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An Invitation

A famous quote from [Hodges, 1997]:

Model theory is algebraic geometry minus fields.
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An Invitation

A longer quote from [Macintyre, 2003]:

I see model theory as becoming increasingly detached from
set theory, and the Tarskian notion of set-theoretic model be-
ing no longer central to model theory. … In algebraic ge-
ometry, schemes or algebraic spaces are the basic notions,
with the older “sets of points in affined or projective space”
no more than restrictive special cases. The basic notions may
be given sheaf-theoretically, or functorially. … The result-
ing relativization and “transfer of structure” is incomparably
more flexible and powerful than anything yet known in “set-
theoretic model theory”.
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An Invitation

Modern algebraic geometry benefits a lot from sheaf theory (general
cohomology) and category theory (base change techniques).

Question

• Can the same process also apply to model theory?

• Would it make the theory easier/more conceptual?

• Would this be anything that’s potentially benefitial?
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An Invitation

Chaning a language is way more harder than learning techniques.

A lesson from physics:

Newton //___ Lagrange //___ Hamilton //___ QM

Best combo: Simplicity, Beauty, Insight, Practicality …

I’d like to discuss some preliminary observations, as an invitation.

Disclaimers

• Will only consider first-order logic and its model theory.

• Assume some CT and MT knowledge, but happy to explain.
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Syntactical to Categorical: A Bridge



Theories as Categories

Slogan
Theories are categories (with some structures).

Similar to Lindenbaum-Tarski algebra, we can construct a category
out of any first-order theory, extracting its essential information:

• Works for both classical and (various) more restricted theories.
Benefits: view both Grp and Grpel as categories of models.

• All/Most syntactic constructions can be made categorical.
Benefits: conceptual arguments, rather than clever tricks.

• Compel oneself to consider (2-)categorical data.
Benefits: necessary to have a duality for first-order theories.
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Syntactic Category of a Theory

Let T be a theory, construct a category CT as follows:

• Obj: α-equivalence classes of formulas φ(x1, . . . , xn).
• Mor: T-equivalence classes of provably functional formulas [θ].

Some internal structures:

• For any φ(x), [φ] ∶ φ(x) → ⊤, which makes ⊤ terminal.

• For any object φ(x), Sub(φ) consists of those ψ(x) that

T ⊢ ∀x(ψ(x) → φ(x)).
• For instance, Sub(⊤) is the LT-algebra of sentences (e.g. T is

complete iff CT is two-valued, Sub(⊤) ≅ 2).

CT contains the syntactic and proof-theoretic information of T.
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Categorical Structures of Syntactic Categories

In general, CT of a theory T will be a coherent category:

• It has all finite limits.

• It has (stable) image factorisation.

• For any φ, Sub(φ) will be a (stable) distributive lattice.

Example

• CPA, CZF: Arithmetisation of meta-logic, inner models, could be
viewed as constructions internal to these categories.

• FinSet, FinSetZ,…

• PER(A) for any pca A.

• If C is coherent, then so is any slice C/φ.
• Some large exmples: Set, Comp, and any topos.

7/23



Categorical Structures of Syntactic Categories

In general, CT of a theory T will be a coherent category:

• It has all finite limits.

• It has (stable) image factorisation.

• For any φ, Sub(φ) will be a (stable) distributive lattice.

Example

• CPA, CZF: Arithmetisation of meta-logic, inner models, could be
viewed as constructions internal to these categories.

• FinSet, FinSetZ,…

• PER(A) for any pca A.

• If C is coherent, then so is any slice C/φ.
• Some large exmples: Set, Comp, and any topos.

7/23



Interpretations and Models: United



Functorial Semantics

Slogan
Interpretations and models are the same as (certain) functors.
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Functorial Semantics

Slogan
Interpretations and models are the same as (certain) functors.

A model of T in another coherent category E is simply a coherent
functor from CT to E . Semantic examples:

• A model in the usual sense is M ∶ CT → Set. In classical terms,

M(φ) = JφKM = { a ∈ Mn ∣ M ⊧ φ[a] }.
• In Comp, a model is coherently equipped with a topology.

• In Sh(X), a model is a family continuously indexed by X.
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Functorial Semantics

Slogan
Interpretations and models are the same as (certain) functors.

Syntactically, a model CT → CS is an interpretation of T in S, in
model theory usually denoted as T ≤ S:

• If φ↪ ⊤, then pulling back provides us

CT ≅ CT/⊤ → CT/φ.
This corresponds to the fact that T ≤ T + φ.
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Case Study I: Disjunctive Interpretation

A theorem in model theory: If τ ∶ S ≤ T + φ and σ ∶ S ≤ T + ¬φ,
then one can construct disjunctive interpretation ⟨τ, σ⟩ ∶ S ≤ T:1

1This is how Visser and Lindström (independently) proved T + ¬ConT ≤ T.

9/23



Case Study I: Disjunctive Interpretation

A theorem in model theory: If τ ∶ S ≤ T + φ and σ ∶ S ≤ T + ¬φ,
then one can construct disjunctive interpretation ⟨τ, σ⟩ ∶ S ≤ T:1

Syntactically, the construction looks as follows,

• Domain: δ⟨τ,σ⟩(x) ∶= (δτ(x) ∧ φ) ∨ (δσ(x) ∧ ¬φ).
• For predicate P : ψP,τ×σ(x) ∶= (ψP,τ(x)∧φ)∨ (ψP,σ(x)∧¬φ).
• For function f : …

Then you need to verify that ⟨τ, σ⟩ is a well-defined interpretation…

1This is how Visser and Lindström (independently) proved T + ¬ConT ≤ T.
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Case Study I: Disjunctive Interpretation

A theorem in model theory: If τ ∶ S ≤ T + φ and σ ∶ S ≤ T + ¬φ,
then one can construct disjunctive interpretation ⟨τ, σ⟩ ∶ S ≤ T:1

Categorically you get this “for free” by abstract-nonsense:

⊥ //

��

φ

��
↝

1 CT/φoo

¬φ // ⊤
⌜

CT/¬φ
OO

CT
⌜

oo

O O

This gives CT ≃ CT/¬φ × CT/φ, hence ⟨τ, σ⟩ is automatic.

1This is how Visser and Lindström (independently) proved T + ¬ConT ≤ T.
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Case Study II: Elimination of Imaginaries

Given T, we can syntactically construct Tel, which “eliminates
imaginaries”, i.e. Tel realises all definable quotients in T.

Categorically, this is expressed in the following reflexive adjunction,

Coh
''

⊥ Pretopos
H hff

This is an example where syntactical and categorical construction
go hand in hand, but the latter makes the universal property explicit.
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Finer Graded Invariance: Naturality



Study Theories through Invariance

Just like algebraic topology and algebraic geometry, we study
theories by associating them with some invariance.

The most common invariance is the spectrum of a theory: The
number of (isomorphic copies of) models in each cardinality:

• Löwenheim-Skolem theorem, Vaught’s test, Morley’s
categoricity theorem, Shelah’s (and others) characterisation of
the spectrum of a countable, complete theory, etc.

These things are powerful, but have their limitations.
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Homomorphisms between Models

Slogan
Model homomorphisms are the same as natural transformations.

A morphism between models is simply a natural transformation,

CT

M
""

N

==⇓f E

In particular, Coh(CT, E) is itself a category, not just a set. We use
Mod(CT) to abbreviate Coh(CT, Set).
This information is lost when only considering the model-theoretic
spectrum, or only considering S ≤ T when studying interpretations.
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Case Study III: Classifying Ẑ-Actions

FinSetZ is the category of finite sets with Z-action; equivalently,
objects are (X, α) with X finite and α ∶ X → X.

Consider FinSetZ as a theory: It is countable, classical, complete.

Theorem

Mod(FinSetZ) ≃ BẐ.

• Ẑ has a single object, with automorphisms Ẑ ≅ ∏p prime Zp.

• Categorical⁈ Attempts to write FinSetZ as a theory runs into
problems (w.r.t. current definitional choices of model theory).

• More generally, for any group G, Mod(FinSetG) ≃ BĜ.
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Conceptual Completeness: Duality



The Ultrastructure inMod(CT)
Let {Ms}s∈S ∈ Mod(CT)S, and µ ∈ βS. For any A ⊆ S, let

MA ∶= ∏
s∈A

Ms.

Notice, if B ⊆ A, then we have a canonical projection MA → MB. The
ultraproduct Mµ is simply the following filtered colimit,

Mµ ∶= Lim−−→A∈µ
MA

.

Theorem (Łos Ultraproduct theorem)

Mµ also lies in Mod(CT).
14/23



Proof of Ultraproduct Theorem

Mµ can be viewed as the following composition,

CT
M // SetS

∫ (−)dµ
// Set

where ∫ Xsdµ = Xµ. Only need to verify it is coherent:

• M is because each Ms is, and (co)limits in SetS are point-wise.

• ∫ (−)dµ is essentially because ∫ (−)dµ = Lim−−→A∈µ
(−)A.
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Ultracategories

[Makkai, 1987] introduced the notion of ultracategories, and it is
further developed in [Lurie, 2018]:

Definition (Ultracategories)
An ultracategory is a category with an ultraproduct structure.

Example

• An ultraset is a compact Hausdorff space: UltSet ≅ Comp.

• Mod(D) for any distributive lattice D is an ultraposet.

• Mod(CT) for any coherent category CT.
• The category of points of a topos E (locale L), if it is injective

w.r.t. certain family of maps (cf. [Di Liberti, 2022]).

• “Dualising” objects: 2, Set.
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Duality of Logic

We have three 2-categories UltL, UltR, and Ult (cf. [Lurie, 2018]):

BAop UltSet

DLop UltPos

CohLocop UltLPos

BPretoposop UltGrpd

Pretoposop Ult

CohToposop UltL
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Case Study IV: Local Theories

Let B be a pretopos/first-order theory T. It is local, if equivalently,

• 1 is connected and projective.
• T has the disjunctive and existential property.
• B(1,−) is coherent (global section is a model).

Dualigy, B/T is local iff Mod(B) is (roughly) {M} for some model M.

For any B/T and any model M, BM/Diag(M) is local:

B

����

____ Mod(B)
BM

___ M/Mod(B)?�

OO

Completeness ≈ presentation with local theories, cf. [Awodey, 2021]:

B ↪ ∏BM, or B ≃ Γ(B̃) with B̃ a sheaf of local pretoposes.

18/23



Case Study IV: Local Theories

Let B be a pretopos/first-order theory T. It is local, if equivalently,

• 1 is connected and projective.
• T has the disjunctive and existential property.
• B(1,−) is coherent (global section is a model).

Dualigy, B/T is local iff Mod(B) is (roughly) {M} for some model M.

For any B/T and any model M, BM/Diag(M) is local:

B

����

____ Mod(B)
BM

___ M/Mod(B)?�

OO

Completeness ≈ presentation with local theories, cf. [Awodey, 2021]:

B ↪ ∏BM, or B ≃ Γ(B̃) with B̃ a sheaf of local pretoposes.

18/23



Case Study V: Automorphism Groups of Models

Duality implies we have a correspondence:

CT

��

____ Mod(T)
FinSetZ ____ BẐ

OO

Or equivalently, there is a bijection between

{models of T in FinSetZ } ≅ { T-models with closed Ẑ-action}
Corollary

No models of PA (ZF) has a closed Ẑ-action (or Ĝ-action).
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Some Wishful Thinking: Outlooks



Aspects and Prospects of Functorial Model Theory

In this talk, I try to (start to) convince:

• Model theory can be beautifully, usefully thought categorically.

• It leads to deeper understanding between theories and models.

Much more needs to be done:

• Serious development of model theory using geometric tools:
vector bundles/quasi-coherent sheaves over space of models,
(co)homology, fundamental group (at least in “tame” cases) …

• Base change techniques/descent (cf. [Zawadowski, 1995]).

• Model theoretic Galois theory (cf. [Poizat, 1983])
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