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Motivation

• Classical decision problem (David Hilbert): find an algorithm
deciding validity in the classical predicate logic QCL.

• Solution: (Alonzo Church 1936, Alan Turing 1937): QCL is
undecidable.

• Classical decision problem as a classification problem: identify
the “maximal” decidable and the “minimal” undecidable
fragments of QCL; a comprehensive overview can be found in
the book [Börger, Grädel & Gurevich].

• Criteria:
• the quantifier prefix: ∃∗∀∗ decidable, ∀3∃∗ undecidable;
• the number of variables: 2 decidable, 3 undecidable;
• the number and arity of predicate letters: any number of monadic

decidable, a single binary undecidable;
• variables and predicate letters: the fragment with three variables

and a single binary letter is undecidable [Tarski & Givant].
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Motivation

• Non-classical decision problem as a classification problem:
identify the “maximal” decidable and the “minimal” undecidable
fragments of FO modal and superintuitionistic logics.

• S. Kripke 1962 Every modal logic validated by S5 frames is
undecidable with two monadic predicate letters: write
3(P1(x) ∧ P2(y)) for R(x, y) to obtain an embedding of an
undecidable fragment of QCL (“Kripke trick”).

NB This result can be strengthened to one monadic letter
[D. Gabbay]:

• R(x, y) 7→ ¬3(P (x) ∧ P (y)), for a sib-relation R.

• S. Maslov, G. Mints, and V. Orevkov 1965 The intuitionistic
predicate logic QH is undecidable with a single monadic
predicate letter.

• Single-variable fragments are, as a rule, decidable (K. Segerberg,
G. Fisher-Servi, H. Ono, G. Mints).
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Motivation

• D. Gabbay and V. Shehtman 1993 Most natural predicate modal
and superintuitionistic logics with the constant domain axiom are
undecidable in languages with two individual variables.

• F. Wolter and M. Zakharyaschev 2001 Monodic fragments are
decidable (a monodic fragment = a decidable fragment of QCL
+ applying modalities to formulas with at most one parameter).

• R. Kontchakov, A. Kurucz, and M. Zakharyaschev 2005
• QH is undecidable with two variables, two binary predicate

letters and an unrestricted supply of monadic letters;
• most modal logics are undecidable with two variables and an

unrestricted supply of monadic letters.
• open problem #1: is the two-variable monadic fragment of QH

decidable?
• open problem #2: how many monadic predicates are needed for

undecidability of two-variable modal logics?

• The current work addresses problems #1 and #2.
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This talk

We show the following:

• sublogics of QGL, QGrz, and QKTB are undecidable with two
variables and a single monadic predicate letter;

• superintuitionistic logics between QH and QKC (= QH + the
weak excluded middle) are undecidable with two variables and a
single monadic predicate letter.
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Language

Intuitionistic formulas (= classical formulas):

φ := P (x1, . . . , xn) | ⊥ | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | ∀xφ | ∃xφ

Modal formulas:

φ := P (x1, . . . , xn) | ⊥ | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | ∀xφ | ∃xφ | 2φ

NB No function symbols, constants, or equality!

Standard abbreviations:

¬φ = φ→ ⊥;
φ↔ ψ = (φ→ ψ) ∧ (ψ → φ);
3φ = ¬2¬φ.
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Logics

A first-order (classical normal) modal logic is a set of formulas
including QCL and K and closed under (MP), (Sub), (Gen), and
Necessitation.

A first-order superintuitionistic logic is a set of formulas including
QH and closed under (MP), (Sub), and (Gen).

The minimal predicate extension of a propositional logic L (modal or
superintuitionistic, depending on the context) is denoted by QL.
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Expanding domains Kripke semantics: modal logics

A Kripke frame is a pair F = ⟨W,R⟩, where W ̸= ∅ and R ⊆W ×W .

An augmented frame is a tuple F = ⟨F,∆, D⟩, where F is a Kripke
frame, ∆ ̸= ∅, and D : W → 2∆ \∅ is a map satisfying the expanding
domains condition

(∗) wRw′ =⇒ Dw ⊆ Dw′ .

A Kripke model is a pair ⟨F , I⟩, where F is an augmented frame and
I(w,P ) ⊆ Dn

w whenever w ∈W and P is an n-ary predicate letter
(i.e., for every w ∈W , the pair Mw = ⟨Dw, Iw⟩ is a classical model).
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Augmented frames: an example
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Expanding domains Kripke semantics: modal logics

An assignment is a map g : Var → ∆.

• M, w |=g P (x1, . . . , xn) if ⟨g(x1), . . . , g(xn)⟩ ∈ Pw;

• M, w ̸|=g ⊥;

• M, w |=g φ ∧ ψ if M, w |=g φ and M, w |=g ψ;

• M, w |=g φ ∨ ψ if M, w |=g φ or M, w |=g ψ;

• M, w |=g φ→ ψ if M, w ̸|=g φ or M, w |=g ψ;

• M, w |=g ∃xφ if M, w |=g′
φ, for some g′ with g′

x
= g and g′(x) ∈ Dw;

• M, w |=g ∀xφ if M, w |=g′
φ whenever g′

x
= g and g′(x) ∈ Dw;

• M, w |=g 2φ if M, w′ |=g φ whenever w′ ∈ R(w).

• M, w |= φ if M, w |=g ∀̄φ, for some assignment g;

• M |= φ if M, w |= φ, for every w ∈W ;

• F |= φ if M |= φ, for every model M over F ;

• F |= φ if F |= φ, for every F over F.
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N×N tiling

A tile is a square with coloured edges.

A tile type t is a quadruple of colours ⟨left(t), up(t), right(t), down(t)⟩.
Tiling problem: Given a finite set T of tile types, can we tile N×N
with T -tiles so that the adjacent colours match? I. e., does there exist
a function f : N×N→ T such that, for every n,m ∈ N,

(T1) right(f(n,m)) = left(f(n+ 1,m));

(T2) up(f(n,m)) = down(f(n,m+ 1)).

If such a function exists, we say that T tiles N×N.
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Reduction of tiling to modal satisfiability
(Kontchakov, Kurucz & Zakharyaschev)

(1) ∀x
∨
t∈T

(Pt(x) ∧
∧
t′ ̸=t

¬Pt′(x));

(2) ∀x∀y (H(x, y) →
∧

right(t)̸=left(t′)

¬(Pt(x) ∧ Pt′(y)));

(3) ∀x∀y (V (x, y) →
∧

up(t) ̸=down(t′)

¬(Pt(x) ∧ Pt′(y)));

(4) ∀x∃y H(x, y) ∧ ∀x∃y V (x, y);

(5) ∀x∀y (H(x, y) → 2H(x, y));

(6) ∀x∀y (V (x, y) → 2V (x, y));

(7) ∀x∀y (3V (x, y) → V (x, y));

(8) ∀x3D(x);

(9) 2∀x∀y [V (x, y) ∧ ∃x (D(x) ∧H(y, x)) →
∀y(H(x, y) → ∀x(D(x) → V (y, x)))],
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Reduction of tiling to 2-variable modal formulas
(Kontchakov, Kurucz & Zakharyaschev)

Theorem (Kontchakov, Kurucz & Zakharyaschev)

Let L be propositional modal logic valid on a Kripke frame with a
world that sees infinitely many worlds and let χT be the conjunction of
formulas (1 ) through (9 ). Then χT is QL-satisfiable iff T tiles N×N.

(‘if’) For every w ∈W ,
• D(w) = N×N,
• Hw(⟨i, j⟩, ⟨i+ 1, j⟩) and V w(⟨i, j⟩, ⟨i, j + 1⟩).

· · · · · ·
D(n, n)

wnn

w0 |= Pt, according to the tiling

D(1, 1)

w11

D(0, 0)

w00
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(’only if’) Assume that M, w |= χT . Suppose we have the following at
w:

a

c

b

d

Then, by (8), there exists wd ∈ R(w) such that wd |= D(d). Hence, by
(9), we have the following at wd:

a

c

b

D(d)

Hence, as needed, by (7), at w,

a

c

b

d
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Kripke trick

Substitution into a classical formula: Q(x, y) 7→ 3(P1(x) ∧ P2(y)).

· · · · · ·
P1(n) ∧ P2(m)

wnm

w0 |= Q(x, y)

w01w00
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Reduction of tiling to monadic 2-variable modal formulas
(a variation on KKZ)

(1) ∀x
∨
t∈T

(Pt(x) ∧
∧
t′ ̸=t

¬Pt′(x));

(2′) ∀x∀y (3(H1(x) ∧H2(y)) →
∧

right(t)̸=left(t′)

¬(Pt(x) ∧ Pt′(y)));

(3′) ∀x∀y (3(V1(x) ∧ V2(y)) →
∧

up(t)̸=down(t′)

¬(Pt(x) ∧ Pt′(y)));

(4′) ∀x∃y3(H1(x) ∧H2(y)) ∧ ∀x∃y3(V1(x) ∧ V2(y));
(5′) ∀x∀y (3(H1(x) ∧H2(y)) → 2(∀xQ(x) →3(H1(x) ∧H2(y))));

(6′) ∀x∀y (3(V1(x) ∧ V2(y)) → 2(∀xQ(x) →3(V1(x) ∧ V2(y))));
(7′) ∀x∀y (3(∀xQ(x)∧3(V1(x) ∧ V2(y))) → 3(V1(x) ∧ V2(y)));
(8′) ∀x3(∀xQ(x)∧D(x));

(9′) 2(∀xQ(x) →∀x∀y [3(V1(x) ∧ V2(y)) ∧ ∃x (D(x) ∧3(H1(y) ∧H2(x))) →
∀y(3(H1(x) ∧H2(y)) → ∀x(D(x) → 3(V1(y) ∧ V2(x))))]),
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We want the following add-ons to the previous Theorem:

• we want a monadic formula (i.e., no binary letters);

• we want not just a QL-satisfiable formula, but a formula with
the following property:

Definition

We say that a monadic formula φ is QL-suitable if φ is satisfiable in a
model M |= QL with the downward heredity property:
M |= 3P (a) → P (a), for every monadic letter P and every a ∈ D(w).
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Theorem

Let L be propositional modal logic valid on a Kripke frame with a
world w0 and two infinite disjoint sets of worlds U and U ′ such that
w0Rw whenever w ∈ U ∪ U ′ and uRu′ whenever u ∈ U and u′ ∈ U ′,
and let φT be the conjunction of formulas (1′) through (9′). Then φT

is QL-suitable iff T tiles N×N.

(‘if’)

· · · · · ·
D(n, n)

wnn

w0 |= Pt, according to the tiling

D(1, 1)

w11

D(0, 0)

w00 w′
00 w′

11 w′
nn

(‘only if’) Pretty much as in the previous Theorem.
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Simulation of monadic predicate letters with P only

...

w2n
n

w2n−1
n

w

w∗
n

w2
n

w1
n

w0
n

P (a) ∧32+¬P (a)

¬P (a)

P (a)

¬P (a)

P (a)

¬P (a)

Ak(x) = P (x) ∧32+¬P (a) ∧ (¬P (x) and P (x) alternate n times).

Then Bk = 3Ak(x) simulates Pk(x) at w.
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Simulation of monadic predicate letters with P only

We use Bk(x) to simulate a monadic predicate Pk(x).

Before substituting Pk(x) 7→ Bk(x), we need to relativize φT (assume
that the monadic letters of φ are P1, . . . , Ps) to ∀xPs+1(x) ∧ φ∗

T ,
where the translation (·)∗ recursively replaces 2ψ with
∀xPs+1(x) → ψ∗.

Finally, we substitute Pk(x) 7→ Bk(x) into ∀xPs+1(x) ∧ φ∗
T .

This works for sublogics of QGL and QGrz.

NB Transitivity is taken care of since we work with downward
hereditary models: this is why we wanted L-suitability rather than
L-satisfiability.

With a bit of fiddling, a similar construction can be done for sublogics
of QKTB.
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Single monadic letter: results

Theorem

Every sublogic of QGL and every sublogic of QGrz is undecidable
(more precisely, Σ0

1-complete) with two individual variables and a
single monadic predicate letter.

Theorem

Every sublogic of QKTB is undecidable (more precisely, Σ0
1-complete)

with two individual variables and a single monadic predicate letter.

Since we worked throughout with augmented frames with locally
constant domains (wRw′ =⇒ D(w) = D(w′)), we also obtain the
following:

Corollary

Everything works for logics with the Barcan formula.
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Open problem

Problem

What about QS5?

Conjecture

QS5 with two variables and a single monadic predicate letter is
decidable.
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Kripke semantics for si logics

Kripke frames are posets. Augmented frames are defined as in modal
Kripke semantics with expanding domains.

A Kripke model is a pair ⟨F , I⟩, where F is an augmented frame and
I(w,P ) ⊆ Dn

w whenever w ∈W and P is an n-ary predicate letter
(i.e., for every w ∈W , the pair Mw = ⟨Dw, Iw⟩ is a classical model)
satisfying the heredity condition:

wRw′ =⇒ I(w,P ) ⊆ I(w′, P ).
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Kripke semantics for si logics

• M, w ⊩g P (x1, . . . , xn) if ⟨g(x1), . . . , g(xn)⟩ ∈ Pw;

• M, w ̸⊩g ⊥;

• M, w ⊩g φ ∧ ψ if M, w ⊩g φ and M, w ⊩g ψ;

• M, w ⊩g φ ∨ ψ if M, w ⊩g φ or M, w ⊩g ψ;

• M, w ⊩g φ→ ψ if M, w′ ̸⊩g φ or M, w′ ⊩g ψ whenever w′ ∈ R(w);

• M, w ⊩g ∃xφ if M, w ⊩g′
φ, for some g′ with g′

x
= g and g′(x) ∈ Dw;

• M, w ⊩g ∀xφ if M, w′ ⊩g′
φ whenever w′ ∈ R(w),

g′
x
= g and g′(x) ∈ Dw′ .

Truth and validity are defined analogously to the modal Kripke
semantics.
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Reduction of tiling to refutable positive 2-variable
formulas

∀x
∨
t∈T

(Pt(x) ∧
∧
t′ ̸=t

(Pt′(x)→ q)), (1)

∧
right(t) ̸=left(t′)

∀x∀y (H(x, y) ∧ Pt(x) ∧ Pt′(y)→ q), (2)

∧
up(t) ̸=down(t′)

∀x∀y (V (x, y) ∧ Pt(x) ∧ Pt′(y)→ q), (3)

∀x∃y H(x, y) ∧ ∀x∃y V (x, y), (4)

∀x ∀y (V (x, y) ∨ (V (x, y)→ q)), (5)

∀x ∀y [V (x, y)∧∃x (D(x)∧H(y, x)) → ∀y (H(x, y) → ∀x (D(x) → V (y, x)))].
(6)

We want positive formulas, so we use φ→ q instead of φ→ ⊥. The
use of ⊥ would cause problems with latter stages of the reduction.
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Let ψT be the conjunction of formulas (1) through (6), and

φT = ψT → (∃x (D(x) → q)).

Theorem (Kontchakov, Kurucz & Zakharyaschev)

φT /∈ QH iff T tiles N×N.

Corollary

The positive fragment of QH with two variables and only binary and
monadic predicate letters is undecidable.
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Kripke trick for intuitionistic formulas

Let q and p be nullary predicate letters and let the formula φ̄ be
obtained from φ by substitution Q(x, y) 7→ (P1(x) ∧ P2(y) → q) ∨ p.

· · · · · ·
⊩ P1(a) ⊩ P1(b) ⇐⇒ w ̸⊩ Q(a, b) ̸⊩ q ⊩ p

wa∈D(w)

w ̸⊩ ∃xP1(x) ∨ ∃xP2(x) ∨ q ∨ r
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Kripke trick for intuitionistic formulas

Theorem

Let φ be a positive formula containing no predicate letters other than
Q and let QH ⊆ L ⊆ QKC. Then φ ∈ L iff φ̄ ∈ L.

Corollary

The positive fragment of QH with two variables and only monadic
predicate letters is undecidable.
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Simulation of monadic predicate letters with P only

. . .

. . . . . . . . .. . .

. . . . . .. . . . . .

. . .

. . . . . .

δ1 δ2 δ′2δ3

α0
1 α0

2 β0
1 β0

2

α1
1α1

2α1
3β1

1β1
2β1

3

αk
1 αk

i βk
1

βk
j

αk+1
mβk+1

m

αs+1
1 αs+1

2
αs+1
ns+1 βs+1

1βs+1
2

βs+1
ns+1

P (a)
P (a′)

P (b),
b ̸= a

P (a′)

P (a′)
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Simulation of monadic predicate letters with P only

First, we define formulas associated with the worlds of the three
top-most levels:

D1 = ∃xP (x);
D2(x) = ∃xP (x) → P (x);
D3(x) = P (x) → ∀xP (x);

A0
1(x) = D2(x) → D1 ∨D3(x);

A0
2(x) = D3(x) → D1 ∨D2(x);

B0
1(x) = D1 → D2(x) ∨D3(x);

B0
2(x) = A0

1(x) ∧A0
2(x) ∧B0

1(x) → D1 ∨D2(x) ∨D3(x);

A1
1(x) = A0

1(x) ∧A0
2(x) → B0

1(x) ∨B0
2(x);

A1
2(x) = A0

1(x) ∧B0
1(x) → A0

2(x) ∨B0
2(x);

A1
3(x) = A0

1(x) ∧B0
2(x) → A0

2(x) ∨B0
1(x);

B1
1(x) = A0

2(x) ∧B0
1(x) → A0

1(x) ∨B0
2(x);

B1
2(x) = A0

2(x) ∧B0
2(x) → A0

1(x) ∨B0
1(x);

B1
3(x) = B0

1(x) ∧B0
2(x) → A0

1(x) ∨A0
2(x).
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Simulation of monadic predicate letters with P only

We proceed by recursion. Assume formulas associated with the worlds
of level k, where k ⩾ 1, have been defined. Let i, j and m be as in the
definition of frame F0 above; put

Ak+1
m (x) = Ak

1(x) → Bk
1 (x) ∨Ak

i (x) ∨Bk
j (x);

Bk+1
m (x) = Bk

1 (x) → Ak
1(x) ∨Ak

i (x) ∨Bk
j (x).
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Simulation of monadic predicate letters with P only

Lemma

Let Na be an a-suitable model with a constant domain A. Then,

Na, w ̸|= Ak
m(a) ⇐⇒ wR0α

k
m;

Na, w ̸|= Bk
m(a) ⇐⇒ wR0β

k
m.

Lemma

Let Na be an a-suitable model with a constant domain A and let
b ∈ A− {a}. Then, for every w ∈W0 and every k ⩾ 2,

Na, w |= Ak
m(b) and Na, w |= Bk

m(b).
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Simulation of monadic predicate letters with P only

Suppose φ contains letters P1, . . . , Ps. Let φ
# be the result of the

following substitution into φ̄ (the formula obtained at the previous
stage of reduction), for each r ∈ {1, . . . , s},

Pr(x) 7→ As+1
r (x) ∨Bs+1

r (x).

Lemma

Let L ∈ [QH,QKC]. Then, φ ∈ L iff φ# ∈ L.

Since we worked with locally constant domains, we also obtain the
following:

Theorem

Let L ∈ {QH,QKC}. Then L is undecidable with two variables and a
single monadic predicate letter.

Corollary

Let L ∈ {QH,QKC.cd}. Then L is undecidable with two variables
and a single monadic predicate letter.
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Open problem

Problem

What about QLC (Dummett’s logic)?

Conjecture

QLC is decidable with two variables.
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Similar things can be done for logics of frames with finitely many
worlds, linear frames, etc. Techniques differ, but ideas are broadly
similar:

• encode a suitable problem with formulas containing a few
variables;

• use some form of the Kripke trick to get rid of binary letters;

• simulate all the monadic letters with a single one;

• at each stage, make sure to prepare the ground for what is to
come.
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