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Propositional quantification

I Modal language (CNF):

ϕ ::= p | p | ⊥ | > | ϕ ∧ ϕ | ϕ ∨ ϕ | �ϕ | ♦ϕ.

Implication is defined by DeMorgan’s laws:

ϕ→ ψ := ϕ ∨ ψ.

I What happens if we add quantifiers ∀ and ∃ that range over
propositional variables?

I When are propositional quantifiers ∀ and ∃ definable within
the modal language?
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Bisimulation quantification

On the semantic side:

I In case the propositional quantifiers are definable within the
propositional modal logic we have to take into account:

Bisimilar models ⇒ Modal equivalence
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Bisimulation quantification - Example

I Consider ∃̃p(♦p ∧ ♦p).
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Uniform interpolation

I Given modal formula ϕ(p), what are the logical consequences
of ϕ that do not contain p?

Def: A modal logic L has uniform interpolation if for all formulas ϕ
and atoms p there are interpolants ∀pϕ and ∃pϕ such that

1. `L ∀pϕ→ ϕ and `L ϕ→ ∃pϕ,
2. for all ψ not containing p we have

`L ψ → ϕ ⇒ `L ψ → ∀pϕ,
`L ϕ→ ψ ⇒ `L ∃pϕ→ ψ,

3. Var(∀pϕ),Var(∃pϕ) ⊆ Var(ϕ) \ {p}.

Lem. Uniform interpolation ⇒ Craig interpolation
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Bisimulation quantification ⇒ Uniform interpolation

Thm. If bisimulation quantifiers are definable in a class of models
that is sound and complete w.r.t. logic L, then L has the
uniform interpolation property.

Proof idea: Define ∀pϕ := ∀̃pϕ.

To prove:
For all formulas ϕ and atoms p there exist formula ∀pϕ s.t.

1. `L ∀pϕ→ ϕ,

2. for all ψ not containing p we have

`L ψ → ϕ ⇒ `L ψ → ∀pϕ
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Bisimulation quantification ⇒ Uniform interpolation

Thm. If bisimulation quantifiers are definable in a class of models
that is sound and complete w.r.t. logic L, then L has the
uniform interpolation property.

Proof idea: Define ∀pϕ := ∀̃pϕ.

To prove:
For all formulas ϕ and atoms p there exist formula ∀pϕ s.t.

1. for all models M and worlds w ,
M,w |= ∀pϕ implies M,w |= ϕ,

2. for all ψ not containing p we have

`L ψ → ϕ ⇒ `L ψ → ∀pϕ
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Bisimulation quantification ⇒ Uniform interpolation
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Bisimulation quantification ⇒ Uniform interpolation

Thm. If bisimulation quantifiers are definable in a class of models
that is sound and complete w.r.t. logic L, then L has the
uniform interpolation property.

Proof idea: Define ∀pϕ := ∀̃pϕ.

To prove:
For all formulas ϕ and atoms p there exist formula ∀pϕ s.t.

1. for all models M and worlds w ,
M,w |= ∀pϕ implies M,w |= ϕ,

2. for all ψ not containing p we have that

there exists M,w s.t. M,w |= ψ and M,w 6|= ∀pϕ

implies

there exists M ′,w ′ s.t. M ′,w ′ |= ψ and M ′,w ′ 6|= ϕ

Iris van der Giessen, Raheleh Jalali, Roman Kuznets Uniform Interpolation via Nested Sequents 11



Bisimulation quantification ⇒ Uniform interpolation

Thm. If bisimulation quantifiers are definable in a class of models
that is sound and complete w.r.t. logic L, then L has the
uniform interpolation property.

Proof idea: Define ∀pϕ := ∀̃pϕ.

To prove:
For all formulas ϕ and atoms p there exist formula ∀pϕ s.t.

1. for all models M and worlds w ,
M,w |= ∀pϕ implies M,w |= ϕ,

2. for all M,w s.t.
M,w 6|= ∀pϕ

there is a p-bisimilar model M ′,w ′ s.t.

M ′,w ′ 6|= ϕ.
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Examples

I CPC and S5

I IPC (Pitts ‘92)

I K (Ghilardi - Zawadowski ‘95) (Visser ‘96), GL (Shavrukov
‘94), T (B́ılková ‘06)

I There are seven intermediate logics with uniform interpolation:
IPC, Sm,GSc, LC,KC,Bd2,CPC (Maksimova ‘77, Ghilardi -
Zawadowski ‘02)

I iK and iKD (Iemhoff ‘19)

No uniform interpolation:

I S4 (Ghilardi - Zawadowski ‘95) and K4 (B́ılková ‘06)

I iS4 and iK4 (vdG. ‘22)
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Uniform interpolation via sequents

I Sequent Γ⇒ ∆, with formula interpretation
∧

Γ→
∨

∆.

I Proof-theoretic Maehara method for Craig interpolation.

I Proof-theoretic method for uniform interpolation (Pitts ‘92).

Craig interpolation uniform interpolation
sequent-style definition sequent-style definition

of interpolation of uniform interpolation

cut-free calculus terminating cut-free calculus

inductive definition inductive definition
using a proof using a proof search
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Uniform interpolation via nested sequents

I A nested sequent is a tree of sequents

I Joint work with Roman Kuznets and Raheleh Jalali (‘21)

UIP via sequents UIP via nested sequents
sequent-style definition nested sequent-style definition
of uniform interpolation of uniform interpolation

terminating cut-free terminating cut-free
sequent calculus nested calculus (Brünnler ‘09)

inductive definition inductive definition
using a proof search using a proof search

syntactic proof of correctness semantic proof of correctness
with bisimulation quantifiers
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Nested sequents

Def. Nested sequents Γ are recursively defined as follows:

ϕ1, . . . , ϕn,
[
Γ1

]
, . . . ,

[
Γm

]
where ϕ1, . . . , ϕn are modal formulas for n ≥ 0 and
Γ1, . . . , Γm are nested sequents for m ≥ 0.

I The formula interpretation ι is defined recursively by

ϕ1 ∨ · · · ∨ ϕn ∨�ι(Γ1) ∨ · · · ∨�ι(Γm).
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Nested sequents as trees

I Consider as an example

Γ = ϕ, [p, ψ],
[
p, ϕ, [χ]

]
.

I We can label the nested sequent as follows:
l(Γ) = ϕ, [p, ψ]11,

[
p, ϕ, [χ]121

]
12

with set of labels
L(Γ) = {1, 11, 12, 121}.

I This can be pictured as a tree:

1 ϕ

11 p, ψ 12 p, ϕ

121 χ
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Terminating nested sequent calculi

I Terminating nested sequent calculi for logics K, T, and D
developed by Brünnler (‘09).

idP
Γ{p, p}

id>
Γ{>}

Γ{ϕ ∨ ψ,ϕ, ψ}
∨

Γ{ϕ ∨ ψ}

Γ{ϕ ∧ ψ,ϕ} Γ{ϕ ∧ ψ,ψ}
∧

Γ{ϕ ∧ ψ}
Γ{�ϕ, [ϕ]}

�
Γ{�ϕ}

Γ{♦ϕ, [∆, ϕ]}
k

Γ{♦ϕ, [∆]}
Γ{♦ϕ, [ϕ]}

d
Γ{♦ϕ}

Γ{♦ϕ,ϕ}
t

Γ{♦ϕ}
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Bisimulation nested sequent uniform interpolation

Def: Logic L has bisimulation nested sequent uniform interpolation
property if for each nested sequent Γ and atom p there exists
multiformula interpolant Ap(Γ) such that for all models M
and multiworld interpretations I:

1. if M, I |= Ap(Γ), then M, I |= Γ,
2. if M, I 6|= Ap(Γ), then there is a p-bisimilar model M′

with multiworld interpretation I ′ such that M′, I ′ 6|= Γ,
3. variable condition and label condition.

Thm: K, T, and D have the bisimulation nested sequent uniform
interpolation property.
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Semantics for nested sequents
Def: A multiworld interpretation I of a nested sequent Γ into

model M = (W ,R,V ) is a function from labels in Γ to worlds
in M such that I(σ)RI(σ ∗ n) whenever {σ, σ ∗ n} ⊆ L(Φ).

Def: Define M, I |= Γ iff M, I(σ) |= ϕ for some σ : ϕ ∈ Γ.
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Multiformulas

Def: Multiformulas:

f ::= σ : ϕ | f 6 f | f 7 f

Def: Define M, I |= f recursively:

M, I |= σ : ϕ iff M, I(σ) |= ϕ,

M, I |= f1 7 f2 iff M, I |= f1 and M, I |= f2,

M, I |= f1 6 f2 iff M, I |= f1 or M, I |= f2.

Ex: σ : ϕ7 σ : ψ ≡ σ : (ϕ ∧ ψ).
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Bisimulation nested sequent uniform interpolation

Def: Logic L has bisimulation nested sequent uniform interpolation
property if for each nested sequent Γ and atom p there exists
multiformula interpolant Ap(Γ) such that for all models M
and multiworld interpretations I:

1. if M, I |= Ap(Γ), then M, I |= Γ,
2. if M, I 6|= Ap(Γ), then there is a p-bisimilar model M′

with multiformula interpretation I ′ such thatM′, I ′ 6|= Γ,
3. variable condition and label condition.

Thm: K, T, and D have the bisimulation nested sequent uniform
interpolation property.
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Example Ap(�p,�p)

I Proof search:

�p,�p, [p]11, [p]12
�p,�p, [p]11
�p,�p

1 : ⊥6 11 : ⊥6 12 : ⊥
1 : �⊥6 11 : ⊥
1 : �⊥6 1 : �⊥

I Recursively define the multiformula interpolant: 1 : �⊥.

I Prove correctness:

1. if M, I |= 1 : �⊥, then M, I |= �p,�p.
2. if M, I 6|= 1 : �⊥, then there is a p-bisimilar model M′

with multiformula interpretation I ′ such that
M′, I ′ 6|= �p,�p.

p p
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To conclude
Done:
I Proof for K, T and D (vdG., Jalali, Kuznets ‘21), (vdG. ‘22,

Chp. 4)
I Similar strategy for hypersequents for S5 (vdG., Jalali,

Kuznets, WoLLIC)(vdG. ‘22, Chp. 4)

Working on:
I Proof for K5 with grafted hypersequents.

Future:
I Modular method / general properties of the method.
I Prove uniform interpolation for iSL and iGL.

• Terminating calculi in (vdG. ‘22, Chp. 3, j.w.w. Iemhoff)
Please see pp. 78–81.

Related work:
I A note on uniform interpolation proofs in modal deep

inference calculi (B́ılková ‘11).
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