAT) - 1

(Cohet et al. 1996; Kozen 1996, 1997; Kozen and Smith, 1997)

Syntax (KA + tests)

$$e, f := \mathbf{a} \in \Sigma \mid \mathbf{0} \mid \mathbf{1} \mid e + f \mid e \cdot f \mid e^* \mid \mathbf{p} \in \Pi \mid \mathbf{p}^{\perp}$$

Kleene algebra with tests (KAT) – 1

(Cohet et al. 1996; Kozen 1996, 1997; Kozen and Smith, 1997)

Syntax (KA + tests)

$$e, f := \mathbf{a} \in \Sigma \mid \mathbf{0} \mid \mathbf{1} \mid e + f \mid e \cdot f \mid e^* \mid \mathbf{p} \in \Pi \mid \mathbf{p}^{\perp}$$

Axioms

$$(e \cdot f) \cdot g \equiv e \cdot (f \cdot g)$$
(1)
$$1 + (e \cdot e^*) \leq e^*$$
(8)
$$e \cdot 1 \equiv e \equiv 1 \cdot e$$
(2)
$$1 + (e^* \cdot e) \leq e^*$$
(9)

$$f + (e \cdot e) \leq e \qquad (3)$$

(3)
$$f + (e \cdot g) \leq g \implies e^* \cdot f \leq g$$
 (10)
(4) $f + (g \cdot e) \leq g \implies f \cdot e^* \leq g$ (11)

$$e \equiv e + e \tag{5}$$

$$e \cdot (f+g) \equiv (e \cdot f) + (e \cdot g)$$
 (6

 $(e+f) + q \equiv e + (f+q)$

 $0 + e \equiv 0 \equiv e + 0$

$$(e+f) \cdot g \equiv (e \cdot g) + (f \cdot g)$$
 (7)

idempotent semirings

 $p^{\perp} \cdot p \equiv 0 \qquad p^{\perp} + p \equiv 1$ $b \cdot b \equiv b \qquad b \cdot c \equiv c \cdot b$

↑ Kleene algebra (KA)

where $e \leq f$ means $e + f \equiv f$ and $b, c \in \Lambda = \Pi \cup \Pi^{\perp}$.

(Kappé 2022, 2023)

۱

Kleene algebra with tests (KAT) - 2

Encoding programs...

- Boolean formulas: DFN over Λ
- E; F is $E \cdot F$
- e.g. $\neg(p\leftrightarrow \neg q)$ is $p\cdot q + p^{\perp}\cdot q^{\perp}$ if $\Pi = \{p,q\}$
- skip as 1 and abort as 0
- if B then E else F is $(B \cdot E) + (\neg B \cdot F)$
- while B do E is $(B \cdot E)^* \cdot (\neg B)$

...and their properties

- equivalence: $e \equiv f$
- divergence $e \equiv 0$, halting $e \not\equiv 0$
- correctness

 $(B \cdot e) \cdot (\neg C) \equiv \mathbf{0}$

Kleene algebra with tests (KAT) - 2

Encoding programs...

- Boolean formulas: DFN over Λ
- E; F is $E \cdot F$
- skip as 1 and abort as 0
- if B then E else F is $(B \cdot E) + (\neg B \cdot F)$
- while B do E is $(B \cdot E)^* \cdot (\neg B)$

...and their properties

- equivalence: $e \equiv f$
- divergence $e \equiv 0$, halting $e \not\equiv 0$
- correctness

 $(B \cdot e) \cdot (\neg C) \equiv \mathbf{0}$

Properties of KAT:

- Sound and complete for relational models and language models based on guarded strings
- Eq. theory PSPACE-complete

e.g. $\neg(p \leftrightarrow \neg q)$ is $p \cdot q + p^{\perp} \cdot q^{\perp}$ if $\Pi = \{p, q\}$

• Quasi-eq. theory Σ_1^0 -complete; fragment with assumptions $e \equiv 0$ reduces to eq. th.

Syntax:

$$e, f := \mathbf{a} \in \Sigma \mid \mathbf{p} \in \Pi \mid \mathbf{0} \mid \mathbf{1} \mid e + f \mid e \cdot f \mid e^* \mid e^{\perp} \mid e^{\top}$$

Read e^{\perp} as "*e* diverges" and e^{\top} as "*e* halts".

Syntax:

$$e, f := \mathbf{a} \in \Sigma \mid \mathbf{p} \in \Pi \mid \mathbf{0} \mid \mathbf{1} \mid e + f \mid e \cdot f \mid e^* \mid e^{\perp} \mid e^{\top}$$

Read e^{\perp} as "*e* diverges" and e^{\top} as "*e* halts".

 \rightarrow $^{\perp}$ is antidomain and $^{\top}$ is domain of KA with domain (Desharnais et al. 2006, 2011)

Syntax:

$$e, f := \mathbf{a} \in \Sigma \mid \mathbf{p} \in \Pi \mid \mathbf{0} \mid \mathbf{1} \mid e + f \mid e \cdot f \mid e^* \mid e^{\perp} \mid e^{\top}$$

Read e^{\perp} as "*e* diverges" and e^{\top} as "*e* halts".

 \rightarrow $^{\perp}$ is antidomain and $^{ op}$ is domain of <u>KA with domain</u> (Desharnais et al. 2006, 2011)

Axioms: KA +

$$e^{\perp} \cdot e \equiv 0 \tag{12}$$

$$(e \cdot f)^{\perp} \equiv (e \cdot f^{\top})^{\perp} \tag{13}$$

$$e^{\perp} + e^{\top} \equiv 1 \tag{14}$$

$$\mathbf{p}^{\top} \equiv \mathbf{p}$$
 (15)

$$e^{\top} \equiv e^{\perp \perp} \tag{16}$$

This is "antidomain KAT", or aKAT.

Let \mathbb{E} be the set of all expressions.

Definition 1

The set \mathbb{F} of <u>formulas</u> (over Σ and Π) is defined by the following grammar:

$$\phi, \psi := \mathbf{p} \in \Pi \mid \mathbf{0} \mid \mathbf{1} \mid \phi + \psi \mid \phi \cdot \psi \mid e^{\perp} \mid e^{\top},$$

where $e \in \mathbb{E}$.

Definition 2

An expression $e \in \mathbb{E}$ is <u>testable</u> iff it does not contain occurrences of \top . A <u>test</u> is an expression e^{\top} where e is testable. A <u>parameter</u> is either a test or an element of Π .

Notation:
$$\Phi^{\perp} = \{ \phi^{\perp} \mid \phi \in \Phi \}$$
 and $\Phi^{\pm} = \Phi \cup \Phi^{\perp}$.

Syntactic fragments of aKAT - 1

K	Base	op applies to	\perp applies to
KA	Σ	nothing	nothing
$KA(\Phi)$	$\Sigma\cup\Phi$	nothing	nothing
dKA	Σ	everything	noting
aKA	Σ	everything	everything
KAT	$\Sigma \cup \Pi$	nothing	П
$KAT(\Phi)$	$\Sigma\cup\Phi$	nothing	Φ
dKAT	$\Sigma \cup \Pi$	everything	П
aKAT	$\Sigma \cup \Pi$	everything	everything

 $\Phi \subseteq \mathbb{E}$ is a set of parameters. $\mathbb{E}_{\mathsf{KA}(\Phi)} (\mathbb{E}_{\mathsf{KAT}(\Phi)})$ is the set of regular expressions over $\Phi (\Phi^{\pm})$; notation: $\mathbb{RE}(\Phi) (\mathbb{RE}(\Phi^{\pm}))$.

Syntactic fragments of aKAT - 2

We write $e \stackrel{\kappa}{\equiv} f$ if $e \equiv f$ and $e, f \in \mathbb{E}_{\mathsf{K}}$.

Definition 3

A <u>relational model</u> (for Σ and Π) is a structure $M = \langle X, \operatorname{rel}_M, \operatorname{sat}_M \rangle$ where

• X is a set • $\operatorname{rel}_M : \Sigma \to 2^{X \times X}$ • $\operatorname{sat}_M : \Pi \to 2^X$.

Intuition: $\langle x, y \rangle \in \mathsf{rel}_M(\mathbf{a})$, or

$$x \xrightarrow{\mathtt{a}} y$$
,

if action a may lead from state x to state y; $x \in \mathsf{sat}_M(p)$, or

$$(M, x) \vDash \mathbf{p},$$

if proposition p is satisfied in state x.

Note: This is a Kripke frame for $\boldsymbol{\Sigma}$ as the "basis" of the modal signature.

Definition 4

For each relational model $M = \langle X, \mathsf{rel}_M, \mathsf{sat}_M \rangle$ (for Σ and Π) we define the <u>*M*-interpretation</u> of \mathbb{E} as the function $[\![-]\!]_M : \mathbb{E} \to 2^{X \times X}$ such that:

$$\begin{split} \llbracket \mathbf{a} \rrbracket_{M} &= \operatorname{rel}_{M}(\mathbf{a}) \qquad \llbracket \mathbf{p} \rrbracket_{M} = \mathbf{1}_{\operatorname{\mathsf{sat}}_{M}(\mathbf{p})} \qquad \llbracket \mathbf{0} \rrbracket_{M} = \emptyset \qquad \llbracket \mathbf{1} \rrbracket_{M} = \mathbf{1}_{X} \\ \llbracket e + f \rrbracket_{M} &= \llbracket e \rrbracket_{M} \cup \llbracket f \rrbracket_{M} \qquad \llbracket e \cdot f \rrbracket_{M} = \llbracket e \rrbracket_{M} \circ \llbracket f \rrbracket_{M} \\ \llbracket e^{*} \rrbracket_{M} &= (\llbracket e \rrbracket_{M})^{*} = \bigcup_{n \ge 0} \llbracket e \rrbracket_{M}^{n} \\ \llbracket e^{\perp} \rrbracket_{M} &= \mathbf{a} \left(\llbracket e \rrbracket_{M}\right) = \bigcup_{R \subseteq 1_{X}} \left(R \circ \llbracket e \rrbracket_{M} = \emptyset\right) \\ \llbracket e^{\top} \rrbracket_{M} &= \mathbf{d} \left(\llbracket e \rrbracket_{M}\right) = \mathbf{1}_{X} \setminus \mathbf{a} (\llbracket e \rrbracket_{M}) \end{split}$$

where, for $R \subseteq 2^{X \times X}$, $R^0 = 1_X$ and $R^{n+1} = R^n \circ R$. Expressions e and f are <u>relationally equivalent</u>) iff $[\![e]\!]_M = [\![f]\!]_M$ for all M.

Note that

$$\llbracket e^{\perp} \rrbracket_M = \{ \langle x, x \rangle \mid \neg \exists y : \langle x, y \rangle \in \llbracket e \rrbracket_M \}$$
$$\llbracket e^{\top} \rrbracket_M = \{ \langle x, x \rangle \mid \exists y : \langle x, y \rangle \in \llbracket e \rrbracket_M \}$$

In other words, $^{\perp}$ is dynamic negation of Dynamic Predicate Logic (Groenendijk and Stokhof, 1991) and $^{\top}$ is dynamic double negation.

Note that

$$\llbracket e^{\perp} \rrbracket_M = \{ \langle x, x \rangle \mid \neg \exists y : \langle x, y \rangle \in \llbracket e \rrbracket_M \}$$
$$\llbracket e^{\top} \rrbracket_M = \{ \langle x, x \rangle \mid \exists y : \langle x, y \rangle \in \llbracket e \rrbracket_M \}$$

In other words, $^{\perp}$ is dynamic negation of Dynamic Predicate Logic (Groenendijk and Stokhof, 1991) and $^{\top}$ is dynamic double negation.

If $\llbracket e \rrbracket_M$ is the start-halt relation for (program) e, then

- $\llbracket e^{\perp} \rrbracket_M$ represents the set of states where e diverges
- $\llbracket e^{\top} \rrbracket_M$ represents the set of states where e halts

3. aKAT and PDL

Satisfaction of formulas - 1

It is easy to prove by induction on the structure of ϕ that $\llbracket \phi \rrbracket_M \subseteq 1_X$ for all formulas ϕ and all M. We will write

$$(M, x) \vDash \phi \iff \langle x, x \rangle \in \llbracket \phi \rrbracket_M$$

Satisfaction of formulas - 1

It is easy to prove by induction on the structure of ϕ that $[\![\phi]\!]_M \subseteq 1_X$ for all formulas ϕ and all M. We will write

$$(M, x) \vDash \phi \iff \langle x, x \rangle \in \llbracket \phi \rrbracket_M$$

Observation 1
For all
$$\phi$$
 and all M :
1 $(M, x) \models \phi$ iff $\langle x, x \rangle \in \llbracket \phi^{\top} \rrbracket_M$
2 $(M, x) \nvDash \phi$ and $(M, x) \vDash 1$ for all x
3 $(M, x) \vDash \phi^{\perp}$ iff $(M, x) \nvDash \phi$
4 $(M, x) \vDash \phi + \psi$ iff $(M, x) \vDash \phi$ or $(M, x) \vDash \psi$
5 $(M, x) \vDash \phi \cdot \psi$ iff $(M, x) \vDash \phi$ and $(M, x) \vDash \psi$
6 $(M, x) \vDash (e \cdot \phi)^{\perp \perp}$ iff there is y such that $\langle x, y \rangle \in \llbracket e \rrbracket_M$ and $(M, y) \vDash \phi$
7 $(M, x) \vDash (e \cdot \phi^{\perp})^{\perp}$ iff for all $y, \langle x, y \rangle \in \llbracket e \rrbracket_M$ implies that $(M, y) \vDash \phi$

Satisfaction of formulas - 2

$$\begin{array}{l} \langle x,x\rangle \in \overbrace{\llbracket (e\cdot\phi)^{\bot \bot} \rrbracket}^{\langle e \rangle \phi} \\ \langle x,x\rangle \in \overbrace{\llbracket (e\cdot\phi)^{\bot \bot} \rrbracket}^{\langle e \rangle \phi} \\ & \longleftrightarrow \ \forall x,x\rangle \notin \llbracket (e\cdot\phi)^{\bot} \rrbracket_{M} \\ & \Leftrightarrow \ \exists y: \langle x,y\rangle \in \llbracket e\cdot\phi \rrbracket_{M} \\ & \Leftrightarrow \ \exists y: \langle x,y\rangle \in \llbracket e\cdot\phi \rrbracket_{M} \\ & \Leftrightarrow \ \exists y: \langle x,y\rangle \in \llbracket e \rrbracket_{M} \ \& \ \langle y,y\rangle \in \llbracket \phi \rrbracket_{M} \\ & \Leftrightarrow \ \forall y,z: \langle x,y\rangle \in \llbracket e \rrbracket_{M} \implies \langle y,z\rangle \notin \llbracket \phi^{\bot} \rrbracket \\ & \Leftrightarrow \ \forall y,z: \langle x,y\rangle \in \llbracket e \rrbracket_{M} \implies \langle y,z\rangle \notin \llbracket \phi^{\bot} \rrbracket \\ & \Leftrightarrow \ \forall y: \langle x,y\rangle \in \llbracket e \rrbracket_{M} \implies \langle y,y\rangle \in \llbracket \phi \rrbracket_{M}$$

aKAT = "PDL in disguise"

We obtain the usual semantics of (programs and formulas) of PDL within aKAT. PDL programs form a specific fragment \mathbb{E}_{PDL} of \mathbb{E} . aKAT is "one sorted test algebra".

aKAT = "PDL in disguise"

We obtain the usual semantics of (programs and formulas) of PDL within aKAT. PDL programs form a specific fragment \mathbb{E}_{PDL} of \mathbb{E} . aKAT is "one sorted test algebra".

Theorem 1

The problem of deciding relational equivalence between arbitrary expressions in \mathbb{E} is EXPTIME-complete.

Proof. Lower bound: the (EXPTIME-hard) membership problem for polynomial-space alternating Turing machines reduces to the problem of satisfiability of PDL-formulas in relational models: For each machine A and input t, there is a PDL-formula $F_{A,t}$ such that A accepts t iff $F_{A,t}$ is satisfiable.

Upper bound: for every $e \in \mathbb{E}$ there is a poly. computable equivalent $e' \in \mathbb{E}_{PDL}$.

Question: Do we need the full aKAT language for arbitrary $F_{A,t}$?

4. Language completeness

Guarded strings - 1

Disclaimer: We draw heavily on Hollenberg's (1998) relational completeness proof for an equational axiomatization of Test Algebras (relationally valid equations between PDL-programs), itself combining modal logic with (Kozen and Smith, 1997). We simplify and generalize.

Let Φ be a finite set of parameters ϕ_1, \ldots, ϕ_n . An <u>atom</u> over Φ is a sequence $\psi_1 \ldots \psi_n$ where $\psi_i \in {\phi_i, \phi_i^{\perp}}$. Notation $G \triangleleft \phi$ means " ϕ appears in atom G". $\mathbb{A}(\Phi)$ is the set of all atoms over Φ .

A guarded string over Φ is any sequence of the form

$$G_1 a_1 G_2 \ldots a_{n-1} G_n$$

where each $G_i \in \mathbb{A}(\Phi)$ and $a_j \in \Sigma$. $\mathbb{GS}(\Phi)$ is the set of all guarded strings over Φ .

Guarded strings – 2

Fusion product is a partial binary operation on $\mathbb{GS}(\Phi)$ defined as follows:

$$xG \diamond Hy = \begin{cases} xGy & G = H \\ \text{undefined} & G \neq H \end{cases}$$

Fusion product is lifted to $\underline{\Phi}$ -guarded languages $K, L \subseteq \mathbb{GS}(\Phi)$ as expected: $L \diamond K = \{ w \diamond u \mid w \in L \ \& \ u \in K \}.$

KAT and the algebra of guarded languages - 1

Definition 5

The algebra of Φ -guarded languages is

$$\mathbf{GL}(\Phi) = \langle 2^{\mathbb{GS}(\Phi)}, 2^{\mathbb{A}(\Phi)}, \cup, \diamond, *, {}^{\perp}, {}^{\top}, \emptyset, \mathbb{A}(\Phi) \rangle$$

where $K^* = \bigcup_{n \ge 0} K^n$ ($K^0 = \mathbb{A}(\Phi)$ and $K^{n+1} = K^n \diamond K$) and $L^{\perp} = \{G \in \mathbb{A}(\Phi) \mid \{G\} \diamond L = \emptyset\}$ $L^{\top} = \{G \in \mathbb{A}(\Phi) \mid \{G\} \diamond L \neq \emptyset\}.$

Definition 6

If Φ is a finite set of parameters, then the standard Φ -interpretation of $\mathbb{RE}(\Phi^{\pm})$ is the unique homomorphism $[-]_{\Phi} : \mathbb{RE}(\Phi^{\pm}) \to \mathbf{GL}(\Phi)$ such that

 $[\mathbf{a}]_{\Phi} = \{ G \mathbf{a} H \mid G, H \in \mathbb{A}(\Phi) \} \qquad [\phi]_{\Phi} = \{ G \mid G \in \mathbb{A}(\Phi) \& G \triangleleft \phi \}$

for $a \in \Sigma$ and $\phi \in \Phi^{\pm}$.

KAT and the algebra of guarded languages - 2

Theorem 2 (Essentially (Kozen and Smith 1997))

Let Φ be a finite set of parameters. For all $e, f \in \mathbb{E}_{\mathsf{KAT}(\Phi)}$,

$$e \stackrel{\mathrm{KAT}(\Phi)}{\equiv} f \iff [e]_{\Phi} = [f]_{\Phi}$$

Consequently, we have

$$[e]_{\Gamma} = [f]_{\Gamma} \implies e \equiv f$$

for all $e, f \in \mathbb{RE}(\Gamma^{\pm}) \subseteq \mathbb{E}$.

The converse fails! $\mathbf{a}^{\top} \mathbf{a}^{\perp \top} \in \mathbb{A}(\Gamma)$ for $\Gamma = {\mathbf{a}^{\top}, \mathbf{a}^{\perp \top}}$. Hence, $[\mathbf{a}^{\top} \cdot \mathbf{a}^{\perp \top}]_{\Gamma} \neq \emptyset$. \rightarrow Pay attention to consistency of atoms! Moreover, $[\mathbf{a}^{\perp} \cdot \mathbf{a}]_{\Gamma} = {G\mathbf{a}H \mid G \triangleleft \mathbf{a}^{\perp}} \neq \emptyset$. \rightarrow Consider only consistent one-step gstrings!

aKAT and the algebra of consistently guarded languages - 1

We don't distinguish between a non-empty sequence of expressions $e_1 \dots e_n$ and the expression $e_1 \dots e_n$ (assuming some fixed bracketing). An atom Gis <u>consistent</u> iff $G \neq 0$. $\mathbb{C}(\Phi)$ is the set of all consistent atoms over Φ .

A consistently guarded string over Φ is any guarded string $G_1 a_1 \dots a_{n-1} G_n$ where all $G_i \in \mathbb{C}(\Phi)$. $\mathbb{CS}(\Phi)$ is the set of consistently guarded strings over Φ .

Definition 7

The algebra of consistently Φ -guarded languages is

$$\mathbf{CL}(\Phi) = \langle 2^{\mathbb{CS}(\Phi)}, 2^{\mathbb{C}(\Phi)}, \cup, \diamond, *, \bot, \top, \emptyset, \mathbb{C}(\Phi) \rangle$$

where
$$K^* = \bigcup_{n \ge 0} K^n$$
 ($K^0 = \mathbb{C}(\Phi)$ and $K^{n+1} = K^n \diamond K$) and
 $L^{\perp} = \{G \in \mathbb{C}(\Phi) \mid \{G\} \diamond L = \emptyset\}$ $L^{\top} = \{G \in \mathbb{C}(\Phi) \mid \{G\} \diamond L \neq \emptyset\}.$

Not a subalgbera ob $\mathbf{GL}(\Phi)$ although of course $\mathbb{CS}(\Phi) \subseteq \mathbb{GS}(\Phi)$.

aKAT and the algebra of consistently guarded languages - 2

Definition 8

Let Γ be a set of parameters. The <u>canonical Γ -interpretation</u> of \mathbb{E} is the unique homomorphism $[\![-]\!] : \mathbb{E} \to \mathbf{CL}(\Gamma)$ such that

 $[\![\mathbf{a}]\!]_{\Gamma} = \{G\mathbf{a}H \in \mathbb{CS}(\Gamma) \mid G\mathbf{a}H \not\equiv \mathbf{0}\} \quad [\![\mathbf{p}]\!]_{\Gamma} = \{G \mid G \in \mathbb{C}(\Gamma) \& G \leqq \mathbf{p}\}$

for all $a \in \Sigma$ and $p \in \Pi$.

Lemma 1 (Language soundness)

Let Γ be any finite set of parameters. For all $e, f \in \mathbb{E}$:

 $e \equiv f \implies \llbracket e \rrbracket_{\Gamma} = \llbracket f \rrbracket_{\Gamma}.$

Language completeness – 1

Definition 9

We define $\widehat{}$ as the smallest function $\mathbb{RE}(\Gamma) \to \mathbb{RE}(\Gamma^{\pm})$ such that (for $\phi \in \Gamma$ and $a \in \Sigma$)

$$\widehat{\phi} = \sum \{ G \in \mathbb{C}(\Gamma) \mid G \leqq \phi \} \qquad \widehat{\mathbf{a}} = \sum \llbracket \mathbf{a} \rrbracket_{\Gamma} \qquad \widehat{\mathbf{1}} = \sum \mathbb{C}(\Gamma)$$

and that commutes with 0, \cdot , + and *.

Lemma 2

For all $e \in \mathbb{RE}(\Gamma)$, $e \equiv \hat{e}$.

Lemma 3

If Γ is "<u>FL-closed</u>", then $\llbracket e \rrbracket_{\Gamma} = [\widehat{e}]_{\Gamma}$ for all $e \in \mathbb{RE}(\Gamma)$.

Language completeness – 2

Theorem 3 (Language completeness)

Let $E \subseteq \mathbb{E}$ be finite and let Γ be the FL-closure of the sets of tests of subformulas of elements of E. Then, for all $e, f \in E$:

$$e \equiv f \iff \llbracket e \rrbracket_{\Gamma} = \llbracket f \rrbracket_{\Gamma}$$

Proof.

The implication from left to right follows from Lemma 1. The converse implication is established as follows:

$$\begin{split} \llbracket e \rrbracket_{\Gamma} &= \llbracket f \rrbracket_{\Gamma} \xrightarrow{\text{Lemma 3}} [\widehat{e}\,]_{\Gamma} = [\widehat{f}\,]_{\Gamma} \xrightarrow{\text{Theorem 2}} \widehat{e} \xrightarrow{\mathbb{K} \to \mathsf{T}(\Gamma)} \widehat{f} \\ & \widehat{e} \xrightarrow{\mathbb{K} \to \mathsf{T}(\Gamma)} \widehat{f} \xrightarrow{\text{by def.}} \widehat{e} \equiv \widehat{f} \xrightarrow{\text{Lemma 2}} e \equiv f \end{split}$$

5. Relational completeness

Relational completeness - 1

Definition 10

We define the function cay : $2^{\mathbb{CS}(\Gamma)} \rightarrow 2^{\mathbb{CS}(\Gamma) \times \mathbb{CS}(\Gamma)}$ as follows:

$$\mathsf{cay}(L) = \{ \langle w, w \diamond u \rangle \mid w \in \mathbb{CS}(\Gamma) \& u \in L \}$$

Definition 11

Define the relational model $CS(\Gamma) = \langle \mathbb{CS}(\Gamma), \operatorname{rel}_{CS(\Gamma)}, \operatorname{sat}_{CS(\Gamma)} \rangle$ where

$$\mathsf{rel}_{CS(\Gamma)}(\mathtt{a}) = \mathsf{cay}(\llbracket\mathtt{a}\rrbracket_{\Gamma}) \qquad \mathsf{sat}_{CS(\Gamma)}(\mathtt{p}) = \{w \mid \mathsf{last}(w) \leq \mathtt{p}\}$$

for $a \in \Sigma$ and $p \in \Pi$.

Relational completeness – 2

Lemma 4

If Γ is FL-closed, then for all $e \in \mathbb{RE}(\Gamma)$,

 $\mathsf{cay}\left([\![e]\!]_{\Gamma}\right)=[\![e]\!]_{CS(\Gamma)}\,.$

Theorem 4 (Relational completeness)

For all $e, f \in \mathbb{E}$: $e \equiv f \iff (\forall M)(\llbracket e \rrbracket_M = \llbracket f \rrbracket_M)$

Theorem 5

The problem of deciding equivalence of arbitrary expressions is EXPTIME-complete.

Theorem 6

Take a finite $E \subseteq \mathbb{E}$ and $e, f \in E$. The following are equivalent:

Lemma 5

Let e' be the result of replacing every occurrence of a_n in e by an occurrence of a_{2n} and replacing every occurrence of p_n by an occurrence of $(a_{2n+1})^{\top}$. Then

$$e \equiv f \iff e' \equiv f'$$
.

Lemma 5

Let e' be the result of replacing every occurrence of a_n in e by an occurrence of a_{2n} and replacing every occurrence of p_n by an occurrence of $(a_{2n+1})^{\top}$. Then

$$e \equiv f \iff e' \equiv f'$$
.

Proof. Left to right: Equivalence is preserved under substitution. Moreover, clearly $\mathbf{p}' \equiv (\mathbf{p}')^{\top}$. Right to left: If $e \neq f$, then there is a relational model M where $\llbracket e \rrbracket_M \neq \llbracket f \rrbracket_M$ (Theorem 4). We define M' by taking the universe X of M and stipulating that

$$\mathsf{rel}_{M'}(\mathbf{a}_m) = \begin{cases} \mathsf{rel}_M(\mathbf{a}_n) & m = 2n \\ 1_{\mathsf{sat}_M(\mathbf{p}_n)} & m = 2n+1 \end{cases} \qquad \mathsf{sat}_{M'}(\mathbf{p}) = \emptyset$$

It can be shown by induction on g that $\llbracket g \rrbracket_M = \llbracket g' \rrbracket_{M'}$. Only the base case is interesting. The base case for \mathbf{a}_n : $\llbracket (\mathbf{a}_n)' \rrbracket_{M'} = \llbracket \mathbf{a}_{2n} \rrbracket_{M'} = \llbracket \mathbf{a}_n \rrbracket_M$. The base case for \mathbf{p}_n : $\llbracket (\mathbf{p}_n)' \rrbracket_{M'} = \llbracket (\mathbf{a}_{2m+1})^\top \rrbracket_{M'} = \{\langle x, x \rangle \mid \exists y. \langle x, y \rangle \in \llbracket \mathbf{a}_{2n+1} \rrbracket_{M'} \} = \llbracket \mathbf{p}_n \rrbracket_M$. Now clearly $\llbracket e' \rrbracket_{M'} \neq \llbracket f' \rrbracket_{M'}$ and so $e' \not\equiv f'$ by relational soundness.

Theorem 7

The problem of deciding equivalence between aKA-expressions is EXPTIME-complete.

Proof. The problem is in EXPTIME since so is deciding equivalence between arbitrary expressions. The problem is EXPTIME-complete thanks to Lemma 5: deciding equivalence between arbitrary expressions can be polynomially reduced to deciding equivalence between aKA-expressions. The former is EXPTIME-complete by Theorem 1.

aKA is the "Kleene algebra with domain" of Desharnais and Struth (2011).

7. Conclusion

Conclusion

We discussed various extensions of KA(T) with \top (domain) and $^{\perp}$ (antidomain). This family contains KA, KAT, PDL (aKAT), and various versions of "Kleene algebra with domain" that appeared in the literature.

Results:

- aKAT and all fragments considered are sound and complete with respect to relational and (parametrized) guarded-language models
- aKAT and aKAT are EXPTIME-complete

Conclusion

Problems:

- 1 Are dKA and dKAT EXPTIME-hard?
- 2 Do fragments of quasi-eq. theories of aKAT and its fragments with assumptions $e \equiv 0$ reduce to their eq. theories?
- 3 Are there natural fragments of aKAT that are stronger than KAT but still have a PSPACE-complete eq. theory?
- What are the natural automata-theoretic formulation of the various versions of Kleene algebra with dynamic tests considered here?

Thank you!

References I

E. Cohen, D. Kozen, and F. Smith. The complexity of Kleene algebra with tests. Technical Report TR96-1598, Computer Science Department, Cornell University, July 1996.

J. Desharnais, B. Möller, and G. Struth. Kleene algebra with domain. *ACM Trans. Comput. Logic*, 7(4):798–833, oct 2006. doi:10.1145/1183278.1183285.

J. Desharnais and G. Struth. Internal axioms for domain semirings. *Science of Computer Programming*, 76(3):181–203, 2011. Special issue on the Mathematics of Program Construction (MPC 2008). doi:10.1016/j.scico.2010.05.007.

J. Groenendijk and M. Stokhof. Dynamic predicate logic. *Linguistics and Philosophy*, 14(1):39–100, 1991. doi:10.1007/BF00628304.

M. Hollenberg. Equational axioms of test algebra. In M. Nielsen and W. Thomas, editors, *International Workshop on Computer Science Logic. CSL 1997*, pages 295–310, Berlin, Heidelberg, 1998. Springer. doi:10.1007/BFb0028021.

T. Kappé. Kleene algebra. Course notes, University of Amsterdam, 2022. URL: https://staff.fnwi.uva.nl/t.w.j.kappe/teaching/ka/.

T. Kappé. Elements of Kleene algebra. Course notes, ESSLLI 2023, 2023. URL: https://tobias.kap.pe/esslli/.

D. Kozen. Kleene algebra with tests and commutativity conditions. In T. Margaria and B. Steffen, editors, *Proc. Second Int. Workshop Tools and Algorithms for the Construction and Analysis of Systems* (*TACAS'96*), volume 1055 of *Lecture Notes in Computer Science*, pages 14–33, Passau, Germany, March 1996. Springer-Verlag. doi:10.1007/3-540-61042-1_35.

D. Kozen. Kleene algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427–443, May 1997. doi:10.1145/256167.256195.

D. Kozen and F. Smith. Kleene algebra with tests: Completeness and decidability. In D. van Dalen and M. Bezem, editors, *Computer Science Logic*, pages 244–259, Berlin, Heidelberg, 1997. Springer Berlin Heidelberg. doi:10.1145/256167.256195.