
The homomorphism lattice of finite structures, unique
characterization, and exact learnability

Balder ten Cate

A|C seminar
Oct 6, 2021

About me
Career path:

 ILLC → IvI → INRIA / ENS de Cachan → UC Santa Cruz → LogicBlox → Google → ILLC

About me
Career path:

 ILLC → IvI → INRIA / ENS de Cachan → UC Santa Cruz → LogicBlox → Google → ILLC

Past research topics:

● Extended modal languages; well-behaved fragments of first-order logic and fixpoint logic
● XML query languages; automata and logics for finite trees
● Data management and data interoperability (schema mappings, access constraints)
● Knowledge representation and reasoning (ontology-based data access)
● Declarative languages for data analysis and machine learning
● And, conversely, techniques for learning declarative representations

European reintegration fellowship LLAMA (Logic and Learning - an Algebraic and
Model-theoretic Approach)

Outline
1. Conjunctive queries (CQs)
2. Main technical content: Homomorphism lattice of finite structures
3. Applications of the above to some problems regarding learning CQs (and

other declarative specification languages)

Main reference:

● Balder ten Cate, Victor Dalmau (2020). Conjunctive Queries: Unique
Characterizations and Exact Learnability. arxiv.org/abs/2008.06824

http://www.arxiv.org/abs/2008.06824

Conjunctive Queries
A conjunctive query (CQ) is a positive-existential-conjunctive FO formula (that is,
CQs form the fragment of FO that uses only ∃ and ∧)

A union of conjunctive queries (UCQ) is a disjunction of CQs (that is, UCQs
form the fragment of FO that uses only ∃, ∧, and ∨ --- suitably normalized).

Conjunctive Queries
A conjunctive query (CQ) is a positive-existential-conjunctive FO formula (that is,
CQs form the fragment of FO that uses only ∃ and ∧)

A union of conjunctive queries (UCQ) is a disjunction of CQs (that is, UCQs
form the fragment of FO that uses only ∃, ∧, and ∨ --- suitably normalized).

Why are CQs (and UCQs) interesting?

● CQs are of fundamental importance in databases as they capture the core
SELECT-FROM-WHERE construct in SQL.

● They arise naturally in numerous other areas of computer science as well.

Brief digression
Recall that

- Modal logic can be viewed as a fragment of FO, and
- In fact, it is the bisimulation-invariant fragment of FO

- (“Van Benthem Characterization Theorem”)

Similarly,

- UCQ is a fragment of FO logic, and
- In fact, it is the homomorphism-preserved fragment of FO

- (“Homomorphism Preservation Theorem”)

Brief digression
Recall that

- Modal logic can be viewed as a fragment of FO, and
- In fact, it is the bisimulation-invariant fragment of FO

- (“Van Benthem Characterization Theorem”)

Similarly,

- UCQ is a fragment of FO logic, and
- In fact, it is the homomorphism-preserved fragment of FO

- (“Homomorphism Preservation Theorem”)

A homomorphism is a map h : dom(A) → dom(B) that preserves structure
(more precise definition will come later in this talk).

Brief digression (ct’d)
Many classic results of model theory “fail in the finite” (restricted to finite structures)

- Examples: Compactness, Craig interpolation, Los-Tarski Theorem, ...
- Failure-in-the-finite appears to be the rule rather than the exception.

What is an example of a model-theoretic result that does hold in the finite?

Brief digression (ct’d)
Many classic results of model theory “fail in the finite” (restricted to finite structures)

- Examples: Compactness, Craig interpolation, Łoś–Tarski Theorem, ...
- Failure-in-the-finite appears to be the rule rather than the exception.

What is an example of a model-theoretic result that does hold in the finite?

1. Van Benthem Characterization Theorem (as shown by Rosen, 1997)
2. Homomorphism Preservation Theorem (as shown by Rossman, 2008)

World of modal logic World of database theory

Modal logic UCQs

Modal mu-calculus Monadic Datalog

Bisimulations Homomorphisms

World of modal logic World of database theory

UN-FO

Modal logic UCQs

UN-FP

Modal mu-calculus Monadic Datalog

UN-bisimulations

Bisimulations Homomorphisms

(“Unary Negation fragment”)

World of modal logic World of database theory

GN-FO

Guarded fragment UCQs

GN-FP

Guarded fixpoint logic Monadic Datalog

GN-bisimulations

Guarded bisimulations Homomorphisms

(“Guarded Negation fragment”)

End of the Brief digression
(Ask me later if you are interested in this.)

Example-Driven Query Discovery
Scenario: we are trying to construct a database query from data examples.

Example-Driven Query Discovery
Scenario: we are trying to construct a database query from data examples.

● The database schema S and the arity k of the query are known.
● A data example is a triple: (I, a, s)

○ I is a database instance (for schema S)
○ a is a k-tuple
○ s in {+, -} indicates if this is a positive or a negative example.

● A query Q …
○ … fits data example (I,a,+) if a ∈ Q(I)
○ … fits data example (I,a, -) if a ∉ Q(I)

Remainder of this talk

1. Some aspects of the Homomorphism Lattice of Finite Structures
2. Applications to Example-Driven Query Discovery for CQs.
3. (Time permitting:) Schema Mappings and Description Logics

Structures and Homomorphisms
Fix a finite schema S consisting of relation symbols and constants symbols.

By a structure we will mean a finite relational structure over S.

A homomorphism from A to B is a function h: dom(A) → dom(B) such that

1. For every fact of A, its image (under h) is a fact of B.
2. h(cA) = cB for each constant symbol c

The Homomorphism Lattice
The Homomorphism Lattice is the partial order (Str, ≤hom)

● Str is the set of all structures
● A ≤hom B if there is a homomorphism from A to B.

The Homomorphism Lattice
The Homomorphism Lattice is the partial order (Str, ≤hom)

● Str is the set of all structures
● A ≤hom B if there is a homomorphism from A to B.

Two structures are homomorphically equivalent if A ≤hom B and B ≤hom A.
We will not distinguish between homomorphically equivalent structures.

A⊥ : structure with no facts; each constant symbol denotes a different element.

A⊤ : single-element structure (all constants denote the same element); all facts.

A⊥

A⊤

≤ ho
m

A B

Least upper bound of A and B
A ⊕ B

Greatest lower bound of A and B
A ⊗ B

A ⊗ B = direct product of A and B

A ⊕ B ~= disjoint union of A and B
(in the case with constants the precise construction is a bit more tedious)

A B

Least upper bound of A and B
A ⊕ B

Greatest lower bound of A and B
A ⊗ B

The Homomorphism Lattice
Algebra (Str, ⊕, ⊗, ⊤, ⊥, …)

The Homomorphism Lattice
Algebra (Str, ⊕, ⊗, ⊤, ⊥, …)

One more relevant operation:

for every A and B there is a structure AB satisfying:

C ≤hom AB iff (C ⊗ B) ≤hom A

Small digression

Product Homomorphism Problem (PHP):

Given A1 , …., An and B, decide whether (A1 ⊗ ... ⊗ An) ≤hom B

Theorem (Willard 2010; tC and Dalmau 2015) :

PHP is NExpTime-complete (even for a fixed schema).

Density
Let S = { R } with R a binary relation. Let A1 = { R(a,b) } and let A2 = { R(a,b) , R(b,a) }.

Fact 1: A⊥ <hom A1 <hom A2

Density
Let S = { R } with R a binary relation. Let A1 = { R(a,b) } and let A2 = { R(a,b) , R(b,a) }.

Fact 1: A⊥ <hom A1 <hom A2

Fact 2: There is no B such that A⊥ < B < A1.

Fact 3: For every B <hom A2 there is a structure B’ such that B <hom B’ <hom A2.

Follows from an extension (due to Nesetril and Rodl 1989) of Erdos (1959)’s celebrated
theorem on the existence of graphs of high girth and chromatic number

Frontiers
Definition; a frontier for A is a finite set of structures { F1, …, Fn },
such that

1. each Fi <hom A, and
2. whenever B <hom A then B ≤hom Fi for some Fi

The frontier separates A from the structures strictly below A.

Not every structure has a frontier. A2 has no frontier.

Dualities
Def 1: A pair of structure (F,D) is a duality pair if:

{A | F ≤hom A} = {A | A ≰hom D)

Dualities
Def 1: A pair of structure (F,D) is a duality pair if:

{A | F ≤hom A} = {A | A ≰hom D)

Def 2: A pair of finite sets ({F1, …, Fn}, {D1, …, Dm})

is a generalized homomorphism duality if:

{A | Fi ≤hom A for some i ≤ n} = {A | A ≰hom Di for all i ≤ m}

Example 1 (duality pair)
Let

- Pk+1 be the directed path with k+1 elements.
- Tk be the linear order with k elements.

Gallai-Hasse-Roy-Vitaver Theorem (~�1965) for directed graphs:

(Pk+1, Tk) is a duality pair,

 i.e., for every directed graph G, it holds that Pk+1 → G if and only if G -/→ Tk

Example 2 (infinitary homomorphism duality)

A graph is 2-colorable if and only if it does not have a cycle of odd length.

 G → K2 if and only if C2n+1 -/→ G for all n

 where K2 is the 2-element clique and Cn is the a cycle of length n.

Frontiers and Dualities
Theorem (from Nesetril and Tardiff 2000, cf. also tC and Dalmau 2020):

● If {B1, …, Bn} is a frontier for A, then

({A}, { AB1 , …, ABn }) is a generalized homomorphism duality

● If ({A},{B1, …, Bn}) is a generalized homomorphism duality,

then {(A ⊗ B1), …., (A ⊗ B1)} is a frontier for A

(*Statement assumes no constants but naturally extends to the case with constants)

C-acyclicity
A structure is c-acyclic if it does not have cycles except for cycles that involve an
element named by a constant symbol.

More precise definition:

● The incidence graph of a structure A is the bi-partite multi-graph where
○ The nodes of the graph are the elements and facts of A
○ There is an edge between an element and a fact if the element occurs in the fact.
○ If an element occurs multiple times in a fact, each occurrence generates an edge.

● A structure is c-acyclic if every cycle in the incidence graph goes through at least one element
named by a constant symbol.

Examples

c c c

acyclic c-acyclic cyclic

R

R S

R

R S

T

R

R S

T

Frontiers: existence and how to construct them
Thm 1: For all structures A, the following are equivalent:

1. A has a frontier
2. A is homomorphically equivalent to a c-acyclic structure.

Thm 2: For c-acyclic structures, a frontier can be computed in polynomial time.

Thm 3: Testing whether a given set of structures { F1, …., Fn } is a frontier for a
structure A is NP-complete.

Foniok, Nesetril and Tardiff (2008), tC and Dalmau (2020)

Some further results on frontiers
The class of c-acyclic structures is not “frontier-closed” (although every c-acyclic
structure has a frontier, it does not necessarily consist of c-acyclic structures).

Thm (tC and Dalmau 2020). The class of acyclic connected structures (with a
single constant) is polynomial-time frontier-closed.

Thm (from Nešetřil and Ossona de Mendez 2008; cf. tC and Dalmau 2020):
Every class of structures that has bounded expansion admits relatized frontiers.

Example-Driven Query Discovery

Conjunctive Queries
Let’s restrict attention to conjunctive queries (CQs).

● Every k-ary CQs over a relational schema S can be equivalently viewed
as a structure over schema S ∪ {c1, .., ck}.

● Every example corresponds to a structure over S ∪ {c1… ck} as well.
● Q fits a (I,a, +) iff there is a homomorphism from q(x) to (I,a)
● Q fits a (I,a, -) iff there is no homomorphism from q(x) to (I,a)

This sets the stage for us to apply results about the homomorphism lattice.

Fitting problem:

Input: a finite set E of data examples.
Decide whether there is a CQ that fits all data examples in E.

Lemma: let Q* be the direct product of the positive examples in E. The following are
equivalent:

1. There exists a CQ that fits the data examples in E.
2. Q* fits the data examples in E.
3. Q* does not have a homomorphism to any negative example in E.
4. Q* is the most-specific fitting CQ for the data examples in E.

Theorem: the fitting problem is coNExpTime-complete. (by reduction from PHP)

1. The Fitting Problem

Example-Driven Query Discovery

2. The Uniqueness Problem
Definition: E uniquely characterizes Q if Q is the only CQ (up to logical
equivalence) that fits the examples in E.

Unique characterization problem:

Input: a finite set of data examples E and a most-specific-fitting CQ Q for E.
Decide if E uniquely characterizes Q.

Lemma: The following are equivalent:

1. E uniquely characterizes Q
2. The negative examples in E form a frontier for Q.

Theorem: the unique characterization problem is NP-complete.

Example-Driven Query Discovery

3. Eliciting Further Examples
Will finitely many examples even ever be enough to uniquely characterize the target CQ?

Theorem 1: for all CQs Q, the following are equivalent

1. Q is uniquely characterized by a finite set of data examples
2. Q has a frontier.
3. Q is logically equivalent to a c-acyclic CQ.

Theorem 2: the class of c-acyclic CQs is efficiently exactly learnable with membership
queries.

Theorem 2 means that, if the “target CQ” is c-acyclic, then there is a PTIME algorithm that,
after asking for the label of one or more examples, terminates and identifies it correctly
(modulo logical equivalence).

A⊥

A0 = A⊤

≤ ho
m

An

A2

A1

Unions of Conjunctive Queries
The situation for UCQs is a little different:

● Unique characterizations for UCQs ~ generalized homomorphism dualities
● A UCQ is uniquely characterized by a finite set of examples iff if is logically equivalent to

a c-acyclic UCQ.
● For c-acyclic UCQs, a uniquely characterizing set of examples can be effectively

constructed but (provably) not in polynomial time.
● The class of c-acyclic UCQs is not efficiently exactly learnable with membership queries

(but is efficiently exactly learnable with membership and equivalence queries).

Schema Mappings
A schema mapping M=(S,T,Σ) is a high-level declarative specifications of the
relationships between two database schemas.

Two of the most well-studied schema mapping specification languages are LAV
(“Local-as-View”) and GAV (“Global-as-View”) schema mappings.

Schema Mappings
A schema mapping M=(S,T,Σ) is a high-level declarative specifications of the
relationships between two database schemas.

Two of the most well-studied schema mapping specification languages are LAV
(“Local-as-View”) and GAV (“Global-as-View”) schema mappings.

Alexe, tC, Kolaitis, and Tan (2011) studied the question when a schema mapping
be uniquely characterized by a finite set of data examples.

tC, Dalmau, and Kolaitis (2013) studied efficient exact learnability for GAV schema
mappings.

Schema Mappings
Corr. Fix a source schema S and a target schema T .

1. A LAV schema mapping M=(S,T,Σ) is uniquely characterizable by a finite set
of positive and negative schema-mapping examples if and only if M is
logically equivalent to a c-acyclic LAV schema mapping.

2. If M is c-acyclic, then a uniquely characterizing set of positive and negative
schema-mapping examples can be constructed in PTIME.

3. The class of c-acyclic LAV schema mappings over S, T is efficiently exactly
learnable with membership queries.

Question: what happens in the presence of integrity constraints?

Description logics
Description logics (DLs) are formal specification languages used to represent domain
knowledge.

The DL concept language ELI can be characterized as a notational variant of acyclic
connected unary CQs (over a schema with unary and binary relations only).

For example, the ELI concept

logician ⊓ ∃HasParent.∃HasParent.logician

corresponds to q(x) = ∃y,z . (logician(x) ∧ HasParent(x,y) ∧ HasParent(y,z) ∧
logician(z))

Description logics
Corr.

1. Every ELI concept expression is uniquely characterizable by a finite collection of
positive and negative QA examples, which is PTIME-computable.

2. Furthermore, the class of ELI concept expressions is efficiently exactly learnable
with membership queries.

Question: does this hold also in the presence of an ontology (background theory)?

One recent result
Assume a schema S consisting of unary and binary relations only.

A DL-Lite ontology is a FO theory consisting of

○ Inclusion constraints 𝛼(x) → 𝛽(x) and/or
○ Disjointness constraints of the form 𝛼(x) → ¬𝛽(x), R(x,y) → ¬S(x,y), and/or R(x,y) →

¬S(y,x)

where 𝛼(x) , 𝛽(x) are unary projections of relations, i.e., of the form P(x), ∃y.R(x,y) or ∃y.R(y,x)

Thm (Funk, Jung and Lutz, DL 2021): Acyclic, connected, unary CQs over S (in other words, ELI
description logic concepts) are efficiently exactly learnable in the presence of DL-Lite ontologies.

Outlook (LLAMA)
● Unique characterizations and exact learnability for modal formulas
● Unique characterizations and exact learnability in the presence of a background theory

Collaboration with Raoul Koudijs, … (room for more collaborations!)

Thank you!

