Canonical Automata via Distributive Law Homomorphisms

Stefan Zetzsche ¹ Gerco van Heerdt ¹ Alexandra Silva ^{1,3} Matteo Sammartino ^{1,2}

¹University College London

²Royal Holloway University of London

³Cornell University

January 26, 2022

⁰Accepted at MFPS 2021

¹Paper available at https://arxiv.org/abs/2104.13421

²Slides available at https://fgh.xyz

Introduction

Modern networks

3

Modern networks failing

Network verification

Can host A send packets to host B?

Do all packets from A to C pass B?

Is there a loop involving A?

General verification

Does system S satisfy property P?

White-box model checking

Black-box model checking

Angluin's L*

$$\{w \in \{a\}^* \mid |w| \neq 1\} = 1 + a \cdot a \cdot a^*$$

9

NFA vs. DFA (Size)

NFA 1 - DFA 0

Unique minimal DFA

 ${ab, ac, ba, bc, ca, cb} \subseteq {a, b, c}^*$

Non-unique minimal NFA

 ${ab, ac, ba, bc, ca, cb} \subseteq {a, b, c}^*$

Canonical NFA

Is there a canonical minimal NFA?

Example: The canonical RFSA

The canonical RFSA for a regular language $\mathcal{L} \subseteq A^*$ is the X_0 -pointed NFA $\langle \varepsilon, \delta \rangle : X \to 2 \times \mathcal{P}(X)^A$ given by:

- $X = \{U \subseteq A^* \mid U \text{ prime residual of } \mathcal{L}\};$
- $X_0 = \{U \in X \mid U \subseteq \mathcal{L}\};$
- $\varepsilon(U) = [\varepsilon \in U];$
- $\delta_a(U) = \{ V \in X \mid V \subseteq a^{-1}U \}.$

Theorem (3)

The canonical RFSA for \mathcal{L} is size-minimal among RFSA for \mathcal{L} .

³Denis, Lemay, and Terlutte 2002.

³A NFA accepting $\mathcal{L} \subseteq A^*$ is RFSA, if every state accepts a residual $u^{-1}\mathcal{L}$ for some $u \in A^*$.

Example: The canonical RFSA

How does one come up with this definition?

$NFA \rightarrow DFA$

$$\langle arepsilon, \delta
angle : Y o 2 imes \mathcal{P}(Y)^A$$

$$\downarrow \text{determinization}$$

$$\langle arepsilon^\sharp, \delta^\sharp
angle : \mathcal{P}(Y) o 2 imes \mathcal{P}(Y)^A$$

 $^{^4 \}varepsilon^{\sharp}(U) = \bigvee_{u \in U} \varepsilon(u), \quad \delta^{\sharp}_{\mathfrak{a}}(U) = \bigcup_{u \in U} \delta_{\mathfrak{a}}(u)$

$\mathsf{NFA} \to \mathsf{DFA}$ (in CSL)

$$\varepsilon^{\sharp}(U_1 \cup U_2) = \varepsilon^{\sharp}(U_1) \vee \varepsilon^{\sharp}(U_2)$$

$$\delta_{a}^{\sharp}(U_1 \cup U_2) = \delta_{a}^{\sharp}(U_1) \cup \delta_{a}^{\sharp}(U_2)$$

DFA (in CSL) \rightarrow NFA

$$X \to 2 \times X^A$$

$$\downarrow \qquad \qquad 2, X \in \mathsf{CSL}$$
 $Y \to 2 \times \mathcal{P}(Y)^A$

S-DFA $\rightarrow T$ -NFA

$$X \to B \times X^A$$

$$\downarrow \qquad \qquad B, X \in \mathsf{Alg}(S)$$
 $Y \to B \times T(Y)^A$

$S ext{-}\mathsf{DFA} o T ext{-}\mathsf{NFA}$

name	S	T	В
canonical RFSA	CSL	CSL	2
canonical nominal RFSA	Nom-CSL	Nom-CSL	2
minimal xor automaton	\mathbb{Z}_2 -VSP	\mathbb{Z}_2 -VSP	2
átomaton	CABA	CSL	2
distromaton	CDL	CSL	2

Plan

Preliminaries

• Distributive laws, bialgebras

Diagonal cases

- Generators for (bi)algebras
- Example: The canonical RFSA

Extension to non-diagonal cases

- (Deriving) distributive law homomorphisms
- Example: The átomaton
- The minimal xor-CABA automaton
- Minimality results

Preliminaries

Overview

CSL	$TX o X \in Alg(T)$
DFA	$X o FX \in Coalg(F)$
S-DFA	(1)
T-NFA	$T^2Y o TY o FTY \in Bialg(\lambda^T)$

Distributive laws

A distributive law between a monad $\langle T, \eta, \mu \rangle$ on C and an endofunctor $F: C \to C$ is a natural transformation $\lambda: TF \Rightarrow FT$ satisfying the laws:

$$(\lambda^h)_X: TFX = T(B \times X^A) \stackrel{\langle T \pi_1, T \pi_2 \rangle}{\to} TB \times T(X^A) \stackrel{h \times \text{st}}{\to} B \times (TX)^A = FTX$$

induces a distributive law between T and F.

⁵For example, if F satisfies $FX = B \times X^A$ and $\langle B, h \rangle$ is a T-algebra, the family

Bialgebras

A λ -bialgebra is a tuple $\langle X, h, k \rangle$ consisting of an object X and morphisms

$$TX \stackrel{h}{\to} X \in Alg(T), \qquad X \stackrel{k}{\to} FX \in Coalg(F)$$

satisfying:

$$TX \xrightarrow{h} X$$

$$Tk \downarrow \qquad \qquad \downarrow_{k} X$$

$$TFX \xrightarrow{\lambda_{X}} FTX \xrightarrow{Fh} FX$$

Diagonal cases

Generators

A generator for a T-algebra $\langle X, h \rangle$ is a tuple $\langle Y, i, d \rangle$ consisting of an object Y and a pair of morphisms

where $i^{\sharp} := h \circ Ti : TY \to X$ is the unique extension of $i : Y \to X$ to a T-algebra homomorphism.

If in addition $d \circ i^{\sharp} = id_{TY}$, we speak of a basis.

Generators

 $\langle Y, i, d \rangle$ is a generator for an algebra $\langle X, h \rangle$ over the powerset monad iff for all $x \in X$:

$$x = \bigvee_{y \in Y}^{h} d(x)(y) \cdot {}^{h} i(y).$$

 $\langle Y, i, d \rangle$ is a generator for an algebra $\langle X, h \rangle$ over the free \mathbb{Z}_2 -vector-space monad iff for all $x \in X$:

$$x = \bigoplus_{y \in Y}^{h} d(x)(y) \cdot {}^{h} i(y).$$

Generators: Example

Let L be an algebra over the powerset monad satisfying the descending chain condition.

The join-irreducibles of L constitute a size-minimal generator $\langle J(L), i, d \rangle$ defined by:

$$i(y) = y \qquad d(x) = \{ y \in J(L) \mid y \le x \}.$$

Generators

Let $\langle X, h, k \rangle$ be a λ -bialgebra and $\langle Y, i, d \rangle$ a generator for the T-algebra $\langle X, h \rangle$.

Lemma

The morphism $i^{\sharp} = h \circ Ti : TY \rightarrow X$ is a λ -bialgebra homomorphism

$$i^{\sharp}: \langle TY, \mu_Y, (Fd \circ k \circ i)^{\sharp} \rangle \to \langle X, h, k \rangle.$$

Example: The canonical RFSA

Figure:

- (a) The minimal DFA for $\mathcal{L} = (a+b)^*a$;
- (b) The minimal CSL-structured DFA $\langle X, h, k \rangle$ for \mathcal{L} ;
- (c) The canonical RFSA $\langle J(\langle X, h \rangle), Fd \circ k \circ i \rangle$ for \mathcal{L} .

Extension to non-diagonal cases

Distributive law homomorphisms

A distributive law homomorphism⁶ $\alpha: \lambda^S \to \lambda^T$ between $\lambda^S: SF \Rightarrow FS$ and $\lambda^T: TF \Rightarrow FT$ consists of a natural transformation $\alpha: T \Rightarrow S$ satisfying:

Lemma (7)

Defining $\alpha(X, h, k) := \langle X, h \circ \alpha_X, k \rangle$ and $\alpha(f) := f$ yields a functor $\alpha : \text{Bialg}(\lambda^S) \to \text{Bialg}(\lambda^T)$.

⁶Watanabe 2002; Power and Watanabe 2002.

⁷Klin and Nachyla 2015; Bonsangue et al. 2013.

Deriving distributive law homomorphisms

Corollary

Any algebra $h: T2 \to 2$ over a set monad T induces a homomorphism $\alpha^h: \lambda^{\mathcal{H}} \to \lambda^h$ between distributive laws by $\alpha_X^h:=h^{2^X}\circ\operatorname{st}\circ T(\eta_X^{\mathcal{H}}): TX \to \mathcal{H}X.$

Corollary

Let $\alpha_X : \mathcal{P}X \to \mathcal{H}X$ satisfy $\alpha_X(\varphi)(\psi) = \bigvee_{x \in X} \varphi(x) \land \psi(x)$, then α constitutes a distributive law homomorphism $\alpha : \lambda^{\mathcal{H}} \to \lambda^{\mathcal{P}}$.

Lemma

If $B = \langle X, h \rangle$ is a \mathcal{H} -algebra, then $\langle \mathsf{At}(B), i, d \rangle$ with i(a) = a and $d(x) = \{a \in \mathsf{At}(B) \mid a \leq x\}$ is a basis for the \mathcal{P} -algebra $\langle X, h \circ \alpha_X \rangle$.

Example: The átomaton

Figure:

- (a) The minimal DFA for $\mathcal{L} = (a+b)^*a$;
- (b) The minimal CABA-structured DFA $\langle X, h, k \rangle$ for \mathcal{L} ;
- (c) The átomaton $\langle At(\langle X, h \rangle), Fd \circ k \circ i \rangle$ for \mathcal{L} .

The minimal xor-CABA automaton

"The minimal xor-CABA automaton is to the minimal xor automaton what the átomaton is to the canonical RFSA":

$$\begin{array}{c} \text{CDL} \xrightarrow{\text{distromaton}} \text{CSL} \xleftarrow{\text{átomaton}} \text{CABA} \xrightarrow{\text{minimal xor-CABA}} \mathbb{Z}_2\text{-VSP} \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

Minimality

Theorem

Given a minimal λ^S -bialgebra \mathbb{M} accepting \mathcal{L} such that $\alpha(\mathbb{M})$ admits a size-minimal generator, there exists $\mathfrak{X} \in \mathsf{Coalg}(\mathsf{FT})$ accepting \mathcal{L} such that:

- for any α -closed $\mathcal{Y} \in \mathsf{Coalg}(FT)$ accepting \mathcal{L} we have that $\mathsf{im}(\mathsf{obs}_{\mathsf{exp}_T}(\mathcal{Y})) \subseteq \mathsf{im}(\mathsf{obs}_{\mathsf{exp}_T}(\mathcal{Y}))$;
- $if im(obs_{exp_T(\mathfrak{X})}) = im(obs_{exp_T(\mathfrak{Y})})$, $then |\mathfrak{X}| \leq |\mathfrak{Y}|$.

Minimality

Lemma

<u>x</u>	minimal among ${\mathcal Y}$	
canonical RFSA	$CSL[\mathcal{Y}] = CSL[Der(\mathcal{L})]$	
minimal xor automaton	all	
átomaton	CSL[y] = CABA[y]	
distromaton	CSL[y] = CDL[y]	
minimal xor-CABA automaton	\mathbb{Z}_2 -Vect $[\mathcal{Y}]$ = CABA $[\mathcal{Y}]$	

 $^{^8}T[y]$ denotes the T-closure of $\mathrm{im}(\mathrm{obs}_{\exp_T(y)})$

Future work

Ideas

- Cover the canonical probabilistic RFSA and canonical alternating RFSA;
- Utilise distributive laws between two different categories;
- Generalise Brzozowski inspired double reversal characterisations;
- Further explore the notions of generators and bases.

The end

Thanks for listening!

⁸Accepted at MFPS 2021

⁹Paper available at https://arxiv.org/abs/2104.13421

¹⁰Slides available at https://fgh.xyz