Concurrent NetKAT

Jana Wagemaker, Nate Foster, Tobias Kappé
Dexter Kozen, Jurriaan Rot, Alexandra Silva
Radboud Universiteit, Cornell University, ILLC, University of Amsterdam
Kleene algebra: axiomatisation of regular languages, used to reason about simple programs
Kleene algebra: axiomatisation of regular languages, used to reason about simple programs

Many variants and extensions that enable analysis of more complicated programs:
 ▶ Kleene algebra with tests (KAT)
Kleene algebra: axiomatisation of regular languages, used to reason about simple programs

Many variants and extensions that enable analysis of more complicated programs:
 ▶ Kleene algebra with tests (KAT)
 ▶ NetKAT
 ▶ …
Kleene algebra: axiomatisation of regular languages, used to reason about simple programs

Many variants and extensions that enable analysis of more complicated programs:
 ▶ Kleene algebra with tests (KAT)
 ▶ NetKAT
 ▶ …

Key limitation of NetKAT: stateless and sequential
Sequential programs; see e.g. [Kleene 1956], [Salomaa 1966], and [Kozen 1994].

Programs w/ concurrency; see e.g. [Hoare et al. 2009], [Laurence and Struth 2014], and [K. et al. 2018].

A combination of both; see e.g. [Jipsen 2014], [Jipsen and Moshier 2016], and [O’Hearn et al. 2015].

Programs w/ flow control; see e.g. [Kozen 1996], [Kozen and Smith 1996], and [Kozen and Patron 2000].
\[p \land q = p ; q \sim p \land q \leq p ; q \]

POCKA: fine-grained reasoning about concurrent programs with conditionals that manipulate a shared global memory.

\[
\begin{array}{c}
\text{KA} \\
\text{concurrency} \\
\end{array} \xrightarrow{\text{observations}} \begin{array}{c}
\text{KAO} \\
\end{array}
\]

\[
\begin{array}{c}
\text{CKA} \\
\end{array} \xrightarrow{\text{concurrency}} \begin{array}{c}
\text{CKAO} \\
\end{array}
\]
\[p \land q = p ; q \Rightarrow p \land q \leq p ; q \]

\[KA \xrightarrow{\text{observations}} KAO \]

\[\text{concurrency} \]

\[CKA \xrightarrow{\text{concurrency}} \text{CKAO} \]

⇒ POCKA: fine-grained reasoning about concurrent programs with conditionals that manipulate a shared global memory.
Kleene algebra: axiomatisation of regular languages, used to reason about simple programs

Many variants and extensions that enable analysis of more complicated programs:
 ▶ Kleene algebra with tests (KAT)
 ▶ NetKAT
 ▶ Concurrent extensions (CKA, POCKA, CKAO, …)
 ▶ …

Key limitation of NetKAT: stateless and sequential
Kleene algebra: axiomatisation of regular languages, used to reason about simple programs

Many variants and extensions that enable analysis of more complicated programs:

▶ Kleene algebra with tests (KAT)
▶ NetKAT
▶ Concurrent extensions (CKA, POCKA, CKAO, …)
▶ …

Key limitation of NetKAT: stateless and sequential

This paper: Concurrent NetKAT, combination of POCKA and a multi-packet extension of NetKAT

▶ Sound and complete axiomatisation of CNetKAT
▶ Examples of applicability of CNetKAT for modelling and analysing concurrent network behaviours
Do we always see a green packet at switch /three.osf before we see a red packet at switch /two.osf?
Do we always see a green packet at switch 3 before we see a red packet at switch 2?
A packet is a record of fields f_1, \ldots, f_N and values v_1, \ldots, v_N.
A packet is a record of fields f_1, \ldots, f_N and values v_1, \ldots, v_N. Part of syntax:

$$f = n \mid f \leftarrow n \mid v = n \mid v \leftarrow n \mid v \leftarrow v'$$
A packet is a record of fields f_1, \ldots, f_N and values v_1, \ldots, v_N. Part of syntax:

$$f = n \mid f \gets n \mid v = n \mid v \gets n \mid v \gets v'$$

More complicated programs with $+ \quad ; \quad * \quad ||$
/one.osf := /two.osf; (tag := red; sw ← /two.osf) ∥ (tag := green; sw ← /three.osf)) /seven.osf
\[p_1 := sw=1; ((\text{tag} = \text{red} ; sw \leftarrow 2) \parallel (\text{tag} = \text{green} ; sw \leftarrow 3)) \]
sw = 1; ((v = 1; tag = red; sw ← 2) || (tag = green; sw ← 3; v ← 1))
\[p \triangleq v \leftarrow 0 ; (p_1 \parallel p_2 \parallel p_3 \parallel p_4)^* \]
Type of Semantics

$J^p_k \rightarrow J^p_k \cdot \Pi_k^t \cdot u \cdot b \in J^p_k(a)$ means "there is an execution of p on input set a that changes the global variables according to u, and the set of output packets produced is $b"."

$J^p_k \parallel J^q_k(a) \equiv \{ (u \parallel v) \cdot (b \cup c) | u \cdot b \in J^p_k(a), v \cdot c \in J^q_k(a) \}$

$J^{dup}_k(a) \equiv \{ a \cdot a \}$

Full semantics: $J^p_k \downarrow (a)$
Type of Semantics

\[[-] : 2^P_k \rightarrow 2^{Pom} \cdot 2^P_k \]

Full semantics:

\[J_{p,K}(a) \]

\[J_{dup}(a) \equiv \{ a \cdot a \} \]

\[J_{p,K} \mid \downarrow (a) \]
Type of Semantics

\[\llbracket \cdot \rrbracket : 2^P_k \rightarrow 2^{Pom} \cdot 2^P_k \]

\(u \cdot b \in \llbracket p \rrbracket (a) \) means “there is an execution of \(p \) on input set \(a \) that changes the global variables according to \(u \), and the set of output packets produced is \(b \)”
Type of Semantics

\[\llbracket - \rrbracket : 2^\mathbb{P}_k \rightarrow 2^{\mathbb{P}_o \cdot 2^\mathbb{P}_k} \]

\[u \cdot b \in \llbracket p \rrbracket (a) \text{ means “there is an execution of } p \text{ on input set } a \text{ that changes the global variables according to } u, \text{ and the set of output packets produced is } b” \]

\[\llbracket p \parallel q \rrbracket (a) \triangleq \{ (u \parallel v) \cdot (b \cup c) \mid u \cdot b \in \llbracket p \rrbracket (a), v \cdot c \in \llbracket q \rrbracket (a) \} \]
Type of Semantics

\[[-] : 2^{P_k} \to 2^{P_{om} \cdot 2^{P_k}} \]

\(u \cdot b \in \llbracket p \rrbracket(a) \) means “there is an execution of \(p \) on input set \(a \) that changes the global variables according to \(u \), and the set of output packets produced is \(b \)”

\[\llbracket p \parallel q \rrbracket(a) \triangleq \{(u \parallel v) \cdot (b \cup c) \mid u \cdot b \in \llbracket p \rrbracket(a), v \cdot c \in \llbracket q \rrbracket(a)\} \]

\[\llbracket \text{dup} \rrbracket(a) \triangleq \{a \cdot a\} \]
Type of Semantics

\[[-] : 2^{P_k} \rightarrow 2^{\text{Pom} \cdot 2^{P_k}} \]

\(u \cdot b \in \llbracket p \rrbracket(a) \) means “there is an execution of \(p \) on input set \(a \) that changes the global variables according to \(u \), and the set of output packets produced is \(b \)”

\[\llbracket p \parallel q \rrbracket(a) \triangleq \{(u \parallel v) \cdot (b \cup c) \mid u \cdot b \in \llbracket p \rrbracket(a), v \cdot c \in \llbracket q \rrbracket(a)\} \]

\[\llbracket \text{dup} \rrbracket(a) \triangleq \{a \cdot a\} \]

Full semantics: \(\llbracket p \rrbracket \downarrow(a) \)
CNetKAT contains the following axioms:
CNetKAT contains the following axioms:

- Kleene algebra axioms
CNetKAT contains the following axioms:

- Kleene algebra axioms
- Axioms for the parallel from concurrent Kleene algebra
CNetKAT contains the following axioms:

- Kleene algebra axioms
- Axioms for the parallel from concurrent Kleene algebra
- NetKAT packet axioms
CNetKAT contains the following axioms:

- Kleene algebra axioms
- Axioms for the parallel from concurrent Kleene algebra
- NetKAT packet axioms
- A Boolean algebra for packet tests
CNetKAT contains the following axioms:

- Kleene algebra axioms
- Axioms for the parallel from concurrent Kleene algebra
- NetKAT packet axioms
- A Boolean algebra for packet tests
- A PCDL for the observations
CNetKAT contains the following axioms:

- Kleene algebra axioms
- Axioms for the parallel from concurrent Kleene algebra
- NetKAT packet axioms
- A Boolean algebra for packet tests
- A PCDL for the observations
- Axioms connecting the BA and PCDL operators to the Kleene algebra ones
CNetKAT contains the following axioms:

- Kleene algebra axioms
- Axioms for the parallel from concurrent Kleene algebra
- NetKAT packet axioms
- A Boolean algebra for packet tests
- A PCDL for the observations
- Axioms connecting the BA and PCDL operators to the Kleene algebra ones
- Axioms connecting the local and the global state
drop $\parallel p = p$ \hspace{2cm} \text{abort } \parallel p = \text{abort}
Axiomatisation

\begin{align*}
\text{drop} \parallel p &= p \\
\text{abort} \parallel p &= \text{abort} \\

\text{if} \; t \lor t' = t \parallel t' \\
\text{then} \; o \lor o' &= o + o'
\end{align*}
\(o \leq o' \iff o \land o' = \bot \)
\[o \leq o' \iff o \land o' = \bot \]

\([v = n]\) contains all partial functions that assign \(n\) to \(v\).
\[o \leq o' \iff o \land o' = \perp \]

\([v = n]\) contains all partial functions that assign \(n\) to \(v\).

\([\overline{v = n}]\) should contain all partial functions that assign a value to \(v\) different than \(n\).
Theorem

Let \(p, q \in \text{Prg} \). We have \(\text{CNetKAT} \vdash p = q \) if and only if \(\llbracket p \rrbracket_\downarrow = \llbracket q \rrbracket_\downarrow \).
1. Define a normal form for CNetKAT programs:

\[\Pi_a \cdot p = \Pi_a \cdot \sum_{j \in J} (u_j \cdot \Pi_{b_j}) \]
1. Define a normal form for CNetKAT programs:

\[\Pi_a ; p = \Pi_a ; \sum_{j \in J} (u_j ; \Pi_{b_j}) \]

2. Obtain completeness for \(\Pi_a \)-shaped programs from NetKAT completeness.
4. **Four parts of completeness proof**

1. Define a normal form for CNetKAT programs:

 \[\Pi_a ; p = \Pi_a ; \sum_{j \in J} (u_j ; \Pi_{b_j}) \]

2. Obtain completeness for \(\Pi_a \)-shaped programs from NetKAT completeness.

3. Using completeness of POCKA, obtain completeness for programs of the form \(s ; \Pi_a \) (and sums thereof), where \(s \) is a state program.
1. Define a normal form for CNetKAT programs:

\[\Pi_a p = \Pi_a \sum_{j \in J} (u_j ; \Pi_b) \]

2. Obtain completeness for \(\Pi_a \)-shaped programs from NetKAT completeness.

3. Using completeness of POCKA, obtain completeness for programs of the form \(s ; \Pi_a \) (and sums thereof), where \(s \) is a state program.

4. Lastly, we combine these results to prove that if \(p \) and \(q \) have the same behaviour on input \(a \), the program \(\Pi_a p \) is provably equivalent to \(\Pi_a q \). We can conclude using the extensionality axiom: \(\forall a \in 2^{pk}.(\Pi_a p = \Pi_a q) \Rightarrow p = q \).
How to study isolated behaviour? –/greater.osf guarded pomsets
$v \leftarrow 1; v = 2$
How to study isolated behaviour? –/greater.osf guarded pomsets

\[v \leftarrow 1; v = 2 \]

\[(v \leftarrow 1 ; v = 2) \parallel v \leftarrow 2\]
How to study isolated behaviour? \(\rightarrow \) **guarded pomsets**

\[
v \leftarrow 1; v = 2 \\
(v \leftarrow 1; v = 2) \parallel v \leftarrow 2
\]
With these tools we can analyse example from beginning
Final Remarks

- With these tools we can analyse example from beginning
- Missing: a decision procedure
With these tools we can analyse example from beginning

- Missing: a decision procedure

- Future work: lots of more case studies