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Motivation: Reasoning about programs

Reasoning about...
program equivalence → shorter code
halting / divergence → code runs
correctness → code does what it should

...programs...

E,F := a ∈ Σ | skip | abort | E;F | if B then E else F | while B do F

where B is a Boolean formula over a set of variables Π.

...using “logics of programs”.
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Outline

1 Kleene algebra with tests (KAT)

2 KA with dynamic tests (aKAT) and fragments (KA with domain)

3 aKAT and PDL → relational aKAT is EXPTIME-complete

4 Language completeness for aKAT
→ aKAT = language aKAT

5 Relational completeness for aKAT
→ relational aKAT = language aKAT = aKAT
→ aKAT is EXPTIME complete

6 Completeness and complexity for fragments
→ completeness for all
→ aKA is EXPTIME-complete

See arxiv.org/abs/2311.06937
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1. Kleene algebra with tests



Kleene algebra with tests (KAT) – 1
(Cohet et al. 1996; Kozen 1996, 1997; Kozen and Smith, 1997)

Syntax (KA + tests)

e, f := a ∈ Σ | 0 | 1 | e+ f | e · f | e∗ | p ∈ Π | p⊥

Axioms
(e · f) · g ≡ e · (f · g) (1)

e · 1 ≡ e ≡ 1 · e (2)
(e+ f) + g ≡ e+ (f + g) (3)

0 + e ≡ 0 ≡ e+ 0 (4)
e ≡ e+ e (5)

e · (f + g) ≡ (e · f) + (e · g) (6)
(e+ f) · g ≡ (e · g) + (f · g) (7)

↑ idempotent semirings

1 + (e · e∗) 5 e∗ (8)
1 + (e∗ · e) 5 e∗ (9)

f + (e · g) 5 g =⇒ e∗ · f 5 g (10)
f + (g · e) 5 g =⇒ f · e∗ 5 g (11)

↑ Kleene algebra (KA)

p⊥ · p ≡ 0 p⊥ + p ≡ 1

b · b ≡ b b · c ≡ c · b

where e 5 f means e+ f ≡ f and b, c ∈ Λ = Π ∪Π⊥. (Kappé 2022, 2023)
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Kleene algebra with tests (KAT) – 2

Encoding programs...
Boolean formulas: DFN over Λ

e.g. ¬(p↔ ¬q) is p · q + p⊥ · q⊥ if Π = {p, q}
E;F is E · F
skip as 1 and abort as 0
if B then E else F is (B · E) + (¬B · F )

while B do E is (B · E)∗ · (¬B)

...and their properties
equivalence: e ≡ f
divergence e ≡ 0, halting
e 6≡ 0

correctness
(B · e) · (¬C) ≡ 0

Properties of KAT:
Sound and complete for relational models
and language models based on guarded
strings
Eq. theory PSPACE-complete
Quasi-eq. theory Σ0

1-complete; fragment
with assumptions e ≡ 0 reduces to eq. th.
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2. Kleene algebra with dynamic
tests



Kleene algebra with dynamic tests – 1
Syntax:

e, f := a ∈ Σ | p ∈ Π | 0 | 1 | e+ f | e · f | e∗ | e⊥ | e>

Read e⊥ as “e diverges” and e> as “e halts”.

→ ⊥ is antidomain and > is domain of KA with domain (Desharnais et al. 2006, 2011)

Axioms: KA +

e⊥ · e ≡ 0 (12)

(e · f)⊥ ≡ (e · f>)⊥ (13)

e⊥ + e> ≡ 1 (14)

p> ≡ p (15)

e> ≡ e⊥⊥ (16)

This is “antidomain KAT”, or aKAT.

Igor Sedlár (ICS CAS) Kleene Algebra with Dynamic Tests LLAMA, 15. 11. 2023 5 / 30



Kleene algebra with dynamic tests – 1
Syntax:

e, f := a ∈ Σ | p ∈ Π | 0 | 1 | e+ f | e · f | e∗ | e⊥ | e>

Read e⊥ as “e diverges” and e> as “e halts”.
→ ⊥ is antidomain and > is domain of KA with domain (Desharnais et al. 2006, 2011)

Axioms: KA +

e⊥ · e ≡ 0 (12)

(e · f)⊥ ≡ (e · f>)⊥ (13)

e⊥ + e> ≡ 1 (14)

p> ≡ p (15)

e> ≡ e⊥⊥ (16)

This is “antidomain KAT”, or aKAT.

Igor Sedlár (ICS CAS) Kleene Algebra with Dynamic Tests LLAMA, 15. 11. 2023 5 / 30



Kleene algebra with dynamic tests – 1
Syntax:

e, f := a ∈ Σ | p ∈ Π | 0 | 1 | e+ f | e · f | e∗ | e⊥ | e>

Read e⊥ as “e diverges” and e> as “e halts”.
→ ⊥ is antidomain and > is domain of KA with domain (Desharnais et al. 2006, 2011)

Axioms: KA +

e⊥ · e ≡ 0 (12)

(e · f)⊥ ≡ (e · f>)⊥ (13)

e⊥ + e> ≡ 1 (14)

p> ≡ p (15)

e> ≡ e⊥⊥ (16)

This is “antidomain KAT”, or aKAT.

Igor Sedlár (ICS CAS) Kleene Algebra with Dynamic Tests LLAMA, 15. 11. 2023 5 / 30



Kleene algebra with dynamic tests – 2

Let E be the set of all expressions.

Definition 1
The set F of formulas (over Σ and Π) is defined by the following grammar:

φ, ψ := p ∈ Π | 0 | 1 | φ+ ψ | φ · ψ | e⊥ | e> ,

where e ∈ E.

Definition 2
An expression e ∈ E is testable iff it does not contain occurrences of >. A test
is an expression e> where e is testable. A parameter is either a test or an
element of Π.

Notation: Φ⊥ = {φ⊥ | φ ∈ Φ} and Φ± = Φ ∪ Φ⊥.
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Syntactic fragments of aKAT – 1

K Base > applies to ⊥ applies to
KA Σ nothing nothing

KA(Φ) Σ ∪ Φ nothing nothing
dKA Σ everything noting
aKA Σ everything everything
KAT Σ ∪Π nothing Π

KAT(Φ) Σ ∪ Φ nothing Φ

dKAT Σ ∪Π everything Π

aKAT Σ ∪Π everything everything

Φ ⊆ E is a set of parameters. EKA(Φ) (EKAT(Φ)) is the set of regular
expressions over Φ (Φ±); notation: RE(Φ) (RE(Φ±)).
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Syntactic fragments of aKAT – 2

KA

KA(Φ)KAT

KAT(Φ)

dKA

aKAdKAT

aKAT

We write e
K≡ f if e ≡ f and e, f ∈ EK.
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Relational models – 1

Definition 3

A relational model (for Σ and Π) is a structure M = 〈X, relM , satM 〉 where
X is a set
relM : Σ→ 2X×X

satM : Π→ 2X .

Intuition: 〈x, y〉 ∈ relM (a), or
x

a−→ y ,

if action a may lead from state x to state y; x ∈ satM (p), or

(M,x) � p ,

if proposition p is satisfied in state x.
Note: This is a Kripke frame for Σ as the “basis” of the modal signature.
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Relational models – 2
Definition 4

For each relational model M = 〈X, relM , satM 〉 (for Σ and Π) we define the
M -interpretation of E as the function J−KM : E→ 2X×X such that:

JaKM = relM (a) JpKM = 1satM (p) J0KM = ∅ J1KM = 1X

Je+ fKM = JeKM ∪ JfKM Je · fKM = JeKM ◦ JfKM

Je∗KM = (JeKM )∗ =
⋃
n≥0

JeKnM

Je⊥KM = a (JeKM ) =
⋃

R⊆1X

(R ◦ JeKM = ∅)

Je>KM = d (JeKM ) = 1X \ a(JeKM )

where, for R ⊆ 2X×X , R0 = 1X and Rn+1 = Rn ◦R. Expressions e and f
are relationally equivalent) iff JeKM = JfKM for all M .
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Relational models – 3

Note that

Je⊥KM = {〈x, x〉 | ¬∃y : 〈x, y〉 ∈ JeKM}

Je>KM = {〈x, x〉 | ∃y : 〈x, y〉 ∈ JeKM}

In other words, ⊥ is dynamic negation of Dynamic Predicate Logic
(Groenendijk and Stokhof, 1991) and > is dynamic double negation.

If JeKM is the start-halt relation for (program) e, then
Je⊥KM represents the set of states where e diverges
Je>KM represents the set of states where e halts
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3. aKAT and PDL



Satisfaction of formulas – 1
It is easy to prove by induction on the structure of φ that JφKM ⊆ 1X for all
formulas φ and all M . We will write

(M,x) � φ ⇐⇒ 〈x, x〉 ∈ JφKM

Observation 1
For all φ and all M :

1 (M,x) � φ iff 〈x, x〉 ∈ Jφ>KM
2 (M,x) 6� 0 and (M,x) � 1 for all x
3 (M,x) � φ⊥ iff (M,x) 6� φ
4 (M,x) � φ+ ψ iff (M,x) � φ or (M,x) � ψ

5 (M,x) � φ · ψ iff (M,x) � φ and (M,x) � ψ

6 (M,x) � (e · φ)⊥⊥ iff there is y such that 〈x, y〉 ∈ JeKM and (M,y) � φ

7 (M,x) � (e · φ⊥)⊥ iff for all y, 〈x, y〉 ∈ JeKM implies that (M,y) � φ
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Satisfaction of formulas – 2

〈x, x〉 ∈ J

〈e〉φ︷ ︸︸ ︷
(e · φ)⊥⊥KM ⇐⇒ ¬∃y : 〈x, y〉 ∈ J(e · φ)⊥KM

⇐⇒ 〈x, x〉 /∈ J(e · φ)⊥KM
⇐⇒ ∃y : 〈x, y〉 ∈ Je · φKM
⇐⇒ ∃y : 〈x, y〉 ∈ JeKM & 〈y, y〉 ∈ JφKM

〈x, x〉 ∈ J(

[e]φ︷ ︸︸ ︷
e · φ⊥)⊥KM ⇐⇒ ¬∃y : 〈x, y〉 ∈ J(e · φ⊥)KM

⇐⇒ ∀y, z : 〈x, y〉 ∈ JeKM =⇒ 〈y, z〉 /∈ Jφ⊥K
⇐⇒ ∀y : 〈x, y〉 ∈ JeKM =⇒ 〈y, y〉 ∈ JφKM

Igor Sedlár (ICS CAS) Kleene Algebra with Dynamic Tests LLAMA, 15. 11. 2023 13 / 30



aKAT = “PDL in disguise”

We obtain the usual semantics of (programs and formulas) of PDL within aKAT.
PDL programs form a specific fragment EPDL of E. aKAT is “one sorted test
algebra”.

Theorem 1

The problem of deciding relational equivalence between arbitrary expressions
in E is EXPTIME-complete.

Proof. Lower bound: the (EXPTIME-hard) membership problem for polynomial-space
alternating Turing machines reduces to the problem of satisfiability of PDL-formulas in relational
models: For each machine A and input t, there is a PDL-formula FA,t such that A accepts t iff
FA,t is satisfiable.

Upper bound: for every e ∈ E there is a poly. computable equivalent e′ ∈ EPDL.

Question: Do we need the full aKAT language for arbitrary FA,t?
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4. Language completeness



Guarded strings – 1

Disclaimer: We draw heavily on Hollenberg’s (1998) relational
completeness proof for an equational axiomatization of Test Algebras
(relationally valid equations between PDL-programs), itself combining
modal logic with (Kozen and Smith, 1997). We simplify and generalize.

Let Φ be a finite set of parameters φ1, . . . , φn. An atom over Φ is a sequence
ψ1 . . . ψn where ψi ∈ {φi, φ⊥i }. Notation G / φ means “φ appears in atom G”.
A(Φ) is the set of all atoms over Φ.

A guarded string over Φ is any sequence of the form

G1a1G2 . . . an−1Gn

where each Gi ∈ A(Φ) and aj ∈ Σ. GS(Φ) is the set of all guarded strings
over Φ.
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Guarded strings – 2

Fusion product is a partial binary operation on GS(Φ) defined as follows:

xG �Hy =

{
xGy G = H

undefined G 6= H

Fusion product is lifted to Φ-guarded languages K,L ⊆ GS(Φ) as expected:
L �K = {w � u | w ∈ L & u ∈ K}.
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KAT and the algebra of guarded languages – 1

Definition 5
The algebra of Φ-guarded languages is

GL(Φ) = 〈2GS(Φ), 2A(Φ),∪, �, ∗, ⊥, >, ∅,A(Φ)〉

where K∗ =
⋃
n≥0K

n (K0 = A(Φ) and Kn+1 = Kn �K) and

L⊥ = {G ∈ A(Φ) | {G} � L = ∅} L> = {G ∈ A(Φ) | {G} � L 6= ∅} .

Definition 6
If Φ is a finite set of parameters, then the standard Φ-interpretation of RE(Φ±)
is the unique homomorphism [−]Φ : RE(Φ±)→ GL(Φ) such that

[a]Φ = {GaH | G,H ∈ A(Φ)} [φ]Φ = {G | G ∈ A(Φ) & G / φ}

for a ∈ Σ and φ ∈ Φ±.
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KAT and the algebra of guarded languages – 2

Theorem 2 (Essentially (Kozen and Smith 1997))

Let Φ be a finite set of parameters. For all e, f ∈ EKAT(Φ),

e
KAT(Φ)

≡ f ⇐⇒ [e]Φ = [f ]Φ

Consequently, we have

[e]Γ = [f ]Γ =⇒ e ≡ f

for all e, f ∈ RE(Γ±) ⊆ E.

The converse fails! a>a⊥> ∈ A (Γ) for Γ = {a>, a⊥>}. Hence, [a> · a⊥>]Γ 6= ∅. → Pay
attention to consistency of atoms! Moreover, [a⊥ · a]Γ = {GaH | G / a⊥} 6= ∅. → Consider
only consistent one-step gstrings!
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aKAT and the algebra of consistently guarded languages – 1

We don’t distinguish between a non-empty sequence of expressions e1 . . . en
and the expression e1 · . . . · en (assuming some fixed bracketing). An atom G
is consistent iff G 6≡ 0. C(Φ) is the set of all consistent atoms over Φ.

A consistently guarded string over Φ is any guarded string G1a1 . . . an−1Gn
where all Gi ∈ C(Φ). CS(Φ) is the set of consistently guarded strings over Φ.

Definition 7
The algebra of consistently Φ-guarded languages is

CL(Φ) = 〈2CS(Φ), 2C(Φ),∪, �, ∗, ⊥, >, ∅,C(Φ)〉

where K∗ =
⋃
n≥0K

n (K0 = C(Φ) and Kn+1 = Kn �K) and

L⊥ = {G ∈ C(Φ) | {G} � L = ∅} L> = {G ∈ C(Φ) | {G} � L 6= ∅} .

Not a subalgbera ob GL(Φ) although of course CS(Φ) ⊆ GS(Φ).
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aKAT and the algebra of consistently guarded languages – 2

Definition 8

Let Γ be a set of parameters. The canonical Γ-interpretation of E is the unique
homomorphism J−K : E→ CL(Γ) such that

JaKΓ = {GaH ∈ CS(Γ) | GaH 6≡ 0} JpKΓ = {G | G ∈ C(Γ) & G 5 p}

for all a ∈ Σ and p ∈ Π.

Lemma 1 (Language soundness)

Let Γ be any finite set of parameters. For all e, f ∈ E:

e ≡ f =⇒ JeKΓ = JfKΓ .
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Language completeness – 1

Definition 9

We define ̂ as the smallest function RE(Γ)→ RE(Γ±) such that (for φ ∈ Γ
and a ∈ Σ)

φ̂ =
∑
{G ∈ C(Γ) | G 5 φ} â =

∑
JaKΓ 1̂ =

∑
C(Γ)

and that commutes with 0, ·,+ and ∗.

Lemma 2

For all e ∈ RE(Γ), e ≡ ê.

Lemma 3

If Γ is “FL-closed”, then JeKΓ = [ê ]Γ for all e ∈ RE(Γ).
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Language completeness – 2

Theorem 3 (Language completeness)

Let E ⊆ E be finite and let Γ be the FL-closure of the sets of tests of
subformulas of elements of E. Then, for all e, f ∈ E:

e ≡ f ⇐⇒ JeKΓ = JfKΓ

Proof.
The implication from left to right follows from Lemma 1. The converse
implication is established as follows:

JeKΓ = JfKΓ
Lemma 3
=====⇒ [ê ]Γ = [f̂ ]Γ

Theorem 2
======⇒ ê

KAT(Γ)

≡ f̂

ê
KAT(Γ)

≡ f̂
by def.
====⇒ ê ≡ f̂ Lemma 2

=====⇒ e ≡ f
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5. Relational completeness



Relational completeness – 1

Definition 10

We define the function cay : 2CS(Γ) → 2CS(Γ)×CS(Γ) as follows:

cay(L) = {〈w,w � u〉 | w ∈ CS(Γ) & u ∈ L}

Definition 11
Define the relational model CS(Γ) = 〈CS(Γ), relCS(Γ), satCS(Γ)〉 where

relCS(Γ)(a) = cay(JaKΓ) satCS(Γ)(p) = {w | last(w) 5 p}

for a ∈ Σ and p ∈ Π.
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Relational completeness – 2

Lemma 4

If Γ is FL-closed, then for all e ∈ RE(Γ),

cay (JeKΓ) = JeKCS(Γ) .

Theorem 4 (Relational completeness)

For all e, f ∈ E:
e ≡ f ⇐⇒ (∀M)(JeKM = JfKM )

Theorem 5

The problem of deciding equivalence of arbitrary expressions is
EXPTIME-complete.
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6. Completeness and
complexity of fragments



Completeness and complexity of fragments – 1

Theorem 6

Take a finite E ⊆ E and e, f ∈ E. The following are equivalent:

1 e
K≡ f

2 JeKΓ = JfKΓ where Γ is the FL-closure of St(E)

3 JeKM = JfKM for all relational models M

Igor Sedlár (ICS CAS) Kleene Algebra with Dynamic Tests LLAMA, 15. 11. 2023 25 / 30



Completeness and complexity of fragments – 2

Lemma 5

Let e′ be the result of replacing every occurrence of an in e by an occurrence of
a2n and replacing every occurrence of pn by an occurrence of (a2n+1)>. Then

e ≡ f ⇐⇒ e′ ≡ f ′ .

Proof. Left to right: Equivalence is preserved under substitution. Moreover, clearly p′ ≡ (p′)>.
Right to left: If e 6≡ f , then there is a relational model M where JeKM 6= JfKM (Theorem 4).
We define M ′ by taking the universe X of M and stipulating that

relM′(am) =

{
relM (an) m = 2n

1satM (pn) m = 2n + 1
satM′(p) = ∅

It can be shown by induction on g that JgKM = Jg′KM′ . Only the base case is interesting. The
base case for an: J(an)′KM′ = Ja2nKM′ = JanKM . The base case for pn:
J(pn)′KM′ = J(a2m+1)>KM′ = {〈x, x〉 | ∃y.〈x, y〉 ∈ Ja2n+1KM′} = JpnKM . Now clearly
Je′KM′ 6= Jf ′KM′ and so e′ 6≡ f ′ by relational soundness.
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Completeness and complexity of fragments – 3

Theorem 7

The problem of deciding equivalence between aKA-expressions is
EXPTIME-complete.

Proof. The problem is in EXPTIME since so is deciding equivalence between arbitrary
expressions. The problem is EXPTIME-complete thanks to Lemma 5: deciding equivalence
between arbitrary expressions can be polynomially reduced to deciding equivalence between
aKA-expressions. The former is EXPTIME-complete by Theorem 1.

aKA is the “Kleene algebra with domain” of Desharnais and Struth (2011).
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Completeness and complexity of fragments – 4

KA

KA(Φ)KAT

KAT(Φ)

dKA

aKAdKAT

aKAT

PSPACE-compete EXPTIME-complete
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7. Conclusion



Conclusion

We discussed various extensions of KA(T) with > (domain) and ⊥
(antidomain). This family contains KA, KAT, PDL (aKAT), and various versions
of “Kleene algebra with domain” that appeared in the literature.

Results:
aKAT and all fragments considered are sound and complete with respect
to relational and (parametrized) guarded-language models
aKAT and aKAT are EXPTIME-complete
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Conclusion

Problems:
1 Are dKA and dKAT EXPTIME-hard?

2 Do fragments of quasi-eq. theories of aKAT and its fragments with
assumptions e ≡ 0 reduce to their eq. theories?

3 Are there natural fragments of aKAT that are stronger than KAT but still
have a PSPACE-complete eq. theory?

4 What are the natural automata-theoretic formulation of the various
versions of Kleene algebra with dynamic tests considered here?

Thank you!
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