Infinite

Infinity up on Trial: Reply to Feferman

In this session we will deal with a critique to some main ideas of Predicativists. They believe that, in some respects, arithmetic has some advantages that analysis and set-theory do not. Koellner puts this idea to the test.

Main Readings:

  • Koellner, Peter (2016). Infinity up on Trial: Reply to Feferman. Journal of Philosophy 113 (5/6):247-260.

Anna Bellomo | Bolzano, Collections, Sets and Infinity

Anna Bellomo presented her ongoing PhD research on Bolzano’s conceptions of infinity, as well as her involvement on the e-Ideas framework.

‘In the philosophy of mathematics circles, Bernard Bolzano (1871-1848) is mostly known for two things: his contributions to the so-called rigorisation of analysis, and his proto-Cantorian theory of size for infinite sets. In this talk, I will focus on the latter and summarise some recent findings suggesting that, contrary to what has been so far the default interpretation of Bolzano’s treatment of the countable infinite, his focus was not a theory of size for infinite sets, but solving some problems relating to the treatment of (non-convergent) infinite sequences.’